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Relation of the oscillator and Coulomb systems on spheres and pseudospheres
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It is shown, that oscillators on the sphere and the pseudosphere are related, by the so-called Bohlin trans-
formation, with the Coulomb systems on the pseudosphere. The even states of an oscillator yield the conven-
tional Coulomb system on the pseudosphere, while the odd states yield the Coulomb system on the pseudo-
sphere in the presence of magnetic flux tube generating spin 1/2. A similar relation is established for the
oscillator on the~pseudo!sphere specified by the presence of constant uniform magnetic fieldB0 and the
Coulomb-like system on pseudosphere specified by the presence of the magnetic field (B/2r 0)(ux3 /xu2e). The
correspondence between the oscillator and the Coulomb systems the higher dimensions is also discussed.
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The (d-dimensional! oscillator and Coulomb systems a
the most known representatives of mechanical systems
hidden symmetries that define the su~d! symmetry algebra
for the oscillator, and so~d11! for the Coulomb system. The
hidden symmetry has a very transparent meaning in the
of an oscillator, while in the case of the Coulomb system
has a more complicated interpretation in terms of geod
flows of ad-dimensional sphere@1#. On the other hand, both
in classical and quantum cases, the transformationr 5R2

converts the (p11)-dimensional radial Coulomb problem t
a 2p-dimensional radial oscillator (r andR denote the radia
coordinates of Coulomb and oscillator systems, resp
tively!. In three distinguished cases,p51,2,4, one can estab
lish a complete correspondence between the Coulomb
the oscillator systems by making use of the so-called Bo
~or Levi-Civita! @2#, Kustaanheimo-Stiefel@3#, and Hurwitz
@4# transformations, respectively~see also@5#!. These trans-
formations imply the reduction of the oscillator system by
action ofZ2, U~1!, SU~2! group, respectively, and yield th
Coulomb-like systems specified by the presence of mo
poles@6–8#.

On the other hand, the oscillator and Coulomb syste
admit the generalizations to ad-dimensional sphere and
two-sheet hyperboloid~pseudosphere! with a radiusR0 given
by the potentials@9,10#

Vosc5
a2R0

2

2

x2

xd11
2

, VC52
g

R0

xd11

uxu
, ~1!

wherex,xd11 are the~pseudo!Euclidean coordinates of th
ambient spaceRd11(Rd.1): ex21xd11

2 5R0
2,e561. The e

511 corresponds to the sphere ande521 corresponds to
the pseudosphere. These systems possess nonlinear h
symmetries providing them with the properties similar
those of conventional oscillator and Coulomb systems. N
tice that the oscillators on sphere and pseudosphere
isomorphic configuration spaces (d-dimensional plane with a
cut circle, in the stereographic projection!, since the first one
is undefined on the equatorxd1150. The Coulomb system is
attractive~repulsive! on the upper~lower! hemisphere and
1050-2947/2001/63~2!/020103~4!/$15.00 63 0201
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has the same behavior on both the sheets of the hyperbo
These systems have been investigated by various met
from many viewpoints ~see, e.g., @11# and references
therein!.

How to relate the oscillator and Coulomb systems
(pseudo)spheres ?This question seems to be crucial for u
derstanding the geometrical meaning of the hidden sym
tries of Coulomb systems on~pseudo!spheres and for the
construction of their generalizations, as well as for t
twistor description of the relativistic spinning particles o
anti–DeSitter spaces. In Ref.@12#, devoted to this problem
the oscillator and Coulomb systems on spheres were rel
by mappings containing transitions to imaginary coordinat

In the present Rapid Communication, we establish
transparent correspondence between oscillator and Coul
systems on ~pseudo!spheres for the simplest, two
dimensional case (p51) that can be extended easily
higher dimensions (p52,4). We show that under stereo
graphic projection the conventional Bohlin transformati
relates the two-dimensional oscillator on the~pseudo!sphere
to the Coulomb system on the pseudosphere, as well as t
interacting with specific external magnetic fields. Th
simple construction allows one immediately to connect
generators of the hidden symmetries of the systems un
consideration, as well as to clarify the mappings suggeste
@12#.

