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Playing a quantum game with a corrupted source

Neil F. Johnson
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The quantum advantage arising in a simplified multiplayer quantum game is found to be adisadvantage
when the game’s qubit source is corrupted by a noisy ‘‘demon.’’ Above a critical value of the corruption rate,
or noise level, the coherent quantum effects impede the players to such an extent that the ‘‘optimal’’ choice of
game changes from quantum to classical.
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Information plays a fundamental role in both quantu
mechanics@1# and games@2#. Recently, some pioneering ad
vances have been made in the field of quantum games@3,4#.
Eisertet al. @3# considered a quantum version of the famo
N52 player prisoner’s dilemma@2#. The game showed a
fascinating ‘‘quantum advantage’’ as a result of a novel p
off equilibrium. Benjamin and Hayden subsequently argu
that this equilibrium@3# results from an asymmetric restric
tion in the strategy set; with unrestricted strategies, it is
possible for such special ‘‘coherent quantum equilibri
~CQE’s! to arise in the maximally entangledN52 player
game@5#. Following our conjecture@6# that CQE’s arise for
N>3 players, Benjamin and Hayden@7# created a prisoner’s
dilemma–like game forN53 with a high payoff CQE@7#.
This effect of ‘‘two’s company, three’s a crowd’’ is quit
familiar in physical systems~both classical and quantum!
where complex behaviors tend to emerge only forN>3 in-
teracting particles.

In this paper the quantum advantage arising in a sim
fied multiplayer quantum game, is found to be adisadvan-
tage when the game’s qubit source is corrupted by a no
‘‘demon’’ whose activity is unknown to the players. Above
critical value of the corruption rate, or noise level, the coh
ent quantum effects impede the players to such an extent
the classical game outperforms the quantum game; given
choice, the multiplayer system does better if it adopts cla
cal rather than quantum behavior.

Following Ref.@7#, N53 players~or ‘‘agents’’! each re-
ceive a qubit in stateu0& ~or 0!. The quantum-game qubit
pass through an entanglingĴ gate@3,7# @see Fig. 1~a!#. With-
out loss of generality@7#, we take Ĵ5(1/A2)(Î ^ 31 i F̂ ^ 3)
where F̂5ŝx . Hence, the input stateu0& ^ u0& ^ u0&[u000&
becomes (1/A2)(u000&1 i u111&). The i th player’s strategysi
is her procedure for deciding which action to play. The str
egy profile s5(s1 ,s2 ,s3) assigns one strategy to eac
player, and an equilibrium is a strategy profile with a deg
of stability @7#; e.g., in a Nash equilibrium no player ca
improve her expected payoff by unilaterally changing h
strategy. The payoff table@see Fig. 1~b!# bears some resem
blance to the ‘‘el farol’’ bar problem@8#—the analogy is not
strictly correct; however, it aids in understanding the pay
table. A ~small! bar has seating capacity for two people, y
three people want to go. Action 0~1! means do not go~go!.
Stateu000& means everyone stayed away. No one gains,
1050-2947/2001/63~2!/020302~4!/$15.00 63 0203
s

-
d

-
’

i-

y

-
at

he
i-

t-

e

r

f
t

ut

no one is annoyed that others gained while they lost: the
payoff is zero per player. Stateu100& means one person a
tended, had plenty of seats~i.e., two! but no company; her
payoff is 1. The other two are annoyed that they didn’t atte
and gain from the available seat, hence each gets29. State
u110& means two attend; they each have a seat and h
company, so they get 9. The third person, while not gett
maximum enjoyment, is at least relieved that she did
make the effort to attend~making the bar overfull!; she gets
1. Stateu111& means they all attend. They benefit from lo
of company, but not enough seating; they all get 2. In
qubits must be supplied for each turn of the game. The p
ers assume that the input qubits are alwaysu0& ~or 0!, hence
yielding the payoffs in Fig. 1~b!. The classical game involve

FIG. 1. Three-player game:~a! classical~top! and quantum~bot-
tom! with input qubits/bits supplied by a~demonic! external source.
~b! Payoff table.
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TABLE I. Average payoffs for the classical game~players or ‘‘agents’’ denoted by ‘‘a’’!. p is the
probability of not flipping the input qubit. Average payoffs for input qubit 0 are shown as (. . . ), those for
input qubit 1 are shown as@ . . . #, while those for 50:50 mixture~i.e., x50.5) of input qubits are shown

without parentheses. $ is the payoff averaged over the three players, for a given input qubit~0 or 1!. $̄ is $
averaged over the input qubit.

