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Phase measurements at the theoretical limit
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It is well known that the result of any phase measurement on an optical mode made using linear optics has
an introduced uncertainty in addition to the intrinsic quantum phase uncertainty of the state of the mode. The
best previously published technique@H. M. Wiseman and R. B. Killip, Phys. Rev. A57, 2169~1998!# is an

adaptive technique that introduces a phase variance that scales asn̄21.5, wheren̄ is the mean photon number of

the state. This is far above the minimum intrinsic quantum phase variance of the state, which scales asn̄22. It

has been shown that a lower limit to the phase variance that is introduced scales as ln(n̄)/n̄2. Here we introduce
an adaptive technique that attains this theoretical lower limit.

DOI: 10.1103/PhysRevA.63.013813 PACS number~s!: 42.50.Dv, 03.67.Hk, 42.50.Lc
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I. INTRODUCTION

The phase of an electromagnetic field cannot be meas
directly using linear optics and photodetectors. Rather t
measuring phase directly, phase measurement schemes
on measuring quadratures of the field and inferring the ph
from these measurements. In a typical experimental im
mentation, the mode to be measured is passed throu
50/50 beam splitter, in order to combine it with a mu
stronger local oscillator field. The difference photocurre
from the two output ports of the beam splitter yields a m
surement of a particular quadrature.

The standard technique for measuring a completely
known phase is heterodyne detection, where all quadrat
are sampled with equal probability. This is achieved by us
a local oscillator field with a frequency slightly differen
from the signal’s frequency, so its phase changes line
with respect to the phase of the signal. More accurate ph
measurements can be made using the homodyne techn
where the local oscillator phase isF5w1p/2, with w the
phase of the signal. The problem with this is that it requi
initial knowledge of the phase of the signal, and so is no
phase measurement in the strict sense.

To maintain the unbiased nature of heterodyne ph
measurements but obtain the increased sensitivity of ho
dyne measurements, an adaptive dyne technique can be
@1–4#. Here ‘‘dyne’’ detection is used to mean photodete
tion using a strong local oscillator at a beam splitter. T
idea behind adaptive phase measurement schemes is t
the information gained so far during the measurement to
timate the system phasew. This is then used to adjust th
local oscillator phaseF to approximate a homodyne me
surement as above.

The apparatus for performing these measurement
shown schematically in Fig. 1. The signal and a local os
lator with amplitudeb are combined at the beam splitter a
the outputs are measured with photodetectors. The out
from the photodetectors,dN1 anddN2 , are subtracted and
then fed into a digital signal processor that uses these m
surements to estimate the phase of the system, and ad
the phase of the local oscillator via an electro-optic ph
1050-2947/2000/63~1!/013813~9!/$15.00 63 0138
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modulator. The signal is shown here as from a cavity wit
half-silvered mirror, as this is what is considered in t
theory in Sec. IV.

The signal of interest is the difference between the p
tocurrents at the two ports. We therefore define the signa

I ~ t !dt5
dN12dN2

bet/2
. ~1.1!

Here we have used units of time such that the decay cons
of the cavity is unity. We multiply by a factor ofe2t/2 be-
cause this is the mode function of the signal. We can t
account of signals with more general mode functionsu(t) in
a similar way@2#.

When we take the limit of very large local oscillator am
plitude and small time intervalsdt, we find that

I ~v !dv52Re~av
Se2 iF(v)!dv1dW~v !, ~1.2!

where v is time scaled to the unit interval andav
S is the

scaled mean amplitude of thesystem~for which theSsuper-

FIG. 1. Diagram of the apparatus for making an adaptive ph
measurement. The signal from the cavity is combined with the lo
oscillator field at a 50/50 beam splitter~BS! and the outputs are
detected by photodetectors~PD!. The signals from these photode
tectors are subtracted, and the difference signal is processed b
digital signal processor, which determines a phase estimate
adjusts the electro-optic phase modulator~EOM! accordingly.
©2000 The American Physical Society13-1
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script stands!. The systematic variation in the coherent a
plitude with time due to the mode shape is scaled out. T
scaling is explained in more detail in Sec. IV. The final te
dW(v) is an infinitesimal Wiener increment such th
^dW(v)2&5dv @5#.

It can be shown@6,3# that just two complex numbers ar
necessary to encapsulate all of the relevant information in
photocurrent record up to a given time. These are

Av5E
0

v
I ~u!eiF(u)du, ~1.3!