Let us introduce the complex coordinatez parametrizing
the sphere by the complex projective planeCP1 and the two-
sheeted hyperboloid by the Poincare´ disksL,

x[x11 ix25R0

2z

11ezz̄
, x35R0

12ezz̄

11ezz̄
, ~2!

so that the metric becomes conformally flat

ds25R0
2 @4dzdz̄/~11ezz̄!2# . ~3!

The lower hemisphere and the lower sheet of the hyperbo
are parametrized by the unit diskuzu,1, while the upper
hemisphere and the upper sheet of the hyperboloid are sp
fied by uzu.1 and transform one into another by the inve
sionz→1/z. Since in the limitR0→` the lower hemisphere
~the lower sheet of hyperboloid! converts into the whole two-
©2001 The American Physical Society03-1
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dimensional plane, we have to restrict ourselves by th
defined on the lower hemisphere and the lower sheet of
hyperboloid ~pseudosphere!, to keep the correspondenc
with the conventional oscillator and Coulomb systems.
these terms the oscillator and Coulomb potentials read

Vosc5
2a2R0

2zz̄

~12ezz̄!2
, VC52

g

R0

12ezz̄

2uzu
, ~4!

Notice that the parametrization~2! is nothing but the stereo
graphic projection of the two-dimensional~pseudo!sphere

z

2R0
5H cot

u

2
eiw for sphere,

coth
u

2
eiw for pseudosphere,

~5!

whereu,w are the~pseudo!spherical coordinates.
Let us equip the oscillator’s phase spaceT* CP1 (T* L)

with the symplectic structure

v5dp`dz1dp̄`dz̄ ~6!

and introduce the rotation generators defining su~2! algebra
if e51 and su~1.1! algebra ife521,

J[
iJ12J2

2
5p1e z̄2p̄, J[

eJ3

2
5 i ~zp2 z̄p̄ !. ~7!

These generators, together withx/R0 ,x3 /R0, define the alge-
bra of motion of the~pseudo!sphere via the following non
vanishing Poisson brackets:

$J,x%52x3 , $J,x3%52e x̄, $J,x%5 ix,

~8!

$J,J̄%522i eJ, $J,J%5 iJ.

In these terms, the Hamiltonian of a free particle on
~pseudo!sphere reads

H0
e5

JJ̄1eJ2

2R0
2

5
~11ezz̄!2pp̄

2R0
2

, ~9!

while the oscillator’s Hamiltonian is given by the expressi

Hosc
e ~a,R0up,p̄,z,z̄!5

~11ezz̄!2pp̄

2R0
2

1
2a2R0

2zz̄

~12ezz̄!2
. ~10!

It can be easily verified, by the use of Eq.~8!, that the latter
system possesses the hidden symmetry given by the com
~or vectorial! constant of motion@10#

I5I 11 i I 25
J2

2R0
2

1
a2R0

2

2

x̄2

x3
2

, ~11!

which defines, together withJ andHosc, the cubic algebra
02010
e
e

n

e

lex

$I ,J%52i I , $ Ī ,I %54i S a2J1
eJHosc

R0
2

2
J3

2R0
4D . ~12!

The energy surface of the oscillator on the~pseudo!sphere
Hosc

e 5E reads

@12~zz̄!2#2pp̄

2R0
4

12S a21e
E

R0
2D zz̄5

E

R0
2 @11~zz̄!2#.

~13!

Now, performing the canonical Bohlin transformation@2#

w5z2, p5~p/2z! , ~14!

one can rewrite the expression~13! as follows:

~12ww̄!2pp̄

2r 0
2

2
g

r 0

11ww̄

2uwu
5EC , ~15!

where we introduced the notation

r 05R0
2 , g5 E/2 , 22EC5a21e E/r 0 . ~16!

Comparing the left-hand side~lhs! of Eq. ~15! with Eqs.~4!
and~9! we conclude that Eq.~15! defines the energy surfac
of the Coulomb system on the pseudosphere with ‘‘radiu
r 0, wherew,p denote the complex stereographic coordin
and its conjugated momentum, respectively.r 0 is the ‘‘ra-
dius’’ of pseudosphere, whileEC is the system’s energy
Hence, the Bohlin transformation of the classical isotrop
oscillator on the (pseudo)sphere yields the classical C
lomb problem on the pseudosphere.

