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Squeezing of electromagnetic field in a cavity by electrons in Trojan states
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The notion of the Trojan state of a Rydberg electron, introduced by |. Bialynicki-Birula, M. $tajiand J.
H. Eberly[Phys. Rev. Lett73, 1777(1994] is extended to the case of an electromagnetic field quantized in
a cavity. The shape of the electronic wave packet describing the Trojan state is practically the same as in the
previously studied externally driven system. The fluctuations of the quantized electromagnetic field around its
classical value exhibit strong squeezing. The emergence of Trojan states in the cylindrically symmetrical
system is attributed to spontaneous symmetry breaking.
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[. INTRODUCTION states, we consider a hydrogen atom in a microwave cavity.
In the presence of a cavity we can separate a finite number of
The possibility of creating stationary, nondispersive, lo-relevant degrees of freedom, whereas in free space we would
calized, wave packets describing a highly excited electron ifave to deal with a continuous spectrum which precludes the
a hydrogen atom strongly driven by circularly polarized mi- existence of localized stationary states of the system.
crowave radiation was predicted theoretically several years To allow for the rotational symmetry of the atom-field
ago[1], and confirmed in numerous publicatiof%-4] (for ~ system, we choose a cylindrical cavity. Its dimensions will
recent reviews of the subject, see Rédfs-7]). Such elec- be large enough to justify the dipole approximation in the
tronic states are called Trojan wave packets, in analogy teoupling of hydrogen atom with the lowest cavity modes.
the cloud of Trojan asteroid in the Sun-Jupiter system. The atom placed in the middle of cavity interacts only with
In all previous studies the microwave field was treated ad E;,, modes. For definithess we choose the tdegenerate
an external, classical wave. Dressing of an electron by suchlawest modes of this typenE=1) (labeled byX andY), for
wave of a suitably chosen intensity, and a frequency equal tavhich the mode functions have the forms
the Kepler frequency of the electron on the Rydberg orbit,
makes the Trojan wave packets highly stable. Their lifetime
is of the order of 1 sef8,9], which makes them an interest-
ing object of study for theoretical and perhaps even for prac-
tical reasons. N w2z
In the present paper a similar problem of nondispersive BX=— TcosTVLJl(xllr/R)sinw, (1b)
electronic wave packets is studied for an atom interacting
with a quantizedelectromagnetic field. Such an approach
allows for a fully dynamical treatment of an autonomous
atom-field system. It automatically includes a back reaction
of the atom on the electromagnetic field. Thus one can study
both the dynamics and the statistical properties of the elec- Nm 1wz
tromagnetic radiation. Our study fully confirms the existence BY= TCOST V, J1(X11rR)cose, (1d)
of Trojan states of the Rydberg electron in this new regime,
with almost exactly the same shape of the wave packet. The

back reaction of the electron on the electromagnetic fiela'vhereR andL are the radius and the length of the cavity, and

. is the first (the smallest solution of the equation

pushes the field frequency off resonance. The quantum flué:1 L . .
: o o dJ;(x)/dx=0. Thez axis is taken along the cylinder axis,
;[rl,]lgtlons of the electromagnetic field exhibit strong squeezand V., = (9lox.91dy). The frequency of the modes and the

effective wave vector are given as

mz
EX=iNw sinTeZXVLJl(xllr/R)sincp, (1a)

mz
E'=—iNow sinT-€X V, Jy(xur/R)cose, (10

Il. HYDROGEN ATOM IN A CAVITY c
w= =[x+ (7RIL)Z]V2 @)
Anticipating the role of highly populated, discrete modes R
of the microwave field in the formation of Trojan electronic
(wlc)?—(m/L)>. 3
*Email address: piokoch@cft.edu.pl The value of the normalization constaktwas obtained in

TEmail address: birula@cft.edu.pl Ref.[10],
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N X11 h 12 . length, and momentumiw, VA/mw, and VAmew. The
KR\ 27egl w(1—1X2)I2(x1p) | (49 Hamiltonian[Eq. (9)] in these units takes on the form
. . p2 ‘q P2+Q2
from the requirement that the energy per one photon in a Ho=%———9yr-P+ ,
mode is equal tdiw. 2 2

