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We investigate the entanglement properties of multiparticle systems, concentrating on the case where the
entanglement is robust against the disposal of particles. Two qubits—belonging to a multipartite system—are
entangled in this sense if their reduced density matrix is entangled. We introduce a family of multiqubit states,
for which one can choose for any pair of qubits independently whether they should be entangled or not as well
as the relative strength of the entanglement, thus providing the possibility to construct all kinds of “entangle-
ment molecules.” For some particular configurations, we also give the maximal amount of entanglement
achievable.
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Entanglement is at the heart of quantum informationsituation where the information about all remaining particles
theory. In recent years, there has been an ongoing effort tis not accessibl¢or the remaining parties are not willing to
characterize quantitatively and qualitatively entanglementcooperatg
While for bipartite systems this problem is essentially We thus say that two particles are entangled if their re-
solved, it remains still open for multipartite systems. In thisduced density operator is nonseparable, i.e., the two particles
case, there exist several possible approaches to identify dighare entanglement, independent what happens to the re-
ferent kinds of multipartite entanglement, and many interestaining particles. Such a definition is very suitable from a

ing phenomena related to multipartite entanglement hav@ractical point of view, as there are certain multipartite sce-
been discovereffl]. narios where one is interested in entanglement properties of

Here we concentrate on bipartite aspects of multipartiteoairs of parties, which are independent of other parties. Note

entanglement; in particular, on bipartite entanglement that igjat in this sense, the staf&HZ) contains no(bipartite

robust against the disposal of particles. We consiiapa- entanglement at all.

tially separated partied, , . .. Ay, each possessing a qubit. But are thereN-particle states that are still entangled

) . X when tracing outany (N—2) particles; i.e., are there states
W?. first investigate theN-party Greenberger-Horne- where all particles are entangled with all other particles? And
Zeilinger (GHZ) state[2],

if this is possible, what is the maximal amount of entangle-
ment the remaining two parties can share? In this paper, we
1 will answer these questions an_d we will consider the more
|GHZ)= —(|0®Ny +|18NY), (1)  9eneral setup where some parties are entangled, while some
2 others are not. For example, filr=3 one may have that the
reduced density operatops, and p,3 remain entangled, but
o _ ) P23 is separable. We will show that one can have all possible
which is considered to be a maximally entangled stiES)  configurations of this kind; i.e., there exist states where one
of N particles in several senses. For example, one can creatg choose for each of the reduced density operatar
a MES shared by any two of the parties with the help of a-| c (1 . N} independently of whether they should be
(local) meaSl_Jrement performed by the remaining ones. Thuén’[angled or not. This allows one to build general structures
any two particles are potentially entangled, i.e., when allows N particle states, which we call “entanglement mol-
ing for the assistance of the other parties, bipartite entanglgscyles” in the spirit of the generalization of Wootters’ idea
ment can be obtained from st4®HZ). However, it is €S- of an “entangled chain’3], where one has a string of qu-
sential that the remaining N—2) parties perform  pjts each qubit being entangled only with its nearest neigh-
measurements to assist the other two parties to share efors. We are considering more general setups; e.g., closed
tanglement. If, however—for some reason—the informatioryings of particles where one only has nearest-neighbor en-
about only one of the particles, s&y, is lost(or partyAy  tanglement(finite) strings with distance-dependent entangle-
decides not to cooperate with the remaining nt® state  ment (also second, third, and so on neighborhood entangle-
of the remaining parties is only classically correlated andneny, entanglement fullerenedike the Gy, moleculs, or
thus not entangled. In particular, the reduced density operanore generally all possible setups of this kind one may
tor of any two parties is separadiéeWhen considering the imagine.
reduced density operator of two parties, we deal with the There areN(N—1)/2 different bipartite reduced density
operatorspy, that may be either separable or not. If the re-
duced density operatgsy, is nonseparable, this automati-
!Given anN-partite statep, the reduced density operatpi, of  cally implies that a MES shared between parilgsand A,
party A; andA, is defined ap,,=tr; . n(p). The operatop,,is  can be distilled(when allowing for several copies of the
separable if it can be written as a convex combination of producstatg, even without the help of the remaining parties. This is
states. due to the fact that for two-qubit systems, inseparability is
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that is, the particleg; andA; are in a MES, namelyWw *)
=1/y2(|01)+|10)), and the remaining particles are disen-
tangled from each other and frofgA; . We now introduce a
family of states that has the desired properties:

