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Super-revivals, chaos, and entanglement of a trapped ion in a standing wave
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We unitarily transform the Hamiltonian of a trapped ion, situated at any position of a standing-wave laser
field, to that for the normal Jaynes-Cummings model in the bare ionic basis, and we obtain the general
evolution operator of the trapped ion system. We show the existence of super-revivals of the ionic inversion if
the trapped ion isot located at a node of the standing wave, and we examine the degree of entanglement
between the vibrational phonons and the trapped ion. For some parameter values, we find chaotic behavior.
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[. INTRODUCTION coherent state is in phase with the driving laser and the
trapped ion is not located at a node, the system exhibits the
In recent years, much attention has been focused on tH&namical behavior of super-revivalgevivals which occur
dynamics of trapped ions, due to potential applications in thé€n & Very long time scalein the ionic inversion Super-
generation of nonclassical states of the vibrational motion of€Vivals in the photon number were previously reported for
ions[1—3], precision spectroscopy], the implementation of ]Ehe ﬂ”\.’e.n JCM in Ref[11], and by Moya-Cessat al. [10]
guantum logic gate§5], and quantum state reconstruction or their ion system.

- . ; ; If the initial phonon coherent state is out of phase with the
[6,7]. Although the interaction of a_tra.pped ion with one driving laser, we find that the system may exhibit chaotic
laser beam or several laser beams is, in general, very co

"Behavior. We also examine the properties of entanglement

plicated, it can be greatly simplified under certain limiting hepyeen the vibrational phonons and the ion in a trapped ion
conditions that may indeed be realized in experiments. Foéystem.

example, Ciracet al. [1] showed that the dynamics of a

trapped two-level ion, at the node of a standing wave, can be Il. MODEL
described by the Jaynes-Cummings mo@M). Of late, i ) i )
Wu and Yang[8] and Alam and Bennefi9] extended the We consider a single two-level ion, with ground and ex-

ited levels|1) and |2), trapped in a harmonic potential of
requencyr and interacting with a standing-wave laser field.
n the case where the trap frequengys much greater than
he ionic decay rate, the Hamiltonian regids]

study, and predicted that an ion trapped in any position of
laser standing wave, under the conditions of the rotatingi
wave approximation, the Lamb-Dicke limit, and the strongt
confinement limit, can also be described by the JCM Hamil-
tonian, but in an ionic dressed basis. Moya-Cestsal. [10] " A Q, +
showed the existence of a unitary transform for the case of H=va'at+ 5o, + —-oxcogn(atal)+x], (1)
an ion interacting with a traveling wave, which transforms
the Hamiltonian into a JCM-like form, without making the wherea anda' are the annihilation and creation operators of
Lamb-Dicke approximation, and also discussed superthe phonons or vibrational states of the trég: wo— w_ is
revivals in the phonon number. These works establishethe detuning between the ionic transition and laser frequen-
complete connection between the trapped ion dynamics ar@l€s; ox= 021+ 01, and o,= 02— 011; 04 = i)(j| are the
cavity QED within the framework of the JCM, and have two-level polarization and inversion operato@y is the
important implications for both fields. Rabi frequency, which is proportional to the amplitude of the
Here, working within the Lamb-Dicke limit, we introduce standing wave;» is the Lamb-Dicke parameter; and the
a unitary transformation which reduces the Hamiltonian of aPhasey accounts for the relative position of the ion in the
trapped ion at any position of a standing wave to that of thestanding wave—for examplg,= 7/2 corresponds to the ion
normal JCM in thebare basisof the trapped ion. Therefore, centered at a node of the standing wave. We use units such
one candirectly use the formulas of the standard JCM to that7=1.
study the dynamics of the trapped ion at any position of the We expand Hamiltoniafil) in powers of the Lamb-Dicke
standing wave. By means of this transformation, we describ@arameters,
the general evolution of a trapped ion located at an arbitrary
- I~ : i . 1 1 Qq .
point in a standing-wave field, and show that the behavior of  H=yafa+ ~ Ao, + = Qycod x)oy— 7 —=-sin(x)
the trapped ion depends in a qualitative way on its position in 2 2 2
the standing wave field. We consider, in particular, the case + 2
where the phonons are initially in a coherent state. If the xXoatal)+Oln), @
where terms of higher order in are negligible in the Lamb-
Dicke limit. It is clear that Hamiltonian2) has the same
*Present address: School of Physics, Georgia Institute of Technoform as that of a two-level atom coupled to a single quan-
ogy, Atlanta, GA 30332. tized cavity field with the coupling coefficient
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—nQgysin(y)/2, and classically driven by a coherent laser Aq(t) _ 1 en —i7n
field with Rabi frequency), cos()/2. (Bn+1(t)) =exr{ (n+ 2MY —

