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Multipartite entanglement that is robust against disposal of particles

W. Dür
Institut für Theoretische Physik, Universita¨t Innsbruck, A-6020 Innsbruck, Austria

~Received 22 June 2000; published 16 January 2001!

We investigate the entanglement properties of multiparticle systems, concentrating on the case where the
entanglement is robust against the disposal of particles. Two qubits—belonging to a multipartite system—are
entangled in this sense if their reduced density matrix is entangled. We introduce a family of multiqubit states,
for which one can choose for any pair of qubits independently whether they should be entangled or not as well
as the relative strength of the entanglement, thus providing the possibility to construct all kinds of ‘‘entangle-
ment molecules.’’ For some particular configurations, we also give the maximal amount of entanglement
achievable.
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Entanglement is at the heart of quantum informat
theory. In recent years, there has been an ongoing effo
characterize quantitatively and qualitatively entangleme
While for bipartite systems this problem is essentia
solved, it remains still open for multipartite systems. In th
case, there exist several possible approaches to identify
ferent kinds of multipartite entanglement, and many intere
ing phenomena related to multipartite entanglement h
been discovered@1#.

Here we concentrate on bipartite aspects of multipar
entanglement; in particular, on bipartite entanglement tha
robust against the disposal of particles. We considerN spa-
tially separated partiesA1 , . . . ,AN , each possessing a qub
We first investigate the N-party Greenberger-Horne
Zeilinger ~GHZ! state@2#,

uGHZ&5
1

A2
~ u0^ N&1u1^ N&), ~1!

which is considered to be a maximally entangled state~MES!
of N particles in several senses. For example, one can cr
a MES shared by any two of the parties with the help o
~local! measurement performed by the remaining ones. T
any two particles are potentially entangled, i.e., when allo
ing for the assistance of the other parties, bipartite entan
ment can be obtained from stateuGHZ&. However, it is es-
sential that the remaining (N22) parties perform
measurements to assist the other two parties to share
tanglement. If, however—for some reason—the informat
about only one of the particles, sayAN , is lost ~or partyAN
decides not to cooperate with the remaining ones!, the state
of the remaining parties is only classically correlated a
thus not entangled. In particular, the reduced density op
tor of any two parties is separable.1 When considering the
reduced density operator of two parties, we deal with

1Given anN-partite stater, the reduced density operatorr12 of
party A1 andA2 is defined asr12[tr3, . . . ,N(r). The operatorr12 is
separable if it can be written as a convex combination of prod
states.
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situation where the information about all remaining partic
is not accessible~or the remaining parties are not willing t
cooperate!.

We thus say that two particles are entangled if their
duced density operator is nonseparable, i.e., the two part
share entanglement, independent what happens to the
maining particles. Such a definition is very suitable from
practical point of view, as there are certain multipartite s
narios where one is interested in entanglement propertie
pairs of parties, which are independent of other parties. N
that in this sense, the stateuGHZ& contains no~bipartite!
entanglement at all.

But are thereN-particle states that are still entangle
when tracing outany (N22) particles; i.e., are there state
where all particles are entangled with all other particles? A
if this is possible, what is the maximal amount of entang
ment the remaining two parties can share? In this paper,
will answer these questions and we will consider the m
general setup where some parties are entangled, while s
others are not. For example, forN53 one may have that the
reduced density operatorsr12 andr13 remain entangled, bu
r23 is separable. We will show that one can have all poss
configurations of this kind; i.e., there exist states where o
can choose for each of the reduced density operatorsrkl ,k
, l P$1, . . . ,N% independently of whether they should b
entangled or not. This allows one to build general structu
of N particle states, which we call ‘‘entanglement mo
ecules’’ in the spirit of the generalization of Wootters’ ide
of an ‘‘entangled chain’’@3#, where one has a string of qu
bits, each qubit being entangled only with its nearest nei
bors. We are considering more general setups; e.g., clo
rings of particles where one only has nearest-neighbor
tanglement,~finite! strings with distance-dependent entang
ment ~also second, third, and so on neighborhood entan
ment!, entanglement fullerenes~like the C60 molecule!, or
more generally all possible setups of this kind one m
imagine.

There areN(N21)/2 different bipartite reduced densit
operatorsrkl that may be either separable or not. If the r
duced density operatorrkl is nonseparable, this automat
cally implies that a MES shared between partiesAk and Al
can be distilled~when allowing for several copies of th
state!, even without the help of the remaining parties. This
due to the fact that for two-qubit systems, inseparability

ct
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equivalent to distillability@4#. In fact, the remaining partie
can by no means prevent partiesAk andAl from distilling a
MES. In a diagram, this will be visualized by a line betwe
particlesAk andAl that represents entanglement between
two parties in question~see Fig. 1!. Each of the particles may
be entangled with one~or more! of the remaining (N21)
particles. In particular, one can have that any particle is
tangled with all the remaining ones. Clearly, it is interesti
to ask how strong these ‘‘bindings’’~the entanglement be
tween two particles! can be. Therefore, one has to quant
the entanglement of the bipartite reduced density opera
rkl . In this work, we choose as a measure of entanglem
the concurrenceC ~for a definition of the concurrence se
e.g.,@5#!. On the one hand, we follow the lines suggested
@3,5#; on the other, we have that the entanglement
formation2—the amount of entanglement required to prep
a stater—is monotonically increasing with the concurren
C, and thus the concurrence itself may be used to measur
strength of the bindings. For two special cases of particu
interest, we will give the states with the maximal achievea
strength of the bindings.