At the positionr,=(0,0L/2) of the center of the atom, where the dimensionless parametgrand y characterizing

the orthogonal field vector&* and EY point in x andy . ; .
directions, respectively, and are given by simple formulas: ;hrz strength of the Coulomb field and the atom-field coupling

—iNwxy, 2 1/2 112
EX(rA): Tex. (58 = € @ y= e_S i (11)
Ameghow \ h ' ho \mMo|
v . - inXll
Elra)=—r— & (5b) IIl. CLASSICAL SOLUTIONS

“ v We are interested in special solutions corresponding to

B (ra)=0, B'(ra)=0. (50 Trojan states in the external electromagnetic wave intro-

. L . duced in Ref[1]. Since these states describe electronic wave

The relevant part of the electric and magnetic field in thep,cyets rotating around the nucleus along circular orbits, we
cavity can be written in the form transform the Hamiltoniatd, to the frame rotating around

the z axis with the angular velocitf). The transformed

— X Xk A% Y Yx 4%
E=ElactETax+Eay+E7ay, ©3  Hamiltonian is
B=B*ayx+B**a}+B'a,+B"al, (6b) 02 T P24 02 L
H="———yr-P+ —k(M3+ME), (12
whereay anday are the dimensionless mode expansion am- 2 2

plitudes.
In the laboratory frame the dynamics of the atom-field
system is governed by the Hamiltonian

wherek=Q/w. Thez components of the angular momenta
of the electron and of the electromagnetic field an¢
=XPy—YPx ande:(QxPy—Qny). In this frame, the ro-
1 tational states will appear as stationary states of the Hamil-
—er-E(ra)+ ff (€0E?+ B uo)d°r, tonian. We would like to stress that the Hamiltonidrcan-
) not be identified with the energy because of the appearance
of the inertial forces in the rotating frame.
wherer=(x,y,z) is the position of the electron relative to ~ To emphasize the rotational symmetry of our problem, we
the center of the atom, . The HamiltoniarH, describes the introduce the following variables for the electromagnetic
mutual interaction of the atomic electron with the choserfield:
cavity modes. We can rewritel, using the amplitudeay
anday, or more conveniently, using their real combinations Qx—Py _ QxtPy

p2 e2

N om™ Zmeyr

Q+: ‘/2 ’ Q, ‘/i y (138)
—i =i
Py=—(ax—ax), Py=——(ay—ay), 8
x ﬁ(x ) Py ‘/Q(Y v (8a) 0,+P, p,-0Q,
P+: ‘/2 y P—: ‘/2 ] (13b)
1
QX=5(ax+a§‘<), Qy:%(aYHﬁ)* (8D corresponding to the left and right circular polarizations. In

terms of these variables the Hamiltonian takes on the form

where the dimensionless vectd?sandQ represent the elec- )

tric field and the magnetic induction: H— %_ g_ lz[x(P++ P )+y(Q_—0.)]
L P TIPS
L=5m —ecl-FPt —- : 1+« 1-«
2m - 4meof 2 + 5 (P24QY)+ —— (P2 +Q%)— kM2,
The field amplitudef is (14
_ Noxy (10) The kinetic part of the field Hamiltonian is made up of two
RV2 terms: corotating and counter-rotating. Linear stability analy-

sis shows that both parts are necessary for the existence of
We have found it convenient to use natural units for ourthe nontrivial equilibrium solution. From Hamiltoniaii2),
problem derived from the field frequency for the energy,we derive the evolution equations

013811-2
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X=pyt+ Ky, (158
y=py— KX, (15b)
z:pxa (15C)
Q. =(1+k)P,— yx/V2, (15d)
Q_=(1-k)P_—yx/V2, (150
. ax  y(Py+P_)
px__r_3 3 + Kkpy, (15f)
ay ¥(Q-—Qy)
STk, (150
Tz
b=, (ash
P.=—(1+x)Q.—yy/V2, (15i)
P_=—(1-k)Q_+yylV2. (15))