The constants of motion of the oscillators,J andI @which
coincide on the energy surfaces~13!# are converted, respec
tively, into the doubled angular momentum and the doub
Runge-Lenz vector of the Coulomb system,

J→2JC , I→2A, A52
iJCJC

r 0
1g

x̄C

uxCu
, ~17!

where JC , JC , xC denote the rotation generators and t
pseudo-Euclidean coordinates of the Coulomb system.

The quantum-mechanical counterpart of the energy s
face ~13! is the Schro¨dinger equation

H osc
e ~a,R0up,p̄,z,z̄!C~z,z̄!5EC~z,z̄!, ~18!

with the quantum Hamiltonian defined~due to the two-
dimensional origin of the system! by the expression~10!,
wherep,p̄ are the momenta operators~hereafter we assum
\51)

p52 i ~]/]z! , p̄52 i ~]/] z̄! . ~19!

The energy spectrum of this system is given by the exp
sion ~see, e.g.,@11# and references therein!

E5ã~N11!1e
~N11!2

2R0
2

, N52nr1uM u, ~20!
3-2
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whereã5Aa211/(4R0
4), M is the eigenvalue ofJ, N is the

principal quantum number,nr is the radial quantum numbe

uM u50,1, . . . ,N, nr50,1, . . .@N/2#,

N50,1, . . . ,Nmax5H ` if e51,

@2ãR0
2#21 if e521.

~21!

So, the number of levels in the energy spectrum of the os
lator is infinite on the sphere and finite on the pseudosph
The degeneracy of the energy spectrum is the same as i
flat case, viz., 2N11.

The quantum-mechanical correspondence between o
lator and Coulomb systems is more complicated, because
Bohlin transformation~14! maps thez plane in the two-
sheeted Riemann surface, since argwP@0,4p). Thus, we
have to supplement the quantum-mechanical Bohlin trans
mation with the reduction by theZ2 group action, choosing
either even (s50) or odd (s51/2) wave functions,

Cs~z,z̄!5cs~z2,z̄2!~z/ z̄!2s,

~22!

cs~ uwu,argw12p!5cs~ uwu,argw!.

This implies that the range of definition ofw can be re-
stricted, without loss of generality, to argwP@0,2p). In that
case, the resulting system is the Coulomb problem on
hyperboloid given by the Schro¨dinger equation

HC
2~g,r 0ups ,p̄s ,w,w̄!cs5ECcs , ~23!

where g,EC ,r are given by Eq.~16!, and HC
2 denotes the

Hamiltonian of the Coulomb system on the pseudosph
with the momenta operators

ps52 i
]

]w
2

s

iw
, p̄s52 i

]

]w̄
1

s

iw̄
. ~24!

Hence, the resulting Coulomb system includes the inte
tion with the magnetic vortex~an infinitely thin solenoid!
with the magnetic fluxps and zero strengthrots/w50.
Such composites are typical representatives of anyonic
tems with the spins @13#. So, we get a conventional two-
dimensional Coulomb problem on the hyperboloid ats50
and those with spin1/2 generated by the magnetic flux,
s51/2. Taking into account the relations~16!, one can re-
write the oscillator’s energy spectrum~20! as follows:

A 1

4r 0
2

2e
2g

r 0
22EC5

2g

N11
2e

N11

2r 0
. ~25!

From this expression one can easily obtain the energy s
trum of the reduced system on the pseudosphere

EC52
Ns~Ns11!

2r 0
2

2
g2

2~Ns11/2!2
, ~26!
02010
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where

Ns5nr1ms , ms5M /2,

~27!

nr ,ms2s,Ns2s50,1, . . . ,Ns
max2s.

Herems denotes the eigenvalue of the angular momentum
the reduced system, andnr is the radial quantum number o
the initial ~and reduced! system. Notice that the magnet
vortex shifts the energy levels of the two-dimensional Co
lomb system that is nothing but the reflection of Aharono
Bohm effect.

It is seen, that the whole spectrum of the oscillator on
pseudosphere (e521) transforms into the spectra of th
constructed Coulomb systems on the pseudosphere, whil
the oscillator on the sphere (e51) the positivity of the lhs of
Eq. ~25! restricts the admissible values ofNs . So, only the
part of the spectrum of the oscillator on the sphere tra
forms into the spectrum of the Coulomb system. Hence
both cases we get the same result,

Ns
max5@Ar 0g2~1/21s!#. ~28!

