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Phase measurements at the theoretical limit
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It is well known that the result of any phase measurement on an optical mode made using linear optics has
an introduced uncertainty in addition to the intrinsic quantum phase uncertainty of the state of the mode. The
best previously published technigfid. M. Wiseman and R. B. Killip, Phys. Rev. B7, 2169(1998] is an
adaptive technique that introduces a phase variance that scaledasvheren is the mean photon number of
the state. This is far above the minimum intrinsic quantum phase variance of the state, which scafedtas
has been shown that a lower limit to the phase variance that is introduced scalar_slg% IHere we introduce
an adaptive technique that attains this theoretical lower limit.
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I. INTRODUCTION modulator. The signal is shown here as from a cavity with a
half-silvered mirror, as this is what is considered in the
The phase of an electromagnetic field cannot be measurdbieory in Sec. IV.
directly using linear optics and photodetectors. Rather than The signal of interest is the difference between the pho-
measuring phase direcﬂy' phase measurement schemes ré(py:urrents at the two ports. We therefore define the signal as
on measuring quadratures of the field and inferring the phase
from these measurements. In a typical experimental imple-
mentation, the mode to be measured is passed through a
50/50 beam splitter, in order to combine it with a much
stronger local oscillator field. The difference photocurrentHere we have used units of time such that the decay constant
from the two output ports of the beam splitter yields a mea-of the cavity is unity. We multiply by a factor a2 be-
surement of a particular quadrature. cause this is the mode function of the signal. We can take
The standard technique for measuring a completely unaccount of signals with more general mode functiafig in

known phase is heterodyne detection, where all quadraturessimilar way[2].
are sampled with equal probability. This is achieved by using When we take the limit of very large local oscillator am-
a local oscillator field with a frequency slightly different plitude and small time intervalgt, we find that
from the signal's frequency, so its phase changes linearly
with respect to the phase of the signal. More accurate phase
measurements can be made using the homodyne technique, o o s .
where the local oscillator phase &= ¢+ 7/2, with ¢ the wherev is time sc_;aled to the unit mter\{al angl) is the
phase of the signal. The problem with this is that it requiresSc@led mean amplitude of tisgstem(for which theS super-
initial knowledge of the phase of the signal, and so is not a
phase measurement in the strict sense.

AN, — N

1(t)ot= o (1.2

l(v)dv=2Rgae "*®@)dv+dW(v), (1.2

To maintain the unbiased nature of heterodyne phase PD
measurements but obtain the increased sensitivity of homo-
dyne measurements, an adaptive dyne technique can be used M __________
[1-4]. Here “dyne” detection is used to mean photodetec- Mode
tion using a strong local oscillator at a beam splitter. The BS

idea behind adaptive phase measurement schemes is to use
the information gained so far during the measurement to es- O'M Signal
timate the system phase. This is then used to adjust the Processor

local oscillator phaseb to approximate a homodyne mea- )

surement as above. Local Oscillator !
. . =0.2147...
The apparatus for performing these measurements is D

shown schematically in Fig. 1. The signal and a local oscil- £ 1 piagram of the apparatus for making an adaptive phase
lator with amplitudes are combined at the beam splitter and measurement. The signal from the cavity is combined with the local
the outputs are measured with photodetectors. The outpuggcillator field at a 50/50 beam splittéBS) and the outputs are
from the photodetectorgN, and oN_, are subtracted and detected by photodetectof®D). The signals from these photode-
then fed into a digital signal processor that uses these megectors are subtracted, and the difference signal is processed by the
surements to estimate the phase of the system, and adjusfigital signal processor, which determines a phase estimate and
the phase of the local oscillator via an electro-optic phaseadijusts the electro-optic phase modul&®©M) accordingly.
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script stands The systematic variation in the coherent am-variance. The intrinsic phase variance for a state of mean

