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Squeezing of electromagnetic field in a cavity by electrons in Trojan states

Piotr Kochan´ski,1,2,* Zofia Bialynicka-Birula,2,3 and Iwo Bialynicki-Birula1,2,4,†

1Center for Theoretical Physics, Aleja Lotniko´w 32/46, 02-668 Warsaw, Poland
2College of Science, Aleja Lotniko´w 32/46, 02-668 Warsaw, Poland
3Institute of Physics, Aleja Lotniko´w 32/46, 02-668 Warsaw, Poland

4Institute of Theoretical Physics, Warsaw University, 00-681 Warsaw, Poland
~Received 12 July 2000; published 12 December 2000!

The notion of the Trojan state of a Rydberg electron, introduced by I. Bialynicki-Birula, M. Kalin´ski, and J.
H. Eberly @Phys. Rev. Lett.73, 1777~1994!# is extended to the case of an electromagnetic field quantized in
a cavity. The shape of the electronic wave packet describing the Trojan state is practically the same as in the
previously studied externally driven system. The fluctuations of the quantized electromagnetic field around its
classical value exhibit strong squeezing. The emergence of Trojan states in the cylindrically symmetrical
system is attributed to spontaneous symmetry breaking.
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I. INTRODUCTION

The possibility of creating stationary, nondispersive,
calized, wave packets describing a highly excited electro
a hydrogen atom strongly driven by circularly polarized m
crowave radiation was predicted theoretically several ye
ago @1#, and confirmed in numerous publications@2–4# ~for
recent reviews of the subject, see Refs.@5–7#!. Such elec-
tronic states are called Trojan wave packets, in analog
the cloud of Trojan asteroid in the Sun-Jupiter system.

In all previous studies the microwave field was treated
an external, classical wave. Dressing of an electron by su
wave of a suitably chosen intensity, and a frequency equa
the Kepler frequency of the electron on the Rydberg or
makes the Trojan wave packets highly stable. Their lifeti
is of the order of 1 sec@8,9#, which makes them an interes
ing object of study for theoretical and perhaps even for pr
tical reasons.

In the present paper a similar problem of nondispers
electronic wave packets is studied for an atom interac
with a quantizedelectromagnetic field. Such an approa
allows for a fully dynamical treatment of an autonomo
atom-field system. It automatically includes a back react
of the atom on the electromagnetic field. Thus one can st
both the dynamics and the statistical properties of the e
tromagnetic radiation. Our study fully confirms the existen
of Trojan states of the Rydberg electron in this new regim
with almost exactly the same shape of the wave packet.
back reaction of the electron on the electromagnetic fi
pushes the field frequency off resonance. The quantum fl
tuations of the electromagnetic field exhibit strong sque
ing.

II. HYDROGEN ATOM IN A CAVITY

Anticipating the role of highly populated, discrete mod
of the microwave field in the formation of Trojan electron
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states, we consider a hydrogen atom in a microwave cav
In the presence of a cavity we can separate a finite numbe
relevant degrees of freedom, whereas in free space we w
have to deal with a continuous spectrum which precludes
existence of localized stationary states of the system.

To allow for the rotational symmetry of the atom-fie
system, we choose a cylindrical cavity. Its dimensions w
be large enough to justify the dipole approximation in t
coupling of hydrogen atom with the lowest cavity mode
The atom placed in the middle of cavity interacts only w
TE1n modes. For definitness we choose the two~degenerate!
lowest modes of this type (n51) ~labeled byX andY!, for
which the mode functions have the forms

EX5 iNv sin
pz

L
ez3“'J1~x11r /R!sinw, ~1a!

BX52
Np

L
cos

pz

L
“'J1~x11r /R!sinw, ~1b!

EY52 iNv sin
pz

L
ez3“'J1~x11r /R!cosw, ~1c!

BY5
Np

L
cos

pz

L
¹'J1~x11r /R!cosw, ~1d!

whereR andL are the radius and the length of the cavity, a
x11 is the first ~the smallest! solution of the equation
dJ1(x)/dx50. The z axis is taken along the cylinder axis
and“'5(]/]x,]/]y). The frequency of the modes and th
effective wave vector are given as

v5
c

R
@x11

2 1~pR/L !2#1/2, ~2!

k5A~v/c!22~p/L !2. ~3!