We wish to transform Hamiltoniarf2) into the JCM n n
Hamiltonian, by eliminating the third term of Eq2). This A,(0)
can be achieved by a simple rotatior= exp( ¢o,) about the (BHH(O))’ 9)
y axis, where tan(@)=Q,/Q and

where
Q=A%+ Q% with Q;=Qqco ). (3)
Ssinwpt

However, we obtain more convenient expressions if we first n=COSwt—i ———,
rotateH through an angler about thex axis, by application A (10)
_of the unitary operatoo, , SO that the sign o_f the term iy gﬁsinwnt
is reversed. We therefore introduce an unitary transférm =

=Uay, where, explicitly, Wn

with w,=[8%/4+g?(n+1)]¥? and 6=Q — v.

Assuming, for example, an initial state in which the atom
with is in its ground state and the probability amplitude for
phonons to be in the field i5,,,

T=Xoy+Yyo,, (4)

A+Q
2Q

1/2 Ql

s YE e ©)

= 200+ 0) W(0)=3, Foln.), (11)

which corresponds to an &) rotation in the atomic space. , _
Acting with T on the factoro,(a+a') of the fourth term of we have|y)’(0))=T|4(0)), so that

Eqg. (2) introduces an unwanted term proportional ¢g(a A(0)=yF,, B,(0)=—xF,. (12)
+a'), which, however, is eliminated when the rotating-

wave apprOXImatlon is made, along with terms proportionalFor phonons initially in a coherent state, we have
to 0" ando,a. In detail, Hamiltonian2) is transformed

S »
n=eXpg — —5— )
Q 7O2 sin(2x) 2 /\nt
H'=THT'=va'a+ 50,/ 1- —~7—(a+a")
2 20 where a=\nexp(pB), n being the initial average phonon
7Q0A sin(x) number, andB the phase_of the phonon coherent state. The
———" o, (at+ah). (6) mean photon number ia=|a|2. Performing the inverse

2Q transform on Eq(8), we obtain

The next step is make the rotating-wave approximation, %

which involves neglecting those terms in the interaction be- ly(0))=TT|¢' (1)) = > exp(—invt)[Cy(t)]2,0)
tween the phonons and the atom which do not conserve en- n=0

ergy. The primary effect of these neglected terms is to pro- _

duce a small shift of the atomic frequency. We then find +SibILmI=[C(1)[2)+[S(1)[1),

where

(14

Q
H’:HJCM: VaTa+ EO’Z‘Fg(O'Zla‘I‘ O'lzaT), (7)

Ch(t)=exp(—ivt/2)(xye Fo+ix?n,Fpsq1) —explivt/2)

whereg= QA sin(y)/2Q. X(xyeh_1Fntiy?mn - 1Fn 1), (15)
It is clear that the transformed Hamiltoniggg. (7)] is

formally the same as that of the normal JCM. Therefore, we Sn(t)=exp(—ivt/2)(ixy 7,Fn1+y*enFq) +exp(ivt/2)

may directly use the well-known JCM results to study the

dynamics of the trapped ion situated at any position of stand- X(ixy70-1Fn-1+ X% _1F ), (18
ing wave. For example, if we substitute
and
W(t»:nz::() [An(t)|2,n)+By(1)[1.0)] (€S) |X(t)>:n§o exp(—invt)X,(H)[n), X=C,S. (17