Bv52E
0

v
e2iF(u)du. ~1.4!

For convenience, we often replaceBv by a third complex
number defined in terms ofAv andBv ,

Cv5Avv1BvAv* . ~1.5!

Generally the best estimate of the phase at timev is arg(Cv)
@2#. The subscripts are omitted for the final values (v51).

In adaptive measurement schemes the phase of the
oscillator is generally taken to be

F~v !5ŵ~v !1
p

2
, ~1.6!

where ŵ(v) is the estimated phase of the system at timev
using the measurement resultsAv andCv . There are a num-
ber of possible phase estimates, giving different adap
schemes. For the mark I scheme@2,3#, both the running
phase estimateŵ(v) and the final phase estimate are taken
be arg(Av). This is better than heterodyne measureme
only if the field is very weak@1,3#. For the mark II adaptive
phase measurements@2,3# the best phase estimate arg(C) is
used at the end of the measurement, but for the intermed
phase estimate arg(Av) is used. This is better than heter
dyne measurements for all field strengths. If arg(Cv) is gen-
erally the best phase estimate, it is apparent from Eq.~1.5!
that arg(Av) will only be the best phase estimate ifBv is
negligible~as it is in the case of heterodyne measuremen!.
For adaptive phase measurementsBv does not vanish and
arg(Av) is generally a much worse phase estimate th
arg(Cv).

This raises the question of why this relatively poor inte
mediate phase estimate is used. There are two main rea
for this: ~i! it is possible to obtain direct analytic results f
this case, whereas using a better intermediate phase est
requires numerical evaluation;~ii ! the apparatus required t
implement this method is much simpler than that required
a better intermediate phase estimate.

Even with the relatively poor intermediate phase estima
the mark II adaptive scheme introduces a phase varianc
just 1

8 (n̄S)21.5, a good improvement over the heterodyne
sult of14 (n̄S)21. Here n̄S is the mean photon number of th
field being measured, and the actual measured phase
ance is the introduced phase variance plus the intrinsic p
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variance. The intrinsic phase variance for a state of m
photon numbern̄S can be as small as of order (n̄S)22 @7,4#.
This is far smaller than the introduced phase variance, so
latter is what limits the accuracy of phase measureme
Although the mark II results are far superior to the stand
result of heterodyne detection, it is still possible to impro
on the mark II result, and it is shown in Ref.@3# that a
theoretical lower limit to the phase variance that is intr
duced by an arbitrary phase measurement scheme~based on
linear optics and photodetection! is 1

4 ln(n̄S)3(n̄S)22.
In improving on the mark II result, the obvious thing to d

is to use a better intermediate phase estimate. It turns out
using the best phase estimate arg(Cv) actually gives a worse
result than the mark II case, for reasons that we will expl
later. The phase estimates that we consider in this pape
therefore intermediate between arg(Av) and the best phas
estimate:

ŵ~v !5arg~Cv
12e(v)Av

e(v)!. ~1.7!

It is possible to obtain a marked improvement over the m
II case by using constant values ofe. We show in Sec. V that
a scaling of roughly (n̄S)21.68 is possible. One drawback i
that the value ofe required depends on the photon numbe

We can obtain an even better result if we allowe to have
a variation in time, and we show in Sec. V that we can obt
phase estimates very close to the theoretical limit if we u

e~v !5
v22uBvu2

Cv
A v

12v
. ~1.8!

This expression does not explicitly depend on the pho
number. This method works best if the phase estimates
updated in discrete time steps, and the magnitude of the s
depends weakly on the photon number. A more serious p
lem with this method is that it tends to produce values ofuBu
that are too close to 1. This means that final phase estim
with an error close top occur sufficiently frequently to make
a significant contribution to the phase uncertainty. We w
show how this problem can be corrected.

The paper is structured as follows. In Sec. II we reder
the ultimate theoretical limit to phase measurements of R
@3#. This is necessary to understand how the improved fe
back algorithm of Eq.~1.7! can approach the theoretica
limit, as explained in Sec. III. In Sec. IV we derive the r
sults necessary for a numerical simulation of this algorith
and in Sec. V present the results of those simulations.
problem of infrequent results with large errors is identified
Sec. VI and a solution proposed and evaluated in Sec.
We conclude with a summary and discussion in Sec. VII