The value of the normalization constantN was obtained in
Ref. @10#,
©2000 The American Physical Society11-1
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N5
x11

k2R2 S \

2pe0Lv~121/x11
2 !J1

2~x11!
D 1/2

, ~4!

from the requirement that the energy per one photon i
mode is equal to\v.

At the positionrA5(0,0,L/2) of the center of the atom
the orthogonal field vectorsEX and EY point in x and y
directions, respectively, and are given by simple formula

EX~rA!5
2 iNvx11

2R
ex , ~5a!

EY~rA!5
2 iNvx11

2R
ey , ~5b!

BX~rA!50, BY~rA!50. ~5c!

The relevant part of the electric and magnetic field in
cavity can be written in the form

E5EXaX1EX* aX* 1EYaY1EY* aY* , ~6a!

B5BXaX1BX* aX* 1BYaY1BY* aY* , ~6b!

whereaX andaY are the dimensionless mode expansion a
plitudes.

In the laboratory frame the dynamics of the atom-fie
system is governed by the Hamiltonian

HL5
p2

2m
2

e2

4pe0r
2er•E~rA!1

1

2 E ~e0E21B2/m0!d3r ,

~7!

where r5(x,y,z) is the position of the electron relative t
the center of the atomrA . The HamiltonianHL describes the
mutual interaction of the atomic electron with the chos
cavity modes. We can rewriteHL using the amplitudesaX
andaY , or more conveniently, using their real combinatio

Px5
2 i

&
~aX2aX* !, Py5

2 i

&
~aY2aY* !, ~8a!

Qx5
1

&
~aX1aX* !, Qy5

1

&
~aY1aY* !, ~8b!

where the dimensionless vectorsP andQ represent the elec
tric field and the magnetic induction:

HL5
p2

2m
2

e2

4pe0r
2eEr•P1

\v

2
~P21Q2!. ~9!

The field amplitudeE is

E5
Nvx11

R&
. ~10!

We have found it convenient to use natural units for o
problem derived from the field frequency for the energ
01381
a

e

-

n

r
,

length, and momentum:\v, A\/mv, and A\mv. The
Hamiltonian@Eq. ~9!# in these units takes on the form

HL5
p2

2
2

q̃

r
2gr•P1

P21Q2

2
,

where the dimensionless parametersq̃ and g characterizing
the strength of the Coulomb field and the atom-field coupl
are

q̃5
e2

4pe0\v S mv

\ D 1/2

, g5
eE
\v S \

mv D 1/2

. ~11!

III. CLASSICAL SOLUTIONS

We are interested in special solutions corresponding
Trojan states in the external electromagnetic wave in
duced in Ref.@1#. Since these states describe electronic wa
packets rotating around the nucleus along circular orbits,
transform the HamiltonianHL to the frame rotating around
the z axis with the angular velocityV. The transformed
Hamiltonian is

H5
p2

2
2

q̃

r
2gr•P1

P21Q2

2
2k~Mz

A1Mz
F!, ~12!

wherek5V/v. The z components of the angular momen
of the electron and of the electromagnetic field areMz

A

5xpy2ypx andMz
F5(QxPy2QyPx). In this frame, the ro-

tational states will appear as stationary states of the Ha
tonian. We would like to stress that the HamiltonianH can-
not be identified with the energy because of the appeara
of the inertial forces in the rotating frame.

To emphasize the rotational symmetry of our problem,
introduce the following variables for the electromagne
field:

Q15
Qx2Py

&
, Q25

Qx1Py

&
, ~13a!

P15
Qy1Px

&
, P25

Px2Qy

&
, ~13b!

corresponding to the left and right circular polarizations.
terms of these variables the Hamiltonian takes on the fo

H5
p2

2
2

q̃

r
2

g

&
@x~P11P2!1y~Q22Q1!#

1
11k

2
~P1

2 1Q1
2 !1

12k

2
~P2

2 1Q2
2 !2kMz

A .

~14!

The kinetic part of the field Hamiltonian is made up of tw
terms: corotating and counter-rotating. Linear stability ana
sis shows that both parts are necessary for the existenc
the nontrivial equilibrium solution. From Hamiltonian~12!,
we derive the evolution equations
1-2
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ẋ5px1ky, ~15a!