1
=3 2 Xl T (P, (©)]
klel
© (d) whereM=X,,_ X is a normalization factor. It is straight-
A A A A forward to calculate the reduced density operapgrs In the
’ * standard basis, one can checkbe | thatp,, is of the form
A Ay Ay Ay
A A A A a0 0 0
¢ 5 ¢ s 1[0 b x42 0
FIG. 1. Several kinds of entanglement moleculesNet 6. (a) Pi=Mm1 o %2 ¢ o] 4)
Entanglement ring—double lines indicate stronger entanglement
between particlegb) All even (odd) particles are entangled respec- 0 0 0 0
tively. (c) One particleA; equally entangled with five othergd) . .
All particles equally entangled. while for mne | one obtains
a 0 0 0
equivalent to distillability[4]. In fact, the remaining parties ~
can by no means prevent partiég and A, from distilling a 1|10 b 00 5
MES. In a diagram, this will be visualized by a line between Pmn=\y 007%c o0}
particlesA, andA, that represents entanglement between the
0 0 0O

two parties in questiofsee Fig. 1L Each of the particles may
be entangled with onéor more of the remaining N—1)
particles. In particular, one can have that any particle is en
tangled with all the remaining ones. Clearly, it is interesting X

to ask how strong these “bindings(the entanglement be- cklzﬁ iff klel,
tween two particlescan be. Therefore, one has to quantify M

the entanglement of the bipartite reduced density operators
pu - In this work, we choose as a measure of entanglement
the concurrenc& (for a definition of the concurrence see,
e.g.,[5]). On the one hand, we follow the lines suggested i

It is simple to calculate the concurrence in both cases:

Cnn=0 iff mnel, (6)

where we denot€,,=C(py). We have that in2®(? sys-
; ems, nonzero concurrence automatically implies distillabil-
[3.5]; on the other, we have that the entanglement Oity of the state, while zero concurrence implies separability.

formatiorf—the amount of entanglement required to preparery < it is already clear thai, has the desired properties, i.e
a statep—is monotonically increasing with the concurrence entanglement betweef, and A, can be distilled ifkl E’I T
€, and thus the concurrence itself may be used to measure t%e see that we can arbitrarily choose the relative strength of

strength of the bindings. For two special cases of particula{he bindings(measured by the concurrehaga the positive

interest, we will give the states with the maximal aCh'eveablecoefficientsxk|. It is now straightforward to explicitly con-
strength of the bindings.

Let us start by introducing a family okl qubit states, struct the examples illustrated in Fig. 1: (@ we have that

S . ; . L X19= X34= X56= 2/9, Xo3= X45= X16= 1/9 (entanglement ring
which includes all possible configurations of entanglementin (b) x,=1/6 if both k and| are even(odd), respectively

molecules.” First we specify for each of the reduced densityand zero otherwisgall even(odd particles are equally en-
operatorspy, whether it should be distillable or not, i.e., tangled; in () we have thaix, =1/5, while all otherxy
whether entanglement between the parAgsand A, can be =0 (one particle equally entangled with five other ones

d|st|IIEd—W|thout the help of the remaining part|e§—or not. finally, in (d) x= 1/15 (all particles equally entangledn a
Let I ={k4lq, ... kulu} be the set of all those pairs where _. i t I ioned in th
distillation should be possible; i.e., féd eI, we have that similar way, one can construct all examples mentioned in the
is distillable. We define thé s;taiie ' introduction, such as strings with distance dependent en-
P ' tanglement or entanglement fullerenes.
Note that in this construction, we have that

|\Pi'>5|q,+>i'®|0---0>resv (2)
J ' t ;k Ck=1, @)

°The entanglement of formation is given b(p)=h(3  which shows that in a situation where all bindings have the
+3J1-C?), where( is the concurrence ankl is the binary en- same strength, the concurrence of the corresponding reduced
tropy functionh(x) = —x log,x—(1—x)log,(1—X). density operators is determined by the total number of bind-
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ings, i.e., the number of elements linHence, a state con- More generally, it was conjectured |B] that the inequality
structed in this way, where each particle is entangled with alE}_,C2,<1 also holds. If we demand again thag,=C;,
others(i.e., all possible reduced density operators are distill=cv k,|>1, we find thatC<1/J/N—1. This value is ob-
able and the strength of all bindings is equal hég tained by the state

=2[N(N—1)]. As we shall see next, this is, however, not

the maximum value one can achieve for this particular con- |¢y=a|1)|00 .. .0 +b|0)|N—2,1), (12
figuration. In the following, we will analyze the two situa-

tions illustrated in Figs. (£) and 1d), namely, (i) all par-  \ith a=1/\2 andb=1/2(N—1), where|N—2,1) is again

ticles are equally entangled ar(d) one particle that is 45 (unnormalizedi totally symmetric state includingN— 2)
equally entangled with—1) others, and determine the ,or0s and one 1. For a state of the fofd), where one