II. THE THEORETICAL LIMIT

In order to understand how to attain the theoretical lim
we must first understand the reason for the theoretical lim
It can be shown@6# that the probability of obtaining the
results A, B from an arbitrary~adaptive or nonadaptive!
measurement is
3-2
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PHASE MEASUREMENTS AT THE THEORETICAL LIMIT PHYSICAL REVIEW A63 013813
P~A,B!d2A d2B5Tr@rG~A,B!#d2A d2B, ~2.1!

where r is the state of the mode being measured. H
G(A,B) is the POM~probability operator measure! for the
measurement, and is given by

G~A,B!5Q~A,B!uc̃~A,B!&^c̃~A,B!u, ~2.2!

whereQ(A,B) is what the probability distributionP(A,B)
would be ifr were the vacuum stateu0&^0u, anduc̃(A,B)& is
an unnormalized ket defined by

uc̃~A,B!&5expF1

2
B~a†!22Aa†G u0&. ~2.3!

This is proportional to a squeezed state@8#:

expF1

2
B~a†!22Aa†G u0&5~12uBu2!21/4exp~Aa* /2!ua,j&,

~2.4!

where

ua,j&5exp~aa†2a* a!expF1

2
j* a22

1

2
j~a†!2G u0&,

~2.5!

and the squeezing parameters are

a5
A1BA*

12uBu2
, ~2.6!

j52
B atanhuBu

uBu
, ~2.7!

where atanh is the inverse hyperbolic tan function. In ter
of these the POM is given by

G~A,B!5Q8~A,B!ua,j&^a,ju, ~2.8!

where

Q8~A,B!5Q~A,B!~12uBu2!21/2exp@Re~Aa* !#.
~2.9!

If the system state is pure,r5uc&^cu and the probability
distribution is given by

P~A,B!5Q8~A,B!z^cua,j& z2. ~2.10!

For an unbiased measurement scheme the probability
tribution for the phase resulting from this equation depe
entirely on the inner product between the two states, and
on Q8(A,B). To see this, note first that if the measuremen
unbiased the vacuum probability distributionQ(A,B) will be
independent of the phase. Second, for the squeezed
ua,j&, ja* /a is independent of the phase arg(a). This in
turn means thatBA* /A is independent of the phase. Since
01381
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Aa* 5~11BA* /A!*
uAu2

12uBu2
, ~2.11!

Aa* and thereforeQ8(A,B) are independent of the phase
Since the probability distribution for the phase depends

the inner product between the two states, the variance in
measured phase will approximately be the sum of the int
sic phase variance and the phase variance of the sque
stateua,j&. The maximum overlap between the states will
when the squeezed state has about the same photon nu
as the input state. This means that the theoretical limit to
phase variance that is introduced by the measurement is
phase variance of the squeezed state that has the same p
number as the input state and has been optimized for m
mum intrinsic phase variance. Since the phase variance
squeezed state optimized for minimum intrinsic phase v
ance is lnn̄/(4n̄2) in the limit of largen̄ @9#, this is also the
limit to the introduced phase variance.

The photon number of the squeezed state at maxim
overlap will be mainly determined by the photon number
the input, but the degree and direction of squeezing~param-
etrized byj) will be determined by the multiplying facto
Q8(A,B). The multiplying factor can be expressed as a fun
tion of n̄ andz, for which we will use the same symbolQ8,
even though it is a new functionQ8(n̄,z). Here n̄ is the
mean photon number for the stateua,j& ~and will be close to
the photon numbern̄S of the input state!, andz5ja* /a is j
with the phase ofa scaled out. The multiplying factor will
tend to be concentrated along a particular line, effectiv
giving z as a function ofn̄. In order to obtain the theoretica
limit, the measurement scheme must give a multiplying f
tor Q8(n̄,z) that tends to give values ofz for eachn̄ that are
the same as for optimized squeezed states.

We can determine the approximate variation ofz with n̄
in the multiplying factor if we can estimate how it varies fo
measurements on a coherent state. If we consider mea
ments on a coherent state with real amplitudeaS, then the
maximum overlap with the stateua,j& will be for aS'a.
We useaS without a subscript to indicate the initial cohere
amplitude before the measurement.

If we are using an adaptive scheme with intermedi
phase estimates that are unbiased, it is easy to see tha
maximum probability will be forB real and therefore alsoA
real. These results imply that

a'
A~11B!

12B2
5

A

12B
. ~2.12!

In turn this givesz as

z'2atanh~12A/a! ~2.13!

'
1

2
ln

A

2a
'

1

2
ln

A

2An̄
. ~2.14!