ẏ5py2kx, ~15b!

ż5px , ~15c!

Q̇15~11k!P12gx/&, ~15d!

Q̇25~12k!P22gx/&, ~15e!

ṗx52
q̃x

r 3
1

g~P11P2!

&
1kpy , ~15f!

ṗy52
q̃y

r 3 1
g~Q22Q1!

&
2kpx , ~15g!

ṗz52
q̃z

r 3 , ~15h!

Ṗ152~11k!Q12gy/&, ~15i!

Ṗ252~12k!Q21gy/&. ~15j!

The time-independent solutions of these equations desc
the stationary states of our system. Equating the left-h
side of Eqs.~15#! to zero, we obtain

xeq5r 0 cosw, yeq5r 0 sinw, zeq50, ~16a!

px
eq52kr 0 sinw, pg

eq5kr 0 cosw, pz
eq50, ~16b!

Q1
eq5

2gr 0 sinw

~k11!&
, Q2

eq5
2gr 0 sinw

~k21!&
, ~16c!

P1
eq5

gr 0 cosw

~k11!&
, P2

eq5
2gr 0 cosw

~k21!&
. ~16d!

In addition, Eqs.~15f! and~15g! give the equilibrium condi-
tion

q̃

r 0
3 5k22

g2

k221
. ~17!

This equilibrium condition can be used to express the eq
librium radius r 0 in terms of the frequency of the cavit
modev and the frequency of rotationV,

r 0~V!5q̃1/3S ~V/v!22
g2

~V/v!221D 21/3

, ~18!

or, alternatively, to express the frequency of rotation in ter
of v and r 0 . The equilibrium condition@Eq. ~17!# has two
solutions forV, denoted byV.(r 0) andV,(r 0):

V.~r 0!5
v

&
A11q̃/r 0

31A~12q̃/r 0
3!214g2, ~19a!
01381
be
d
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V,~r 0!5
v

&
A11q̃/r 0

32A~12q̃/r 0
3!214g2. ~19b!

Both solutions exist for all values ofr 0 . The solution
V.(r 0)@V.(r 0)# gives the frequency that is always high
~lower! than the cavity frequencyv ~see Fig. 1!. The higher
frequency~larger centrifugal force! requires the electric field
to be directed toward the nucleus, whereas the lower
quency requires the field to point outward. The first ca
corresponds to the Trojan states, and the second to the
called anti-Trojan states. In a previous study@11,12#, where
the electromagnetic field was treated as a given exte
wave, the anti-Trojan states were found to be classically
stable. The classical stability obtained in the present stud
due to detuning from the exact resonance. Since the loca
tion of the electronic wave packet is much worse for t
anti-Trojan states~classically, the trajectories in the rotatin
frame are spread almost evenly around the whole circle,

FIG. 2. A typical classical trajectory in the rotating frame ne
the anti-Trojan equilibrium position. The motion extends almo
uniformly over the whole circle, but the electron spends a lit
more time in the right half of the circle.

FIG. 1. Two branches of the frequency of rotationV(r 0). The
upper curve corresponds to the Trojan states, and the lower c
corresponds to the anti-Trojan states;r 0 is measured in units of
3600a0 (a0 is the atom Bohr radius!.
1-3
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PIOTR KOCHAŃSKI et al. PHYSICAL REVIEW A 63 013811
Fig. 2!, we will restrict ourselves to the Trojan states on
Hence, in what follows, we shall only consider the soluti
V.(r 0).

Note, that forv5V ~i.e., k51), we have only a trivial
resultreq5peq5Peq5Qeq50 which, in the classical model o
an atom, means that ‘‘the electron has fallen onto
nucleus’’ and the electric field is zero. Thus, every nontriv
solution requires the presence of a detuning (vÞV) be-
tween the cavity frequency and the Kepler frequency. T
phenomenon is known as frequency pushing, and is a d
consequence of the mutual atom-field interaction. This
tuning was absent in all previous approaches where the a
was driven by an external wave.

