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It is shown, that oscillators on the sphere and the pseudosphere are related, by the so-called Bohlin trans-
formation, with the Coulomb systems on the pseudosphere. The even states of an oscillator yield the conven-
tional Coulomb system on the pseudosphere, while the odd states yield the Coulomb system on the pseudo-
sphere in the presence of magnetic flux tube generating spin 1/2. A similar relation is established for the
oscillator on the(pseudgsphere specified by the presence of constant uniform magneticHijgland the
Coulomb-like system on pseudosphere specified by the presence of the magnet®/8efdi({x5 /x| — €). The
correspondence between the oscillator and the Coulomb systems the higher dimensions is also discussed.
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The (d-dimensional oscillator and Coulomb systems are has the same behavior on both the sheets of the hyperboloid.
the most known representatives of mechanical systems withihese systems have been investigated by various methods
hidden symmetries that define the(@usymmetry algebra from many viewpoints (see, e.g.,[11] and references
for the oscillator, and gd+1) for the Coulomb system. The therein.
hidden symmetry has a very transparent meaning in the case How to relate the oscillator and Coulomb systems on
of an oscillator, while in the case of the Coulomb system it(PSeudo)spheres Phis question seems to be crucial for un-
has a more complicated interpretation in terms of geodesiéerstanding the geometrical meaning of the hidden symme-
flows of ad-dimensional spherL]. On the other hand, both tries of Coulomb systems ofpseudgspheres and for the
in classical and quantum cases, the transformatierR? ~ construction of their generalizations, as well as for the
converts the [+ 1)-dimensional radial Coulomb problem to twistor description of the relativistic spinning particles on

a 2p-dimensional radial oscillator (andR denote the radial anti—Desitter spaces. In Refl2], devoted to this problem,
P-C : the oscillator and Coulomb systems on spheres were related
coordinates of Coulomb and oscillator systems, respe

. T Dy mappings containing transitions to imaginary coordinates.
tively). In three distinguished cases:-1,2,4, one can estab- ", the present Rapid Communication, we establish the

lish a complete correspondence between the Coulomb anghnsnarent correspondence between oscillator and Coulomb
the oscillator systems by making use of the so-called Bohlinyystems  on (pseudgspheres for the simplest, two-

(or Levi-Civita) [2], Kustaanheimo-Stiefdl3], and Hurwitz  dimensional case p=1) that can be extended easily to
[4] transformations, respectivelgee alsd5]). These trans-  higher dimensions (=2,4). We show that under stereo-
formations imply the reduction of the oscillator system by angraphic projection the conventional Bohlin transformation
action of Z,, U(1), SU(2) group, respectively, and yield the relates the two-dimensional oscillator on tfpseudgsphere
Coulomb-like systems specified by the presence of monoto the Coulomb system on the pseudosphere, as well as those
poles[6-8]. interacting with specific external magnetic fields. This
On the other hand, the oscillator and Coulomb systemsimple construction allows one immediately to connect the
admit the generalizations to é&dimensional sphere and a generators of the hidden symmetries of the systems under
two-sheet hyperboloithseudosphejavith a radiusk, given  consideration, as well as to clarify the mappings suggested in
by the potential§9,10] [12].
Let us introduce the complex coordinagarametrizing
the sphere by the complex projective pldife and the two-

azRg X Y Xd+1 ; P,
Vo o= Ve — — 242 (1) sheeted hyperboloid by the Poincalisks L,
osc 2 2 C R |X| )
X1 ’ 1—-ezz
X=X1+iX,=Rg X3=Ry 2

wherex,xq, 1 are the(pseudgEuclidean coordinates of the 1+ezZ * 1+ezZ
ambient spacéi®"1(R%Y): ex?+x3,,=R3,e=*1. Thee
=+ 1 corresponds to the sphere a#vd —1 corresponds to
the pseu_dospher_e.. These systems possess _nonlir_1e_ar hidden dsz=RS[4dzd_zl(1+527)2]. 3)
symmetries providing them with the properties similar to