Since the value ofz is governed by the multiplying facto
Q8(n̄,z), this result forz should hold for more general inpu
states.

From Ref.@9# the phase variance of a squeezed state
3-3
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D. W. BERRY AND H. M. WISEMAN PHYSICAL REVIEW A 63 013813
^Df2&'
n011

4n̄2
12erfc~A2n0!, ~2.15!

wheren05n̄e2z for realz. This is minimized asymptotically
as

ln n̄1D

4n̄2
, ~2.16!

whereD'2.43, for

n0' ln~4n̄!2
1

4
ln~2p!. ~2.17!

If we use the result obtained forz in Eq. ~2.14! we find that

n0'
1

2
uAuAn̄. ~2.18!

This result means that in order for the measurement to
optimal, uAu should scale withn̄ as

uAu}
ln n̄

An̄
. ~2.19!

For the case of mark II measurements we have the result
uAu51 @2#, which is why these measurements are not o
mal. Note that if we substituteuAu51 into the expression
~2.18! to find n0, and substitute that into Eq.~2.15!, we ob-
tain the correct result for the mark II introduced phase va
ance,

^Df2&'
1

8
n̄21.5. ~2.20!

III. IMPROVED FEEDBACK

Now we have the result that for optimal feedbackuAu
should decrease with photon number. Therefore in orde
improve the phase measurement scheme we want one
gives uAu,1. To see in general how this can be achiev
consider a coherent state with amplitudeaS and determine
the Ito SDE~stochastic differential equation! for uAu2:

duAvu25Av* ~dAv!1~dAv* !Av1~dAv* !~dAv! ~3.1!

5Av* eiF(v)I ~v !dv1e2 iF(v)I ~v !dvAv1dv ~3.2!

5@ uAvuI ~v !2Re~eiF(v)e2 iwv
A
!11#dv, ~3.3!

where wv
A5argAv . In terms of the phase estimateŵv

5F(v)2p/2 this becomes

duAvu25@112uAvuI ~v !sin~wv
A2ŵv!#dv. ~3.4!

If we take the expectation value ofI (v) and simplify we get

^I ~v !&522uaSusin~ ŵv2w!, ~3.5!
01381
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wherew5argaS. If we use this result the expectation valu
for the increment inuAvu2 is

^duAvu2&5@124uAvuuaSusin~ ŵv2w!sin~wv
A2ŵv!#dv.

~3.6!

The first term on its own will giveuAu51, and in order to get
uAu,1 the two sines must have the same sign. This will
the case if the phase estimate is between the actual phas
the phase ofAv . It is for this reason that we consider pha
estimates that are intermediate between the best phase
mate and the phase ofAv , i.e., of the form

ŵ~v !5arg@~Avv1BvAv* !12e(v)Av
e(v)#. ~3.7!

In general, smaller values ofuAu can be obtained by using
smaller values ofe. This is becausewv

A tends to be a worse
phase estimate, thus making it possible for the sines in
~3.6! to be larger. Note that it is far too simplistic to use th
best phase estimate~i.e., with e50), as we need to adjuste
in order to maken0 closer to optimal.

IV. SIMULATION METHOD

The easiest input states to use for numerical simulati
are coherent states, as they remain coherent with a deter
istically decaying amplitude. However, in order to estima
the phase variance that is introduced by the measuremen
would be very inefficient, as the phase variance would
dominated by the intrinsic phase variance. It is almost
easy~and much more efficient! to perform calculations on
squeezed states, as squeezed states remain squeezed
under the stochastic evolution, and only the two squeez
parameters need be kept track of. The best squeezed sta
use are those optimized for minimum intrinsic phase va
ance. For these states the total phase variance will be
proximately twice the intrinsic phase variance when the m
surements are close to optimal.

To determine the SDE’s for the squeezing parameters,
must first consider the SDE for the state. For dyne detec
the stochastic evolution of the conditioned state vector is@6#

duc~ t !&5FdtS ^a†a&
2

2
a†a

2
1

^a†g1g* a&
2

2g* aD
1dN~ t !S ae2 iF1ugu

A^~a†1g* !~a1g!&
21D G uc~ t !&,

~4.1!

wherea is the annihilation operator for the mode,ugu@1 is
the amplitude of the local oscillator, andF5argg is its
phase. Here the mode being measured is assumed to c
from a cavity with an intensity decay rate equal to unity. T
point processdN(t) has a meankdt, where

k5^~a†1g* !~a1g!&. ~4.2!