Equation~15! have a continuum of time-independent s
lutions that can be labeled byr 0 and an anglew in the x-y
plane. In the laboratory frame these solutions describe a c
sical electron circulating around the nucleus at the dista
r 0 . The orbit of the electron is confined to thex-y plane. The
electron is dressed by the classical electromagnetic field

E52
E&

k221

eEr 0

\v
~sinwey1coswex!, ~20!

which has a resonance dependence on the parameterk. Note
that the electric field changes its sign when the frequenc
rotation passes through the resonance.

Next we expand the Hamiltonian around a tim
independent solution, and investigate its linear stability. T
motion will be stable if all eigenfrequencies are real. T
characteristic equation for this problem has the form

l2~l22qr !@l62~41qr12!G#l41$523/5qr1qr
2/214g2

1~415/2qrG!l22@215/2qr25qr
21qr

318g2

114qrg
21~217/2qr1qr

2/218g2!G#%50, ~21!

where qr5q̃/r 0
3 and G5A122q1q214g2. The first (l

50) frequency in our problem corresponds to the rotation
the whole system, and it is a reflection of the rotational sy
metry. The second frequency (l5Aq̃/r 0

3) corresponds to the
motion in thez direction that~in the linear approximation! is
decoupled from the motion in thex-y plane. The remaining
three frequencies correspond to the motion of the elec
coupled to the electromagnetic field. We shall not produ
the analytical expressions for these eigenfrequencies, b
Fig. 3 we plot the region of stability in theR-r 0 plane.

The stability can also be studied numerically, and cal
lations of the classical trajectories fully confirm the stabil
of the equilibrium solution. In Fig. 4 we plot the projectio
of a typical electron trajectory on thex-y plane for the time
interval (1400T,1500T), where T51/v. The trajectory
started at the equilibrium positionr5r 0(1,0,0), with the ini-
tial momentap5mvr 0(0.02,k10.07,0.02). As we see, th
electron follows a rather complicated, but bounded, traj
tory. Obviously, if we choosep(t50) sufficiently large, the
electron will eventually leave the vicinity of the equilibrium
point. In Fig. 5 we show thez-pz cross section of the phas
space for the same trajectory. This phase-space trajec
resembles the trajectory of a simple harmonic oscillator.
01381
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deed, as we have seen in linearized evolution equations
motion in thez direction is purely harmonic. Thus the inte
esting dynamics of the electron is found in the motion co
fined to thex-y plane, and in what follows we shall treat ou
problem as two dimensional.

Since our system is conservative, it has a well-defin
energyHL . We have calculated its valueE(k) for all solu-
tions that in the rotating frame are determined by Eqs.~16!.
This energy is given by the formula

E~k!5
mv2r 0

2~k!

2 S g2

~k221!2 ~5k223!2k2D , ~22!

FIG. 4. Classical electron trajectory projected into thex-y plane;
x andy are measured in units ofr 0 . The trajectory started at time
t50 from equilibrium position~16!, with the initial momentap
5mvr 0(0.02,k10.07,0.02), and is plotted for the time interv
(1400T,1500T).

FIG. 3. The boundary between the stable and unstable region
classical equilibrium;r 0 is measured in units of 3600a0 (a0 is the
atom Bohr radius!.
1-4
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and is plotted in Fig. 6 as a function ofk. The infinite growth
of the energy near the resonance (k51) expresses the phe
nomenon of the frequency pushing.

IV. QUANTUM EFFECTS

In order to study the quantum effects for the electron
well as for the electromagnetic field, we will apply the pr
cedure of the quantization around the classical soluti
@Eqs.~16!#. A similar quantization method was used befo
for example, in nonlinear optics to describe quantum fluct
tions around the classical solitons in fibers@13#. Here the
quantization will lead to a description of the electron
terms of a quantum-mechanical wave packet orbiting al
the classical trajectory and, at the same time, will rev
quantum fluctuations of the electromagnetic field around
classical value.

As a starting point we choose Hamiltonian~14!, in which
all variables are treated as operators and we express the
sums of their classical parts and the quantum correctionr̂
5req1r , p̂5peq1p, Q̂5Qeq1Q, andP̂5Peq1P. The clas-

FIG. 5. Classical motion of the electron projected into the ph
spacez-pz ;z is measured in units ofr 0 , andpz is measured in units
of mvr 0 . The trajectory started at timet50 from equilibrium po-
sition ~16! with the initial momenta p5mvr 0 (0.02,k
10.07,0.02), and is plotted for the time interval (1400T,1500T).