plltude with time due to the mode Shape is scaled out. Thl?)hoton numbeHS can be as small as of ordeT%fz [7’4]
scaling is explained in more detail in Sec. IV. The final termThjs is far smaller than the introduced phase variance, so the
dW(v) is an infinitesimal Wiener increment such that |atter is what limits the accuracy of phase measurements.
(dW(v)?)=dv [5]. Although the mark Il results are far superior to the standard
It can be showr}6,3] that just two complex numbers are result of heterodyne detection, it is still possible to improve
necessary to encapsulate all of the relevant information in thgn the mark Il result, and it is shown in RB] that a
photocurrent record up to a given time. These are theoretical lower limit to the phase variance that is intro-
. duced by an arbitrary phase measurement schiamed on
szf I(u)ei®Wdy, (1.3  linear optics and photodetectipis In(n%)x(n%) 2
0 In improving on the mark Il result, the obvious thing to do
is to use a better intermediate phase estimate. It turns out that
B —_ fvez“b(“)du (1.4) using the best phase estimate &g actually gives a worse
v g ' ' result than the mark Il case, for reasons that we will explain
later. The phase estimates that we consider in this paper are
For convenience, we often replaB by a third complex therefore intermediate between afgf and the best phase
number defined in terms &, andB,, estimate:

C,=A,v+B,A;. (1.5 o(v)=arg CL™ @A), 1.7

Generally the best estimate of the phase at unearg(C,) |t is possible to obtain a marked improvement over the mark

[2]. The subscripts are omitted for the final values=(1). Il case by using constant valueseofWe show in Sec. V that

In ive m rement schemes the ph f the local . — . . .
oscillstﬂ?ri); geene?:ﬁ; t?;\k:n ttoscbee es the phase of the loca scaling of roughly 1§%) ~ 18 is possible. One drawback is

that the value ok required depends on the photon number.

. - We can obtain an even better result if we allewo have

D(v)=¢(v)+ o (1.6 a variation in time, and we show in Sec. V that we can obtain
phase estimates very close to the theoretical limit if we use

wherefp(v) is the estimated phase of the system at time v2—|B,|? >
using the measurement results andC, . There are a num- e(v)= LN : (1.8
ber of possible phase estimates, giving different adaptive Co 1-v

schemes. For the mark | schermi2 3], both the running i on d licitly d q he oh
phase estimate(v) and the final phase estimate are taken toT IS exprer?_smn r?es notkexp 'C't.¥ heperrll on the photon
be arg@,). This is better than heterodyne measurementgumber' This method works best if the phase estimates are

only if the field is very weak1,3]. For the mark Il adaptive updated in discrete time steps, and the magnitude of the steps

. . depends weakly on the photon number. A more serious prob-
phase measuremeri,3] the best phase estimate am(is em with this method is that it tends to produce valuesBjf

used at the end of the measurement, but for the mtermedmlgat are too close to 1. This means that final phase estimates

phase estimate arf() is used. This is better than hetero- _ . -
dyne measurements for all field strengths. If &gy is gen- W'th an error close. tar oceur sufficiently frequenfcly to make_
' a significant contribution to the phase uncertainty. We will

erally the best phase estimate, it is apparent from(Ed) how h hi bl b d

that arg@,) will only be the best phase estimateBf is show how t IS problem can be corrected. .

neall iblelfas it is in the case of heterodyne measurements The paper is structured as follows. In Sec. Il we rederive
glg y the ultimate theoretical limit to phase measurements of Ref.

For adapuve phase measuremeB{s does not Va’."Sh e 3]. This is necessary to understand how the improved feed-
arg(A,) is generally a much worse phase estimate tha ack algorithm of Eq.(1.7) can approach the theoretical
arg(C,). limit, as explained in Sec. Ill. In Sec. IV we derive the re-
sults necessary for a numerical simulation of this algorithm,
%4%d in Sec. Vv present the results of those simulations. The
roblem of infrequent results with large errors is identified in
€c. VI and a solution proposed and evaluated in Sec. VII.
rWe conclude with a summary and discussion in Sec. VIII.

for this: (i) it is possible to obtain direct analytic results for
this case, whereas using a better intermediate phase estim
requires numerical evaluatiofij) the apparatus required to
implement this method is much simpler than that required fo
a better intermediate phase estimate.