The equation given in@6# differs from Eq.~4.1! by a trivial
phase factor. The form above is given because it is not p
3-4
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sible to directly take the limit of large local oscillator amp
tude using the form given in@6#. To take the limit of large
local oscillator amplitude we approximate the Poisson p
cessdN(t) by a Gaussian process

dN~ t !'kdt1AkdW~ t !, ~4.3!

wheredW(t) is a Gaussian random variable of zero me
and variancedt. Then we find that in the limit of largeugu
we have

duc~ t !&5@~2a†a/21axe2 iF2x2/2!dt

1~ae2 iF2x!dW#uc~ t !&, ~4.4!

where

x5
1

2
~^a&e2 iF1^a†&eiF!. ~4.5!

In order to determine the SDE’s for the squeezing para
eters, we use the method of Rigoet al. @10#. Squeezed state
obey the relation

~a2Bt
Sa†2At

S!uAt
S ,Bt

S&. ~4.6!

The squeezing parametersAt
S andBt

S are related to the usua
squeezing parameters in the same way asA andB are in Eq.
~2.6! and Eq.~2.7!. In the Stratonovich formalism

~a2Bt
Sa†2At

S!duc~ t !&5~dBt
Sa†1dAt

S!uc~ t !&. ~4.7!

Converting the SDE for the state to the Stratonovich form
the usual way@5#, we find

duc~ t !&5F S 2
a†a

2
2

a2e22iF

2
12axe2 iF2x2Ddt

1~ae2 iF2x!dW

2
1

2
@ad~e2 iF!2dx#dWG uc~ t !&. ~4.8!

Here we have included the incrementsd(e2 iF) anddx be-
cause the phase of the local oscillator can vary stochastic
Using this form of the equation, the left hand side of E
~4.7! evaluates to

H dt@2~a†Bt
S1At

S/2!2Bt
S~Bt

Sa†1At
S!e22iF12Bt

Sxe2 iF#

1dWFBt
Se2 iF2

1

2
At

Sd~e2 iF!G J uc~ t !&.

This gives us the SDE’s for the squeezing parameters,

dBt
S52Bt

S~11e22iFBt
S!dt, ~4.9!
01381
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dAt
S52

1

2
At

Sdt1Bt
S^a†&~11e22iFBt

S!dt1Bt
Se2 iFdW

2
1

2
Bt

Sd~e2 iF!dW. ~4.10!

From these we find that the Stratonovich SDE for t
standard~nonscaled! amplitudea t

S is

da t
S52

1

2
a t

Sdt1
Bt

SdW

12uBt
Su2

@~Bt
S!* eiF1e2 iF#

2
1

2

Bt
SdW

12uBt
Su2

@~Bt
S!* d~eiF!1d~e2 iF!#.

~4.11!

Converting back to the Ito SDE, we get

da t
S52

1

2
a t

Sdt1
Bt

SdW

12uBt
Su2

@~Bt
S!* eiF1e2 iF#.

~4.12!

The SDE forBt
S is unchanged under the change to Ito for

If we take the signal to beI (t)dt5(dN12dN2)/b ~for con-
sistency with Ref.@6#!, then take the limit of large oscillato
amplitude and small time intervalsdt, we obtain

I ~ t !dt52Re~a t
Se2 iF(t)!dt1dW~ t !. ~4.13!

The parametersAt andBt are then defined as in@6# by

At5E
0

t

eiFe2s/2I ~s!ds, ~4.14!

Bt52E
0

t

e2iFe2sds. ~4.15!

In order to get rid of the exponential factors, we change
time variable to

v512e2t, ~4.16!

and we redefine the amplitude to remove the system
variation:

av
S5a t

Set/2. ~4.17!

Here we use thev subscript to indicate the scaled amplitud
and thet subscript to indicate the original, unscaled amp
tude. Since these are equal to each other at zero time, the
no ambiguity in the initial amplitudeaS. Reverting to our
original definition of the signal~1.1!, we find

I ~v !dv52Re~av
Se2 iF(v)!dv1dW~v !. ~4.18!

With these changes of variables, the definitions forAv and
Bv become
3-5
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Av5E
0

v
eiFI ~u!du, ~4.19!

Bv52E
0

v
e2iFdu. ~4.20!

The differential equations for the squeezing parameters
come

dBv
S52

dv
12v

Bv
S~11e22iFBv

S!, ~4.21!

dav
S5

1

12v

Bv
SdW~v !