FIG. 6. The energyE(k) plotted in units of\v.
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sical parts represent equilibrium solutions@Eqs. ~16!# found
in Sec. III. In order to simplify the notation, we have n
attached any labels to the operators of quantum correct
(r ,p,Q,P). Next we expand the Hamiltonian around th
classical equilibrium solution, neglecting all terms high
than quadratic in the quantum corrections. To proceed al
these lines, we have to choose one solution, labeled byw0 ,
from the whole family of equilibrium solutions. Making thi
choice, we break the rotational symmetry of the Ham
tonian.

This mechanism of selection of a specific classical so
tion resembles spontaneous symmetry breaking. Spont
ous symmetry breaking is present in many branches of ph
ics. It explains the appearance of deformed nuclei,
formation of magnetic domains in ferromagnetic materia
or the emergence of Higgs particles in the Glasho
Weinberg-Salam model of electroweak interactions. In
these cases the symmetry is broken by the choice of a
ticular ground state. In our case, however, we do not br
the symmetry by choosing a ground state but by choosing
equilibrium state of the Hamiltonian that is very far from th
ground state of the system.

Once we have chosen somew0 , we can rotate the frame
of reference, so that the direction given byw0 is along thex
axis. The quadratic Hamiltonian is

HQ5
p2

2
2

g

&
@x~P11P2!1y~Q22Q1!#

1
11k

2
~P1

2 1Q1
2 !1

12k

2
~P2

2 1Q2
2 !2qk2x2

1
qk2y2

2
1

qk2z2

2
2k~xpy2xpx!, ~23!

where the parameterq, the ratio of the Coulomb force to th
centrifugal force,

q5
e2

4pe0mr0
3V2 5

q̃

r 0
3k2 , ~24!

has been introduced to achieve the full correspondence
the notation used before@1,14# in the description of Trojan
states. Note that in this Hamiltonian the quadratic te
qk2x2 enters with a negative coefficient. If it were not for th
rotational term, such a Hamiltonian would not have a
stable points. In our case, however, the stability can
achieved for a particular choice ofg, q, andk.

We look for a fundamental solution of the Schro¨dinger
equation with the HamiltonianHQ in the form of a four-
dimensional Gaussian function:

c5N exp~2 1
2 X"A"X!. ~25!

X5(x,y,Q1 ,Q2), and

e

1-5
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A5S a11 ia12 ia13 ia14

ia12 a22 a23 a24

ia13 a23 a33 a34

ia14 a23 a34 a44

D . ~26!

Inserting this ansatz into the Schro¨dinger equation, we obtain
ten algebraic, nonlinear equations for the parametersai j :

22k2q2a11
2 12ka121a12

2 22ga131a13
2 ~11k!

22ga141a14
2 ~12k!50, ~27a!

a11a121a12a222ga231a13a232ga241a14a24

1k~2a111a221a13a232a14a24!50, ~27b!

a11a131a12a232ga331a13a332ga341a14a34

1k~a231a13a332a14a34!50, ~27c!

a11a141a12a242ga341a13a342ga441a14a44

1k~a241a13a342a14a44!50, ~27d!

k2q22ka121a12
2 2a22

2 2a23
2 ~11k!2a24

2 ~12k!50,
~27e!

2g2ka131a12a132a22a232a23a332ka23a33

2a24a341ka24a3450, ~27f!

g2ka141a12a142a22a242a23a342ka23a34

2a24a441ka24a4450, ~27g!

11k1a13
2 2a23

2 2a33
2 ~11k!2a34

2 ~12k!50, ~27h!

a13a142a23a242a34~~11k!a332~211k!a44!50,
~27i!

12k1a14
2 2a24

2 2a44
2 ~12k!2a34

2 ~11k!50. ~27j!