Class p50 p51/2 p51 C $ $̄

~i! aaa~1/2!@1/2#1/2 1 ~1/2!@1/2# 1/2
~ii ! a(21/4)@217/4#1/2 aa~3/4!@1/4#1/2 3 (9/4)@25/4# 1/2
~iii ! aa(11/2)@29/2#1/2 a~3/2!@1/2#1 3 (25/6)@217/6# 2/3
~iv! aaa~2!@0#1 1 ~2!@0# 1
~v! aaa~0!@2#1 1 ~0!@2# 1
~vi! a~1!@1#1 aa(29)@9#0 3 (217/3)@19/3# 1/3
~vii ! aa(9)@29#0 a~1!@1#1 3 (19/3)@217/3# 1/3
~viii ! a(5)@24#1/2 a~0!@0#0 a(24)@5#1/2 6 ~1/3!@1/3# 1/3
~ix! aa~1/4!@3/4#1/2 a(217/4)@21/4#1/2 3 (25/4)@9/4# 1/2
~x! a~1/2!@3/2#1 aa(29/2)@11/2#1/2 3 (217/6)@25/6# 2/3
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only one of two possible states for each player’s qubit
each stage~0 or 1! and hence one particular outcome in t
payoff table of Fig. 1~b!. In the quantum game a superpos
tion of qubit states is possible and hence a superpositio
outcome states will generally arise—the classical game
therefore embedded in the quantum game. As in conv
tional game theory@2#, average payoffs are given by an e
pectation value over the possible measurement results.

Classical game players either leave the input qubit 0
changed, or flip it to 1. Allowing full knowledge of the pay
off table, classical game players will search for the domin
strategy payoff~2,2,2! and hence choose action 1@7#. Fol-
lowing the approach toN53 player classical games of Re
@9#, each player is assigned ap value, wherep is the prob-
ability of leaving the input qubit unflipped, i.e.,not flipping
the input qubit. For simplicity, supposep50, 1/2, or 1 in-
stead of being continuous@9#. There are 33527 possible
profiles or ‘‘configurations’’ (p1 ,p2 ,p3). These yield ten
‘‘classes’’ each containingC>1 configurations that are
equivalent under the interchange of player label@9#. Table I
shows the average payoffs for each configuration cla
Given that the input is 0, the dominant strategy equilibriu
corresponds to all players choosingp50, i.e., class~iv! in
Table I. Hence, although the continuous-parameterp space
has been discretized to only three values, this descrip
includes the desired dominant strategy equilibrium. T
quantum game players, having followed the analysis of R
@7# in which the special~5,9,5! ‘‘quantum’’ payoff is pre-
sented, independently decide to play for the CQE giv
there. In particular, Ref.@7# shows that the strategiesÎ , ŝx ,
and (1/A2)(ŝx1ŝz) yield a novel, high payoff CQE@7#
given input qubitu0&. We will assume that the set of 33

527 strategy profiles formed from these three simple str
gies contain theonly strategy profiles subsequently chos
by the quantum game players. Again this choice
restricted—in particular the quantum game should inclu
all SU~2! operations@5#. However, it allows for a straight
forward comparison between quantum and classical ga
without the complication of continuous-parameter sets. T
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resulting Table II provides a simple quantum analog of Ta

I. ŝx corresponds to not qubit flipping with probabilityp

50, hence we denote it as ‘‘p̂[0.’’ (1/A2)(ŝx1ŝz) corre-
sponds to not qubit flipping with probabilityp51/2, hence

we denote it as ‘‘p̂[1/2.’’ Î corresponds to not qubit flipping

with probability p51, hence we denote it as ‘‘p̂[1.’’ ~This
correspondence can be established by imagining switch
off theJ gates.! In both quantum and classical games, play
are unable to communicate between themselves, hence
cannot coordinate which player picks which strategy. In
quantum game, this is more critical since the CQE@i.e., the
Nash equilibrium given by class~viii ! in Table II# involves

players using differentp̂’s. @Although class~vii ! has the

same average payoff^$̂&519/3, it is not ‘‘fair’’ to all players
and is not a Nash equilibrium.# The payoffs in Tables I and II
@indicated by (. . . )# are in general quite different, i.e., th
quantum and classical systems behave differently.

