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Exact eigenstates for trapped weakly interacting bosons in two dimensions
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Department of Physics, National Changhua University of Education, Changhua 50058, Taiwan

~Received 28 July 2000; published 5 December 2000!

A system ofN two-dimensional weakly interacting bosons in a harmonic trap is considered. When the
two-particle potential is ad function, Smith and Wilkin have proved analytically that the elementary symmetric
polynomials of particle coordinates measured from the center of mass are exact eigenstates. In this study, we
point out that their proof works equally well for an arbitrary two-particle potential that possesses translational
and rotational symmetries. We find that the interaction energy associated with the eigenstate with angular
momentumL is equal toaN(N21)/21(b2a)NL/2, wherea andb are the interaction energies of two bosons
in the lowest-energy one-particle state with zero and one unit of angular momentum, respectively. Addition-
ally, we study briefly the case of attractive quartic interactions. We prove rigorously that the lowest-energy
state is the one in which all angular momentum is carried by the center of mass motion.
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The study of Bose-Einstein condensation in trapp
atomic gases has attracted a great deal of attention in the
few years@1–4#. One of the central issues has been the p
sibility of creating quantized vortices in these dilute atom
gases. Recently, vortex states in various systems have
experimentally observed@5,6#. Some theoretical investiga
tions on quantized vortices and on rotating Bose condens
have also been carried out both in the Thomas-Fermi limi
strong interactions@7–10# and in the limit of weak interac-
tions @11–18# between the atoms. For the weakly interacti
bosons one is naturally led to study the model ofN two-
dimensional bosons in a harmonic trap with weak repuls
d-function interactions@11#. One important theoretical prob
lem here is to understand the properties of the system wi
given total angular momentumL. Numerical studies have
shown that whenL.N the lowest-energy state is the on
where an array of singly quantized vortices is formed@15,8#.
However, due to the complexity of these states, very f
analytic results are known. In the range 0<L<N the struc-
ture of lowest-energy states turns out to be simpler. Num
cal computations by Bertsch and Papenbrock@13# showed
that the interaction energy of the lowest-energy states h
very simple form and decreases linearly withL ~the only
exception being that forL51). They also noted that th
wave functions for the lowest-energy states are simply
elementary symmetric polynomials of complex coordina
relative to the center of mass. Very recently, this remarka
formula for interaction energy was derived analytically
Jackson and Kavoulakis@17#. Moreover, Smith and Wilkin
@18# proved that these symmetric polynomials are indeed
act eigenstates~see Ref.@19# for an alternative proof!. In this
note, we point out that the analytic proof by Smith a
Wilkin works not only for ad-function potential but also for
an arbitrary potential that possesses translational and
tional symmetries. In this more general case, we find that
formula for the interaction energy still has a similar form
that for ad-function potential. In addition, we briefly stud
the case of attractive quartic potential. We prove rigorou
that, as in the cases of attractived-function and harmonic
potentials, the lowest-energy state is the one where all an
lar momentum is carried by the center of mass motion.
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Our model Hamiltonian isĤ5Ĥ01V̂, where

Ĥ05(
i 51

N F2
1

2
¹ i

21
1

2
r i

2G ~1!

is the one-particle part and

V̂5(
i , j

v~ ur i2r j u! ~2!

is the two-particle interaction. Note that the two-particle p
tential has been taken to possess translational and rotat
symmetries. We also assume that the interaction term
weak and does not make the system unstable. It is kno
that in the absence of interaction the one-particle spectru
given by

Enr ,l5nr1u l u11, ~3!

wherenr is the radial quantum number andl is the angular
momentum. For a system ofN noninteracting bosons, th
lowest-energy states with a given total angular momentumL
can be obtained by putting all bosons in the states withnr
50, and withl of the same sign asL. Obviously, there is a
huge degeneracy, which equals the number of ways to
tribute L units of angular momentum amongN bosons.