into the Schdinger equationi|y’(t))=H'|#'(t)), where  The density matrix of the system is given by
lj, n)—|J>|n> j=1 and 2, denotes the state where the atom

is in statelj) and there are photons in the field, we find p(t)=y(t)) ()] (18
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Tracing p(t) over the ionic variables gives rise to the re- *
duced phonon density operator, W(t)= %nzo {(P=yA)[y?(|len] — 72)
pp(t)=IC)(C|+[S)(S] (19 ~X¥(len-al*= mh- D) 1IFl?
It is not difficult to see that its eigenvalues and eigenstates —4xy Riexp(i vt)[iF ypn(y2ehs 1 Fhs g
are —X%er_ Fr_ )+ xyIFo2(enen 1+ mamns ) 1
= (t) = (ClC)xexp+ 0)|(C|S)| (20 (27)

(SIS)=exp(= 0)(C|S)] For the casgr= /2, it is clear from Eq(2) that our Hamil-

tonian reduces to that of the normal JCM. Theal and

and y=0, and Eq.27) becomes
|4y ) = (IC)xexp—ip+0)[S)) W(t)=—1§ (len-11>= 75 DIFl?
Pl M)+~ exp(£26) ’ 2i=0 "
(21 1.
_Z 2 _
where - ano cog2g\nt)|F,|2 for 6=0. (29
(c|cy—(S|S) The above is the standard expression for the inversion in the
0= sinh‘l(z—) (220  normal JCM, and it exhibits well-known collapses and reviv-
(CIS)] als for suitable choices dF ,|2. Analytic expressions have
been obtained for thegé&4,15, where it was shown that the
and revivals occur at multiples of the revival tim&g, and that
the width of theuth revival is 7, , where
. [Im((C[S)) 23
Ra(CIS) | 23 Tr=2mnlg, 7,=2mvlg (v=1,23,.), 7o=3lg
(29
Similarly, by tracing over the phonon variables, we find for an initial coherent state. Wheps /2, the considerably
the reduced ionic density operator, more complicated expressi@@7) has to be employed.
For simplicity, we consider only the “resonant” cage
(CIC) (S|C) =0 in the figures. This choice reduces the number of param-
pi()= cls)y (s’ 249 eters, ance, and 7, simplify to e,=cosg@tyn+1) and 7,

=sin(@tyn+1). Figure 1 presents numerical results for the

The eigenvaluesl*(t) of this operator are identical to the iONiC inversionW(t) for Q=67x10°s ", A=04/20, 7
phonon eigenvalues, ERO), and the eigenvectors are =0.05, andn=25[12], and different positions in the stand-
ing wave. This figure shows that the oscillatory features of

the inversion strongly depend on the location of the trapped

- _ (|2) xexplieT 6)[1)). ion in the standing wave, and on the initial vibrational state.
VIT=(t) + 117 exp(F26) We take the initial phonon phase to Be=0 in the first two

(25  frames of Fig. 1. When the trapped ion is located at a node of
the standing wavey= 7/2, as in Fig. 1a), the time behavior

In what follows, we shall explore the dynamics of the of the ionic inversionW(t) exhibits ordinary collapses and

trapped ion in terms of the quantum collapses and revivals ofevivals. The value ofy is g=4.7x10*s . [It should be
the ionic inversion, and of the quantum entropy which re-noted that in general the effective coupling coefficignt
flects the degree of entanglement between the intéiovak) = QoA sin(y)/2Q is strongly position dependehtt can be
and externalvibrational phonondegrees of freedom of the seen that the collapse occurs after aboutlD™°s, and the

trapped ion system. We also find chaotic behavior for certaifjevival after about X 10~*s. These results are in agreement

)=

parameter values. with the expressions in Eq29): Tr~6.7X10 *s and r,
=6.4x10 °s. Our system in this case is completely equiva-
Ill. SUPER-REVIVALS OF IONIC INVERSION lent to the normal JCM.

