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Super-revivals, chaos, and entanglement of a trapped ion in a standing wave
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We unitarily transform the Hamiltonian of a trapped ion, situated at any position of a standing-wave laser
field, to that for the normal Jaynes-Cummings model in the bare ionic basis, and we obtain the general
evolution operator of the trapped ion system. We show the existence of super-revivals of the ionic inversion if
the trapped ion isnot located at a node of the standing wave, and we examine the degree of entanglement
between the vibrational phonons and the trapped ion. For some parameter values, we find chaotic behavior.
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I. INTRODUCTION

In recent years, much attention has been focused on
dynamics of trapped ions, due to potential applications in
generation of nonclassical states of the vibrational motion
ions@1–3#, precision spectroscopy@4#, the implementation of
quantum logic gates@5#, and quantum state reconstructio
@6,7#. Although the interaction of a trapped ion with on
laser beam or several laser beams is, in general, very c
plicated, it can be greatly simplified under certain limitin
conditions that may indeed be realized in experiments.
example, Ciracet al. @1# showed that the dynamics of
trapped two-level ion, at the node of a standing wave, can
described by the Jaynes-Cummings model~JCM!. Of late,
Wu and Yang@8# and Alam and Bennet@9# extended the
study, and predicted that an ion trapped in any position o
laser standing wave, under the conditions of the rotati
wave approximation, the Lamb-Dicke limit, and the stro
confinement limit, can also be described by the JCM Ham
tonian, but in an ionic dressed basis. Moya-Cessaet al. @10#
showed the existence of a unitary transform for the case
an ion interacting with a traveling wave, which transform
the Hamiltonian into a JCM-like form, without making th
Lamb-Dicke approximation, and also discussed sup
revivals in the phonon number. These works establis
complete connection between the trapped ion dynamics
cavity QED within the framework of the JCM, and hav
important implications for both fields.

Here, working within the Lamb-Dicke limit, we introduc
a unitary transformation which reduces the Hamiltonian o
trapped ion at any position of a standing wave to that of
normal JCM in thebare basisof the trapped ion. Therefore
one candirectly use the formulas of the standard JCM
study the dynamics of the trapped ion at any position of
standing wave. By means of this transformation, we desc
the general evolution of a trapped ion located at an arbitr
point in a standing-wave field, and show that the behavio
the trapped ion depends in a qualitative way on its position
the standing wave field. We consider, in particular, the c
where the phonons are initially in a coherent state. If
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coherent state is in phase with the driving laser and
trapped ion is not located at a node, the system exhibits
dynamical behavior of super-revivals~revivals which occur
on a very long time scale! in the ionic inversion. Super-
revivals in the photon number were previously reported
the driven JCM in Ref.@11#, and by Moya-Cessaet al. @10#
for their ion system.

If the initial phonon coherent state is out of phase with t
driving laser, we find that the system may exhibit chao
behavior. We also examine the properties of entanglem
between the vibrational phonons and the ion in a trapped
system.

II. MODEL

We consider a single two-level ion, with ground and e
cited levelsu1& and u2&, trapped in a harmonic potential o
frequencyn and interacting with a standing-wave laser fie
In the case where the trap frequencyn is much greater than
the ionic decay rate, the Hamiltonian reads@1,8#

H5na†a1
D

2
sz1

V0

2
sx cos@h~a1a†!1x#, ~1!

wherea anda† are the annihilation and creation operators
the phonons or vibrational states of the trap;D5v02vL is
the detuning between the ionic transition and laser frequ
cies; sx5s211s12 and sz5s222s11; s i j 5u i &^ j u are the
two-level polarization and inversion operators;V0 is the
Rabi frequency, which is proportional to the amplitude of t
standing wave;h is the Lamb-Dicke parameter; and th
phasex accounts for the relative position of the ion in th
standing wave—for example,x5p/2 corresponds to the ion
centered at a node of the standing wave. We use units s
that \51.

We expand Hamiltonian~1! in powers of the Lamb-Dicke
parameterh,

H5na†a1
1

2
Dsz1

1

2
V0 cos~x!sx2h

V0

2
sin~x!