Now consider the effect of a noisy source created by
external ‘‘demon’’@Fig. 1~a!#. The demon controls the inpu
qubit corruption level; however, the players are unaware
his presence. This is reminiscent of a ‘‘crooked house’’
gambling—players assume the source~e.g., deck of cards! is
clean even though it may have been corrupted by the s
plier ~e.g., dealer!. In Table I ~II !, the average payoffs with
input qubits always 1 (u1&) are shown as@ . . . #. Again, the
quantum and classical payoffs are generally quite differe

Comparing the (. . . ) and@ . . . # entries in column̂ $̂& of
Table II, and repeating this for column $ of Table I, we s
that the quantum game exhibits alower symmetry than the
classical game under interchange of the input qubit; e

there are two entrieŝ$̂&5(19/3) in Table II, but only one
entry @19/3#. A remarkable result is obtained if we now a
sume that the source contains equal numbers ofu0& and u1&
~or 0 and 1! qubits on average: the quantum and classi
games now produce identical payoffs for a given class~i.e.,

^$̂&5$̄). Also, the resulting payoff entries foreach pvalue
2-2
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TABLE II. Average payoffs for the quantum game~players or ‘‘agents’’ denoted by ‘‘a’’!. p̂[0 corre-

sponds toŝx ; p̂[1/2 corresponds to 1/A2(ŝx1ŝz); p̂[1 corresponds toÎ ~see text!. Average payoffs for
the input qubitu0& are shown as (. . . ), those for the input qubitu1& are shown as@ . . . #, while those for

50:50 mixture~i.e., x50.5) of input qubits are shown without parentheses.^$̂& is the payoff averaged ove

the three players for a given input qubit (u0& or u1&). ^$̂& is ^$̂& averaged over the input qubit.

Class p̂[0 p̂[1/2 p̂[1 C ^$̂& ^$̂&

~i! aaa(215/4)@19/4#1/2 1 (215/4)@19/4# 1/2
~ii ! a(215/4)@19/4#1/2 aa(215/4)@19/4#1/2 3 (215/4)@19/4# 1/2
~iii ! aa(27/2)@9/2#1/2 a~3/2!@1/2#1 3 (211/6)@19/6# 2/3
~iv! aaa~2!@0#1 1 ~2!@0# 1
~v! aaa~0!@2#1 1 ~0!@2# 1
~vi! a~1!@1#1 aa(29)@9#0 3 (217/3)@19/3# 1/3
~vii ! aa(9)@29#0 a~1!@1#1 3 (19/3)@217/3# 1/3
~viii ! a(5)@24#1/2 a(9)@29#0 a(5)@24#1/2 6 (19/3)@217/3# 1/3
~ix! aa(19/4)@215/4#1/2 a(19/4)@215/4#1/2 3 (19/4)@215/4# 1/2
~x! a~3/2!@1/2#1 aa(27/2)@9/2#1/2 3 (211/6)@19/6# 2/3
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within a given class become identical. In short, the quant
and classical games converge to produceidentical payoffs
for a given strategy class.

