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Hybrid classical-quantum dynamics
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A hybrid formalism is considered for interacting classical and quantum sytems. This formalism is math-
ematically consistent and reduces to standard classical and quantum mechanics in the case of no interaction.
However, in the presence of interaction, the correspondence principle is violated.
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Quantum mechanics gives exceedingly accurate pre
tions for atomic and nuclear systems. Classical mechanic
just as successful for planetary motion. Can there be a th
encompassing both classical and quantum mechanics, so
atoms and planets can be treated in a unified way? Indee
was speculated long ago that the gravitational field is cla
cal, even though its material sources are quantized@1#. Niels
Bohr always insisted that measuring instruments must be
scribed in classical terms@2#. However, Bohr did not provide
a dynamical description of their interaction with quantu
systems. Adual ~classical and quantum! description of mea-
suring instruments is possible@3#, but this is not a trulyhy-
brid formalism as proposed below, because in that dual
malism the interaction is always between subsystems of
same kind.

If we try to write equations of motion that combine cla
sical canonical variables and quantum operators, we find
the classical variables, whose values ought to be ordin
numbers, pick up operator components, which is manife
unacceptable~we shall later show how to overcome this d
ficulty!. There have been numerous claims and coun
claims as to the possibility of existence of a consist
classical-quantum formalism. Some recent articles are lis
in Ref. @4#. There is no real contradiction between the
because their conflicting conclusions result from differe
demands for consistency.

In this article, we investigate a new type of hybrid dyna
ics for interacting classical and quantum sytems. The p
posed formalism is mathematically consistent and reduce
standard classical and quantum mechanics if there is no
teraction between the systems. However, in the presenc
interaction, the correspondence principle is violated, so
this hybrid formalism appears physically abnormal.

Our paper follows a remark by Jauch@5# that if we as-
sume that not all quantum dynamical variables are actu
observable, and if we set rules for distinguishing measura
from nonmeasurable operators, it is then possible to defi
classical system as a special type of quantum system
which all measurable operators commute. All the observa
dynamical variables of such a classical system can be sim
taneously diagonalized and therefore can, in principle, h
sharp values. If we are confined to this set of observables
we use a basis where they all are diagonal, then only dia
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nal elements of density matrices can be reconstructed f
measurement statistics and have an operational mean
Quantum states~i.e., density matrices! with the same diago-
nal elements are indistinguishable. We may therefore c
sider all states as pure bydefiningtheir off-diagonal elements
as rmn5Armmrnn, so thatr always has rank 1. It is then
possible to define a classical state vectorc by r5cc†.

Pure states defined in this way do not imply that dynam
cal variables have sharp values. The situation is just a
classical statistical mechanics: the expectation value of
observableA is given by

^A&5tr ~rA!, ~1!

and we may then havêA2&.^A&2, as usual. Note that suc
a ‘‘classical’’ system also has noncommuting operators,
the latter should be considered as abstract mathematica
pressions that are not experimentally observable. With
formal definition, the notion ‘‘classical’’ acquires a meanin
with respect to a specified set of dynamical variables. T
does not preclude that, by using more elaborate observa
means, every physical system might display quantum f
tures.

To completely mimic classical mechanics, we need
quantum algorithm that reproduces exactly the equation
motion of a classical canonical system. For this, we sh
follow Koopman’s formalism@6,7#. We consider for simplic-
ity a single degree of freedom and denote the canonical v
ables asx and y ~rather thanx and p, as usual, because w
wish to reserve the symbolp for the momentum of a quan
tum system, to be introduced later!. Let us write the Liou-
ville equation as

i ] f /]t5L f , ~2!

whereL is the Liouville operator,

L5S ]H

]y D S 2 i
]

]xD2S ]H

]x D S 2 i
]

]yD . ~3!

The Liouville densityf is never negative. Since its quantu
analog, namely, Wigner’s distribution@7,8# ~which may be
negative!, is quadratic in the quantum wave function, it
convenient to introduce likewise a ‘‘classical wave fun
tion’’ c5Af , which in this case satisfies the same equat
of motion asf,

i ]c/]t5Lc. ~4!
©2001 The American Physical Society01-1
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We shall now considerc as the fundamental entity~but
only f 5ucu2 has a direct physical meaning!. It can be proved
that, under reasonable assumptions about the Hamilton
the Liouville operator is an essentially self-adjoint opera
and generates a unitary evolution@9#:

^c,f&ªE c~x,y,t !* f~x,y,t ! dx dy5const. ~5!

The introduction of a Hilbert space with unitary dynami
enables one to use familiar methods of quantum mecha
for the analysis of ergodic problems@9# and of classical
chaos@10#. It is possible to further mimic quantum theory b
introducingcommutingoperatorsx̂ and ŷ, defined by

x̂ c5x c~x,y,t ! and ŷ c5y c~x,y,t !. ~6!

Note that the momentumŷ is not the shift operator~the latter
is p̂x52 id/dx). Likewise the boost operator isp̂y
52 id/dy. These two operators are not observable. We s
henceforth omit the hats over the classical operators, as t
is no danger of confusion.