12uBv
Su2

@~Bv
S!* eiF1e2 iF#. ~4.22!

Initial calculations were performed using these equatio
but there is a further simplification that can be made. T
solution forBv

S is

Bv
S5

12v

~B0
S!212Bv*

. ~4.23!

For calculations with time-dependente this solution forBv
S

was used rather than solving a separate differential equa
for Bv

S .

V. RESULTS

First we will describe the results for constante. For each
mean photon number,e was varied to find the value tha
gave the minimum phase variance. This method does
give results close to the theoretical limit for photon numb
above about 5000, but the phase variances continue to
smaller as compared to the phase variances for mark II m
surements. This indicates that the results are following a
ferent scaling law, and fitting techniques give the power
the introduced phase variance as 1.68560.007. The data and
the fitted line along with the heterodyne and mark II ca
and the theoretical limit are shown in Fig 2. These results
a significant improvement over the mark II case, but are s
significantly above the theoretical limit.

In order to improve on this result we must varye during
the measurement. The value ofe that we found to give the
best result was

e~v !5
v22uBvu2

uCvu A v
12v

. ~5.1!

The reason for the multiplying factor of (v22uBvu2)/uCvu is
that it is an estimator for 1/uaSu. This means that the value o
e tends to be smaller for larger photon numbers, resulting
smaller values of uAu. The reason for the factor o
Av/(12v) is that it makes the value ofe close to zero ini-
tially, and very large near the end of the measurement.

This second factor was found essentially by trial and
ror, and is thought to be related to the fact that the phas
av

S varies stochastically during the measurement. Recall
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during the measurement we want the phase estimate t
between the phase ofav

S and the phase ofAv . We only have
an estimate of the phase ofaS ~the initial phase!, so if we use
a phase estimate that is too close to the actual phase whe
phase variance ofav

S is large, the phase estimate is likely
be outside the interval between the phase ofav

S and the phase
of Av . Since the phase variance ofav

S increases with time,
the value ofe is increased as well, to prevent this happenin

The results for this method are shown in Fig. 3 as a ra
to the theoretical limit. As this shows, the results are ve
close to the theoretical limit, and even for the largest pho

FIG. 2. Phase variance for phase measurements with a con
value ofe plotted as a function of the photon number of the inp
state. The crosses are the values obtained by stochastic integr
and the continuous line is the fitted line. For comparison we h
also plotted, in order from top to bottom, the variance for hete
dyne measurements~dashed line!, for mark II measurements~dash-
dotted line!, and the theoretical limit~dotted line!.

FIG. 3. Phase variance for phase measurements with a t
dependente plotted as a function of the photon number of the inp
state. The phase variance is plotted as a ratio to the theore
minimum phase variance~i.e., twice the intrinsic phase variance!.
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number for which calculations have been performed
phase uncertainty is only about 4% above the theoret
limit. For these calculations the time steps used were
proximately

Dv5
n̄S^Df2& th

25
, ~5.2!

where ^Df2& th is the theoretical limit to the phase unce
tainty. With these time steps the uncertainty due to the fin
step size is approximately 1%.

If the integration time step is reduced, while keeping t
time interval at which the phase estimates are updated
stant, the phase variance converges. If, however, the p
estimates are updated at smaller and smaller time inter
then the phase variance does not converge. For example
phase uncertainty for measurements on an optimi
squeezed state with a photon number of 1577 is 1
31026 if we use the time steps given above. If, however,
use time steps that are 100 times smaller, then the p
variance is 1.9331026, and if the time steps are 1000 time
smaller the phase variance is 2.1331026. These results in-
dicate that the phase estimates must be incremented in
time intervals for this method to give good results, and
size of the time steps that should be used depends on
photon number. The phase variance is not strongly dep
dent on these time steps, however, and only an order of m
nitude estimate of the photon number is required.

VI. EVALUATION OF METHOD

A problem with determining the phase variance by t
method above is that, for highly squeezed states~that are
close to optimized for minimum phase variance!, a signifi-
cant contribution to the phase variance is from low proba
ity results aroundp. In obtaining numerical results the actu
phase variance for the measurement will tend to be unde
timated because the results from aroundp are obtained too
rarely for good statistics. It would require an extremely lar
number of samples to estimate this contribution. Howev
we can estimate it nonstatistically as follows.