maximum strength of the bindings fo¥=3. particle is equally entangled wittN(— 1) others, one obtains
(i) All particles pairwise entangledVe start with the case Cre=1/(N—1).
where all particles are equally entangled with each disee For practical purposes, it may sometimes be useful to con-
also Fig. 1d)]. As shown in[6], the state sider the fidelity of the reduced density operatbe., the
maximal overlap of the reduced density operator with any
|W)=1/1/3(]001) +[010) +|100)) (8  MES—which is generally not a proper measure of

entanglement—instead of the concurrence. The fidelity of
is the state of three qubits whose entanglement has the higkhe reduced density operator, however, indicates the achiev-
est degree of endurance against the loss of one of the thre@le quality to perform certain quantum information tasks,
qubits. In particular|W) maximizes the function e.g., teleportation9]. The fidelity of a density operatqr is
defined as
Emin(¥)=min(C12,C13,C23), C)
F,=max®|p|D), (13
and hasCy=C;,=C13=Cp3=2/3. It follows that|W) is the
three-qubit state where all particles are equally entangled anghere the maximum is taken over all maximally entangled
the entanglement—measured by the concurrérees maxi-  stateg®). In the situation we consider, where one particle is

mal. Comparing|W) with p; of the form (3) with I  equally entangledi.e., F, is equal for all reduced density

={12,13,23, one immediately observes th@f = 1/3, while  operatorsp,,) with (N—1) others, one can derive a bound

Cw=2/3. for the maximum fidelity= , of the reduced density operators
More generally, let us consider tieparty form|Wy) of  pak using results from optimal clonind0]. Given a density
the statd W), defined as operatorp with a certain fidelityF,, one can use to tele-

port [9] the (unknown) state of a particle. As shown by the

|Wy)=1//N|N-1,1), (100  Horodecki[11], one can find a teleportation protocol that

works equally well for all input states and has the maximum
teleport fidelity F;=(2F ,+1)/3. In our situation, we have
that particleA; is entangled with l—1) other particles.
Thus, when performing a certain teleportation protocol
r{_12,1:§_|, one obtains {{—1) (imperfec} clones of a state at
the locationsA,, . .. Ay, where the quality of the clones is
determined by the teleport fidelitly, of the corresponding

where|N—1,1) denotes théunnormalized totally symmet-
ric state includingN—1 zeros and one 1, e.d42,1)=|001)
+]010 +|100. As shown in[6], state|Wy) is anN qubit
state with all reduced density operators equal and the co
currences given by,,;=2/N, which has to be compared to

=2[N(N—-1 i tate of the famil h .
Cp =2IN( )] py being a state of the famili) where reduced density operators. As shown by Werfidd], the

all particles are equally entangled. Recently it was Showr?naximum clonina fideli _ S
o S . . g fidelity of a &= (N—1) cloner is given by
thatCy,=2/N, Yk#1 is indeed the maximal value achievable F.=[2(N—1)+1]/[3(N—1)], from which it follows that

71 the tele ideli i
. . . . port fidelityF, of the reduced density operators must
(i) One particle entangled with N1 others We consider fulfill F,<F.; otherwise one could construct in this way a

now the case where one particle is equally entangled Witr&loning machine that works better than the optimal one
(N—1) others and determine the maximal possible strengtk)vhich is clearly impossible. We thus have that ’
C of the bindings[see Fig. 1c)]. A related problem of this '

kind, namely, the question of optimal entanglement splitting, 1
i.e., the optimal way for a part to equally distribute its F,<5+
initial entanglementshared with a party) among several 2
partners, was recently analyzed by Bruf{ &

As shown in[5], we have foN=3 thatC2,+C2,<1; .., For the statg) that maximizes the concurrence, we find

for Cp,=Cis=C we have thatC<1/\2. This value is that it does not obtain the maximal possible fidelfy,.
achieved by the state However, there exist states for which the maximal possible

value of the fidelity is obtained. For example, a state of the
1 form (12) with a=1/JN(N—1) andb=+/(N—1)/N has the

1100 += (]001) +|010)). (11)  desired properties, as well as the “telecloning state” intro-
2 duced in[12]. On the other hand, a state of the fokB),
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where one patrticle is equally entangled witki{ 1) others allows us to construct all possible kinds of “entanglement

hasF,=[2+N]/[4(N—1)], much smaller than the optimal molecules,” i.e., one can choose for any pair of qubits inde-

value. pendently of whether a MES can be distilled without the help
Note that the maximum value of the entanglem@nea-  of the remaining parties or not. In addition, the relative

sured by the concurrencef a given qubit with its neighbors  strength of the bindingémeasured by the concurrenazn

is not simply determined by the number of entangled neighbe adjusted arbitrarily. We investigated more closely two

bors, but also by the properties of the neighb(rs., the  particular configurations and provided states achieving the

number of particles to which the neighboring particles aremaximum value for the strength of the bindings.

entangled This can be seen by noting th@j in the case
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