Let us start by introducing a family ofN qubit states,
which includes all possible configurations of ‘‘entangleme
molecules.’’ First we specify for each of the reduced dens
operatorsrkl whether it should be distillable or not, i.e
whether entanglement between the partiesAk andAl can be
distilled—without the help of the remaining parties—or no
Let I 5$k1l 1 , . . . ,kMl M% be the set of all those pairs whe
distillation should be possible; i.e., forklPI , we have that
rkl is distillable. We define the state

uC i j &[uC1& i j ^ u0 . . . 0& rest, ~2!

2The entanglement of formation is given byEf(r)5h( 1
2

1
1
2A12C 2), whereC is the concurrence andh is the binary en-

tropy functionh(x)52x log2x2(12x)log2(12x).

FIG. 1. Several kinds of entanglement molecules forN56. ~a!
Entanglement ring—double lines indicate stronger entanglem
between particles.~b! All even ~odd! particles are entangled respe
tively. ~c! One particleA1 equally entangled with five others.~d!
All particles equally entangled.
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that is, the particlesAi andAj are in a MES, namelyuC1&
51/A2(u01&1u10&), and the remaining particles are dise
tangled from each other and fromAiAj . We now introduce a
family of states that has the desired properties:

r I5
1

M (
klPI

xkluCkl&^Cklu, ~3!

whereM[(klPIxkl is a normalization factor. It is straight
forward to calculate the reduced density operatorsrkl . In the
standard basis, one can check forklPI thatrkl is of the form

rkl5
1

M S a 0 0 0

0 b xkl/2 0

0 xkl/2 c 0

0 0 0 0

D , ~4!

while for mn¹I one obtains

rmn5
1

M S ã 0 0 0

0 b̃ 0 0

0 0 c̃ 0

0 0 0 0

D , ~5!

It is simple to calculate the concurrence in both cases:

Ckl5
xkl

M
iff klPI ,

Cmn50 iff mn¹I , ~6!

where we denoteCkl[C(rkl). We have that inC2
^ C2 sys-

tems, nonzero concurrence automatically implies distillab
ity of the state, while zero concurrence implies separabil
Thus it is already clear thatr I has the desired properties, i.e
entanglement betweenAk and Al can be distilled ifklPI .
We see that we can arbitrarily choose the relative strengt
the bindings~measured by the concurrence! via the positive
coefficientsxkl . It is now straightforward to explicitly con-
struct the examples illustrated in Fig. 1: In~a! we have that
x125x345x5652/9, x235x455x1651/9 ~entanglement ring!;
in ~b! xkl51/6 if both k and l are even~odd!, respectively
and zero otherwise@all even~odd! particles are equally en
tangled#; in ~c! we have thatx1l51/5, while all otherxkl
50 ~one particle equally entangled with five other one!;
finally, in ~d! xkl51/15 ~all particles equally entangled!. In a
similar way, one can construct all examples mentioned in
introduction, such as strings with distance dependent
tanglement or entanglement fullerenes.

Note that in this construction, we have that

(
i ,k

Cik51, ~7!

which shows that in a situation where all bindings have
same strength, the concurrence of the corresponding red
density operators is determined by the total number of bi

nt
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ings, i.e., the number of elements inI. Hence, a state con
structed in this way, where each particle is entangled with
others~i.e., all possible reduced density operators are dis
able! and the strength of all bindings is equal hasCkl
52/@N(N21)#. As we shall see next, this is, however, n
the maximum value one can achieve for this particular c
figuration. In the following, we will analyze the two situa
tions illustrated in Figs. 1~c! and 1~d!, namely,~i! all par-
ticles are equally entangled and~ii ! one particle that is
equally entangled with (N21) others, and determine th
maximum strength of the bindings forN53.

(i) All particles pairwise entangled. We start with the case
where all particles are equally entangled with each other@see
also Fig. 1~d!#. As shown in@6#, the state

uW&51/A3~ u001&1u010&1u100&) ~8!

is the state of three qubits whose entanglement has the h
est degree of endurance against the loss of one of the t
qubits. In particular,uW& maximizes the function

Emin~c![min~C12,C13,C23!, ~9!

and hasCW[C125C135C2352/3. It follows that uW& is the
three-qubit state where all particles are equally entangled
the entanglement—measured by the concurrenceC—is maxi-
mal. Comparing uW& with r I of the form ~3! with I
5$12,13,23%, one immediately observes thatCr I

51/3, while

CW52/3.
More generally, let us consider theN-party form uWN& of

the stateuW&, defined as

uWN&[1/ANuN21,1&, ~10!

whereuN21,1& denotes the~unnormalized! totally symmet-
ric state includingN21 zeros and one 1, e.g.,u2,1&5u001&
1u010&1u100&. As shown in@6#, stateuWN& is an N qubit
state with all reduced density operators equal and the c
currences given byCkl52/N, which has to be compared t
Cr I

52/@N(N21)#, r I being a state of the family~3! where
all particles are equally entangled. Recently it was sho
thatCkl52/N, ;kÞ l is indeed the maximal value achievab
@7#.