Even with the relatively poor intermediate phase estimate, Il. THE THEORETICAL LIMIT

the mark Il adaptive scheme introduces a phase variance of |, oqer to understand how to attain the theoretical limit,

just 5(n® ~*® a good improvement over the heterodyne re-we must first understand the reason for the theoretical limit.
sult oft(n%) ~1. Heren® is the mean photon number of the It can be showr{6] that the probability of obtaining the
field being measured, and the actual measured phase varesults A, B from an arbitrary(adaptive or nonadaptiye
ance is the introduced phase variance plus the intrinsic phaseeasurement is
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P(A,B)d?A d’B=Tr[pG(A,B)]d’A d’B, (2.1

where p is the state of the mode being measured. Here

G(A,B) is the POM(probability operator measuréor the
measurement, and is given by

G(A,B)=Q(A,B)[¥(A,B))(#(A,B),

where Q(A,B) is what the probability distributiori?(A,B)

would be ifp were the vacuum sta}6)(0|, and|(A,B)) is
an unnormalized ket defined by

(2.2

|@(A,B)>=ex;{%8(a*)2—AaT |0). (2.3

This is proportional to a squeezed stpdé

|0)=(1—[B|*) " *exp(Aa*/2)|a, &),

1
exp{EB(aT)z—Aa’r

(2.9
where
1 1
|a,§>zexﬁaa*—a*a)exr{§§* 2 Eg(a’r)2 |0),
(2.9
and the squeezing parameters are
_ A+BA” 2.6
“ 1-|B]2’ '
_ BatanhB| )
EEE (2.7
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* * * |A|2
Aa* =(1+BA*/A)

2.1
1-|BJ? 10
Aca* and thereforeg’ (A,B) are independent of the phase.
Since the probability distribution for the phase depends on
the inner product between the two states, the variance in the
measured phase will approximately be the sum of the intrin-
sic phase variance and the phase variance of the squeezed
state| a, £). The maximum overlap between the states will be
when the squeezed state has about the same photon number
as the input state. This means that the theoretical limit to the
phase variance that is introduced by the measurement is the
phase variance of the squeezed state that has the same photon
number as the input state and has been optimized for mini-
mum intrinsic phase variance. Since the phase variance of a
squeezed state optimized for minimum intrinsic phase vari-

ance is Im/(4n) in the limit of largen [9], this is also the
limit to the introduced phase variance.

The photon number of the squeezed state at maximum
overlap will be mainly determined by the photon number of
the input, but the degree and direction of squeezpagam-
etrized by¢) will be determined by the multiplying factor
Q' (A,B). The multiplying factor can be expressed as a func-
tion of n and{, for which we will use the same symb@!’,
even though it is a new functio®'(n,¢). Heren is the
mean photon number for the state &) (and will be close to
the photon numben® of the input statg and{= éa*/a is &
with the phase ofx scaled out. The multiplying factor will
tend to be concentrated along a particular line, effectively
giving £ as a function of. In order to obtain the theoretical
limit, the measurement scheme must give a multiplying fac-
tor Q’(n,¢) that tends to give values dffor eachn that are
the same as for optimized squeezed states.

We can determine the approximate variation/oiith n
in the multiplying factor if we can estimate how it varies for
measurements on a coherent state. If we consider measure-

where atanh is the inverse hyperbolic tan function. In termsnents on a coherent state with real amplitud® then the

of these the POM is given by
G(A,B)=Q'(AB)|a,é)(a.é&, (2.8
where

Q'(A,B)=Q(A,B)(1—|B[*) ~"?exd Re(Aa*)].
(2.9

If the system state is purgy=|¢)(| and the probability
distribution is given by

P(A,B)=Q'(AB)yla,&)F. (2.10

maximum overlap with the stater,&) will be for a®~a.
We usea® without a subscript to indicate the initial coherent
amplitude before the measurement.

If we are using an adaptive scheme with intermediate
phase estimates that are unbiased, it is easy to see that the
maximum probability will be forB real and therefore alsa
real. These results imply that

A(1+B) A
a~—— =12 (2.12

In turn this gives/ as

For an unbiased measurement scheme the probability dis-

tribution for the phase resulting from this equation depends
entirely on the inner product between the two states, and not

{~—ataniil— Al a) (2.13
1| A 1| A 2.1
NE HZNE nﬁ. ( . 4)

onQ’(A,B). To see this, note first that if the measurement is

unbiased the vacuum probability distributiQ{A,B) will be

Since the value of is governed by the multiplying factor

independent of the phase. Second, for the squeezed stage(n,¢), this result for should hold for more general input

|a, &), éa*la is independent of the phase asg( This in

turn means thaBA* /A is independent of the phase. Since

states.
From Ref.[9] the phase variance of a squeezed state is
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whereg=arga®. If we use this result the expectation value

no+1
(AP~ 2_2 + 2erfd \2ny), (2.15  for the increment ifA,|? is
n
— dlA, 2y =[1-4|A,[|a%sin(¢, — ¢)sin(¢; — ¢,) ]dv.
whereny=ne?¢ for real {. This is minimized asymptotically < ) (3.6)

as
- The first term on its own will givéA| =1, and in order to get
Inn+A |A]<1 the two sines must have the same sign. This will be
v (216  the case if the phase estimate is between the actual phase and
the phase of\, . It is for this reason that we consider phase
whereA~2.43, for estimates that are intermediate between the best phase esti-
mate and the phase &, , i.e., of the form