3sx~a1a†!1O~h2!, ~2!

where terms of higher order inh are negligible in the Lamb-
Dicke limit. It is clear that Hamiltonian~2! has the same
form as that of a two-level atom coupled to a single qua
tized cavity field with the coupling coefficien
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2hV0 sin(x)/2, and classically driven by a coherent las
field with Rabi frequencyV0 cos(x)/2.

We wish to transform Hamiltonian~2! into the JCM
Hamiltonian, by eliminating the third term of Eq.~2!. This
can be achieved by a simple rotationU5exp(ifs2) about the
y axis, where tan(2f)5V1 /V and

V5AD21V1
2 with V15V0 cos~x!. ~3!

However, we obtain more convenient expressions if we fi
rotateH through an anglep about thex axis, by application
of the unitary operatorsx , so that the sign of the term inD
is reversed. We therefore introduce an unitary transformT
5Usx , where, explicitly,

T5xsx1ysz , ~4!

with

x5S D1V

2V D 1/2

, y5
V1

A2V~D1V!
, ~5!

which corresponds to an su~2! rotation in the atomic space
Acting with T on the factorsx(a1a†) of the fourth term of
Eq. ~2! introduces an unwanted term proportional tosz(a
1a†), which, however, is eliminated when the rotatin
wave approximation is made, along with terms proportio
to s21a

† ands12a. In detail, Hamiltonian~2! is transformed
by T to

H85THT†5na†a1
V

2
szF12

hV0
2 sin~2x!

2V2 ~a1a†!G
1

hV0D sin~x!

2V
sx~a1a†!. ~6!

The next step is make the rotating-wave approximati
which involves neglecting those terms in the interaction
tween the phonons and the atom which do not conserve
ergy. The primary effect of these neglected terms is to p
duce a small shift of the atomic frequency. We then find

H85HJCM5na†a1
V

2
sz1g~s21a1s12a

†!, ~7!

whereg5hV0D sin(x)/2V.
It is clear that the transformed Hamiltonian@Eq. ~7!# is

formally the same as that of the normal JCM. Therefore,
may directly use the well-known JCM results to study t
dynamics of the trapped ion situated at any position of sta
ing wave. For example, if we substitute

uc8~ t !&5 (
n50

`

@An~ t !u2,n&1Bn~ t !u1,n&] ~8!

into the Schro¨dinger equation,i uċ8(t)&5H8uc8(t)&, where
u j ,n&[u j &un&, j 51 and 2, denotes the state where the at
is in stateuj& and there aren photons in the field, we find
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S An~ t !
Bn11~ t ! D5expF2 i S n1

1

2D nt GF «n 2 ihn

2 ihn «n*
G

3S An~0!

Bn11~0! D , ~9!

where

«n5cosvnt2 i
d sinvnt

2vn
,

~10!

hn5
gAn11 sinvnt

vn
,

with vn5@d2/41g2(n11)#1/2 andd5V2n.
Assuming, for example, an initial state in which the ato

is in its ground state and the probability amplitude forn
phonons to be in the field isFn ,

uc~0!&5 (
n50

`

Fnun,1&, ~11!

we haveuc8(0)&5Tuc(0)&, so that

An~0!5yFn , Bn~0!52xFn . ~12!

For phonons initially in a coherent state, we have

Fn5expS 2
uau2

2 D an

An!
, ~13!

where a5An̄ exp(ib), n̄ being the initial average phono
number, andb the phase of the phonon coherent state. T
mean photon number isn̄5uau2. Performing the inverse
transform on Eq.~8!, we obtain

uc~ t !&5T†uc8~ t !&5 (
n50

`

exp~2 innt !@Cn~ t !u2,n&

1Sn~ t !u1,n&][uC~ t !&u2&1uS~ t !&u1&, ~14!

where

Cn~ t !5exp~2 int/2!~xy«nFn1 ix2hnFn11!2exp~ int/2!

3~xy«n21* Fn1 iy2hn21Fn21!, ~15!