Since the players are unaware of the demon’s prese
they will still try to achieve the dominant strategy equili
rium payoff ~2,2,2! for the classical game, i.e., class~iv! in
Table I, and the superior CQE payoff~5,9,5! for the quantum
game, i.e., class~viii ! in Table II. We now examine the av
erage payoff from these two classes to see which gam
‘‘optimal’’ from the players’ collective perspective. Letx be
the input qubit noise level provided by the demon’s supp
representing the fraction ofu1& ~or 1! qubits received by each
agent over many turns of the game. For simplicity we
sume that the demon supplies identical qubits at each t
i.e., u0& ^ u0& ^ u0& with probability (12x) and u1& ^ u1&
^ u1& with probabilityx. There is no notion of ‘‘memory’’ so
far in the system, hence a periodic qubit seque
. . . u0&u1&u0&u1&u0&u1& supplied to each agent has the sa
‘‘noise-level’’ (x50.5) as a random sequence produced b
memoryless coin toss. Class~iv! in Table I yields the average

payoff per player $̄x50.x12.(12x)5222x, while class

~viii ! in Table II yields ^$̂&x5(217/3).x1(19/3).(12x)
519/3212x. Figure 2 shows these average payoffs a
function of x. There is a crossover atxcr513/3050.433; the
quantum game does better than the classical game for 0<x
,xcr , while the classical game does better than the quan

game forxcr,x<1. If ^$̂&x.2, and hence 0<x,x2 where
x2513/3650.361, then the quantum game does better t
the classical game even if the demon reduces the clas

game noise level tox50. If ^$̂&x,0, and hencex1,x<1
where x1519/3650.528, then the classical game will d
better than the quantum game even if the demon incre
the classical game noise level tox51. Suppose the demon i
replaced by a heat bath at temperatureT; using the Boltz-
mann weighting for a two-level system~energy separation
DE) yields kBT5DE„ln@(12x)x21#…21. Hence, kBTcr
53.7DE, kBT251.75DE, while kBT1 is unobtainable~i.e.,
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negative!. Given the choice, the ‘‘optimal’’ game for the
players to play therefore changes from being quantum
classical asT ~i.e., x) increases. ForT.3.7DE, the classical
game ‘‘takes over,’’ which is consistent with a simple
minded notion of a crossover from quantum→ classical be-
havior. From the viewpoint of risk, the class~viii ! quantum-
game players have high potential gains, but large poten
losses—this can lead to large fluctuations in their momen
wealth depending on the demon’s actions, and hence la
risk. By contrast, the class~iv! classical-game players have
smaller risk because of the potentially smaller wealth flu

FIG. 2. Average payoff per player~‘‘agent’’ ! per turn for quan-
tum game~thick solid line! and classical game~thin solid line! as a
function of input qubit/bit noise levelx ~i.e., demon’s corruption
rate!. Dotted lines correspond to payoff for pureu0& ~or 0! input,
while dotted-dashed lines are for pureu1& ~or 1! input.
2-3
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tuations. We emphasize that the degradation of the ‘‘qu
tum advantage’’ discussed here ariseswithout any decoher-
ence between theJ gates, i.e., there is full coherence with
the three-player subsystem. Note that the quantum advan
would also disappear~in a different way! if the quantum
correlationsbetweenthe Ĵ and Ĵ† gates were destroyed, bu
this is a trivial limit.

An interesting generalization is to consider anevolution-
ary quantum game in which players may modify their str
egies based on information from the past, i.e., they ‘‘lear
from past mistakes@9#. This introduces a ‘‘memory’’ into the
system and allows transitions between classes in Tables I
II. The memory in the evolutionary version will have a no
trivial effect on whether the quantum game outperforms
classical one, or vice versa@6#; the quantum and/or classica
game @10# may evenfreeze into a given configuration. A
deeper understanding of the relative ‘‘advantage’’ betwe
such classical and quantum many-player dynamical ga
may eventually shed light on connections between quan
n,

nt

hy

02030
n-

ge

-
’

nd

e

n
es
m

and classical many-particle, dynamical systems: it is poss
that payoffs can be used to represent energies, the entan
state of the many-player quantum game can represent s
exotic many-particle wave function, and the demon’s actio
can mimic environmental decoherence. Interestingly, Frie
et al. @11# have proposed that physical laws are derived fr
an extremum principle for the Fisher information of a me
surement and the information bound in the physical quan
being measured@11,12#—this extreme physical information
principle represents a game played against Nature. Since
observer can never win@11#, the phenomenon of interes
takes on an all-powerful, but malevolent, force—this is t
information ‘‘demon’’ who is looking to increase the degre
of ‘‘blur’’ of information, and against whom the players ar
forced to play.
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