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Playing a quantum game with a corrupted source
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The quantum advantage arising in a simplified multiplayer quantum game is found taibadzantage
when the game’s qubit source is corrupted by a noisy “demon.” Above a critical value of the corruption rate,
or noise level, the coherent quantum effects impede the players to such an extent that the “optimal” choice of
game changes from quantum to classical.
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Information plays a fundamental role in both quantumno one is annoyed that others gained while they lost: the net
mechanicg1] and game$2]. Recently, some pioneering ad- payoff is zero per player. Stat¢00) means one person at-
vances have been made in the field of quantum gdféds  tended, had plenty of seatse., two but no company; her
Eisertet al.[3] considered a quantum version of the famouspayoff is 1. The other two are annoyed that they didn’t attend
N=2 player prisoner’s dilemm#2]. The game showed a and gain from the available seat, hence each ge&s State
fascinating “quantum advantage” as a result of a novel pay{110 means two attend; they each have a seat and have
off equilibrium. Benjamin and Hayden subsequently arguecfompany, so they get 9. The third person, while not getting
that this equilibrium{3] results from an asymmetric restric- Maximum enjoyment, is at least relieved that she did not
tion in the strategy set; with unrestricted strategies, it is immake the effort to attentmaking the bar overfulf she gets
possible for such special “coherent quantum equilibria” 1- State|111) means they all attend. They benefit from lots
(CQE’9 to arise in the maximally entangled=2 player of company, but not enough seating; they all get 2. Input
game[5]. Following our conjecturg6] that CQE’s arise for ubits must be supplied for each turn of the game. The play-
N=3 players, Benjamin and HaydéH] created a prisoner's €rs assume that the input qubits are alwidys(or 0), hence
dilemma—like game foN=3 with a high payoff CQE?7]. yielding the payoffs in Fig. (b). The classical game involves

This effect of “two’s company, three’s a crowd” is quite

familiar in physical systemgboth classical and quantym a)

. X 1— ,. p—
where complex behaviors tend to emerge onlyNoz 3 in- classical @ 5... =
teracting particles. T— —,

In this paper the quantum advantage arising in a simpli- r’ - 0— 2
fied multiplayer quantum game, is found to belisadvan- ..@ i)
tage when the game’s qubit source is corrupted by a noisy

“demon’” whose activity is unknown to the players. Above a

critical value of the corruption rate, or noise level, the coher-

ent quantum effects impede the players to such an extent that qubit/bit supplier
the classical game outperforms the quantum game; given the L}

choice, the multiplayer system does better if it adopts classi-
cal rather than quantum behavior.

measurement

Following Ref.[7], N=3 players(or “agents”) each re- quantum

ceive a qubit in stat¢0) (or 0). The quantum-game qubits

pass through an entanglidggate[3,7] [see Fig. 1a)]. With-

out loss of generality7], we takeJ=(1/y2)(1%3+iF ©3)

whereF =0, . Hence, the input stat®)®|0)®|0)=|000) b) Mezsured [ Payof o
becomes (1/2)(/000 +i|111)). Theith player's strategg, = e
is her procedure for deciding which action to play. The strat- IO 00> | (0,00
egy profile s=(s;,s,,53) assigns one strategy to each |(1) (1) 8; g_;"?’:g;
player, _a}nd an equiliprium is a strategy profile with a degree 001> (_9:_9: 1)
of stability [7]; e.g., in a Nash equilibrium no player can [011> [ (1,9,9)
improve her expected payoff by unilaterally changing her [101> | (9,1,9)
strategy. The payoff tablesee Fig. 1b)] bears some resem- [110> [ (9,9, 1)
blance to the “el farol” bar probleni8]—the analogy is not 111> | (2,22

strictly correct; however, it aids in understanding the payoff

table. A(smal) bar has seating capacity for two people, yet  FIG. 1. Three-player gaméa) classicaltop) and quantuntbot-
three people want to go. Action (@) means do not gégo).  tom) with input qubits/bits supplied by @emonig external source.
State|000) means everyone stayed away. No one gains, buto) Payoff table.
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TABLE |. Average payoffs for the classical ganiplayers or “agents” denoted by “a)! p is the
probability of not flipping the input qubit. Average payoffs for input qubit O are shown as.(), those for
input qubit 1 are shown 4&s. . .], while those for 50:50 mixturéi.e., x=0.5) of input qubits are shown

without parentheses. $ is the payoff averaged over the three players, for a given inpy0aurhilj. $is$
averaged over the input qubit.