We can easily solve these equations numerically, but first
want to find a perturbative solution. In order to do this w
write the coupling constant in the formg5ḡAk21. Obvi-
ously ḡ5A(12q)(k11), and we will treatḡ as a small
parameter. Typical values of the parameters arek
51.000 000 1 andq50.956 25 which giveḡ50.06. One can
ask why we can not treatg ~or even simpler,k21) as a
perturbation parameter. However, if we do so, we fac
problem: the coefficients of the perturbation series are gr
ing, since they behave as 1/Ak21. When we tend withk
21 to zero we hit exactly the resonance point, and the p
turbation expansion becomes meaningless. On the o
hand, whenḡ is chosen as an expansion parameter, all la
contributions to the coefficients in the perturbation expans
ai j 5ai j

(0)1ḡai j
(1)1ḡ2ai j

(2)1¯ cancel out.
01381
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We analytically calculated the coefficients up to the s
ond order, but here we present the analytic formulas only
zeroth order, and numerical values of the first- and seco
order corrections

a11
~0!5kS ~112q!@4g29q1828s~q!#

9q2 D 1/2

, ~28a!

a12
~0!5k

21q22s~q!

3q
, ~28b!

a22
~0!5kS ~12q!@4q29q1828s~q!#

9q D 1/2

, ~28c!

wheres(q)5A11q22q,

a13
~0!50, a23

~0!50, a14
~0!50, a24

~0!50,
~29!

a33
~0!51, a34

~0!50, a44
~0!51.

Thus, in zeroth order, the electronic part of the wave pac
is exactly the same as in the case of externally driven Tro
wave packet@1#. The electromagnetic part has the form of
coherent~nonsqueezed! state.

Higher corrections are due to the mutual interaction
tween the field and the atom. Numerical values of the para
etersai j are calculated for the cavity parametersL51 cm
and R50.32 cm, which givev5197 GHz and g53.24
31027. The detuningk is chosen in such a way that th
value ofq is optimal,q50.956 25. As shown in Ref.@1#, the
wave packet is then maximally concentrated around the e
librium point, and its center is located atr 053600a0 (a0 is
the atom Bohr radius!. The expansion coefficients calculate
up to the second order are presented in Table I. In this o
we observe the effect of the back reaction of the electron
the electromagnetic field. However, the coefficientsa11,
a12, anda22, characterizing the shape of the electronic wa
packet, are the same as in zeroth order within the assu
accuracy.

In Table II we present the results of a direct numeric
solution of our set of equations. As we see, almost all

TABLE I. Coefficients characterizing the fundamental state
the atom-field system calculated up to the second order of pe
bation theory.

a1150.511 60 a1250.781 64 a2250.062 70
a3351 a3451.49310212 a4450.507 51
a1357.5031027 a1454.5031026

a23525.3331027 a24527.6831027

TABLE II. Coefficients characterizing the fundamental state
the atom-field system calculated numerically.

a1150.511 60 a1250.781 64 a2250.062 70
a3351 a3451.40310212 a4450.005 32
a1357.5031027 a1454.66831026

a23525.3331027 a24521.3431026
1-6
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coefficients were already obtained correctly in the sec
order of perturbation theory. Onlya44 differs from the exact
numerical solution. This can be attributed to the very slow
convergent perturbation series for this particular coefficie
The coefficientsa13, a23, a14, anda24, describing the mix-
ing of the atomic part of the wave packet with the field pa
are not zero. Moreover, the electromagnetic field is stron
affected by the interaction with the atom; the coefficienta44
is significantly different from its value in zeroth order.

The four-dimensional Gaussian wave packet@Eq. ~25!#,
with the coefficientsai j calculated numerically, describes th
fundamental state of the mutually interacting atom-field s
tem. Owing to its Gaussian form, this state saturates the m
tidimensional generalized uncertainty relations for the co
plete atom-field system~see Ref.@15#!. The smallness of the
coefficientsa13, a23, a14, anda24 expresses the fact that th
field and the atom are only very weakly correlated in t
state. As a result of this, the saturation of the uncerta
relations is almost exact, separately for both parts of
wave function. The average values of second moments
electronic variables calculated with the numerical values
the coefficients taken from Table II are given in Table I
This table exhibits the existence of correlations between
variables in thex and y directions. This requires the use o
generalized uncertainty relations for a two-dimensional s
tem in the form~cf. Ref. @15#!

^xx&^pxpx&1^xy&^pxpy&2
1

4
~^xpx1pxx&21^xpy1pyx&

3^pxy1ypx&!>
\2

4
, ~30!