Recall that in order to have a measurement that is clos
optimum the multiplying factorQ8(n̄,z) should give values
of z for each n̄ that are close to optimized for minimum
phase uncertainty. To test this for the phase measurem
scheme described above, then̄ andz were determined from
the values ofA andB from the samples. The resulting da
along with the line for optimizedz are plotted in Fig. 4. The
imaginary part ofz should be zero for optimum measur
ments, and is small for these results. Therefore in Fig. 4
have plotted the real partzR . As can be seen, the vast m
jority of the data points are below the line, indicating grea
squeezing than optimum. This means that if the low pr
ability results aroundp are taken into account the pha
variance for these measurements will be above the theo
cal limit.

First we consider the effect of variations in the modu
of z, leaving consideration of error in the phase till later.
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order to estimate how far above the theoretical limit the
tual phase variance is, we make a quadratic approximatio
the expression for the phase variance. From@9# the expres-
sion for the phase variance of a squeezed state is, for rez,

^df2&'
e2z

4n̄
1

1

4n̄2
2erfc~A2n̄ez!. ~6.1!

Taking the derivative with respect toz gives

d

dz
^df2&'

e2z

2n̄
24ezA2n̄

p
e22n̄e2z

. ~6.2!

Taking the second derivative and using the fact that the
pression above is zero for minimum phase variance give

d2

dz2
^df2&'

n0

2n̄2
~114n0!. ~6.3!

This means that for values ofz close to optimum the increas
in the phase variance over the optimum value is

D^df2&'~Duzu!2
n0

4n̄2
~114n0!. ~6.4!

The main contribution to the phase uncertainty isn0 /(4n̄2),
so the increase in the phase uncertainty as a ratio to
minimum phase uncertainty is

D^df2&

^df2&min

'~Duzu!2~114n0!. ~6.5!

This estimate indicates that the actual phase variance for
measurement scheme described above can be signific
larger than the intrinsic phase variance. For example, fo

FIG. 4. Values ofzR andn̄ ~calculated fromA andB) resulting
from measurements on squeezed states of various mean ph

numbers. The variation ofz with n̄ for optimum squeezed states
also plotted~continuous line!.
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mean photon number of about 332 000 the rms deviation
uzu from the optimum value is only about 0.16, but
squeezed state withuzu differing this much from optimum
will have a phase variance more than twice the optim
value. This indicates that if the low probability resul
aroundp are taken into account the introduced phase v
ance is actually more than twice the theoretical limit.

Next, we estimate the contribution from error in the pha
~rather than the modulus! of z. For a squeezed state with re
a the intrinsic uncertainty in the zero quadrature is

^X0
2&5e22uzucos2

m

2
1e2uzusin2

m

2
, ~6.6!

where m5argz. Since X052a sin(f)'2af, the intrinsic
uncertainty in the phase is

^df2&'
e22uzucos2~m/2!1e2uzusin2~m/2!

4n̄
. ~6.7!

If the phase ofz is small, we can make the approximation

^df2&'
e22uzu1e2uzum2/4

4n̄
. ~6.8!

Clearly the first term in the numerator is just the origin
phase variance, and the second term is the excess phase
ance due to the error in the phase ofz. Therefore the extra
phase variance due to error in the phase ofz is given by

D^df2&'
~D argz!2

16n0
. ~6.9!

Using this estimate on the previous example it can be s
that this is not so much of a problem, with the introduc
phase uncertainty being increased by less than 3% by
factor.

VII. IMPROVED METHOD

The problem of the large contribution of the low probab
ity results aroundp can be effectively eliminated in the fol
lowing way. At each time step the photon number is e
mated from the values ofAv andBv , and the optimum value
of z is estimated using the asymptotic formula in@9#. Then if
zR ~the real part ofz) is too far below the optimum value
rather than using the feedback phase above, we use

F~v !5
1

2
argF Bv

uBvu
2

Cv

Cv*
G . ~7.1!

Using this feedback phase both raiseszR and corrects
slightly for error in the phase ofz. To see why it corrects the
phase ofz, note that

e2iF(v)}
Bv

uBvu
2

Cv

Cv*
. ~7.2!
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If, for example,Cv is real, then

e2iF(v)}
Bv

uBvu
21. ~7.3!

This means thate2iF(v) will be approximately imaginary and
in the same direction as the imaginary part ofBv . Since the
increment inBv is given by2e2iF(v)dv, using this feedback
corrects the phase ofBv slightly. In addition, sincee2iF(v) is
approximately imaginary it does not increase the magnit
of Bv as would a feedback phase based on a phase estim
This results in a raised value ofzR . The cases whereCv has
a phase other than zero are identical~except rotated by the
phase ofCv).