The time-independent solutions of these equations descri
the stationary states of our system. Equating the left-ha

side of Eqs(15]) to zero, we obtain

x8%=rycose, Yy®9=rqysing, Zz°9=0, (169

eq_
0=

—Krgsing, pgl=«krocose, p3*=0, (16b

eq:—yrosincp eq:—yl’osin(p

+ ’ 1 (16(:)
(k+1)v2 (k—=1)V2
roCOS — yroCOS
piqzu, pea_ _ Y10-D5¢ (160
(k+1)v2 (k—1)v2
In addition, Eqs(15f) and (159 give the equilibrium condi-
tion
9, ¥
rg T (17

This equilibrium condition can be used to express the equi-
librium radiusrg in terms of the frequency of the cavity

modew and the frequency of rotatiof},

2 -1/3
Y

ro(Q)=9" (Q/w)z—m :

(18

or, alternatively, to express the frequency of rotation in terms

of w andry. The equilibrium conditiorfEq. (17)] has two
solutions for(), denoted by~ (ro) andQ=(ro):

07 (rg)= —\1+8/r3+ J(1-T/rd)2+ 492, (198
0 Iy G/irg+V(1=T/rg v
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FIG. 1. Two branches of the frequency of rotati@r,). The
upper curve corresponds to the Trojan states, and the lower curve
corresponds to the anti-Trojan stateg;is measured in units of
360 (ag is the atom Bohr radiys

w
0%(ro)=— V1+3/r3— J(1-a/rd)?+ 492 (19b

Both solutions exist for all values of,. The solution
Q7 (ro)[Q7(ro)] gives the frequency that is always higher
(lower) than the cavity frequency (see Fig. 1L The higher
frequency(larger centrifugal forcerequires the electric field

to be directed toward the nucleus, whereas the lower fre-
tg.lency requires the field to point outward. The first case

NEorresponds to the Trojan states, and the second to the so-

called anti-Trojan states. In a previous studg,12, where

the electromagnetic field was treated as a given external
wave, the anti-Trojan states were found to be classically un-
stable. The classical stability obtained in the present study is
due to detuning from the exact resonance. Since the localiza-
tion of the electronic wave packet is much worse for the
anti-Trojan statesgclassically, the trajectories in the rotating
frame are spread almost evenly around the whole circle, cf.

-1

FIG. 2. A typical classical trajectory in the rotating frame near
the anti-Trojan equilibrium position. The motion extends almost
uniformly over the whole circle, but the electron spends a little
more time in the right half of the circle.
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Fig. 2), we will restrict ourselves to the Trojan states only. 2
Hence, in what follows, we shall only consider the solution
Q7 (rg). 1.75
Note, that foro=(Q (i.e., k=1), we have only a trivial
resultr %= p®9= P%9= Q%%= 0 which, in the classical model of 1.5 Unstable region
an atom, means that “the electron has fallen onto the
nucleus” and the electric field is zero. Thus, every nontrivial 1.25
solution requires the presence of a detuning#(()) be- .
tween the cavity frequency and the Kepler frequency. This 0 1

phenomenon is known as frequency pushing, and is a direct
consequence of the mutual atom-field interaction. This de-

tuning was absent in all previous approaches where the atom 0.75
was drivgn by an external wave. o 05 Stable region
Equation(15) have a continuum of time-independent so- :
lutions that can be labeled by and an anglep in the x-y
plane. In the laboratory frame these solutions describe a clas- 0.25
sical electron circulating around the nucleus at the distance 0.2 0 ‘R4 [cmo]‘ 6 0.8 !
ro. The orbit of the electron is confined to tkey plane. The
electron is dressed by the classical electromagnetic field FIG. 3. The boundary between the stable and unstable regions of
classical equilibriumy g is measured in units of 36@9 (a, is the
EV2 etrg atom Bohr radius

E=-—— m(sin @€+ CoSpe,), (20

deed, as we have seen in linearized evolution equations, the
which has a resonance dependence on the paramelte  motion in thez direction is purely harmonic. Thus the inter-
that the electric field changes its sign when the frequency oésting dynamics of the electron is found in the motion con-
rotation passes through the resonance. fined to thex-y plane, and in what follows we shall treat our
Next we expand the Hamiltonian around a time-problem as two dimensional.

independent solution, and investigate its linear stability. The Since our system is conservative, it has a well-defined
motion will be stable if all eigenfrequencies are real. TheenergyH, . We have calculated its valug(«) for all solu-
characteristic equation for this problem has the form tions that in the rotating frame are determined by Eg§).