^yy&^pypy&1^xy&^pxpy&2
1

4
~^ypy1pyy&21^ypx1pxy&

3^pyx1xpy&!>
\2

4
. ~31!

TABLE IV. Correlations of the electromagnetic field variable
calculated in the fundamental state of the atom-field system.

^Q1Q1&50.5 ^(Q1P11P1Q1)&50
^Q2Q2&594.059 00 ^(Q2P21P2Q2)&50
^P1P1&50.5 ^(Q1P21P2Q1)&50
^P2P2&50.002 657 ^(Q2P11P1Q2)&50
^Q1Q2&59.381 13310210 ^P1P2&54.121 31310212

TABLE III. Correlations of positions and momenta for the ele
tronic variables calculated in the fundamental state of the atom-
system. The position variables are measured in units of the elec
orbit radiusr 0 , and the momenta are measured in the correspon
unit mVr 0 .

^xx&50.015 95 ^xpx1pxx&50
^yy&50.130 14 ^ypy1pyy&50
^pxpx&50.083 69 ^xpy1pyx&520.024 93
^pypy&50.010 26 ^ypx1pxy&520.203 45
^xy&50 ^pxpy&50
01381
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Upon substituting the values taken from Table III, we find
almost exact saturation of these relations.

Now we turn to a description of quantum correlations f
the electromagnetic field in our fundamental state of
atom-field system. The second moments for the field v
ables are given in Table IV. These values of the correlati
imply an almost complete decoupling between the corota
and counter-rotating modes, so that the uncertainty is alm
saturated separately for each mode. The state of the fie
the counter-rotating mode is a coherent state, but the sta
the corotating mode is highly squeezed; the ratio of the c
relation for the two quadraturesQ2 and P2 is about 3.5
3104. However, the fluctuations of the field are still small
compared to the field valueP2

eq51.53106. The plots of the
Wigner function in Figs. 7 and 8 illustrate the difference
quantum fluctuations between the counter-rotating and c
tating modes.

FIG. 7. TheQ12P1 cross section of the Wigner function. I
this ~counter-rotating! mode the fluctuations of the electromagne
radiation are not squeezed.

FIG. 8. TheQ22P2 cross section of the Wigner function. I
this ~corotating mode! the fluctuations of the electromagnetic radi
tion are strongly squeezed. Note the change of the scale, as
pared to Fig. 7.
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V. DISCUSSION

We have shown that the dynamical treatment of the
evant modes of the electromagnetic field enables one to
produce exactly the properties of the Trojan states stud
previously in the presence of a given, external wave. Ho
ever, there appear features totally absent from previous s
ies, to our knowledge. First, the back reaction of the elect
on the electromagnetic field causes a detuning from the e
resonance. As a result, the stability region now also cov
the anti-Trojan states, that before were found to be cla
cally unstable. Second, our analysis shows that, to ach
the equilibrium state of the mutually interacting atom-fie
system, we must take into account both polarization mo
of the field: corotating and counter-rotating. The inclusion
only the corotating mode, as proposed in Ref.@10#, is not
sufficient to achieve an equilibrium state.

The quantization procedure adopted by us in this w
consists of quantizing the corrections to the classical s
tion. These quantum corrections describe the shape of
electronic wave packet and the quantum fluctuations of
.
s
la

.

ys
.

01381
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e-
d
-
d-
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electromagnetic field around its classical value. The fi
fluctuations turn out to be significantly different for the tw
modes: for the counter-rotating mode the fluctuations are
for the vacuum state, whereas for the corotating mode t
exhibit strong squeezing.

The choice of one particular solution from the class
equivalent classical solutions spontaneously breaks the r
tional symmetry of the initial Hamiltonian. The method o
quantization around the classical solution used here can
be applied to a similar problem of electronic Trojan states
a polar molecule@13#. In this case, the role of the electro
magnetic field is played by the rotating molecular dipo
The application of our method would require a dynamic
treatment of the relevant molecular degrees of freedom.

ACKNOWLEDGMENTS

We would like to thank Jan Mostowski for fruitful discus
sions, and we acknowledge the support from KBN Grant N
P03B0313.
p.

.

@1# I. Bialynicki-Birula, M. Kaliński, and J. H. Eberly, Phys. Rev
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