The details of exactly whenzR is considered too far below
optimum can be varied endlessly, but for the results that w
be presented here we use this alternate phase estimate

uzu.uzoptueuavu2(12v)/2000, ~7.4!

where zopt is the estimated optimum value ofz and av is
Cv /(v22uBvu2). Using the exponential multiplying facto
means that the alternative feedback is used only toward
end of the measurement.

In addition, when the above condition was satisfied a
the value ofz was too far from optimum the feedback pha
was chosen to takeBv directly toward the optimum value
Specifically, when

uz2zoptu.12v, ~7.5!

the feedback phase used was

F5
1

2
argFBv2v tanhuzoptu

Cv

Cv*
G . ~7.6!

The reason for using this additional scheme was to prev
occasional results that were a long way from optimum.

Another variation from the previous scheme is that t
values ofe given by the original expression were divided b
1.1. The above corrections correct only for values ofzR that
are below optimum, and for the larger photon numbers m
of the uncorrected values ofzR tend to be above optimum
~see Fig. 4!. The corrections will still work well, however, if
we use a dividing factor to bring the uncorrected values
low the line. The best dividing factor to use increases v
slowly with photon number, but we still obtain good resu
for the range tested if we use a constant dividing factor
1.1.

The estimated contributions to the phase variance du
error in the magnitude and phase ofz are plotted in Fig. 5.
As can be seen, the contribution due to error in the phas
z is very small, less than 3% for the larger photon numb
tested. The contribution due to the error in the magnitude
z is a bit larger, but it still does not rise above 5%. Thus
can see that the introduced phase variance can be made
close to the theoretical limit, within 7% for the largest ph
ton number tested.
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With this modified technique the phase variance ag
does not converge as the feedback phase is update
smaller and smaller time intervals. The phase variance is
dependent on the time step with this technique, however.
example, for a mean photon number of 1577 the total ph
variance for measurements on an optimized squeezed
increases by only about 7% as the time steps are reduce
a factor of 1000. In contrast, the phase variance increase
a factor of 38% for the previous technique.

VIII. CONCLUSIONS

Any estimate of an initially unknown optical phase ma
using standard devices~linear optical and opto-electronic de
vices, a local oscillator, and photodetectors! must have an
uncertainty above the intrinsic quantum uncertainty in
phase of the input state. The minimum magnitude of
added phase variance was determined in Ref.@3# to scale
asymptotically as

ln n̄S

4~ n̄S!2
, ~8.1!

FIG. 5. Contributions to the phase uncertainty from error in
magnitude ofz ~continuous line! and the phase ofz ~dash-dotted
line!. These contributions are plotted as a ratio to the theoret
minimum introduced phase uncertainty.
A
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wheren̄S is the mean photon number of the input state. P
vious phase measurement schemes do not approach this
oretical limit. In this paper we have shown that an adapt
phase measurement scheme not previously considered
attain this theoretical limit. In other words, we have det
mined what is essentially the best possible phase meas
ment technique.

In practice, phase measurements are currently limited
detector inefficiency. For detector efficiencyh the intro-
duced phase variance cannot be reduced below@2#

12h

4hn̄S
. ~8.2!

When the mark II phase variance is less than this there is
likely to be any significant advantage to using a more
vanced feedback scheme. For the best photodetectors a
able today, with around 98% efficiency@11#, the mark II
phase variance falls below this limit for photon numbe
above 1000. Below this photon number the mark II pha
variance is never more than about 27% above the limits
termined using Eqs.~8.1! and ~8.2!, so only relatively small
improvements can be obtained by using a more advan
feedback scheme.

Nevertheless, the technology is always improving, a
there is no fundamental reason why photodetectors canno
built with efficiencies extremely close to 1@12#. When very
efficient photodetectors are developed, the feedback te
niques described here have the potential to give great
provements in the accuracy of phase measurements for
plications where there is a limitation on the photon numb
that can be used. The other detrimental factors are relati
minor, although the time delay in the feedback loop w
become significant for very short pulses.

The primary significance of the result obtained in th
paper is theoretical, however, as it represents the culmina
of the search for the best optical phase measurement sch
using standard devices. To do any better would require us
nonlinear optical devices. For example, it is conceivable t
down-converting some portion of the signal field, and th
measuring the phase of the down-converted light, could
able the above theoretical limit to be surpassed. This i
question for future work.
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