N2(N2— ) [NO— (44, +2) "IN+ {5— 3/5q, + G2+ 472 This energy is given by the formula

2.2 2
+(4+5/29,T)\2~[2+ 5/20, ~ 5G2+ G+ 82 E<K):m“’;°(")(( Y 5ke-3)-|, (22

K2—1)2
+14q, y*+ (2+7/20, + %12+ 8y*)T']} =0, (21)

where q,=G/rj and I'=\1-2q+q?+4+?. The first (\ 1.5
=0) frequency in our problem corresponds to the rotation of
the whole system, and it is a reflection of the rotational sym-
metry. The second frequenc) € \/q/rog) corresponds to the
motion in thez direction that(in the linear approximations
decoupled from the motion in they plane. The remaining 0.5
three frequencies correspond to the motion of the electron
coupled to the electromagnetic field. We shall not produce

the analytical expressions for these eigenfrequencies, but in 0
Fig. 3 we plot the region of stability in the-r plane.

The stability can also be studied numerically, and calcu-
lations of the classical trajectories fully confirm the stability -0.
of the equilibrium solution. In Fig. 4 we plot the projection
of a typical electron trajectory on they plane for the time
interval (1400,1500r), where T=1/w. The trajectory
started at the equilibrium positiarn=r(1,0,0), with the ini-
tial momentap=mawry(0.024+0.07,0.02). As we see, the x
electron follows a rather complicated, but bounded, trajec- 0.5 1 1.5 2 2.5 3
tory. Obviously, if we choos@(t=0) sufficiently large, the FIG. 4. Classical electron trajectory projected into thgplane;
electron will eventually leave the vicinity of the equilibrium x andy are measured in units of,. The trajectory started at time
point. In Fig. 5 we show the-p, cross section of the phase t=0 from equilibrium position(16), with the initial momentap
space for the same trajectory. This phase-space trajectoeymwry(0.02x+0.07,0.02), and is plotted for the time interval
resembles the trajectory of a simple harmonic oscillator. In{1400r,1500T).

=

o1
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0 ng sical parts represent equilibrium solutidi=gs. (16)] found
) in Sec. lll. In order to simplify the notation, we have not
attached any labels to the operators of quantum corrections
0.02 (r,p,Q,P). Next we expand the Hamiltonian around the
classical equilibrium solution, neglecting all terms higher
0,01 than quadratic in the quantum corrections. To proceed along
these lines, we have to choose one solution, labele@dyy
from the whole family of equilibrium solutions. Making this
0 choice, we break the rotational symmetry of the Hamil-
tonian.
-0.01 This mechanism of selection of a specific classical solu-
tion resembles spontaneous symmetry breaking. Spontane-
0 02 ous symmetry breaking is present in many branches of phys-
: ics. It explains the appearance of deformed nuclei, the
formation of magnetic domains in ferromagnetic materials,

03 5 003 z or the emergence of Higgs particles in the Glashow-

' ' Weinberg-Salam model of electroweak interactions. In all

FIG. 5. Classical motion of the electron projected into the phaséhese cases the symmetry is broken by the choice of a par-
spacez-p,;z is measured in units afy, andp, is measured in units  ticular ground state. In our case, however, we do not break
of mar,. The trajectory started at timte=0 from equilibrium po-  the symmetry by choosing a ground state but by choosing an
sition (16) with the initial momenta p=mwr, (0.02x  equilibrium state of the Hamiltonian that is very far from the
+0.07,0.02), and is plotted for the time interval (1400600T). ground state of the system.