) ] ] By contrast, whery= /4, as in Fig. 1), the revivals in
From Eq.(24), one obtains the following expression for the jonic inversion begin from~1.4s. This time is very

the inversion of the two-level trapped ion long compared to that of Fig.(d). Such “super-revivals”
[10,11,13 were previously reported for the photon or pho-
W(t)=Tr[p(t)o,]=3((C|C)—(SIS)). (260 non number, but not, as far as we are aware, for the inver-
sion. The appearance of the super-revivals can be understood
Using Eqgs.(17), we find by noting that wherny= 7/4 andA<(}, thenx andy are of
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0.5 T T T -(a) T T T (27), assuming thah>1, and retain only terms to lowest
significant order inyn. We obtain
g 0 nvr\v o
U W= 3, chos@tf S
0% 1 2 3 4 5 6 7 8 ol Q3F*,
x 107 "l 2(a+0)
—(A+Q)F’,§l) sin 2gtyn
0y QFFh . . gt
Qz[": (2(A+Q) +(A+Q)F;_; smﬁ
o time (secs) - , gt 0
: ’ ) (C) ) i l| n| COSZ\/; " ( )

For x=w/4, 3=0, andA <(}, the first two terms in EQ.30)

are small. The dominant contribution comes from the last
two terms. For the coherent stdteg. (13)] and for n=n
>1, we have

NG

o
—=Fn, anlsznv (31)

Fn+1: \/ﬁ

so that, fora real, we can roughly approximaw/(t) by

(32

A gt
W(t)=—= D, Faco§ —+B

[using the last two terms of E430) only], whereA and B
FIG. 1. The time evolution of the ionic inversioW(t) of a  are constants. By comparison with E&8), we see that the
trapped ion in a standing-wave field. The ion is initially in the system behaves like the ordinary JCM, but with the time
ground statd1), and the vibrational phonons in the coherent stateargument replaced according to the rule
with average phonon numben=25. Q,=67x10Ps? A
=(),/20, andn=0.05.(a) The trapped ion is located at the node of gt
the standing wavey= /2 and3=0. (b) The trapped ion is mid- 2gtyn— —. (33
way between node and antinode of the standing wgver/4 and 2\n
B=0.(c) The trapped ion is midway between node and antinode o
the standing wavey= /4, but now with a nonzero coherent state
phase,3= /2. (d) The trapped ion is midway between node and
antinode of the standing wave, but nowe 7/4 and 8= /4. 832
TSR—i =4nTR. (34

nearly equal magnitude. Thus the first term in EQ7), 9
which was responsible for all the contributions for the case - .
of Fig. 1(a), the normal JCM, is now small, and it is the and their widths are given by
second term of Eq27) which makes the major contribution. 127#nv 190
This term contains factors such assfel_; TSRE T VT 1,23,..., TSRO= g (39

=cos@y/n+1t)cos@ynt) =2{cogg(yn+1+n)t] + cos

o[(vVn+1—n)t]}. The first term, with a time argument of For the parameters of Fig. (), g=2.3x10°s?, Tx

approximately #+/nt for largen, is essentially the time ar- =0.013s, andlgg=1.34s. The latter number is |n agree-

gument that arises in E¢28) which determines Fig. (&), ment with the observed revival in the figure. A feature not

but the second term, with a time argument of approximatelyapparent in the figure is that the first decay exhibits very

1/2gt/\/n, evolves over a much longer time scale. The ratiosmall-amplitude modulations with perioflz, which arise

between these two time scales, foen, is 4n, and the time  from the terms neglected in approximating E80) by Eq.

at which the super-revival occurs Tgg=4nTg. (32). [One requires a plot over a very small time scale to see
To see this more clearly, we approximate the terms in Eqthese] The width of the first two revivals are found teg;