(ii) One particle entangled with N21 others. We consider
now the case where one particle is equally entangled w
(N21) others and determine the maximal possible stren
C of the bindings@see Fig. 1~c!#. A related problem of this
kind, namely, the question of optimal entanglement splitti
i.e., the optimal way for a partyB to equally distribute its
initial entanglement~shared with a partyA) among severa
partners, was recently analyzed by Bruß in@8#.

As shown in@5#, we have forN53 thatC 12
2 1C 13

2 <1; i.e.,
for C125C13[C we have that C<1/A2. This value is
achieved by the state

uc&5
1

A2
u100&1

1

2
~ u001&1u010&). ~11!
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More generally, it was conjectured in@5# that the inequality
(k52

N C 1k
2 <1 also holds. If we demand again thatC1k5C1l

[C; k,l .1, we find thatC<1/AN21. This value is ob-
tained by the state

uc&5au1&u00 . . . 0&1bu0&uN22,1&, ~12!

with a51/A2 andb51/A2(N21), whereuN22,1& is again
an ~unnormalized! totally symmetric state including (N22)
zeros and one 1. For a state of the form~3!, where one
particle is equally entangled with (N21) others, one obtains
C1k51/(N21).

For practical purposes, it may sometimes be useful to c
sider the fidelity of the reduced density operator~i.e., the
maximal overlap of the reduced density operator with a
MES!—which is generally not a proper measure
entanglement—instead of the concurrence. The fidelity
the reduced density operator, however, indicates the ach
able quality to perform certain quantum information tas
e.g., teleportation@9#. The fidelity of a density operatorr is
defined as

Fr5max̂ FuruF&, ~13!

where the maximum is taken over all maximally entang
statesuF&. In the situation we consider, where one particle
equally entangled~i.e., Fr is equal for all reduced densit
operatorsr1k) with (N21) others, one can derive a boun
for the maximum fidelityFr of the reduced density operato
r1k using results from optimal cloning@10#. Given a density
operatorr with a certain fidelityFr , one can user to tele-
port @9# the ~unknown! state of a particle. As shown by th
Horodecki @11#, one can find a teleportation protocol th
works equally well for all input states and has the maximu
teleport fidelityFt5(2Fr11)/3. In our situation, we have
that particleA1 is entangled with (N21) other particles.
Thus, when performing a certain teleportation protoc
@12,13#, one obtains (N21) ~imperfect! clones of a state a
the locationsA2 , . . . ,AN , where the quality of the clones i
determined by the teleport fidelityFt of the corresponding
reduced density operators. As shown by Werner@10#, the
maximum cloning fidelity of a 1→(N21) cloner is given by
Fc5@2(N21)11#/@3(N21)#, from which it follows that
the teleport fidelityFt of the reduced density operators mu
fulfill Ft<Fc ; otherwise one could construct in this way
cloning machine that works better than the optimal o
which is clearly impossible. We thus have that

Fr<
1

2
1

1

2~N21!
. ~14!

For the stateuc& that maximizes the concurrence, we fin
that it does not obtain the maximal possible fidelityFr .
However, there exist states for which the maximal possi
value of the fidelity is obtained. For example, a state of
form ~12! with a51/AN(N21) andb5A(N21)/N has the
desired properties, as well as the ‘‘telecloning state’’ intr
duced in@12#. On the other hand, a state of the form~3!,
3-3
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where one particle is equally entangled with (N21) others
hasFr5@21N#/@4(N21)#, much smaller than the optima
value.

Note that the maximum value of the entanglement~mea-
sured by the concurrence! of a given qubit with its neighbors
is not simply determined by the number of entangled nei
bors, but also by the properties of the neighbors~i.e., the
number of particles to which the neighboring particles
entangled!. This can be seen by noting that~i! in the case
where one particle is equally entangled with two oth
~which are disentangled among themselves!, the maximal
value for the concurrence is given byC51/A2; and~ii ! in the
case where three qubits are equally entangled, the maxim
value is given byC52/3, which shows that the entangleme
between systemsA2 and A3 influences the maximum valu
of the entanglement between systemsA1A2 andA1A3.

In summary, we have provided a family of states th
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d
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v
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allows us to construct all possible kinds of ‘‘entangleme
molecules,’’ i.e., one can choose for any pair of qubits ind
pendently of whether a MES can be distilled without the h
of the remaining parties or not. In addition, the relati
strength of the bindings~measured by the concurrence! can
be adjusted arbitrarily. We investigated more closely t
particular configurations and provided states achieving
maximum value for the strength of the bindings.
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