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Hybrid classical-quantum dynamics
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A hybrid formalism is considered for interacting classical and quantum sytems. This formalism is math-
ematically consistent and reduces to standard classical and quantum mechanics in the case of no interaction.
However, in the presence of interaction, the correspondence principle is violated.
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Quantum mechanics gives exceedingly accurate prediacal elements of density matrices can be reconstructed from
tions for atomic and nuclear systems. Classical mechanics imeasurement statistics and have an operational meaning.
just as successful for planetary motion. Can there be a theoiQuantum state§.e., density matricgswith the same diago-
encompassing both classical and quantum mechanics, so thal elements are indistinguishable. We may therefore con-
atoms and planets can be treated in a unified way? Indeed,stder all states as pure llefiningtheir off-diagonal elements
was speculated long ago that the gravitational field is classidS pmn= VPmmPnn SO thatp always has rank 1. It is then
cal, even though its material sources are quantizécNiels  possible to define a classical state veatoby p= gy
Bohr always insisted that measuring instruments must be de- Pure states defined in this way do not imply that dynami-
scribed in classical ternjg€]. However, Bohr did not provide cal variables have sharp values. The situation is just as in
a dynamical description of their interaction with quantumclassical statistical mechanics: the expectation value of an
systems. Adual (classical and quantunalescription of mea- observableA is given by
suring instruments is possibl8], but this is not a trulyhy-
brid formalism as proposed below, because in that dual for- (A)=tr(pA), ey

?a?gzn;d;hde interaction is always between subsystems of thgnd we may then havgd?)>(A)2, as usual. Note that such

If we try to write equations of motion that combine clas- a “classical” system also has noncommuting operators, but

sical canonical variables and quantum operators, we find théﬁgslgféigstg%l:Igrzen(gt)nes>|<dgrriergeﬁafﬁbsgggérr\]::ﬁ:mveﬂﬁatlh?é(-
the classical variables, whose values ought to be ordinar, P Y '

numbers, i up opertor companents,wrich s maniestL SeTHon, he noton asscal acauies & mean
unacceptabléwe shall later show how to overcome this dif- P P y :

ficulty). There have been numerous claims and countergoes not preclude that, by using more elaborate observation

claims as to the possibility of existence of a consistengeans’ every physical system might display quantum fea-
classical-quantum formalism. Some recent articles are liste - . .
To completely mimic classical mechanics, we need a

in Ref. [4]. There is no real contradiction between them, uantum algorithm that reproduces exactly the equations of
because their conflicting conclusions result from differentd4?! 9 . pre y €q
motion of a classical canonical system. For this, we shall

demands for consistency. follow Koopman'’s formalisnj6,7]. We consider for simplic-
In this article, we investigate a new type of hybrid dynam-it asin Iepde ree of freedom, ahd denote the canoni(F:)aI vari-
ics for interacting classical and quantum sytems. The pro-y 9 9

posed formalism is mathematically consistent and reduces t%t_)les as<andy (rather tharnx andp, as usual, because we

standard classical and quantum mechanics if there is no irf'r‘:’]hstos,[grsner\t/g ttaieir?t{gqgﬂ;%r Igerg?rSser\]/yrji;g ?:1: ﬂgﬂn
teraction between the systems. However, in the presence m sy ’

interaction, the correspondence principle is violated, so tha\(IIIe equation as
this hybrid formalism appears physically abnormal. i oflot=LF, )
Our paper follows a remark by Jau¢h] that if we as-

sume that not all quantum dynamical variables are actuallyhereL is the Liouville operator,

observable, and if we set rules for distinguishing measurable

from nonmeasurable operators, it is then possible to define a JH _d dH _d

classical system as a special type of quantum system for L= W _'5 “\ox _'W ' ©)

which all measurable operators commute. All the observable

dynamical variables of such a classical system can be simuifhe Liouville densityf is never negative. Since its quantum

taneously diagonalized and therefore can, in principle, havanalog, namely, Wigner’s distributiof7,8] (which may be

sharp values. If we are confined to this set of observables angegative, is quadratic in the quantum wave function, it is

we use a basis where they all are diagonal, then only diagaonvenient to introduce likewise a “classical wave func-
tion” ¢=/f, which in this case satisfies the same equation

of motion asf,
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We shall now considey as the fundamental entitfpout  and p, as long as the two systems do not interact. In the
only f=1|? has a direct physical meanindt can be proved Schralinger picture, we have a wave functiof(x,y,q)
that, under reasonable assumptions about the Hamiltoniamhose evolution is given by
the Liouville operator is an essentially self-adjoint operator
and generates a unitary evolutif@i: i1yl at=K, (13)

whereK is the Koopmanian operator

K=L(X,y,px,py) +H(q,p). (12

The introduction of a Hilbert space with unitary dynamics |, that wave function, the coordinatesy, and q may be
enables one to use familiar methods of quantum meChan"&]tangled. In any case, we can obtain the reduced density

for the analysis of ergodic probleni8] and of classical matrices of the classical and quantum systems by means of
chaoq10]. It is possible to further mimic quantum theory by partial traces on the other system, as usual.

