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Exact eigenstates for trapped weakly interacting bosons in two dimensions
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A system ofN two-dimensional weakly interacting bosons in a harmonic trap is considered. When the
two-particle potential is & function, Smith and Wilkin have proved analytically that the elementary symmetric
polynomials of particle coordinates measured from the center of mass are exact eigenstates. In this study, we
point out that their proof works equally well for an arbitrary two-particle potential that possesses translational
and rotational symmetries. We find that the interaction energy associated with the eigenstate with angular
momentumrL is equal toaN(N—1)/2+ (b—a)NL/2, wherea andb are the interaction energies of two bosons
in the lowest-energy one-particle state with zero and one unit of angular momentum, respectively. Addition-
ally, we study briefly the case of attractive quartic interactions. We prove rigorously that the lowest-energy
state is the one in which all angular momentum is carried by the center of mass motion.
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Th_e study of Bose-Einstein condensation in .trapped Our model Hamiltonian i$1=Hy+V, where
atomic gases has attracted a great deal of attention in the past
few yearg[1-4]. One of the central issues has been the pos- N
sibility of creating quantized vortices in these dilute atomic |:|o=2
gases. Recently, vortex states in various systems have been =1
experimentally observe{b,6]. Some theoretical investiga-
tions on quantized vortices and on rotating Bose condensaté$ the one-particle part and
have also been carried out both in the Thomas-Fermi limit of
strong interaction§7—10] and in the limit of weak interac- .
tions[11-18 between the atoms. For the weakly interacting V:Za. v([ri=r;]) @)
bosons one is naturally led to study the modelNotwo- ]
?rfnensonql bosops In a harmqmc trap with wegk repulswels the two-particle interaction. Note that the two-particle po-
-function interaction$11]. One important theoretical prob- ; . .
lem here is to understand the properties of the system with 'gannal ha}s been tall<en to possesi trar;]slayonal a.”d rotatlonal
given total angular momenturh. Numerical studies have symmetries. We also assume that the mterac’uon term is
shown that wherL>N the lowest-energy state is the one weal_< and does not m_ake thg system unstal_)le. Itis know_n
. . . . that in the absence of interaction the one-particle spectrum is
where an array of singly quantized vortices is formi&#, 8]. . b
However, due to the complexity of these states, very fend' VN BY
analytic results are known. In the rangesQ<N the struc-
ture of lowest-energy states turns out to be simpler. Numeri-
cal computations by Bertsch and PapenbrptR] showed
that the interaction energy of the lowest-energy states haswheren, is the radial quantum number ahds the angular
very simple form and decreases linearly with(the only  momentum. For a system @& noninteracting bosons, the
exception being that fot =1). They also noted that the lowest-energy states with a given total angular momeritum
wave functions for the lowest-energy states are simply thean be obtained by putting all bosons in the states wijth
elementary symmetric polynomials of complex coordinates=0, and withl of the same sign ak. Obviously, there is a
relative to the center of mass. Very recently, this remarkabléauge degeneracy, which equals the number of ways to dis-
formula for interaction energy was derived analytically by tribute L units of angular momentum amomgbosons.
Jackson and Kavoulakidl7]. Moreover, Smith and Wilkin When the two-particle interaction is added the degeneracy
[18] proved that these symmetric polynomials are indeed exwill, in general, be lifted. If the interaction is weak enough, it
act eigenstatesee Ref[19] for an alternative proof In this  suffices to analyze this problem by using first-order degen-

note, we point out that the analytic proof by Smith anderate perturbation theory. We therefore need to diagonlize
Wilkin works not only for as-function potential but also for jn the restricted Hilbert space of lowest-energy states with
an arbitrary potential that possesses translational and rot@ngular momenturh. We shall do it in the second quantized
tional Symmetries. In this more general case, we find that thﬁ)rm For a positivd_ (as we a|Ways assumahe relevant

formula for the interaction energy still has a similar form to normalized one-particle wave functions for the states with
that for as-function potential. In addition, we briefly study n =0 are given by

the case of attractive quartic potential. We prove rigorously

that, as in the cases of attractivefunction and harmonic 1 1
potentials, the lowest-energy state is the one where all angu- d(r,0)= —=r'e! o—1%2— _—_ Jlg
lar momentum is carried by the center of mass motion. K IV

1 1
—EVinr El’lz} (1)

En i=n+[l[+1, (3

- \z|2/2’ (4)
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where =0 and z=x+iy is the complex coordinate. We O:[ﬁ_ \7]:(010_ 2v0)a$a$alao
denote bya, and ar the operators that annihilate and create
one boson in the one-particle state. Our Fock space is +(2v1— vt \/Evlj)airagalafr S (13

spanned by basis states of the form
Thus, the constraints, which are completely determined by

(af)" the displayed terms in Eq11), are
|n0,n1,n2, >EHk—||0>, (5)

Vi v10=200, v11=V2(vo—0v1). (14)
where|0) is the Fock vacuum and the occupation numbersThese two constraints are direct consequences of the transla-
n; satisfy tional symmetry and will play a crucial role in later analysis.