Sn~ t !5exp~2 int/2!~ ixyhnFn111y2«nFn!1exp~ int/2!

3~ ixyhn21Fn211x2«n21* Fn!, ~16!

and

uX~ t !&5 (
n50

`

exp~2 innt !Xn~ t !un&, X5C,S. ~17!

The density matrix of the system is given by

r~ t !5uc~ t !&^c~ t !u ~18!
2-2
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SUPER-REVIVALS, CHAOS, AND ENTANGLEMENT OF . . . PHYSICAL REVIEW A 63 013812
Tracing r(t) over the ionic variables gives rise to the r
duced phonon density operator,

rp~ t !5uC&^Cu1uS&^Su ~19!

It is not difficult to see that its eigenvalues and eigensta
are

P6~ t !5 H ^CuC&6exp~7u!u^CuS&u
^SuS&6exp~6u!u^CuS&u ~20!

and

ucp
6&5

1

AP6~ t !1P7 exp~72u!
~ uC&6exp~2 iw7u!uS&),

~21!

where

u5sinh21S ^CuC&2^SuS&
2u^CuS&u D ~22!

and

w5tan21F Im~^CuS&!

Re~^CuS&!G . ~23!

Similarly, by tracing over the phonon variables, we fi
the reduced ionic density operator,

r I~ t !5F ^CuC& ^SuC&

^CuS& ^SuS&
G . ~24!

The eigenvaluesP6(t) of this operator are identical to th
phonon eigenvalues, Eq.~20!, and the eigenvectors are

uc i
6&5

1

AP6~ t !1P7 exp~72u!
~ u2&6exp~ iw7u!u1&).

~25!

In what follows, we shall explore the dynamics of th
trapped ion in terms of the quantum collapses and revival
the ionic inversion, and of the quantum entropy which
flects the degree of entanglement between the internal~ionic!
and external~vibrational phonon! degrees of freedom of th
trapped ion system. We also find chaotic behavior for cer
parameter values.

III. SUPER-REVIVALS OF IONIC INVERSION

From Eq.~24!, one obtains the following expression fo
the inversion of the two-level trapped ion

W~ t !5Tr@r I~ t !sz#5 1
2 ~^CuC&2^SuS&!. ~26!

Using Eqs.~17!, we find
01381
s
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W~ t !5 1
2 (

n50

`

ˆ~x22y2!@y2~ u«nu2hn
2!

2x2~ u«n21u22hn21
2 !#uFnu2

24xy R$exp~ int !@ iF nhn~y2«n11* Fn11*

2x2«n21* Fn21* !1xyuFnu2~«n* «n21* 1hnhn11!#%‰.

~27!

For the casex5p/2, it is clear from Eq.~2! that our Hamil-
tonian reduces to that of the normal JCM. Thenx51 and
y50, and Eq.~27! becomes

W~ t !52
1

2 (
n50

`

~ u«n21u22hn21
2 !uFnu2

→2
1

2 (
n50

`

cos~2gAnt!uFnu2 for d50. ~28!

The above is the standard expression for the inversion in
normal JCM, and it exhibits well-known collapses and rev
als for suitable choices ofuFnu2. Analytic expressions have
been obtained for these@14,15#, where it was shown that the
revivals occur at multiples of the revival time,TR , and that
the width of thenth revival istn , where

TR52pn̄/g, tn52pn/g ~n51,2,3,...!, t0.3/g
~29!

for an initial coherent state. WhenxÞp/2, the considerably
more complicated expression~27! has to be employed.