. o ) o Once we have chosen somg, we can rotate the frame

and is plotted in Fig. 6 as a function &f The infinite growth  of reference, so that the direction given py is along thex

of the energy near the resonance=(1) expresses the phe- axjs. The quadratic Hamiltonian is
nomenon of the frequency pushing.

2
IV. QUANTUM EFFECTS Ho= 2 2 [x(P,+P_)4+y(Q_~0Q.)]

In order to study the quantum effects for the electron as

well as for the electromagnetic field, we will apply the pro-

K — K
cedure of the quantization around the classical solutions +T(P1+Qi)+ T(P2_+Q2_)—QK2X2
[Egs.(16)]. A similar quantization method was used before,
for example, in nonlinear optics to describe quantum fluctua- qr?y? qx?z?
tions around the classical solitons in fibdds3]. Here the t ot T k(Xpy = XPyY), (23

guantization will lead to a description of the electron in

terms of a quantum-mechanical wave packet orbiting along

the classical trajectory and, at the same time, will revealvhere the parametey; the ratio of the Coulomb force to the
quantum fluctuations of the electromagnetic field around itgentrifugal force,

classical value.

As a starting point we choose Hamiltoni&t), in which 2

) e ~
all variables are treated as operators and we express them as q= s — 3q 5, (24)
sums of their classical parts and the quantum corrections 4meomrpd®  rg

=r®r, p=p°H+p, Q=Q°%H+Q, andP=P*HP. The clas-
has been introduced to achieve the full correspondence with

Energy the notation used befolle,14] in the description of Trojan

states. Note that in this Hamiltonian the quadratic term

29 71 q«2x? enters with a negative coefficient. If it were not for the
rotational term, such a Hamiltonian would not have any

—29 72 stable points. In our case, however, the stability can be
achieved for a particular choice of g, and .

-29.73 We look for a fundamental solution of the Sctiager
equation with the Hamiltoniai in the form of a four-

-29.74 dimensional Gaussian function:

-29.75

y=Nexp —3X-A:X). (25
0.9998 1 1.0002
FIG. 6. The energ¥E(«) plotted in units offw. X=(x,y,Q.,Q.), and
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a;; lagy lagg iay
a1 Ay Az Ay
A=| . . (26)
la13 apz QAzz Az
a1y A3 Agzgs Am

Inserting this ansatz into the Schilinger equation, we obtain

ten algebraic, nonlinear equations for the paramedgrs

—2k%q—a3,+2ka,+ as,— 2yasgt as4 1+ k)

2
_2'}’a14+ a.l4(1_K):O, (27@
ap@gpt 08— Yapst A13803— Yaxst 814804
+ k(—agt+axta;zas—a14924) =0, (27b)
apjdy3t 83— Yagst Ayalzz— Yazst A14834
+ (@3t a13833~ A14834) =0, (279
Ap8y4t 10804~ Yagat Q13834 YAsst 814844
+ k(841 A15834— @14244) =0, (27d

k20— 2Kkay+ a5,— a5,— asy(1+ k) —a3,(1— k)=0,

(279
— Yy~ K83t 815813~ 8083 Apaflzz— Kap3a33
— &334+ Kap4834=0, (271)
Y~ Kyt a8 g 8oy~ Apazs— K383
— 48447 Ka24844= 0, (279

1+ k+ads—abs—ajf1+«x)—a3(1-«x)=0, (27h

Q13814— A8~ Az4((1+ K)agg— (— L1+ K)ag) = 0,(27_)
i

1-k+aj,—a3,—aj(1—k)—a3(1+«)=0. (27)

PHYSICAL REVIEW A 63 013811

TABLE I. Coefficients characterizing the fundamental state of
the atom-field system calculated up to the second order of pertur-
bation theory.

a;;=0.51160 a;,;=0.78164 a,,=0.062 70
ag=1 az=1.49<10"1? a,,=0.507 51
a;3="7.50x10"" a;,=4.50<10°8

a,=—5.33x10" 7 ay=—7.68x10"7

We analytically calculated the coefficients up to the sec-
ond order, but here we present the analytic formulas only in
zeroth order, and numerical values of the first- and second-
order corrections

(1+20)[4g—9q+8—8s(q)])|

a¥=« o7 ) , (283

2+q—2s

a<lg>=KqT(q), (28b)
1-q)[49—9q+8—8s(q)]| 2

ag?:,((( Q)49 9;1 (q)]) (289

wheres(q)=+1+q—2q,

a%=0, a=0, a=0, af=o,

(29)

ay=1, a%y=0, a%=1.