The analogy with quantum mechanics can be pushed
ther. What we have above is a ‘‘Schro¨dinger picture’’ @op-
erators are constant, wave functions evolve in time asc(t)
5U(t)c(0), whereU(t)5e2 iLt if the Hamiltonian is time-
independent#. We can also define a ‘‘Heisenberg picture
where wave functions are fixed and operators evolve:

XH~ t !5U†XU. ~7!

The Heisenberg equation of motion,

i dXH /dt5@XH ,LH#5U†@X,L# U, ~8!

together with the Liouvillian~3!, readily give Hamilton’s
equations

dx

dt
5

]H

]y
,

dy

dt
52

]H

]x
. ~9!

There is however an important difference: the time trans
tion operatorL is not the energy, and its spectrum may e
tend to2`. For example, if we have a harmonic oscillat
with H5(x21y2)/2, the Liouville operator is

L5y px2x py , ~10!

whose eigenvalues are all the integers, negative as we
positive. There is nothing wrong in that, sinceL involves the
unobservable shift operatorspx52 id/dx andpy52 id/dy,
and thereforeL itself is not observable. Note that the solutio
of Hamilton’s equations does not introduce nonobserva
components into the observable variables, because
Hamiltonian ~contrary to the Liouville operator! involves
only the observablesx andy.

It is trivial to introduce into the above dynamical forma
ism a quantum system, with conjugate dynamical variableq
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and p, as long as the two systems do not interact. In
Schrödinger picture, we have a wave functionc(x,y,q)
whose evolution is given by

i ]c/]t5Kc, ~11!

whereK is the Koopmanian operator

K5L~x,y,px ,py!1H~q,p!. ~12!

In that wave function, the coordinatesx, y, and q may be
entangled. In any case, we can obtain the reduced den
matrices of the classical and quantum systems by mean
partial traces on the other system, as usual.

The nontrivial problem is to introduce an interaction b
tween the two systems. An apparent difficulty occurs in
Heisenberg picture because the equations of motion will m
variables of all kinds: classical observables, nonobservab
and quantum operators. This still is acceptable, because
do not predict actual values for these variables, but o
expectation values,̂A&5tr (rA), and no contradiction may
occur. Anyway, we can always use the Schro¨dinger picture,
where we know how to handle entangled wave functions

The true difficulty, as we shall now see in a simple e
ample, is that the correspondence principle fails. Cons
two harmonic oscillators, with a bilinear couplingkqx,
wherek is a constant. If we treat both of them classical
with a Hamiltonian

H5 1
2 ~q21p21x21y2!1kqx, ~13!

we obtain equations of motion

q̇5p, ṗ52q2kx, ~14!

ẋ5y, ẏ52x2kq, ~15!

and there are two characteristic frequencies,v5A16k, cor-
responding to the normal modes (q6x). Exactly the same
equations of motion appear in the Heisenberg picture
quantum mechanics. Likewise, in the Schro¨dinger picture,
whenever there is a quadratic potential, the differential eq
tion for the Wigner distribution is identical to the Liouville
equation in classical mechanics@7#. In view of this formal
agreement of classical and quantum mechanics, it is nat
to demand that any hybridization of the system in Eq.~13!
shall also give the same equations of motion.This is the
definite benchmark we propose for an acceptable classi
quantum hybrid formalism. It is not obvious that this crite-
rion can be achieved because, as we shall see, the hy
system has no normal modes (q6x).

Let us try to obtain the above equations of motion fro
the Koopmanian operator

K5 1
2 ~q21p2!1~y px2x py!1Ki , ~16!

with a suitably chosen interaction termKi . We cannot have
both @p,Ki #52kx and @y,Ki #52kq together with@y,p#
50, because these equations are incompatible with Jaco
identity
1-2
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@y,@p,Ki ##1@p,@Ki ,y##1@Ki ,@y,p##[0. ~17!

The best result we were able to obtain was by ‘‘koopman
ing’’ the interaction termkqx in the Hamiltonian~13!. We
have, from Eq.~3!,

Ki5 ikq]/]y[2kqpy . ~18!

The resulting equations of motion are Eq.~15!, unchanged,
and

q̇5p, ṗ52q2kpy , ~19!

ṗx5py , ṗy52px . ~20!

The last equation is necessary, because an unobservable
ablepy appears in Eq.~19!. Note that although the unobserv
able variablespx andpy have an influence on the observab
ones, no information onpx andpy can be obtained from that
because their own equations of motion, Eq.~20!, are not
02210
-

ari-

affected. The solution of Eq.~20! for py is a superposition of
sint and cost terms. When substituted into Eq.~19!, these
terms behave as a driving force with resonant frequency
thatq andp include terms behaving ast sint andt cost. The
amplitude of the quantum oscillator increases linearly w
time, and energy is not conserved. It need not be: wha
conserved is the Koopman operator, which includes a te
(ypx2xpy) whose spectrum extends to2`.

In conclusion, there is no mathematical inconsistency
the hybrid formalism that we proposed: the dynamics is g
erated by a unitary transformation of the joint Hilbert spa
However, the result violates the correspondence princi
which we would expect to hold exactly for a pair of oscill
tors with bilinear coupling. Therefore, such a theory appe
quite abnormal from the point of view of physics.

We thank Lajos Dio´si for stimulating discussions. D.R.T
was supported by a grant from the Technion Gradu
School. Work by A.P. was supported by the Gerard Swo
Fund and the Fund for Encouragement of Research.
l
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