— 1
no=~In(4n) — 7In(2m). (2.17 o(v)=ard (A,v+ B, A% )t @A), (3.7

In general, smaller values ¢A| can be obtained by using
smaller values ok. This is because’ tends to be a worse
1 phase estimate, thus making it possible for the sines in Eq.
No~ 5 |A| Vi, (2.18  (3.6) to be larger. Note that it is far too simplistic to use the
best phase estimatee., with e=0), as we need to adjust
This result means that in order for the measurement to b order to maken, closer to optimal.

optimal, |A| should scale witm as

If we use the result obtained fdrin Eq. (2.14 we find that

IV. SIMULATION METHOD
| Ao In_n (2.19 The easiest input states to use for numerical simulations
\/ﬁ are coherent states, as they remain coherent with a determin-
istically decaying amplitude. However, in order to estimate
For the case of mark Il measurements we have the result thgie phase variance that is introduced by the measurement this
|A|=1 [2], which is why these measurements are not optiwould be very inefficient, as the phase variance would be
mal. Note that if we substituteA|=1 into the expression dominated by the intrinsic phase variance. It is almost as
(2.18 to find ny, and substitute that into Eq2.15, we ob-  easy(and much more efficiehtto perform calculations on
tain the correct result for the mark Il introduced phase vari-squeezed states, as squeezed states remain squeezed states
ance, under the stochastic evolution, and only the two squeezing
parameters need be kept track of. The best squeezed states to
<A¢2>~lﬁ‘1-5. (2.20 use are those optimized for minimum intrinsic phase vari-
8 ance. For these states the total phase variance will be ap-
proximately twice the intrinsic phase variance when the mea-
Il IMPROVED EEEDBACK surements are close to optimal.
To determine the SDE’s for the squeezing parameters, we
Now we have the result that for optimal feedbad@  must first consider the SDE for the state. For dyne detection
should decrease with photon number. Therefore in order tehe stochastic evolution of the conditioned state vectf6]s
improve the phase measurement scheme we want one that

gives|A|<1. To see in general how this can be achieved, (a'ay a'a (a'y+y*a)
consider a coherent state with amplitud@ and determine dlg(t))=|d 5 T T ——7va
the Ito SDE(stochastic differential equatipror |A|%:
2_ A% * * aeiifb"'h’l
d|A,[*=A7 (dA,)+(dA7)A,+(dAT)(dA,) 3.9 +dN(t) - 1 ||(1)),
_ _ V(@ y*) (@t y)
=A¥ gl ®©)] (U)dv-i—e*'q’(v)l(v)dvAU"‘dU (3.2 4.1)
id(v)A—i A . - . .
=[|A,[I(v)2Ree®*Me %) +1]d, (3.3 wherea is the annihilation operator for the mode]>1 is

A . the amplitude of the local oscillator, ari=argy is its
where ¢,=argA,. In terms of the phase estimate,  phase. Here the mode being measured is assumed to come

=®(v) — w/2 this becomes from a cavity with an intensity decay rate equal to unity. The
. point processiN(t) has a meandt, where
dlA,[2=[1+2|A|l(v)sin(¢)~¢,)]dv. (3.9
_ o k={((a’+y*)(a+y)). 4.2
If we take the expectation value bfv) and simplify we get
The equation given if6] differs from Eq.(4.1) by a trivial
(I(v))=—2|aSsin(¢,— ¢), (3.5  phase factor. The form above is given because it is not pos-
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sible to directly take the limit of large local oscillator ampli- 1 , ,
tude using the form given if6]. To take the limit of large dAP=— EAtSdH BXa")(1+e ?*BY)dt+Be '*dwW
local oscillator amplitude we approximate the Poisson pro-
cessoN(t) by a Gaussian process 1 o o
- EBtd(e )dW. (4.10