Thus, in zeroth order, the electronic part of the wave packet
is exactly the same as in the case of externally driven Trojan
wave packefl]. The electromagnetic part has the form of a
coherent(nonsqueezedstate.

Higher corrections are due to the mutual interaction be-
tween the field and the atom. Numerical values of the param-
etersa;; are calculated for the cavity parametérs-1 cm
and R=0.32cm, which givew=197 GHz and y=3.24
X107, The detuningx is chosen in such a way that the
value ofq is optimal,q=0.956 25. As shown in Ref1], the
wave packet is then maximally concentrated around the equi-
librium point, and its center is located B3=360(, (a, is
the atom Bohr radiys The expansion coefficients calculated
up to the second order are presented in Table I. In this order

We can easily solve these equations numerically, but first wi'e observe the effect of the back reaction of the electron on

want to find a perturbative solution. In order to do this we

write the coupling constant in the form="y\x—1. Obvi-

ously y=(1—q)(«x+1), and we will treaty as a small
parameter. Typical values of the parameters ate
=1.000000 1 and=0.956 25 which givey=0.06. One can
ask why we can not treay (or even simplerk—1) as a

the electromagnetic field. However, the coefficients,
a,,, anda,,, characterizing the shape of the electronic wave
packet, are the same as in zeroth order within the assumed
accuracy.

In Table Il we present the results of a direct numerical
solution of our set of equations. As we see, almost all the

perturbation parar_n_eter. However, if We_ do 59’ we face a TABLE Il. Coefficients characterizing the fundamental state of
problem: the coefficients of the perturbation series are growg,e atom-field system calculated numerically.

ing, since they behave as\l{—1. When we tend withx

—1 to zero we hit exactly the resonance point, and the pera,,;=0.511 60
turbation expansion becomes meaningless. On the other,—1

hand, wheny is chosen as an expansion parameter, all largg, .= 7.50x 107
contributions to the coefficients in the perturbation expansion, - — 5 33x 107

aj=aiy +ya+y%af)+- cancel out.

a;,=0.78164
as,=1.40<10 12
a;,=4.668x10 ©
—1.34x10°6

a22: 0.06270
a4,=0.005 32

A=

013811-6
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TABLE lll. Correlations of positions and momenta for the elec-
tronic variables calculated in the fundamental state of the atom-field
system. The position variables are measured in units of the electron
orbit radiusry, and the momenta are measured in the corresponding
unit mQr.

(xxy=0.01595 (Xpy+pyx)=0
(yy)=0.13014 (ypytpyy)=0
{pxPy)=0.083 69 (Xpy+pyx)=—0.024 93
(pypy)=0.01026 (ypy+pyy)=—0.203 45
(xy)=0 (Pxpy)=0