For simplicity, we consider only the ‘‘resonant’’ cased
50 in the figures. This choice reduces the number of para
eters, and«n and hn simplify to «n5cos(gtAn11) andhn

5sin(gtAn11). Figure 1 presents numerical results for t
ionic inversionW(t) for V056p3105 s21, D5V0/20, h
50.05, andn̄525 @12#, and different positions in the stand
ing wave. This figure shows that the oscillatory features
the inversion strongly depend on the location of the trapp
ion in the standing wave, and on the initial vibrational sta
We take the initial phonon phase to beb50 in the first two
frames of Fig. 1. When the trapped ion is located at a nod
the standing wave,x5p/2, as in Fig. 1~a!, the time behavior
of the ionic inversionW(t) exhibits ordinary collapses an
revivals. The value ofg is g.4.73104 s21. @It should be
noted that in general the effective coupling coefficientg
5hV0D sin(x)/2V is strongly position dependent.# It can be
seen that the collapse occurs after about 731025 s, and the
revival after about 731024 s. These results are in agreeme
with the expressions in Eq.~29!: TR'6.731024 s andt0
.6.431025 s. Our system in this case is completely equiv
lent to the normal JCM.

By contrast, whenx5p/4, as in Fig. 1~b!, the revivals in
the ionic inversion begin fromt'1.4 s. This time is very
long compared to that of Fig. 1~a!. Such ‘‘super-revivals’’
@10,11,13# were previously reported for the photon or ph
non number, but not, as far as we are aware, for the inv
sion. The appearance of the super-revivals can be unders
by noting that whenx5p/4 andD!V, thenx andy are of
2-3
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nearly equal magnitude. Thus the first term in Eq.~27!,
which was responsible for all the contributions for the ca
of Fig. 1~a!, the normal JCM, is now small, and it is th
second term of Eq.~27! which makes the major contribution
This term contains factors such as«n* «n21*
5cos(gAn11t)cos(gAnt) 5 1

2 $cos@g(An111An)t# 1 cos
g@(An112An)t#%. The first term, with a time argument o
approximately 2gAnt for largen, is essentially the time ar
gument that arises in Eq.~28! which determines Fig. 1~a!,
but the second term, with a time argument of approximat
1/2gt/An, evolves over a much longer time scale. The ra
between these two time scales, forn.n̄, is 4n̄, and the time
at which the super-revival occurs isTSR54n̄TR .

To see this more clearly, we approximate the terms in

FIG. 1. The time evolution of the ionic inversionW(t) of a
trapped ion in a standing-wave field. The ion is initially in th
ground stateu1&, and the vibrational phonons in the coherent st
with average phonon numbern̄525. V056p3105 s21, D
5V0/20, andh50.05.~a! The trapped ion is located at the node
the standing wave,x5p/2 andb50. ~b! The trapped ion is mid-
way between node and antinode of the standing wave.x5p/4 and
b50. ~c! The trapped ion is midway between node and antinode
the standing wave,x5p/4, but now with a nonzero coherent sta
phase,b5p/2. ~d! The trapped ion is midway between node a
antinode of the standing wave, but nowx5p/4 andb5p/4.
01381
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~27!, assuming thatn@1, and retain only terms to lowes
significant order inAn. We obtain

W~ t !5
1

2 (
n50

` H 2
D2

V2 cos 2gtAn2
V1

V2

3F iF nS V1
2Fn11*

2~D1V!

2~D1V!Fn21* D Gsin 2gtAn

1
V1

V2 F iF nS V1
2Fn11*

2~D1V!
1~D1V!Fn21* D Gsin

gt

2Ap

2V1uFnu2cos
gt

2Ap
J . ~30!

For x5p/4, b50, andD!V, the first two terms in Eq.~30!
are small. The dominant contribution comes from the l
two terms. For the coherent state@eq. ~13!# and for n.n̄
@1, we have

Fn115
a

An̄
Fn , Fn215

An̄

a
Fn , ~31!

so that, fora real, we can roughly approximateW(t) by

W~ t !52
A

2 (
n50

`

Fn
2 cosS gt

2An
1BD ~32!

@using the last two terms of Eq.~30! only#, whereA and B
are constants. By comparison with Eq.~28!, we see that the
system behaves like the ordinary JCM, but with the tim
argument replaced according to the rule

2gtAn→ gt

2An
. ~33!

The arguments of Sec. II of Ref.@15# can be used to show
that the revivals occur with the time

TSR5
8pn̄3/2

g
54n̄TR . ~34!

and their widths are given by

tSRn5
12pn̄n

g
, n51,2,3,..., tSR05

12n̄

g
. ~35!