When the two-particle interaction is added the degener
will, in general, be lifted. If the interaction is weak enough,
suffices to analyze this problem by using first-order deg
erate perturbation theory. We therefore need to diagonalizV̂
in the restricted Hilbert space of lowest-energy states w
angular momentumL. We shall do it in the second quantize
form. For a positiveL ~as we always assume!, the relevant
normalized one-particle wave functions for the states w
nr50 are given by

c l~r ,u!5
1

Al !p
r leil ue2r 2/25

1

Al !p
zle2uzu2/2, ~4!
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where l>0 and z5x1 iy is the complex coordinate. W
denote byal andal

† the operators that annihilate and crea
one boson in the one-particle statec l . Our Fock space is
spanned by basis states of the form

un0 ,n1 ,n2 , . . . &[Pk

~ak
†!nk

Ank!
u0&, ~5!

where u0& is the Fock vacuum and the occupation numb
ni satisfy

(
k

nk5N, (
k

knk5L. ~6!

The second quantized form ofV̂ is

V̂5
1

2 (
i , j ,k,l

Vi jkl ai
†aj

†alak , ~7!

where the matrix elements are given by

Vi jkl 5E E d2zd2z8c i* ~z!c j* ~z8!v~ uz2z8u!ck~z!c l~z8!.

~8!

Most of these matrix elements actually vanish. Indeed,
rotational symmetry ofV̂ implies thatVi jkl 50 unlessi 1 j
5k1 l . This, of course, corresponds to the conservation
total angular momentum in two-particle collisions, an impo
tant feature of a rotationally symmetric potential. The tra
lational symmetry ofV̂ also leads to a set of constraints o
Vi jkl . Since the potential is real, this symmetry can be s
ply expressed by

(
i 51

N
]

]zi
V̂50, ~9!

where]/]zi5
1
2 (]/]xi2 i ]/]yi). It is easy to check that the

second quantized form of this condition reads

@ L̂2 ,V̂#50, ~10!

where L̂25(kAk11ak
†ak11. To work out the constraints

imposed by Eq.~10!, we write

V̂5v0a0
†a0

†a0a01v1a1
†a1

†a1a11v10a1
†a0

†a1a0

1v11a2
†a0

†a1a11v11* a1
†a1

†a2a01•••. ~11!

Here we have intentionally displayed only five terms sin
the other terms turn out to be irrelevant for our analysis~see
also Ref. @17#!. BecauseV̂ is Hermitian, v0 , v1, and v10
must all be real. For later use, we also note that

v05
1

2
V0000, v15

1

2
V1111. ~12!

Substituting Eq.~11! into Eq. ~10! yields
01560
s

e

f
-
-

-

e

05@ L̂2 ,V̂#5~v1022v0!a0
†a0

†a1a0

1~2v12v101A2v11!a1
†a0

†a1a11•••. ~13!

Thus, the constraints, which are completely determined
the displayed terms in Eq.~11!, are

v1052v0 , v115A2~v02v1!. ~14!

These two constraints are direct consequences of the tra
tional symmetry and will play a crucial role in later analys

To proceed further, it is necessary to introduce the
ementary symmetric polynomials

eL5 (
i 1, i 2,•••, i L

zi 1
zi 2

•••zi L
, ~15!

where L<N. The polynomialeL is related to the stateuN
2L,L& by

^z1,z2 , . . . ,zNuN2L,L&5F ~N2L !!L!

pNN!
G 1/2

eL

3expS 2
1

2 (
i 51

N

uzi u2D . ~16!

Therefore, we shall useeL to represent the stateuN2L,L&. In
fact, it is not hard to see that there is a one-to-one corresp
dence between themonomialsymmetric polynomials of de-
greeL and the basis states in our Fock space@18#. Conse-
quently, each symmetric polynomial uniquely specifies
quantum state. We would also like to remark that the co
dinate representation of the operatorL̂1[L̂2

† is simply NR,
whereR5( izi /N is the center of mass coordinate. Thus, t
symmetric polynomial RkeL (k>0) represents the stat
L̂1

k uN2L,L&. Furthermore, sinceL̂1 commutes withV̂, we

haveV̂L̂1
k uN2L,L&5L̂1

k V̂uN2L,L&. Equivalently, we may
write it as

V̂RkeL5RkV̂eL . ~17!