0 0.2 04 0.6 0.8 1
time (secs)

tl'he arguments of Sec. Il of Refl5] can be used to show
that the revivals occur with the time
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=0.41s andrgg,~0.82's. We thus observe only one revival, @
as the second revival overlaps the first, giving rise to inter- i ) ' )
ference features. The existence of super-revivals in the ionic %[
inversion is a manifestation of the position dependence of the§0_4_
ionic dynamics. E

The super-revival tim¢Eq. (34)] is identical to the frac- 0.2
tional revival time introduced by Averbukfi6]. However, ) ) _ . ) ) )
the super-revivals described are a different physical phenom- % 1 2 3 4 5 6 7
ena. The second set of terms in E2j7) play an essential role ®) x 10
in the super-revivals discussed here, whereas the fractiona y
revivals occur in the normal JCM, described by E2f), but 0.6} ]
with a more sharply peaked photon distribution than that
provided by the coherent stalt&7].

In Figs. Xc) and Xd), the ion is placed midway between
node and antinode as in Fig(dl, but now we allow a non-
zero value for the phase of the initial coherent state of the o G : s
phonons. In Fig. @), we takeB= /2, and in Fig. 1d) we ’ time (secs) '
take 8= =r/4. In both cases, the inversion appears to show a
chaotic behavior, with no indications of revivals or any other
regular structure. The introduction of the extra phase factors
when 8+ 0 destroys the interference effects that give rise to  0.35}
collapses and revivals.

E

0.4

Entropy

0.2

(©

0.3F

IV. ENTANGLEMENT BETWEEN THE VIBRATIONAL 0.5k
PHONONS AND ION z

£ oop
The guantum dynamics described by the Hamiltofzm. &

(2)] leads to an entanglement between the phonon subsyster o.15¢
and the ion subsystem dressed by the standing wave. Hen
we use quantum entropy as a measure of the degree of th
entanglement, according to the theory presented by Phoeni;
and Knight[18]. In the trapped ion system, the time behavior
of the phonon(or ionic) quantum entropy reflects the time 0 . . . . .
behavior of the degree of entanglement between the phonon 0 0005 OO ey 2 00 003
and ion. The larger the entropy, the greater the entanglement.

The entropies of the phonons and ion can be defined through FIG. 2. The time evolution of the phonon entropy of a trapped

0.1f

0.05E

their respective reduced density operators by ion in the standing wave. The parameters are the same as in Fig. 1.
(a) The trapped ion is located at the node of the standing wave,
Sj(t)z —Trj(pj In pj), (36) =m/2 andB=0. (b) The trapped ion is midway between node and

antinode,y= w/4 andB=0. (c) shows the early evolution db) on

and the subscrigtis taken to imply either the phonons or the @ much expanded scale.
ion, or the whole phonon-ion system. The entropies of a
general two-component quantum system are linked by a re- Sp()=—II"(O)INII" () —II~(H)InTI~(t). (39
markable theorem due to Araki and Ligb9], which states
The numerical results for the entropic evolution of the
|Si(t) = Sp()[=S=S;(1) + Sp(1). (87  vibrational phonons are presented in Fig. 2. Here the param-
eter values are the same as in Fig. 1. In Fi@),2the case
The subscriptp andi denote the phonons and ion, and thewhere the trapped ion is located at the node of the standing
total entropy of the complete-i system is denoted b  wave (y=/2) is considered. The evolution of the phonon
Since we have assumed the phonons and ion are initially in @ntropy is the same as that of the field entropy in the JCM.
disentangled pure state, that is, the phonons are in the vibr@uring the first stage of the time evolution, the phonon en-
tional coherent statgy) and the ion in the ground stat),  tropy achieves its maximum value, which means that pho-
the entropyS of the completa-p system is zero. One imme- nons and ion are strongly entangled; however, at one half of
diate consequence of the inequaliB7) is that the phonon the revival time for the ionic inversiont{=Tgr/2=57/g)
and ion component systems have equal entropies throughotite phonon entropy evolves to its local minimum value,
their subsequent evolutio;(t) = S,(t). Hence we calculate which means that the phonons and ion are disentangled and
only the phonon entrop$,(t). We may express the phonon the phonons are in an almost pure state. This pure state is a
entropy in terms of the eigenvalués™(t) of the reduced Schralinger cat state according to the dynamical properties
phonon density operator, given by HGO), as of the JCM[20]. This demonstrates that Schlinger cat
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@ of the standing wavey= #/2, depicted in Fig. @), IT17(t)
' ' tends to zero aty, one-half of the revival time of ionic
0.4f 1 inversion. From Eq(39), we have
, 03 !
R, _ Vip(to)=[45)@1¢), (40)
0.1 ) that is, the phonons and ion are disentangled and their re-
o ) ' ) spective entropy achieves its local minimum value at this
0 0.5 1 15 2 time. At all other times, neithefI*(t) or I17(t) is zero.
®) x107° From Eq.(39), we see that the phonons and ion are always
» v T entangled, so that the values of their respective entropies no
NI w longer tend to zero. For a trapped ion away from the node of
. oak ] the standing wavey = 7/4, shown in Fig. 8), we see that at
R the early stage of the time evolution, the eigenvdllie(t)
0.2r T tends to zero. In this region, the phonons and ion are disen-
0.1}, 1 tangled, and the phonon entropy has its minimum value. In
0 . . . the collapse region howevdd * (t) andII (t) have almost
0 05 ime (Lecs) 15 2 the same value, i.ell*(t)=I1"(t)~0.5, so that the pho-