For the parameters of Fig. 1~b!, g.2.33103 s21, TR
.0.013 s, andTSR.1.34 s. The latter number is in agre
ment with the observed revival in the figure. A feature n
apparent in the figure is that the first decay exhibits v
small-amplitude modulations with periodTR , which arise
from the terms neglected in approximating Eq.~30! by Eq.
~32!. @One requires a plot over a very small time scale to
these.# The width of the first two revivals are found totSR1

e

f
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SUPER-REVIVALS, CHAOS, AND ENTANGLEMENT OF . . . PHYSICAL REVIEW A 63 013812
.0.41 s andtSR2.0.82 s. We thus observe only one reviva
as the second revival overlaps the first, giving rise to int
ference features. The existence of super-revivals in the io
inversion is a manifestation of the position dependence of
ionic dynamics.

The super-revival time@Eq. ~34!# is identical to the frac-
tional revival time introduced by Averbukh@16#. However,
the super-revivals described are a different physical phen
ena. The second set of terms in Eq.~27! play an essential role
in the super-revivals discussed here, whereas the fracti
revivals occur in the normal JCM, described by Eq.~28!, but
with a more sharply peaked photon distribution than t
provided by the coherent state@17#.

In Figs. 1~c! and 1~d!, the ion is placed midway betwee
node and antinode as in Fig. 1~b!, but now we allow a non-
zero value for the phase of the initial coherent state of
phonons. In Fig. 1~c!, we takeb5p/2, and in Fig. 1~d! we
takeb5p/4. In both cases, the inversion appears to sho
chaotic behavior, with no indications of revivals or any oth
regular structure. The introduction of the extra phase fac
whenbÞ0 destroys the interference effects that give rise
collapses and revivals.

IV. ENTANGLEMENT BETWEEN THE VIBRATIONAL
PHONONS AND ION

The quantum dynamics described by the Hamiltonian@Eq.
~2!# leads to an entanglement between the phonon subsy
and the ion subsystem dressed by the standing wave.
we use quantum entropy as a measure of the degree o
entanglement, according to the theory presented by Pho
and Knight@18#. In the trapped ion system, the time behav
of the phonon~or ionic! quantum entropy reflects the tim
behavior of the degree of entanglement between the pho
and ion. The larger the entropy, the greater the entanglem
The entropies of the phonons and ion can be defined thro
their respective reduced density operators by

Sj~ t !52Trj~r j ln r j !, ~36!

and the subscriptj is taken to imply either the phonons or th
ion, or the whole phonon-ion system. The entropies o
general two-component quantum system are linked by a
markable theorem due to Araki and Lieb@19#, which states

uSi~ t !2Sp~ t !u<S<Si~ t !1Sp~ t !. ~37!

The subscriptsp and i denote the phonons and ion, and t
total entropy of the completep-i system is denoted byS.
Since we have assumed the phonons and ion are initially
disentangled pure state, that is, the phonons are in the v
tional coherent stateua& and the ion in the ground stateu1&,
the entropySof the completei-p system is zero. One imme
diate consequence of the inequality~37! is that the phonon
and ion component systems have equal entropies throug
their subsequent evolution:Si(t)5Sp(t). Hence we calculate
only the phonon entropySp(t). We may express the phono
entropy in terms of the eigenvaluesP6(t) of the reduced
phonon density operator, given by Eq.~20!, as
01381
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Sp~ t !52P1~ t !ln P1~ t !2P2~ t !ln P2~ t !. ~38!