Class p=0 p=1/2 p=1 C $ $
() aad1/2[1/2]1/2 1 (1/2[1/2] 12
(i) a(QUAT-17/41/2  ad3/4[L/4]L/2 3 (9M4]-5/4 12
i) aa(ll/2)-9/2]12  a3/2[L21 3 (25/6]-17/6] 213
(iv) aad?2)[0]1 1 (2)[0] 1
W) aad0)[2]1 1 0)[2] 1
(i) a1 aa(-9)[9]0 3 (—17/3)19/3 13

(vii) aa(9] — 910 AD[1]1 3 (193[-17/3 13

(viii ) a(5) —4]1/2 40)[0]0 a(—4)[5]1/2 6 @33 13
(iX) adUA[3M4L2  a(-17/4[21412 3 (~54)94]  1/2
x) AU[321  aaC92[1U2L2 3 (—17/6)25/6] 2/3

only one of two possible states for each player's qubit atesulting Table Il provides a simple quantum analog of Table

each stage0 or 1) and hence one particular outcome in the| 5 corresponds to not qubit flipping with probability

payoff table of Fig. 1b). In the quantum game a superposi- L DA Ao )
tion of qubit states is possible and hence a superposition oTO’ hence we denote it asp™=0. (1/\/5)(0X+UZ) corre

outcome states will generally arise—the classical game igponds to not unb|t f|IppJng with probability=1/2, hence
therefore embedded in the quantum game. As in converive denote itas p=1/2." | corresponds to not qubit flipping
tional game theory2], average payoffs are given by an ex- with probability p=1, hence we denote it agp=1." (This
pectation value over the possible measurement results.  correspondence can be established by imagining switching
Classical game players either leave the input qubit O unoff the J gates) In both quantum and classical games, players
changed, or flip it to 1. Allowing full knowledge of the pay- are unable to communicate between themselves, hence they
off table, classical game players will search for the dominangannot coordinate which player picks which strategy. In the
strategy payoff(2,2,2 and hence choose action[]. Fol-  guantum game, this is more critical since the CRRE., the

lowing the approach tdl=3 player classical games of Ref. Nash equilibrium given by claswiii) in Table 1] involves
[9], each player is assignedpavalue, wherep is the prob-

ability of leaving the input qubit unflipped, i.enpot flipping -
the input qubit. For simplicity, suppoge=0, 1/2, or 1 in- same average paydf$)=19/3, it is not “fair” to all players
stead of being continuouf®]. There are 3=27 possible and is not a Nash equilibriuriThe payoffs in Tables | and II
profiles or “configurations” ,,p,,ps). These yield ten [indicated by (...)] are in general quite different, i.e., the
“classes” each containingC=1 configurations that are quantum and classical systems behave differently.
equivalent under the interchange of player Ial®] Table | Now consider the effect of a noisy source created by an
shows the average payoffs for each configuration classxternal “demon”[Fig. 1(@)]. The demon controls the input
Given that the input is 0, the dominant strategy equilibriumqubit corruption level; however, the players are unaware of
corresponds to all players choosipg-0, i.e., class(iv) in  his presence. This is reminiscent of a “crooked house” in
Table I. Hence, although the continuous-parametepace  gambling—players assume the souftesy., deck of cardss

has been discretized to Only three Values, this descripti06|ean even though it may have been Corrupted by the sup-
includes the desired dominant strategy equilibrium. Theyjier (e.g., dealer In Table I(Il), the average payoffs with
guantum game players, having followed the analysis of Re input qubits always 1|()) are shown a§ . . .]. Again, the