The elementary symmetric polynomials measured from
center of mass are defined by

ẽM5 (
i 1, i 2,•••, i M

~zi
1
2R!~zi

2
2R!•••~zi M

2R!. ~18!

Note thatẽ1 is the trivial zero function. It has been proved b
Smith and Wilkin@18# that the state represented by Eq.~18!
is an exact eigenstate whenv(ur u) is a d function. Here we
follow the steps in their proof. First, we write@18#

ẽM5 (
L52

M

~21!M2L
~N2L !!

~N2M !! ~M2L !!
RM2LeL

1~21!M21
N! ~M21!

~N2M !! M !
RM. ~19!

Next, by using Eq.~11! we obtain
2-2
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V̂uN2L,L&5@v0~N2L !~N2L21!1v1L~L21!

1v10~N2L !L#uN2L,L&

1v11AL~L21!~N2L11!uN2L11,L22,1&.

~20!

The monomial symmetric polynomial representing the st
uN2L11,L22,1& is @18#

(
i 1, i 2,•••, i L22

j Þ i 1 ,i 2 , . . . ,i L22

zi 1
zi 2

•••zi L22
zj

25NReL212LeL . ~21!

In terms of symmetric polynomials, Eq.~20! becomes

V̂eL5Fv0~N2L !~N2L21!1v1L~L21!1v10~N2L !L

2
1

A2
v11L~N2L11!GeL

1
1

A2
v11N~N2L11!ReL21 . ~22!

It should be noted that even though Eq.~21! is valid only for
L>2 Eq. ~22! holds in the whole range 0<L<N if the
conventione2150 is taken. Up to this point, we have no
made any use of the conditions given by Eqs.~14!. To un-
cover the role played by these conditions, we point out t
ẽM is a genuine eigenstate if Eq.~22! has the form

V̂eL5@ f ~N!1Lg~N!#eL2~N2L11!g~N!ReL21 , ~23!

where f and g are two arbitrary functions ofN. This state-
ment can easily be proved by operatingV̂ on the right hand
side of Eq.~19! and using Eqs.~17! and ~23!. We also find
that when Eq.~23! holds the eigenvalue associated withẽM
is given by

«M ,N5 f ~N!1g~N!M . ~24!

It is remarkable that Eqs.~14! are precisely the required con
ditions for making Eq.~22! of the form given by Eq.~23!.
Indeed, by substituting Eqs.~14! into Eq. ~22! we get

V̂eL5@v0N~N21!1~v12v0!NL#eL2~v12v0!

3N~N2L11!ReL21 . ~25!

As a result,ẽM is an exact eigenstate and the correspond
eigenvalue is

«M ,N5@v0N~N21!1~v12v0!NM#5
1

2
@V0000N~N21!

1~V11112V0000!NM#. ~26!

We still have a spectrum that varies linearly with the angu
momentumM . It is worth noting thatV0000 (V1111) repre-
01560
e

t

g

r

sents the interaction energy of two bosons in the lowe
energy state withl 50 (l 51). Equation~26! represents the
main result of the present work. As a verification of th
formula, we consider thed-function potential

v~r2r 8!52phd~r2r 8!, ~27!

whereh is a small dimensionless parameter. Simple cal
lations show that

V00005h, V11115
1

2
h. ~28!

Consequently, Eq.~26! gives

«L,N
d 5

h

2 FN~N21!2
1

2
NLG , ~29!

in agreement with the results of Refs.@13,17#.
Finally, we consider the case of the quartic potential

v~r2r 8!5
h

8
ur2r 8u4. ~30!