The numerical results for the entropic evolution of t
vibrational phonons are presented in Fig. 2. Here the par
eter values are the same as in Fig. 1. In Fig. 2~a!, the case
where the trapped ion is located at the node of the stand
wave (x5p/2) is considered. The evolution of the phono
entropy is the same as that of the field entropy in the JC
During the first stage of the time evolution, the phonon e
tropy achieves its maximum value, which means that p
nons and ion are strongly entangled; however, at one ha
the revival time for the ionic inversion (t05TR/255p/g)
the phonon entropy evolves to its local minimum valu
which means that the phonons and ion are disentangled
the phonons are in an almost pure state. This pure state
Schrödinger cat state according to the dynamical proper
of the JCM @20#. This demonstrates that Schro¨dinger cat

FIG. 2. The time evolution of the phonon entropy of a trapp
ion in the standing wave. The parameters are the same as in F
~a! The trapped ion is located at the node of the standing wavex
5p/2 andb50. ~b! The trapped ion is midway between node a
antinode,x5p/4 andb50. ~c! shows the early evolution of~b! on
a much expanded scale.
2-5
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MAO-FA FANG, S. SWAIN, AND PENG ZHOU PHYSICAL REVIEW A63 013812
states in the motion of a trapped ion can be generated by
phonon-ion interaction. Figure 2~b! shows the case in which
the trapped ion is placed away from the node of the stand
wave (x5p/4). It is obvious that at very early stages of th
time evolution, the phonon entropy remains near its lo
minimum value, which shows that the phonons and ion
disentangled. As the time goes on, the phonon entropy
creases to its maximum value, and the phonons and ion
come strongly entangled. A plateau persists for a long t
before a slow reduction, and oscillation begins after abou
s. Figure 2~c! shows the early evolution of Fig. 2~b! on a
much expanded scale. The short-time revivals seen here
the ‘‘normal’’ JCM revivals, occurring atTR.2pn̄1/2/g.

We may interpret the dynamical behavior of the phon
entropy in terms of the evolution of the state vector of t
trapped ion system. By using the eigenvalues and eigens
of the reduced-density operators of phonons and ion, gi
by eqs. ~20! and ~24!, we can write the evolution of the
ion-phonon system state vector as@18#

uC i -p~ t !&5AP1~ t !ucp
1& ^ uc i

1&1AP2~ t !ucp
2& ^ uc i

2&.
~39!

The eigenvalueP2(t) is plotted in Fig. 3 for V056p
3105 s21, D5V0/20, h50.05, and n̄525. @Note that
P1(t)512P2(t).# For the trapped ion located at the no

FIG. 3. The time evolution of the eigenvaluePp
2(t) with the

same parameters as in Fig. 1.~a! The trapped ion is located at
node,x5p/2 and b50 ~b! The trapped ion is midway betwee
node and antinode,x5p/4 andb50
s.
,

tt.
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of the standing wave,x5p/2, depicted in Fig. 3~a!, P2(t)
tends to zero att0 , one-half of the revival time of ionic
inversion. From Eq.~39!, we have

C i -p~ t0!'ucp
1& ^ uc i

1&, ~40!

that is, the phonons and ion are disentangled and their
spective entropy achieves its local minimum value at t
time. At all other times, neitherP1(t) or P2(t) is zero.
From Eq.~39!, we see that the phonons and ion are alwa
entangled, so that the values of their respective entropie
longer tend to zero. For a trapped ion away from the node
the standing wave,x5p/4, shown in Fig. 3~b!, we see that at
the early stage of the time evolution, the eigenvalueP2(t)
tends to zero. In this region, the phonons and ion are dis
tangled, and the phonon entropy has its minimum value
the collapse region however,P1(t) andP2(t) have almost
the same value, i.e.,P1(t)5P2(t)'0.5, so that the pho-
nons and ion are in an optimally entangled state, and
phonon entropy evolves to its maximum value. It is impo
tant to stress that, by using the properties of the entanglem
between the phonons and the ion, one can obtain informa
concerning the phonons by a measurement performed on
ion. When the phonons and ion are in an optimally entang
state, the quality of the information obtained about the p
nons from measurements of ionic properties is correspo
ingly optimal. For example, full information on the quantum
mechanical state of the vibrational center-of-mass motion
a trapped ion can be obtained from the dynamics of the io
ground state of a long-lived electronic transition@6#.