SN(t)~ ke St+ Kk SW(1), 4.9

From these we find that the Stratonovich SDE for the

where sW(t) is a Gaussian random variable of zero meanstandardnonscaled amplitudeatS is
and variancest. Then we find that in the limit of largéy|

we have s

1 BYdW
da§=—§a§dt+ S[(BY)* e +e ]

dly(t))=[(—a'a/2+aye '®— x2/2)dt - By
S

+(ae "= y)dW]| (1)), (4.4) 1 W o o
T2 B S[(BY)*d(e'®)+d(e™")].
where (4.1
1 . . :
_ §(<a>e—|¢+<a‘r>eup). (4.5) Converting back to the Ito SDE, we get
S_ BSdW * |<I> i®
In order to determine the SDE's for the squeezing param- dapy=— —ath 1B S[(BY)*e®+e ],
eters, we use the method of Rigbal.[10]. Squeezed states 4.12
obey the relation :
St ASUAS @S The SDE forBtS is unchanged under the change to Ito form.
(a—Bpa' —AD|A?BY). (4.6 If we take the signal to bE(t) st= (SN, — SN _)/j3 (for con-

sistency with Ref[6]), then take the limit of large oscillator
The squeezing parametetk§ and Bt are related to the usual amplitude and small time intervalst, we obtain
squeezing parameters in the same wapasdB are in Eq. _
(2.6) and Eq.(2.7). In the Stratonovich formalism I(t)dt=2Re ape "*O)dt+dW(t). (4.13

(a— BtSaT—AtS)d| w(t)>=(dBtSaT+ dAtS)|1,b(t)>. (4.7) The parameters,, andB; are then defined as 6] by

t
Converting the SDE for the state to the Stratonovich form in A= f e'Pe %2 (s)ds, (4.14
the usual way5], we find 0
aTa aZe—2|d> ) t .
dly(t))= —T—T+2a)(e@—)(2)dt Bi=— Oemqe *ds. (4.19
+(ae '~ y)dW In order to get rid of the exponential factors, we change the
1 time variable to
— —[ad(e "®)—dy]dW||y(t)). 4.8
slade ™) —d] }lm DENCA:) eioet 416

Here we have included the incremeniie™'®?) anddy be- and we redefine the amplitude to remove the systematic
cause the phase of the local oscillator can vary stochasticallyariation:

Using this form of the equation, the left hand side of Eq. S w

(4.7) evaluates to aS=ade (4.17

Here we use the subscript to indicate the scaled amplitude,
(dt[—(aTBtSJr AP12)—BY(BfaT+Ad)e 2%+ 2BPye ] and thet subscript to indicate the original, unscaled ampli-

tude. Since these are equal to each other at zero time, there is
no ambiguity in the initial amplituderS. Reverting to our

) 1 :
+d\N{BtSe"q’— EAtSd(e"(I’) ]Iw(t)>. original definition of the signall.1), we find

| =2R PO dy + dW(v). 4.1
This gives us the SDE’s for the squeezing parameters, (v)dv aye )dv+dWv) (4.19

, With these changes of variables, the definitions Agrand
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v
Av=f e'®l(u)du, (4.19
0
107
v .
sz—f e ®du. (4.20
0 3
-510“‘
The differential equations for the squeezing parameters be g
come @
T
dv . 107
dBS=— EBE(lJre’Z"I’Bf), (4.21)
—12
1 B3dW(v) ‘ . 10
dap=7— ——— [(B)*e"+e ™. (422 . . .
v 1-[B,] 10* 10° 10° 10’

Photon number
Initial calculations were performed using these equations,

but there is a further simplification that can be made. The FIG. 2. Phase variance for phase measurements with a constant
solution forBS is ' value of e plotted as a function of the photon number of the input
v

state. The crosses are the values obtained by stochastic integration
and the continuous line is the fitted line. For comparison we have

(4.23 also plotted, in order from top to bottom, the variance for hetero-
dyne measurementdashed ling for mark Il measuremeniglash-
dotted ling, and the theoretical limi(dotted ling.

s 1-v
BU: S\—1 *
(Bg) "—B;

For calculations with time-dependeatthis solution forB>
was used rather than solving a separate differential equatiofuring the measurement we want the phase estimate to be
for Bf. between the phase mf and the phase a4, . We only have
an estimate of the phase @f (the initial phasg so if we use

V. RESULTS a phase estimate that is too close to the actual phase when the
phase variance afzf is large, the phase estimate is likely to
be outside the interval between the phasei){and the phase
f A,. Since the phase variance of increases with time,