those of conventional oscillator and Coulomb systems. NoThe lower hemisphere and the lower sheet of the hyperboloid
tice that the oscillators on sphere and pseudosphere hawe parametrized by the unit disk|<1, while the upper
isomorphic configuration spaced-gimensional plane with a hemisphere and the upper sheet of the hyperboloid are speci-
cut circle, in the stereographic projectjosince the first one fied by|z|>1 and transform one into another by the inver-
is undefined on the equatrg. ;=0. The Coulomb system is sionz— 1/z. Since in the limitR,—« the lower hemisphere
attractive (repulsive on the upper(lower) hemisphere and (the lower sheet of hyperbolgidonverts into the whole two-

so that the metric becomes conformally flat
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dimensional plane, we have to restrict ourselves by those . €JH
defined on the lower hemisphere and the lower sheet of the  {1,J}=2il, {I,I}=4i ( P+ ——C—
hyperboloid (pseudospheje to keep the correspondence

R3 2Rg)'
with the conventional oscillator and Coulomb systems. In .
these terms the oscillator and Coulomb potentials read 1€ €nergy surface of the oscillator on tfgseudgsphere

(12

H¢..=E reads
2a2R3z7 1—ezz — —
Vo oy Ve TRy am e @ B B Bl
(1-ez7) 0 2R% R2 R2 '
Notice that the parametrizatiq®) is nothing but the stereo- (13
graphic projection of the two-dimensiongiseudgsphere Now, performing the canonical Bohlin transformatigi
0 . _ 2 _
cot 5 e’ for sphere, w=z%, p=(m/2z), (14
z
SR p (5) one can rewrite the expressi¢bd) as follows:
0 coth— ¢ for pseudosphere, —, — _
2 (1—-ww)%pp 7y 1+ww P (15
2 T —cc
where 6, ¢ are the(pseudgspherical coordinates. 2rg fo 2lwl

Let us equip the oscillator's phase spakceCP! (T* L)

. . where we introduced the notation
with the symplectic structure

_p2 _ _ 2
o drAdzt doAds ©) ro=R5, vy=E/2, 26c=a+€Elrg. (16
Comparing the left-hand sidéhs) of Eq. (15) with Egs.(4)
and introduce the rotation generators definingZsalgebra  and(9) we conclude that Eq(15) defines the energy surface
if e=1 and s@1.1) algebra ife=—1, of the Coulomb system on the pseudosphere with “radius”
ro, wherew,p denote the complex stereographic coordinate
=+ €22, Jzizi(Zw—E). (7) a_nd its conjugated momentgm, r.espectively.is the “ra-
2 dius” of pseudosphere, whil€; is the system’s energy.
) ] Hence, the Bohlin transformation of the classical isotropic
These generators, together withR,,x3/Ro, define the alge-  ggcillator on the (pseudo)sphere yields the classical Cou-
bra of motion of the(pseudgsphere via the following non- |omp problem on the pseudosphere.

IENIENA
=

vanishing Poisson brackets: The constants of motion of the oscillatodsand| [which
_ ) coincide on the energy surfac€k3)] are converted, respec-
{I.x}=2x3, {JIxs}=—ex, {Ixt=ix, tively, into the doubled angular momentum and the doubled
(8)  Runge-Lenz vector of the Coulomb system,
J,J}=-2ied, {J,J}=iJ. i
) 2.9 J—2Jc, |1—=2A, A:—@wx—c, (17
In these terms, the Hamiltonian of a free particle on the fo Ixcl
(pseudgsphere reads where Jc, Jc, Xc denote the rotation generators and the
— —, — pseudo-Euclidean coordinates of the Coulomb system.
E:JJJ“GJ _ (Itezg)nmm ) The quantum-mechanical counterpart of the energy sur-
0 2R2 2RZ ’ face(13) is the Schrdinger equation

while the oscillator's Hamiltonian is given by the expression Hsd @,Ro| 7, m,2,2)¥(2,2)=EV¥(2,2), (18

with the quantum Hamiltonian define@ue to the two-
. = (100  dimensional origin of the systenby the expression{10),
2Ry (1-ez2) wherem, 7 are the momenta operatdisereafter we assume
h=1)