When h,0 the repulsive force between two particles th
are moved away from the trap center in opposite directi
would eventually be stronger than the trapping forces ac
on them. We thus expect that in this case the harmonic tra
unable to stably confine the bosons in a finite region
space. To avoid instability we assume that the interactio
attractive; i.e.,h.0. The purpose of studying this case
twofold. First, it serves as an additional example to wh
our results are applied. Secondly, it provides another cas
addition to the cases ofd-function and harmonic potentials
where the lowest-energy states can be analytically de
mined. After some straightforward algebra we get the f
lowing expression for the two-particle interaction:

V̂5hF1

2
N̂~N̂21!1

7

8
N̂L̂1

1

4
L̂~ L̂21!1

1

8
N̂Ĵ

2
1

4
~ Ĵ1L̂21L̂1Ĵ2!1

1

8
L̂11L̂22G , ~31!

whereN̂5(kak
†ak , L̂5(kkak

†ak , and we have defined

Ĵ5(
k

k2ak
†ak , Ĵ15 Ĵ2

† 5(
k

~k12!Ak11ak11
† ak ,

L̂115L̂22
† 5(

k
A~k12!~k11!ak12

† ak . ~32!

In this case the interaction energy associated withẽL is found
to be

«L,N
quartic5

h

2 FN~N21!1
5

2
NLG . ~33!

The interaction energy increases linearly withL. Now ẽL is
no longer the lowest-energy state with angular momentumL.
2-3
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We find that, as in the case of the attractived-function po-
tential @11#, the lowest-energy state is the one where all
gular momentum is absorbed by the center of mass mot
However, the proof used in Ref.@11# is not applicable here
since the matrix elementsVi jkl are not all nonpositive. We
prove it by deriving a lower bound for the interaction energ
To this end, we first note that operatingL̂1 on a eigenstate
amounts to adding an unit of angular momentum to the c
ter of mass coordinate, and the resulting state is still an
genstate with the same eigenvalue. Therefore, only the st
called intrinsic states and denoted byuL,N& int , which have
no center of mass excitation, need to be considered. S
states are characterized by@17#

L̂2uL,N& int50. ~34!

By using Eq.~34!, int^L,NuL̂11L̂22uL,N& int>0, and

int^L,NuĴuL,N& int>L int^L,NuL,N& int , ~35!

we obtain

int^L,NuV̂uL,N& int

int^L,NuL,N& int
>hF1

2
N~N21!1NL1

1

4
L~L21!G .

~36!

This inequality holds for allL>0. SinceuN,0& is the only
eigenstate corresponding to the eigenvaluehN(N21)/2, the
lowest-energy state with a given angular momentumL must
an

et

n,
tt.

v.

ll,

ys

ett

01560
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be L̂1
L uN,0&, the state in which all angular momentum is

the center of mass motion. It has been argued@11# ~see Ref.
@20#, however! that this state is uncondensed and is an
ample of the fragmented condensate of Nozie`res and Saint
James@21#. Moreover, the presence of such an unconden
lowest-energy state is believed to be a general feature
attractive interactions@11# . Our study supplies one mor
example supporting this belief.

In conclusion, we have extended the work by Smith a
Wilkin @18# to the model ofN bosons in a two-dimensiona
harmonic trap interacting via arbitrary rotationally and tran
lationally symmetric potentials. We have shown thatẽL re-
mains an exact eigenstate and the associated interactio
ergy varies linearly with the angular momentum. O
analysis reveals the importance of rotational and translatio
symmetries in proving this result and makes clear the ph
cal meaning of the coefficients appearing in the formula
the interaction energy. We also briefly discuss the probl
of attractive quartic interactions. A lower bound for the i
teraction energy of intrinsic states is derived. Based on t
we find that the lowest-energy state for a given angular m
mentum L is the one in which all angular momentum
carried by the center of mass motion.

Note added.A large class of interacting boson systems
considered in a recent report by Papenbrock and Ber
@22#. Our main results are in agreement with their finding

This work was supported by the National Science Co
cil, Taiwan, under Grant No. NSC-89-2112-M-018-002.
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