First we will describe the results for constantFor each
mean photon numbelk was varied to find the value that

gave the minimum phase variance. This method does nc% e value ofe is increased as well, to prevent this happenin
give results close to the theoretical limit for photon numbers N fop PP 9-

siove about 000, but the phase varnces contue t gt 11 SSULS 01 bis Ml i shows n £g 3 2 2 ato
smaller as compared to the phase variances for mark Il me Close to the theoreticai limit, and even,for the largest hoto>r/1
surements. This indicates that the results are following a dif- ' gestp

ferent scaling law, and fitting techniques give the power for

the introduced phase variance as 1. 686007. The dataand 19 ' ' ' ' '
the fitted line along with the heterodyne and mark Il casesg
and the theoretical limit are shown in Fig 2. These results areC 1}
a significant improvement over the mark Il case, but are still.2
significantly above the theoretical limit. 5
In order to improve on this result we must vagyduring & %95[ l
the measurement. The value efthat we found to give the 2
best result was § ool
2 2 §
( )="2 _[B| \/ 7 (5.1  Soss| ;
€(v |Cv| 1_0. . % 8
o]
The reason for the multiplying factor o6 {—|B,|)/|C,| is £ 08f
that it is an estimator for {l4. This means that the value of &
€ tends to be smaller for larger photon numbers, resulting in . , , , , ,
smaller values of|A|. The reason for the factor of 10° 10° 10* 10° 10° 10’
Ju/(1—v) is that it makes the value af close to zero ini- Photon number
tially, and very large near the end of the measurement. FIG. 3. Phase variance for phase measurements with a time-

This second factor was found essentially by trial and erdependent plotted as a function of the photon number of the input
ror, and is thought to be related to the fact that the phase Gftate. The phase variance is plotted as a ratio to the theoretical
af varies stochastically during the measurement. Recall thatinimum phase variancg.e., twice the intrinsic phase variance
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-

number for which calculations have been performed the
phase uncertainty is only about 4% above the theoretica
limit. For these calculations the time steps used were ap-
proximately

_ XAy,

Av 25

(5.2

where (A ¢?)y, is the theoretical limit to the phase uncer-
tainty. With these time steps the uncertainty due to the finite
step size is approximately 1%.

If the integration time step is reduced, while keeping the
time interval at which the phase estimates are updated con
stant, the phase variance converges. If, however, the phas
estimates are updated at smaller and smaller time interval _g . .
then the phase variance does not converge. For example, tr 10 10 10" 10 10
phase uncertainty for measurements on an optimizea Mean photon number
iqu_egszid state r\:VIth_ a phOton_ numEer O];f 11577 s 1.54 FIG. 4. Values oflg and?(calculated fromA andB) resulting

. It we use the time steps _glven above. Il, NOWEeVer, Weg, ., measurements on squeezed states of various mean photon
use time steps that are 100 times smaller, then the phase L L — . .

. . i - . . numbers. The variation af with n for optimum squeezed states is
variance is 1.98 10 °, and if the time steps are 1000 times ' ;

. . 5 . also plotted(continuous ling
smaller the phase variance is 2480 °. These results in-

dicate that the phase estimates must be incremented in finifgyer 15 estimate how far above the theoretical limit the ac-
time intervals for this method to give good results, and th&y, 5| phase variance is, we make a quadratic approximation to
size of the time steps that should be used depends on thg, expression for the phase variance. Fi®@hthe expres-

photon numbe_r. The phase variance is not strongly depergq, for the phase variance of a squeezed state is, fogeal
dent on these time steps, however, and only an order of mag-

nitude estimate of the photon number is required.

et 1 —
(8¢?)~ 4—_+ ﬁzerfo( V2neb). (6.1
n n
VI. EVALUATION OF METHOD

A problem with determining the phase variance by theTaking the derivative with respect fgives

method above is that, for highly squeezed stdtbat are q 2 o
close to optimized for minimum phase variahca signifi- Z (5¢?)~ S aein e 6.2
cant contribution to the phase variance is from low probabil- d¢ 2n ™

ity results aroundr. In obtaining numerical results the actual

phase variance for the measurement will tend to be underedaking the second derivative and using the fact that the ex-

timated because the results from aroundire obtained too Pression above is zero for minimum phase variance gives