[7] in which the special5,9,5 “quantum” payoff is pre- ;. antum and classical payoffs are generally quite different
sented, independently decide to play for the CQE givenq pay g ya '

. A A Comparing the (..) and[ ...] entries in column($) of
there. In particular, Ret7] shows that the strategiés oy, Tablg Il agnd reéeat?ng thi[s for]column $ of TabISI >we see

and (142)(o,+07) yield a novel, high payoff CQE7]  that the quantum game exhibitsl@ver symmetry than the

given input qubit|0). We will assume that the set o3 ¢jassical game under interchange of the input qubit; e.g.,
=27 strategy profiles formed from these three simple strate-

: ; . there are two entrie@>=(19/3) in Table I, but only one

g;estﬁgntgsjr;;?ﬂ Iygsétrrr? Et}egr))/la@rgrfges Asguati)ﬁe?ﬁiinﬂghgrc?egentry[19/3]. A remarkable result is obtained if we now as-
restricted—in particular the quantum game should includesumoe th?jt the sk;)_turce contains _e?#al num?eﬂ@)o’adndlh ical
all SU(2) operationg5]. However, it allows for a straight- (or 0 and 1 qubits on average: the quantum and classica

forward comparison between quantum and classical gam&mei how produce identical payoffs for a given class,
without the complication of continuous-parameter sets. Thé$)=$). Also, the resulting payoff entries faach pvalue
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TABLE Il. Average payoffs for the quantum ganfglayers or “agents” denoted by “aJ. E)EO corre-
sponds too, ; p=1/2 corresponds to {2 (o, + o,); p=1 corresponds tb (see text Average payoffs for
the input qubit|0) are shown as (. .), those for the input qubitl) are shown a$ . . .], while those for

50:50 mixture(i.e., x=0.5) of input qubits are shown without parenthesﬁés.is the payoff averaged over

the three players for a given input qubjof or |1)). (i} is (é) averaged over the input qubit.

Class p=0 p=1/2 p=1 C ($) ($)
0) aaa(- 15/4) 19/4)1/2 1 (—15/4)19/4 1/2
(i) a(—15/4)19/41/2 aa( 15/4)19/41/2 3 (—15/4)19/4 1/2
(i) aa(-7/2)[9/2]1/2 a3/2[1/2)1 3 (—11/6)19/6] 2/3
(iv) aad2)[0]1 1 (2)[0] 1
v) aad0)[2]1 1 012 1
(Vi) a1 aa(-9)[9]0 3 (—17/3)19/3 13
(vii) aa(9] —9]0 a1 3 (19/3[-17/3 13

(viii ) a(5) —4]1/2 a(9y —9]0 a(5) —4]1/2 6 (19/3]-17/3 1/3
(iX) aa(19/4) — 15/411/2  a(19/4) —15/411/2 3 (19/4]—15/4] 1/2
(X) a(3/2)[1/2]1 aa(-7/2)9/2]1/2 3  (—11/6)19/6] 2/3

within a given class become identical. In short, the quantunmegativg. Given the choice, the “optimal”’ game for the

and classical games converge to prodidentical payoffs
for a given strategy class.

rium payoff (2,2,2 for the classical game, i.e., claés) in

“optimal” from the players’ collective perspective. Latbe

representing the fraction ¢f) (or 1) qubits received by each
agent over many turns of the game. For simplicity we as-
sume that the demon supplies identical qubits at each turn

players to play therefore changes from being quantum to
classical ad (i.e.,x) increases. Fof >3.7AE, the classical
Since the players are unaware of the demon’s presencgame “takes over,” which is consistent with a simple-

they will still try to achieve the dominant strategy equilib- minded notion of a crossover from quantum classical be-
havior. From the viewpoint of risk, the clagsii) quantum-
Table I, and the superior CQE payd¥,9,5 for the quantum game players have high potential gains, but large potential
game, i.e., claséviii) in Table Il. We now examine the av- losses—this can lead to large fluctuations in their momentary
erage payoff from these two classes to see which game isealth depending on the demon’s actions, and hence large
risk. By contrast, the clagév) classical-game players have a
the input qubit noise level provided by the demon’s supply,smaller risk because of the potentially smaller wealth fluc-

i.e., |0)®|0)®|0) with probability (1-x) and |1)®]|1)
®|1) with probabilityx. There is no notion of “memory” so
far in the system, hence a periodic qubit sequence ¥