nons and ion are in an optimally entangled state, and the

FIG. 3. The time evolution of the eigenvaldg, (t) with the ~ Phonon entropy evolves to its maximum value. It is impor-

same parameters as in Fig. (8 The trapped ion is located at a tantto stress that, by using the properties of the entanglement
node, y=m/2 and 8=0 (b) The trapped ion is midway between between the phonons and the ion, one can obtain information

node and antinodey= /4 and =0 concerning the phonons by a measurement performed on the
ion. When the phonons and ion are in an optimally entangled

states in the motion of a trapped ion can be generated by tHéate, the quality of the information obtained about the pho-

phonon-ion interaction. Figure(t) shows the case in which nons from measurements of ionic properties is correspond-

the trapped ion is placed away from the node of the standin§9!y optimal. For example, full information on the quantum-
wave (y=/4). It is obvious that at very early stages of the mechanical state of the vibrational center-of-mass motion of

time evolution, the phonon entropy remains near its locaf '@Pped ion can be obtained from the dynamics of the ionic

minimum value, which shows that the phonons and ion artground state_of a Iong-hved_electromc transiti). .
disentangled. As the time goes on, the phonon entropy in. " conclusion, by performing a unitary transformation, we
creases 1o ité maximum value and,the honons and ion bh_ave transformed the Hamiltonian of a trapped ion situated at

' P . —any position in a standing wave field to that of the normal
come strongly entangled. A plateau persists for a long time

bef | ducti d lation beai f b aynes-Cummings model in the bare ionic basis, and we
efore a slow reduction, and oscillation begins after about 15,6 optained the general evolution operator of the trapped

s. Figure 2Zc) shows the early evolution of Fig.( on a g system. We have shown the existence of super-revivals
much expanded scale. The short-time revivals seen here a5 the ionic inversion if the trapped ion is not located at the
the “normal” JCM revivals, occurring al g=27n""%g. node of the standing wave. Since dissipation in traps is much
We may interpret the dynamical behavior of the phononsmaller than in cavities, it may be possible to experimentally
entropy in terms of the evolution of the state vector of theghserve the super-revivals of a trapped ion in a standing
trapped ion system. By using the eigenvalues and eigenstat@fve. We have also examined the properties of entanglement

of the reduced-density operators of phonons and ion, giveRetween the vibrational phonons and the trapped ion in terms
by egs.(20) and (24), we can write the evolution of the of quantum entropy.

ion-phonon system state vector [dsS]

[Wip(0) = VITT (D] g )@ ") + VH’(t)|¢;>®|</fF>(-39)
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