To obtain the flat limit we perform the rescaling

~z,p!→S z

2R0
,2R0p D , ~w,p!→S w

4r 0
,4r 0pD ,

wherer 05R0
2, and then take the limitR0→`. In this limit,

the oscillator on the~pseudo!sphere results in the conven
tional circular oscillator

H52pp̄1
a2zz̄

2
, v5dp`dz1dp̄`dz̄, ~29!

which possesses the hidden su~2! symmetry given by the
constants of motion

J5 i ~pz2p̄ z̄!, I52p21a2z̄2/2:

~30!

$ Ī ,I%54ia2J, $I ,J%52i I .

The canonical transformation~14! remains unchanged; th
energy level of oscillator converts into the energy level
the Coulomb problem with coupling constantE/2 and the
energy2a2/2. The oscillator’s constants of motionJ and I
yield, respectively, the doubled angular momentum and
doubled Runge-Lenz vector

A524ipJ1~E/2!~w̄/uwu! .

In the quantum case, the even states of the oscillator y
the conventional Coulomb system, while the odd states y
the Coulomb system in the presence of a magnetic vo
generating spin 1/2@6#.

Let us briefly discuss the Bohlin transformation for th
oscillator on the~pseudo!sphere interacting with constan
3-3
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magnetic fieldB0. This system can be defined by the follow
ing replacement of the symplectic structure~6! and of the
rotation generators~7!

v→v1B0

i4R0
2dz̀ dz̄

~11ezz̄!2
, Ji→Ji14R0B0xi , ~31!

which preserves the algebra~8! and shifts the initial Hamil-
tonian~10! on the constant (4B0)2. Consequently, the modi
fied system also possesses the hidden symmetry give
Eqs. ~11! and ~12!. The Bohlin transformation~14! of the
modified oscillator yields the Coulomb system on the ps
dosphere interacting with the magnetic field

BC5~B0/2r 0!~x(C)3/uxu2e!. ~32!

It is easy to see that the 2p-dimensional oscillator on the
~pseudo!sphere can be connected to the (p11)-dimensional
Coulomb-like systems on the pseudosphere in the same m
ner as in higher dimensions (p52,4). Indeed, in stereo
graphic coordinates, the oscillator on the 2p-dimensional
~pseudo!sphere is described by the Hamiltonian system giv
by Eqs. ~6! and ~10!, where the following replacement i
performed: (z,p)→(za,pa), a51, . . . ,p with the summa-
tion over these indices. Consequently, the oscillator’s ene
surfaces are of the form~13!. Further reduction to the (p
11)-dimensional Coulomb-like system on the pseudosph
repeats the corresponding reduction in the flat case@7,8#.

For example, ifp52, we reduce the system under co
sideration by the Hamiltonian action of the U~1! group given
by the generator

J5 i ~zp2 z̄p̄ !. ~33!

For this purpose, we have to fix the level surfaceJ52s and
choose the U~1!-invariant stereographic coordinates in t
form of conventional Kustaanheimo-Stiefel transformati
@3# ~see also@7#!
-

02010
by

-

n-

n

y

re

u5zsz̄, p5~zsp1p̄sz̄!/2~zz̄! , ~34!

where s are the Pauli matrices. As a result, the reduc
symplectic structure reads

du`dp1s
~u3du!`du

uuu3
, ~35!

while the oscillator’s energy surface takes the form

~12u2!2

8r 0
2 S p21

s2

u2D 2
g

r 0

11u2

2uuu
5EC , ~36!

wherer 0 ,g,EC are defined by the expressions~16!.
Interpreting u as the real stereographic coordinates

three-dimensional pseudosphere

x5r 0 @2u/~12u2!# , x45r 0 @~11u2!/~12u2!# ,
~37!

we conclude that Eq.~36! defines the energy surface of th
pseudospherical analog of a Coulomb-like system propo
in Ref. @14#, that describing the interaction of two nonrel
tivistic dyons.

In the p54 case, we have to reduce the system by
action of the SU~2! group and choose the SU~2!-invariant
stereographic coordinates and momenta in the form co
sponding to the standard Hurwitz transformation@4,8# that
yields a pseudospherical analog of the so-called SU~2!-
Kepler ~or Yang-Coulomb! system@8#.
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