coefficients were already obtained correctly in the second
order of perturbation theory. Onby,, differs from the exact
numerical solution. This can be attributed to the very slowly
convergent perturbation series for this particular coefficient.
The coefficientsa s, ass, a4, anda,,, describing the mix- _ FIG. 7. TheQ+_fP+ cross section _of the Wigner function. In_
ing of the atomic part of the wave packet with the field part,thls_ (cpunter-rotatlng mode the fluctuations of the electromagnetic
are not zero. Moreover, the electromagnetic field is strongly@diation are not squeezed.
affected by the interaction with the atom; the coefficiapt
is significantly different from its value in zeroth order. Upon substituting the values taken from Table IlI, we find an
The four-dimensional Gaussian wave packet. (25],  almost exact saturation of these relations.
with the coefficients;; calculated numerically, describes the  Now we turn to a description of quantum correlations for
fundamental state of the mutually interacting atom-field systhe electromagnetic field in our fundamental state of the
tem. Owing to its Gaussian form, this state saturates the muktom-field system. The second moments for the field vari-
tidimensional generalized uncertainty relations for the comaples are given in Table V. These values of the correlations
plete atom-field systertsee Ref[15]). The smallness of the imply an almost complete decoupling between the corotating
coefficientsa, 3, a,3, @14, anda,, expresses the fact that the and counter-rotating modes, so that the uncertainty is almost
field and the atom are only very weakly correlated in thissaturated separately for each mode. The state of the field in
state. As a result of this, the saturation of the uncertaintythe counter-rotating mode is a coherent state, but the state in
relations is almost exact, separately for both parts of thehe corotating mode is highly squeezed; the ratio of the cor-
wave function. The average values of second moments thelation for the two quadrature®_ and P_ is about 3.5
electronic variables calculated with the numerical values ofx 10*. However, the fluctuations of the field are still small as
the coefficients taken from Table Il are given in Table lIl. compared to the field value®=1.5x 10°. The plots of the
This table exhibits the existence of correlations between thWigner function in Figs. 7 and 8 illustrate the difference in
variables in thex andy directions. This requires the use of guantum fluctuations between the counter-rotating and coro-
generalized uncertainty relations for a two-dimensional SYStating modes.
tem in the form(cf. Ref.[15])

(X (PPr) + (XY)(PaBy) ~ 3 (XPut P2+ (XPy + P

hZ
X(PY+YPa))= 7 (30)

1
(YY) (pyPy) +(XYX(Pxpy) = 7 ((YPy+ Pyy) 2+ (Y Pt Py
ﬁZ
x(pyx+xpy>)> R (31

TABLE V. Correlations of the electromagnetic field variables
calculated in the fundamental state of the atom-field system.

<Q+Q+>:0-5 <(Q+P++P+Q+)>:O

(Q_Q_)=94.059 00 ((Q_P_+P_Q_))=0

(P,P,)=0.5 {((Q4P_+P_Q,))=0 FIG. 8. TheQ_—P_ cross section of the Wigner function. In
(P_P_)=0.002657 {((Q_P,+P,Q.))=0 this (corotating modgthe fluctuations of the electromagnetic radia-
(Q,Q_)=9.38113101° (P.P_)=4.1213x10 12 tion are strongly squeezed. Note the change of the scale, as com-

pared to Fig. 7.
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V. DISCUSSION electromagnetic field around its classical value. The field
fluctuations turn out to be significantly different for the two

We have shown that the dynamical treatment of the rel'r’nodes: for the counter-rotating mode the fluctuations are as

evant modes of the electromagnetic field gnables one to.rq-r the vacuum state, whereas for the corotating mode they
produce exactly the properties of the Trojan states studie xhibit strong squeez7ing

reviously in the presen f a given, external wave. How- . : .
previousty € presence of a given, exiermal wave. Ho The choice of one particular solution from the class of

ever, there appear features totally absent from previous Stu%'quivalent classical solutions spontaneously breaks the rota-

ies, to our knowledge. First, the back reaction of the eIectror,Ei nal symmetry of the initial Hamiltonian, The method of

on the electromagnetic field causes a detuning from the exa Y . .
9 9 E antization around the classical solution used here can also

[ﬁ:ogri?_?r%g i astizglt,tr:r;te bsé?ct))r”elt%/vreergeﬁgu?%wtslzg i?;sesrl_e applied to a similar problem of electronic Trojan states in
) ’ a polar moleculd13]. In this case, the role of the electro-

cally unstable. Second, our analysis shows that, to aCh'eVrenagnetic field is played by the rotating molecular dipole.

the equilibrium state Of the mutually Interacting a_tom—fleld The application of our method would require a dynamical
system, we must t_ake Ito account bOt.h polanzgtlon .mOdeﬁeatment of the relevant molecular degrees of freedom
of the field: corotating and counter-rotating. The inclusion of '

only the corotating mode, as proposed in Réf0], is not
sufficient to a_chle_zve an equilibrium state. _ _ ACKNOWLEDGMENTS
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