In conclusion, by performing a unitary transformation, w
have transformed the Hamiltonian of a trapped ion situate
any position in a standing wave field to that of the norm
Jaynes-Cummings model in the bare ionic basis, and
have obtained the general evolution operator of the trap
ion system. We have shown the existence of super-revi
in the ionic inversion if the trapped ion is not located at t
node of the standing wave. Since dissipation in traps is m
smaller than in cavities, it may be possible to experimenta
observe the super-revivals of a trapped ion in a stand
wave. We have also examined the properties of entanglem
between the vibrational phonons and the trapped ion in te
of quantum entropy.

ACKNOWLEDGMENTS

M.F.F. thanks the Department of Applied Mathemati
and Theoretical Physics of the Queen’s University of Belf
for hospitality. This work was supported by the Nation
Natural Science Foundation of China and the United Kin
dom EPSRC.
d

.

@1# D. J. Heinzen and D. J. Wineland, Phys. Rev. A42, 2977
~1990!; J. I. Cirac, R. Blatt, A. S. Parkins, and P. Zoller, Phy
Rev. Lett.70, 762 ~1993!; J. I. Cirac, A. S. Parkins, R. Blatt
and P. Zoller, Adv. At., Mol., Opt. Phys.37, 237 ~1996!, and
references therein.

@2# D. J. Heinzen and D. J. Wineland, Phys. Rev. A42, 2977
~1990!; R. L. de Matos Filho and W. Vogel, Phys. Rev. Le
76, 608 ~1996!.
@3# C. C. Gerry, S.-C. Gou and J. Steinbach, Phys. Rev. A55, 630

~1997!; 55, 2478~1997!.
@4# D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, an

D. J. Heinzen, Phys. Rev. A46, R6797~1992!.
@5# C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D

J. Wineland, Phys. Rev. Lett.75, 4714~1995!; J. I. Cirac and
2-6



R

.

S.

. A

. A

d
s.

on,

-

SUPER-REVIVALS, CHAOS, AND ENTANGLEMENT OF . . . PHYSICAL REVIEW A 63 013812
P. Zoller, ibid. 74, 4091~1995!.
@6# S. Wallentowitz and W. Vogel, Phys. Rev. Lett.75, 2932

~1995!; J. F. Poyatos, R. Walser, J. I. Cirac, P. Zoller, and
Blatt, Phys. Rev. A53, R1966~1996!; C. D’Helon and G. J.
Milburn, ibid. 54, R25 ~1996!.

@7# D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M
Itano, and D. J. Wineland, Phys. Rev. Lett.77, 4281~1996!.

@8# Y. Wu and X. X. Yang, Phys. Rev. Lett.78, 3086~1997!.
@9# S. Alam and C. Bentley, Prog. Theor. Phys.98, 351 ~1997!.

@10# H. Moya-Cessa, A. Vidiella-Barranco, J. A. Roversi, D.
Freitas, and S. M. Dutra, Phys. Rev. A59, 2518~1999!.

@11# S. M. Dutra, P. L. Knight, and H. Moya-Cessa, Phys. Rev
49, 1993~1994!.

@12# J. I. Cirac, R. Blatt, A. S. Parkins, and P. Zoller, Phys. Rev
49, 1202~1994!.

@13# The phenomenon of long-time scaled revivals was terme
‘‘super-revival’’ by A. Venugopalan and G. S. Agarwal, Phy
01381
.

a

Rev. A 59, 1413~1999!.
@14# J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondrag

Phys. Rev. Lett.44, 1323 ~1980!; B. W. Shore and P. L.
Knight, J. Mod. Opt.40, 1195~1993!; M. O. Scully and M. S.
Zubairy,Quantum Optics~Cambridge University Press, Cam
bridge, 1997!, Chap. 6; J-S. Peng and G-X. Li,Introduction to
Modern Quantum Optics~World Scientific, Singapore, 1998!.

@15# M. Fleischhauer and W. P. Schleich, Phys. Rev. A47, 4258
~1993!.

@16# I. Sh. Averbukh, Phys. Rev. A46, R2205~1992!.
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