rarely for good statistics. It would require an extremely large 5

number of samples to estimate this contribution. However, d—<6¢>2)~ &(1+4n ) 6.3

we can estimate it nonstatistically as follows. de? 2n2 o '
Recall that in order to have a measurement that is close to

optimum the multiplying factoQ’(n,¢) should give values This means that for values gfclose to optimum the increase

of ¢ for eachn that are close to optimized for minimum in the phase variance over the optimum value is
phase uncertainty. To test this for the phase measurement

scheme described above, theand { were determined from A(5¢2>~(A|§|)2n:02(1+4n0). (6.9
the values ofA and B from the samples. The resulting data 4n

along with the line for optimized are plotted in Fig. 4. The .
imaginary part of¢ should be zero for optimum measure- The main contribution to the phase uncertaintydg(4n),
ments, and is small for these results. Therefore in Fig. 4 w80 the increase in the phase uncertainty as a ratio to the
have plotted the real patiz. As can be seen, the vast ma- Minimum phase uncertainty is

jority of the data points are below the line, indicating greater

squeezing than optimum. This means that if the low prob- A(54%) ~ (AZ])2(1+4ny) 6.5
ability results aroundsr are taken into account the phase (5% min 0’ '
variance for these measurements will be above the theoreti-

cal limit. This estimate indicates that the actual phase variance for the

First we consider the effect of variations in the modulusmeasurement scheme described above can be significantly
of £, leaving consideration of error in the phase till later. Inlarger than the intrinsic phase variance. For example, for a
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mean photon number of about 332 000 the rms deviation off, for example,C, is real, then
[£| from the optimum value is only about 0.16, but a
squeezed state witfy| differing this much from optimum
will have a phase variance more than twice the optimum
value. This indicates that if the low probability results
around are taken into account the introduced phase variThis means tha®®®) will be approximately imaginary and
ance iS aCtually more than tWice the theoretical ||m|t in the same direction as the imaginary pariBgf_ Since the
Next, we estimate the contribution from error in the phasgncrement inB,, is given by—e?*®)dy, using this feedback
(rather than the modulusf /. For a squeezed state with real ¢orrects the phase &, slightly. In addition, since?®®) is

. B
2i0() e Y _
e o B 1. (7.3

ol

@ the intrinsic uncertainty in the zero quadrature is approximately imaginary it does not increase the magnitude
of B, as would a feedback phase based on a phase estimate.
<X§>=e_z|§|co§ﬁ + sl 6.6  Thisresults in a raised value ¢k . The cases wher€, has
2 2 a phase other than zero are identi@tcept rotated by the
) ) o phase ofiC,).
where p=arg{. Since Xo=2a sin(¢)~2a¢, the intrinsic The details of exactly whety is considered too far below
uncertainty in the phase is optimum can be varied endlessly, but for the results that will

be presented here we use this alternate phase estimate when
e Alcod(ul2)+e?dsird(ul2) 6

2\
(6¢%)~ 4n ' |¢]>| £oplel %" Q0112000 (7.9

If the phase of is small, we can make the approximation where . is the estimated optimum value ¢fand «, is
C,/(v?—|B,|?. Using the exponential multiplying factor
e‘2|4|+e2‘5‘,u2/4 means that the alternative feedback is used only toward the
—_—. (6.8)  end of the measurement.
4n In addition, when the above condition was satisfied and
the value of¢ was too far from optimum the feedback phase
fs chosen to takB, directly toward the optimum value.
pecifically, when

(6¢%)~

Clearly the first term in the numerator is just the original

phase variance, and the second term is the excess phase v

ance due to the error in the phaseofTherefore the extra
hase variance due to error in the phasé @ given b

P P ¢elg y |§_§oprj>l_v, (7.9

A arg?)?

A<5¢>2>~ ( Tong (6.9 the feedback phase used was

Using this estimate on the previous example it can be seen b= Ear% B,—v taanoprJ& _ (7.6)
*

that this is not so much of a problem, with the introduced 2
phase uncertainty being increased by less than 3% by this
factor. The reason for using this additional scheme was to prevent
occasional results that were a long way from optimum.
VII. IMPROVED METHOD Another variation from the previous scheme is that the
o . values ofe given by the original expression were divided by
The problem of the large contribution of the low probabil- 1 1 The above corrections correct only for valueg ethat
ity results aroundr can be effectively eliminated in the fol- 5.6 pelow optimum, and for the larger photon numbers many
lowing way. At each time step the photon number is esti-of the uncorrected values @f tend to be above optimum
mated from the values &, andB, , and the optimum value (gee Fig. 4 The corrections will still work well, however, if
of { is estimated using the asymptotic formulg @). Then if  \ye yse a dividing factor to bring the uncorrected values be-
{r (the real part of¢) is too far below the optimum value, |o the line. The best dividing factor to use increases very

v

rather than using the feedback phase above, we use slowly with photon number, but we still obtain good results
c for the range tested if we use a constant dividing factor of
v 1.1.