(1+ EZ;)ZW;+ ZaZRSZ;

Hgsc(a-R0| W,;,Z,;) =

It can be easily verified, by the use of E§), that the latter
system possesses the hidden symmetry given by the complex m=—i(dlz), = —i ((9/(9;) _ (19
(or vectoria) constant of motiorj10]

The energy spectrum of this system is given by the expres-

_ 32 a®R3 X2 sion (see, e.g.[11] and references thergin
I=1i+ily=o s+, (11
2Ry X3 ~ (N+1)2
E=a(N+1)+e———, N=2n+[M|, (20
which defines, together with andH,s., the cubic algebra Ro
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wherea=\/a?+1/(4R3), M is the eigenvalue oj, N is the ~ where

rincipal quantum numben, is the radial quantum number,
principal g Ar g N,=n,+m,, m,=M/2,

IM|=0,1,...N, n,=01,..[N/2], 27)
0 if e=1, n,,m,—o,N,—o=0,1,... NI'"¥—¢.
N=0,1,...Npu=1 ~ _ (21)
" [2aRE]-1 if e=—1. Herem, denotes the eigenvalue of the angular momentum of

the reduced system, amq is the radial quantum number of
So, the number of levels in the energy spectrum of the oscilthe initial (and reduced system. Notice that the magnetic
lator is infinite on the sphere and finite on the pseudosphergiortex shifts the energy levels of the two-dimensional Cou-
The degeneracy of the energy spectrum is the same as in thigmb system that is nothing but the reflection of Aharonov-
flat case, ViZ., R+1. Bohm effect.

The quantum-mechanical correspondence between oscil- |t js seen, that the whole spectrum of the oscillator on the
Iator_and Coulomb systems is more complicat_ed, because theudospheree= — 1) transforms into the spectra of the
Bohlin transformation(14) maps thez plane in the two-  constructed Coulomb systems on the pseudosphere, while for
sheeted Riemann surface, since arg[0,4m). Thus, we the oscillator on the sphere£ 1) the positivity of the Ihs of
have to supplement the quantum-mechanical Bohlin transforzq, (25) restricts the admissible values Nf,. So, only the
mation with the reduction by th&, group action, choosing part of the spectrum of the oscillator on the sphere trans-
either even §=0) or odd (= 1/2) wave functions, forms into the spectrum of the Coulomb system. Hence, in

¥ (27 2P 2D? both cases we get the same result,
A2,2)=y,(z°,2°)(2/2)7,

(22 N'=[\roy— (/24 a)]. (28
Yol W], arg+2m) = i, (|wl,argw). To obtain the flat limit we perform the rescaling
This implies that the range of definition ¥ can be re- 7 W
stricted, without loss of generality, to awge [0,27). In that (z,w)ﬂ(ﬁ,ZRow , (w,p)ﬂ(ﬁ,mop) ,
0 0

case, the resulting system is the Coulomb problem on the

hyperboloid given by the Schatnger equation wherery=R2, and then take the limiRy— . In this limit,

the oscillator on thegpseudgsphere results in the conven-

He (7T olPo P W, W) 4= Ecils 23 tional circular oscillator
where y,Ec,r are given by Eq(16), andH; denotes the 2,7
Hamiltonian of the Coulomb system on the pseudosphere H=2mm+ a_’ w=drA\dz+dn/\dz, (29
with the momenta operators 2
0 o ) o which possesses the hidden(3usymmetry given by the
Pp=—i———, Py,=—i—+—. (24 constants of motion

. . . J=i(mz—7z), |=27°+a%7°/2:
Hence, the resulting Coulomb system includes the interac-
tion with the magnetic vortexan infinitely thin solenoig
with the magnetic fluxmo and zero strengthoto/w=0. (I =4ia23, {1,3}=2il
Such composites are typical representatives of anyonic sys- ' ' ' '
tems with the spinr [13]. So, we get a conventional tWo  The canonical transformatiofLd) remains unchanged: the
dimensional Coulomb problem on the hyperboloidsat 0 gnergy level of oscillator converts into the energy level of
and those with spirl/2 generated by the magnetic flux, at \he Coulomb problem with coupling constaBf2 and the
o=1/2. Taking into account the relatiori$6), one can re-  gnergy— o2/2. The oscillator's constants of motiahand!
write the oscillator’s energy spectruf@0) as follows: yield, respectively, the doubled angular momentum and the
doubled Runge-Lenz vector

(30

1 2y 2y N+1
e

a2 N T

(25) A=—4ipJ+(E/2)(w/|w]).