To proceed further, it is necessary to introduce the el-
E ne=N, 2 kne=L. (6) ementary symmetric polynomials
K K
~ e = Z.Z - Z , 15
The second quantized form &f is - i1<i2;--<i|_ ERE 19
.1 where L<N. The polynomiale,_ is related to the statgN
_ 1
V—EL%I Vijkiai ajajax, (7) —L,L) by
where the matrix elements are given by (N—L)!L! N
(2122, ... IN=LL)=| —=——| e
7 "N!
Vijklzf f d?zd?z’ i (2)4F (2 )v (12— 2" ) (D) i (Z). 1 N
(8) X ex —521 |Zi|2 . (16)

Most of these matrix eAIements actually vanish. Indeed, thefherefore, we shall us_to represent the stafdi—L,L). In
rotational symmetry oV implies thatV;;=0 unlessi+j  fact, it is not hard to see that there is a one-to-one correspon-
=k+1. This, of course, Corresponds to the conservation annce between thmonomia|symmetric p0|ynomia|s of de-
total angular momentum in two-particle collisions, an impor-gree L and the basis states in our Fock spit8]. Conse-
tant feature of a rotationally symmetric potential. The transquently, each symmetric polynomial uniquely specifies a
lational symmetry of/ also leads to a set of constraints on quantum state. We would also like to remark that the coor-

Vijui - Since the potential is real, this symmetry can be simdinate representation of the operator=_L" is simply NR,

ply expressed by whereR=3,z; /N is the center of mass coordinate. Thus, the
N symmetric polynomial R*e, (k=0) represents the state
D I 0, @  LXIN-L,L). Furthermore, sincé , commutes withV, we
=192 haye\A/I:ﬁ|N—L,L)=I:'i\A/|N—L,L>. Equivalently, we may

where d/ 9z, = 3 (dl 9x;—idl dy;). It is easy to check that the write it as

second quantized form of this condition reads VRKe,=RVe, (17)
[L_,V]=0, (100  The elementary symmetric polynomials measured from the

. center of mass are defined by
whereL_=3k+ 1a§ak+1. To work out the constraints

imposed by Eq(10), we write Ty = s (z. —=R)(z, —=R)---(z, —R). (18)
i1<ip<---<iy 1 2 M
V=vealalasay+vialala;a; +vyalajasag _
- .t Note thate, is the trivial zero function. It has been proved by
Tv118808183 T v ;@881 - - (1D smith and Wilkin[18] that the state represented by Eg)
_ _ _ . _ s an exact eigenstate wheif|r|) is a 6 function. Here we

Here we have intentionally displayed only five terms sincefqiow the steps in their proof. First, we wrifd.8]
the other terms turn out to be irrelevant for our analysee

also Ref.[17]). BecauseV is Hermitian,vq, vq, andvqg ~ _% 1ML (N—=L)! ML
must all be real. For later use, we also note that eM_L:2 (=1 (N—M)I(M—L)! e
1 1 NI(M—-1)
=— =— _ M-1 M
vo=5Voooo: V175 Vi (12) +(—1) (N=M)IM! (19
Substituting Eq(11) into Eq. (10) yields Next, by using Eq(11) we obtain
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VIN=L,LY=[vo(N=L)(N=L-1)+v,L(L—1)
+v1g(N=L)L]N—L,L)

+vWL(L—1)(N—=L+1)[N—-L+1,L—2,1).
(20

The monomial symmetric polynomial representing the stat

IN—L+1L—2,1) is [18]
T P PO
2.z, -z, 7Z=NRq_;—Le . (21)

i <in< - <i_o

In terms of symmetric polynomials, E€R0) becomes

Ve, =|vg(N=L)(N=L—1)+v;L(L—1)+vo(N—L)L

1
— —pL(N=L+1)

V2

€L

1
+ _UllN(N_L+1)RQ__1.

V2

It should be noted that even though E®]1) is valid only for
L=2 Eq. (22 holds in the whole range 9L<N if the
conventione_;=0 is taken. Up to this point, we have not
made any use of the conditions given by E@s}). To un-

(22
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sents the interaction energy of two bosons in the lowest-
energy state with=0 (I=1). Equation(26) represents the
main result of the present work. As a verification of this
formula, we consider thé-function potential
v(r—r")=2mndé(r—r’), (27
here » is a small dimensionless parameter. Simple calcu-
ations show that