7.0 The estimated contributions to the phase variance due to

o 1 | B,
(U)— Ear m C_* .
' error in the magnitude and phase ofre plotted in Fig. 5.
Using this feedback phase both raiség and corrects As can be seen, the contribution due to error in the phase of
slightly for error in the phase af. To see why it corrects the ¢ is very small, less than 3% for the larger photon numbers

phase ofZ, note that tested. The contribution due to the error in the magnitude of
{ is a bit larger, but it still does not rise above 5%. Thus we
_ B C can see that the introduced phase variance can be made very
2P L 2 (7.2 close to the theoretical limit, within 7% for the largest pho-
B o ton number tested.
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0.05 ' ' ' ' ' wheren® is the mean photon number of the input state. Pre-
vious phase measurement schemes do not approach this the-
oretical limit. In this paper we have shown that an adaptive
phase measurement scheme not previously considered can
attain this theoretical limit. In other words, we have deter-
mined what is essentially the best possible phase measure-
ment technique.

In practice, phase measurements are currently limited by
detector inefficiency. For detector efficieney the intro-
duced phase variance cannot be reduced bgxw

0.045

Relative excess phase variance
o o o

© o @ 5 © o @

(=] - o N o w (=]

— a N a1 W (3] B

1-79
0.005} . 4ynS

(8.2

10

o . . .
10° 10° 10* 10° 10

Ph When the mark Il phase variance is less than this there is not
oton number

likely to be any significant advantage to using a more ad-
FIG. 5. Contributions to the phase uncertainty from error in thevanced feedback scheme. For the best photodetectors avail-
magnitude of{ (continuous ling and the phase of (dash-dotted able today, with around 98% efficiendyt1], the mark II
line). These contributions are plotted as a ratio to the theoreticabhase variance falls below this limit for photon numbers
minimum introduced phase uncertainty. above 1000. Below this photon number the mark Il phase
variance is never more than about 27% above the limits de-
With this modified technique the phase variance agaiermined using Eq¥8.1) and(8.2), so only relatively small
does not converge as the feedback phase is updated jmprovements can be obtained by using a more advanced
smaller and smaller time intervals. The phase variance is legsedback scheme.
dependent on the time step with this technique, however. For Nevertheless, the techn0|ogy is a|Ways impro\/ing7 and
example, for a mean photon number of 1577 the total phasgere is no fundamental reason why photodetectors cannot be
variance for measurements on an optimized squeezed staigilt with efficiencies extremely close to[12]. When very
increases by only about 7% as the time steps are reduced le¥ficient photodetectors are developed, the feedback tech-
a factor of 1000. In contrast, the phase variance increases yques described here have the potential to give great im-

a factor of 38% for the previous technique. provements in the accuracy of phase measurements for ap-
plications where there is a limitation on the photon number
VIIl. CONCLUSIONS that can be used. The other detrimental factors are relatively

. - . minor, although the time delay in the feedback loop will
Any estimate of an initially unknown optical phase madebecome significant for very short pulses

u_sing standard de\_/iceétinear optical and opto-electronic de- The primary significance of the result obtained in this
wces,tq Itcmalboscnlt?]tor_, f‘!‘d _photod(tatec)onsustt h_a;/e 'anth epaper is theoretical, however, as it represents the culmination
uﬂcer a|r]: %gha pvet ? Itn ”_T_i'c quantum uncer .?'réy |nf th of the search for the best optical phase measurement schemes
pdgsg Oh € Input state. de tmlnl_mu(;n' magnltu € c: qusing standard devices. To do any better would require using
added phase variance was determined in R&f.to scale nonlinear optical devices. For example, it is conceivable that

asymptotically as down-converting some portion of the signal field, and then
Inns measuring the phase of the _do_wn-converted light, coqld_en-
—_ (8.1  able the above theoretical limit to be surpassed. This is a
4(n%)? question for future work.
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