From this expression one can easily obtain the energy spe#? the quantum case, the even states of the oscillator yield

trum of the reduced system on the pseudosphere the conventional Coulomb system, while the odd states yield
the Coulomb system in the presence of a magnetic vortex
N,(N,+1) 72 generating spin 1/26]. _ .
Ec=— > - 5 (26) Let us briefly discuss the Bohlin transformation for the
2rg 2(N,+1/2) oscillator on the(pseuddsphere interacting with constant
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magnetic fieldB,. This system can be defined by the follow-
ing replacement of the symplectic structl® and of the
rotation generatoré?)

u=zoz, p=(zom+mwoz)2(z2)), (34)

where o are the Pauli matrices. As a result, the reduced
symplectic structure reads

i4R3dz/\dz
w— o+ Bo—_z, \]i—>\]i+4RoBoxi y (31)
(1+e€z2) (uxdu)/\du
dudp+s————, (35
which preserves the algeb(@) and shifts the initial Hamil- |ul

tonian(10) on the constant (8,)2. Consequently, the modi- ) i ,
fied system also possesses the hidden symmetry given kyyhlle the oscillator's energy surface takes the form
Egs. (11) and (12). The Bohlin transformatior{14) of the

modified oscillator yields the Coulomb system on the pseu- (1-u)? &) y1+u?
dosphere interacting with th tic field 2 2 =&, (36)
p g with the magnetic fie 8r2 u?l o 2Jul
Bc:(Bo/zro)(X(C)3/|X| —€). (32

wherer g, y,Ec are defined by the expressio(is).
It is easy to see that thep2dimensional oscillator on the Interpretingu as the real stereographic coordinates of
(pseudgsphere can be connected to theH1)-dimensional  three-dimensional pseudosphere
Coulomb-like systems on the pseudosphere in the same man-
ner as in higher dimensionsp€2,4). Indeed, in stereo- x=ro[2u/(1-U?)], Xg=ro[(1+Uu?)/(1-u?],
graphic coordinates, the oscillator on th@-8imensional 37
(pseudgsphere is described by the Hamiltonian system given ]
by Egs.(6) and (10), where the following replacement is We conclude .that Eq36) defines the energy surface of the
performed: ¢, m)— (2, m,), a=1, ...p with the summa- pseudosphencal analo_g .of a Co_qumb—Illke system proposed
tion over these indices. Consequently, the oscillator’s energ{f Ref. [14], that describing the interaction of two nonrela-
surfaces are of the fornil3). Further reduction to thep(  tvistic dyons.
+1)-dimensional Coulomb-like system on the pseudosphere [N the p=4 case, we have to reduce the system by the
repeats the corresponding reduction in the flat ¢asg. action of the SW2) group and choose the $P)-invariant
For example, ifp=2, we reduce the system under con- Stereographic coordinates and momenta in the form corre-
sideration by the Hamiltonian action of thé1y group given ~ SPonding to the standard Hurwitz transformatiag] that
by the generator yields a pseudospherical analog of the so-called2pU
Kepler (or Yang-Coulomlp system[8].
J=i(zm—zm). (33 The authors are grateful to V. M. Ter-Antonyan for valu-
able discussions and C. Groshe for drawing their attention to
For this purpose, we have to fix the level surfdee2s and  Ref.[5]. A.N. thanks D. Fursaev and C. Sochichiu for useful
choose the ()-invariant stereographic coordinates in the comments and interest in the work. The work of G.P. is
form of conventional Kustaanheimo-Stiefel transformationpartially supported by RFBR Grant Nos. 98-01-00330 and
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