(tﬂ,q’))::f P(X,y,1)* d(x,y,t) dx dy=const.  (5)

introducingcommutingoperatorsx andy, defined by The nontrivial problem is to introduce an interaction be-
A A tween the two systems. An apparent difficulty occurs in the
XPy=xp(x,y,t) and y =y h(xy,t). (6) Heisenberg picture because the equations of motion will mix

variables of all kinds: classical observables, nonobservables,
Note that the momentumis not the shift operatoithe latter ~@nd quantum operators. This still is acceptable, because we
is p,=—id/dx). Likewise the boost operator isf)y do not predict actual values for these variables, but only

= —id/dy. These two operators are not observable. We shafpreCt"jltion valuedA) =tr (pA), and no contradiction may

henceforth omit the hats over the classical operators, as the\qucq(;ur; vAvgyIZ\;\?\l/;/ vr\:gv\(/:?g ﬁg’:@l’; grs]; rgh?eiﬁar‘?;grfl?rlgttijcr)i’s
is no danger of confusion. 9 i

The analogy with quantum mechanics can be pushed furz (i 3% SRR, T8 08 RS O SR 2 AMED S6
ther. What we have above is a “Scldiager picture” [op- pie, P P P )

erators s constan, wave funcions evove i Gmady 119, PATONC 0slators, i a binear coung
=U(t)(0), whereU(t)=e''! if the Hamiltonian is time- ' Y

independert We can also define a “Heisenberg picture” with a Hamiltonian

where wave functions are fixed and operators evolve: H=1(q2+ p2+x2+y?)+kgx (13
Xu(t)=U"XU. (7) " we obtain equations of motion
The Heisenberg equation of motion, q: p b: —q—kx (14)
i dXy/dt=[Xy4,Ly]=UT[X,L]U, 8 : :
H [Xn,Lnl [X,L] ®) x=y, y=-x—kaq, (15

together with the Liouvillian(3), readily give Hamilton’s

. 1sti i -+ -
equations and there are two characteristic frequencies, 1+ Kk, cor

responding to the normal modeg<£x). Exactly the same
dx dH dy JH equations of motion appear in the Heisenberg picture for
=, = (99  quantum mechanics. Likewise, in the Sdlirger picture,
dat  ody dt X whenever there is a quadratic potential, the differential equa-
. ) ) ] tion for the Wigner distribution is identical to the Liouville
There is however an important difference: the time translagquation in classical mechanifg]. In view of this formal
tion operatorl is not the energy, and its spectrum may ex-agreement of classical and quantum mechanics, it is natural

tend to—o. For example, if we have a harmonic oscillator t5 demand that any hybridization of the system in Ecp)

with H=(x*+y?)/2, the Liouville operator is shall also give the same equations of motidihis is the
definite benchmark we propose for an acceptable classical-
L=y px—Xxpy, (10) quantum hybrid formalismit is not obvious that this crite-

_ _ _ rion can be achieved because, as we shall see, the hybrid
whose eigenvalues are all the integers, negative as well agstem has no normal modeg x).

positive. There is nothing wrong in that, sincénvolves the Let us try to obtain the above equations of motion from
unobservable shift operatopg= —id/dx andp,=—id/dy,  the Koopmanian operator
and thereforé. itself is not observable. Note that the solution
of Hamilton’s equations does not introduce nonobservable K=3(g?+p?)+(y py—X py) +Kj, (16)
components into the observable variables, because the
Hamiltonian (contrary to the Liouville operatprinvolves  with a suitably chosen interaction ter§y . We cannot have
only the observables andy. both [p,K;]=—kx and[y,K;]=—kq together with[y,p]

It is trivial to introduce into the above dynamical formal- =0, because these equations are incompatible with Jacobi’s
ism a quantum system, with conjugate dynamical variatyles identity
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[y![p!Kl]]+[pr[K|!y]]+[K|![ylp]]EO (17)
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affected. The solution of Eq20) for p, is a superposition of
sint and cog terms. When substituted into E(L9), these

The best result we were able to obtain was by “koopmanizterms behave as a driving force with resonant frequency, so

ing” the interaction termkgx in the Hamiltonian(13). We

have, from Eq(3),
Ki=ikqa/dgy=—kaqp,. (18)

The resulting equations of motion are E45), unchanged,

and

(19

q=p, p=-q-kpy,

Px= Py, (20)

byz_px-

thatg andp include terms behaving dsint andt cost. The
amplitude of the quantum oscillator increases linearly with
time, and energy is not conserved. It need not be: what is
conserved is the Koopman operator, which includes a term
(YPx—Xpy) Whose spectrum extends tox.

In conclusion, there is no mathematical inconsistency in
the hybrid formalism that we proposed: the dynamics is gen-
erated by a unitary transformation of the joint Hilbert space.
However, the result violates the correspondence principle,
which we would expect to hold exactly for a pair of oscilla-
tors with bilinear coupling. Therefore, such a theory appears
cluite abnormal from the point of view of physics.

The last equation is necessary, because an unobservable vari-

ablep, appears in Eq(19). Note that although the unobserv-
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