...10)|1)|0)|1)|0)[1) supplied to each agent has the same Q. , ;|

“noise-level” (x=0.5) as a random sequence produced by a €

memoryless coin toss. Clagg) in Table | yields the average %
payoff per player $=0x+2.(1—x)=2-2x, while class i 20
(viii) in Table Il yields (§5>X=(— 17/3) x+(19/3.(1—x) E—

=19/3—-12x. Figure 2 shows these average payoffs as a‘g 0.0
function ofx. There is a crossover at,= 13/30=0.433; the
guantum game does better than the classical gamesfor 0

g
o 20
<X¢r, While the classical game does better than the quantumg;
— ©
S
o

game forx,<x<1. If (§>x>2, and hence &x<x_ where
x_=13/36=0.361, then the quantum game does better than g

the classical game even if the demon reduces the classice
. = -6.0
game noise level ta=0. If ($),<0, and hencex, <x=<1

where x, =19/36=0.528, then the classical game will do
better than the quantum game even if the demon increases
the classical game noise levelxe- 1. Suppose the demon is
replaced by a heat bath at temperatiireusing the Boltz-
mann weighting for a two-level systeenergy separation
AE) vyields kgT=AE(n[(1-X)x 1)1 Hence, kgTe
=3.7AE, kgT_=1.75AE, while kgT, is unobtainabldi.e.,
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FIG. 2. Average payoff per playétfagent”) per turn for quan-
tum game(thick solid line and classical gamghin solid line as a
function of input qubit/bit noise levex (i.e., demon’s corruption
rate). Dotted lines correspond to payoff for pui@) (or 0) input,
while dotted-dashed lines are for pyge (or 1) input.
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tuations. We emphasize that the degradation of the “quanand classical many-particle, dynamical systems: it is possible
tum advantage” discussed here aris@thout any decoher- that payoffs can be used to represent energies, the entangled
ence between th& gates, i.e., there is full coherence within state of the many-player quantum game can represent some
the three-player subsystem. Note that the quantum advantag&otic many-particle wave function, and the demon’s actions
would also disappeafin a different way if the quantum  can mimic environmental decoherence. Interestingly, Frieden
correlationsbetweerthe J andJ" gates were destroyed, but et al.[11] have proposed that physical laws are derived from
this is a trivial limit. an extremum principle for the Fisher information of a mea-

An interesting generalization is to consider evplution-  surement and the information bound in the physical quantity
ary quantum game in which players may modify their strat-hbeing measurefl11,12—this extreme physical information
egies based on information from the past, i.e., they “learn”principle represents a game played against Nature. Since the
from past mistakef9]. This introduces a “memory” into the  gpserver can never wifill], the phenomenon of interest
system and allows transitions between classes in Tables | aRgkes on an all-powerful, but malevolent, force—this is the
Il. The memory in the evolutionary version will have a non- jnformation “demon” who is looking to increase the degree

trivial effect on whether the quantum game outperforms they “pur” of information, and against whom the players are
classical one, or vice versé]; the quantum and/or classical forced to play.

game[10] may evenfreezeinto a given configuration. A

deeper understanding of the relative “advantage” between | am very grateful to Simon Benjamin for his continued
such classical and quantum many-player dynamical gamesollaboration. | also thank Seth Lloyd, Philippe Binder, Pak
may eventually shed light on connections between quanturiving Hui, and Luis Quiroga for discussions.
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