Voo00™ 7, V1111:§ 7. (28)
Consequently, Eq26) gives
1
sny=g{N(N—l)—§NL}, 29

in agreement with the results of Ref&3,17).
Finally, we consider the case of the quartic potential

v(r—r’)=g|r—r’|4. (30
When <0 the repulsive force between two particles that
are moved away from the trap center in opposite directions
would eventually be stronger than the trapping forces acting
on them. We thus expect that in this case the harmonic trap is
unable to stably confine the bosons in a finite region of
space. To avoid instability we assume that the interaction is

cover the role played by these conditions, we point out thagttractive; i.e.,»>0. The purpose of studying this case is

ey is a genuine eigenstate if E(R2) has the form

Ve =[f(N)+Lg(N)Je.—(N—-L+1)g(N)Re__;, (23

wheref and g are two arbitrary functions oN. This state-
ment can easily be proved by operativigon the right hand
side of Eq.(19) and using Eqgs(17) and (23). We also find
that when Eq(23) holds the eigenvalue associated Wi
is given by

emn=F(N)+g(N)M. (29

It is remarkable that Eq$14) are precisely the required con-
ditions for making Eq(22) of the form given by Eq(23).
Indeed, by substituting Eq§14) into Eq. (22) we get

Ve, =[voN(N—1)+(v;—vo)NL]e .~ (v3—v)

XN(N—-L+1)Rg _;. (25)

As a result,EM is an exact eigenstate and the corresponding

eigenvalue is

1
emNn=[VoN(N—1)+(v;—vo)NM]= E[VooooN(N—l)

+(V1111= Voood NM]. (26)

twofold. First, it serves as an additional example to which
our results are applied. Secondly, it provides another case, in
addition to the cases affunction and harmonic potentials,
where the lowest-energy states can be analytically deter-
mined. After some straightforward algebra we get the fol-
lowing expression for the two-particle interaction:

U= | RN 1)+ RL+ 200~ 1)+ N3
=7 N(N=1)+ gNL+ZL(L-1)+ 4

(3D
whereN=3,a/a,, L=3kala,, and we have defined

3= Kfala,, 3,=3'=> (k+2)Jk+1a],a,
k k

L, =LT = Jk+2)(k+1)al, ,a.
k

(32

In this case the interaction energy associated ®jitls found
to be

quarticzz

LN > (33

5
N(N—1)+ 5NL|.

We still have a spectrum that varies linearly with the angulaiThe interaction energy increases linearly withNow e, is

momentumM . It is worth noting thatVggg (V1117 repre-

no longer the lowest-energy state with angular momeritum
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We find that, as in the case of the attracti#¢unction po-  pe [;|N,0), the state in which all angular momentum is in
tential[11], the lowest-energy state is the one where all anthe center of mass motion. It has been argiii] (see Ref.
gular momentum is absorbed by the center of mass motioff20], howevey that this state is uncondensed and is an ex-
However, the proof used in Refl1] is not applicable here ample of the fragmented condensate of Noeseand Saint
since the matrix elementg;;,; are not all nonpositive. We Jameg21]. Moreover, the presence of such an uncondensed
prove it by deriving a lower bound for the interaction energy.lowest-energy state is believed to be a general feature of
To this end, we first note that operatifig on a eigenstate attractive interactiong11] . Our study supplies one more
amounts to adding an unit of angular momentum to the cen€X@Mple supporting this belief, _

ter of mass coordinate, and the resulting state is still an ej- [N conclusion, we have extended the work by Smith and

genstate with the same eigenvalue. Therefore, only the state&/iIkin [18] to the model ofN bosons in a two-dimensional
called intrinsic states and denoted Jiy,N);,, which have harmonic trap interacting via arbitrary rotationally and trans-

no center of mass excitation, need to be considered. Sudpationally symmetric potentials. We have shown teatre-
states are characterized 7] mains an exact eigenstate and the associated interaction en-
ergy varies linearly with the angular momentum. Our
L_|L,N);n=0. (34  analysis reveals the importance of rotational and translational
symmetries in proving this result and makes clear the physi-
By using Eq.(34), jn«(L,N|L,,L__|L,N),=0, and cal meaning of the coefficients appearing in the formula for
the interaction energy. We also briefly discuss the problem
int(L,NJIIL,NYine= L ine(LNIL, Ny (35  of attractive quartic interactions. A lower bound for the in-
) teraction energy of intrinsic states is derived. Based on this,
we obtain we find that the lowest-energy state for a given angular mo-
- mentumL is the one in which all angular momentum is
int<L1N|V|LiN>int>7] EN(N—1)+NL+ EL(L—l)}. carried by the center of mass motion. '
int{L,N|L,NYin 2 4 Note addedA large class of interacting boson systems is
(36) considered in a recent report by Papenbrock and Bertsch
[22]. Our main results are in agreement with their findings.

This inequality holds for alL=0. Since|N,0) is the only
eigenstate corresponding to the eigenvajidy{ N—1)/2, the This work was supported by the National Science Coun-
lowest-energy state with a given angular momentumust  cil, Taiwan, under Grant No. NSC-89-2112-M-018-002.
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