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Near-field optical potential for a neutral atom

K. Kobayashi and S. Sangu
ERATO Localized Photon Project, Japan Science and Technology Corporation, 687-1 Tsuruma, Machida, Tokyo 194-0004, Japan

H. Ito and M. Ohtsli
Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku,
Yokohama, Kanagawa 226-8502, Japan
(Received 19 April 2000; published 11 December 2000

We study an effective interaction potential between a neutral atom and a nanometric probe tip in optical
near-field systems. The wave-number dependence of the coupling coefficients of exciton polaritons is de-
scribed with the effective-mass approximation, where massive virtual photons are exchanged between the atom
and the probe tip. The near-field optical potential is shown as the sum of the Yukawa functions with several
kinds of effective masses or interaction ranges, and is characterized in terms of detuning for the resonance
energies of the atom and the probe tip. Consequently, we find that a potential minimum is produced for a blue
detuning case. This result indicates that an atom can be trapped in the near-field optical potential well.
Furthermore, we numerically investigate deflection and trapping of a single atom by means of optical near
fields generated from a nanometric probe tip. The dependence on the probe-tip size, the kinetic energy of the
cold atom, and the excitation energies of both probe tip and atom is clarified.
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[. INTRODUCTION known approach of describing atomic behavior in terms of
the optical potential, by which we can obtain a clear physical
Optical near-field techniques are considered promising agnage. This kind of treatment also allows us to quantitatively
enabling technologies for nanostructure fabrication with ardiscuss the interacting system. The near-field optical poten-
bitrary shapes and high spatial accuracy far beyond the diftial, however, has not been derived yet in a microscopic way.
fraction limit [1]. As a result of the development of a highly That is the chief reason why we try to microscopically derive
efficient probe tip for optical near-field systeifs-4], local  the potential.
excitation of a nanometric quantum dpt—6] and photo- Although the existing theories have predicted the possi-
chemical deposition of, for example, i 8] and ZnO[1]  bility of atom trapping, they have never included a micro-
on a sub-100-nm scale have become possible. The ultimatzopic and consistent discussion on the near-field optical po-
goal of such fabrication is to make atomic-scale crystakential since a nanometric probe tip has not been employed to
growth by manipulating individual atoms with optical meth- produce optical near fields. Let us take an example illustrat-
ods[2,9-11. In fact, an optical near-field probe tip with a ing this point clearly. An approach for atom trapping by
diameter of less than 10 nm has been developed and is egvanescent fields has been proposed; it employs two laser
pected to be used in atom manipulation experimg2fsMi- beams that propagate through totally internal reflection by a
croscopic or quantum-mechanical treatmft2—16 of the  flat prism[17], or by the wall of a microspherel8]. In this
interaction between such a nanometric probe tip and an atostheme, the blue-detuned beam has a larger incident angle
is essential for describing the atom manipulation with opticalthan the red-detuned beam, so that two different evanescent
near fields. In particular, it is important to consider the na-fields with two different penetration depths are produced in a
nometric tip and the atom as an interacting system throughacuum side. The fundamental idea is based on the potential
the coupling to a macroscopic bath system made up of incibalance due to the existence of these two fields. This kind of
dent photons, substrate, and/or fiber probe. It should be noteaeapping is usually explained with reference to flae-field
that the conventional theories in near-field optics, which deabptical potential[19] qualified by the dressed atom theory
with the tip and the atom independently, have been develr20], which is applied to a wide range of phenomena, from
oped in order to analyze scanning-microscope images witatom-photon interaction in general to laser cooligg]. The
macroscopiajuantities such as refractive indices. Thereforeoptical near field, however, is a highly mixed state with ma-
they are not suitable for formulatingicroscopicphenomena terial excitation rather than the propagating light field. This
associated with optical near-field techniques. viewpoint becomes more and more important as we consider
In this paper we concentrate on the theoretical derivatiora tiny generator of the optical near field, whose size is much
and evaluation of effective interaction potentials between &maller than the wavelength of light. It has therefore re-
neutral atom and a hanometric probe tip. We follow the well-mained an open question whether atomic behavior in near-
field optical systems can be adequately expressed by the op-
tical potential borrowed from the far-field theory.

*Electronic address: kkoba@ohtsu.jst.go.jp We develop a consistent theory appropriate for investigat-
TAlso at ERATO Localized Photon Project, Japan Science andng the near-field optical manipulation of an atom. The atom
Technology Corporation. is considered to interact with the nanometric probe tip via an
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elementary excitation mode of real photons and the macraaotes the interaction between the two subsystems. It is noted

scopic matter system. We discuss the possibility of trappinghat the HamiltonianH, (Hg) describes the states of the
a single atom, giving a numerical estimation of the near-fieldatom (the probe tip as an isolated quantum-mechanical sys-
optical potential. The paper is organized as follows. SectioRem. The suffixx distinguishes each eigenstate. Defining the

Il presents a formulation for the derivation of a near-field prgjection operator® andQ=1- P in the usual manner as
optical potential with the help of the projection-operator

method. Section Il clarifies the fundamental features of the |\II§\1)>: P|W,), |\If§\2)>:Q|\P)\>, (2a)
near-field optical potential. In Sec. IV a numerical analysis
of atom deflection and trapping is performed. Section V of- P2=P, PQ=QP=0, (2b)

fers some concluding remarks.

Il. FORMULATION [P:Ho]=[Q.Ho]=0. 29

It is reasonable to use classical electromagnetic theorie¥® divide the eigenstaté¥, ) into two groups|¥{") in P
for macroscopic descriptions of the behavior of light andspace and¥{?) in Q space. By using Eq¢2a—(20), Eq.
matter. However, when the size of the probe tip or aperturél) is then rewritten as a set of equations
becomes nanometric, that is, comparable to an atomic scale, R R R
there is no guarantee that we can use classical theories to  (Ey—Ho)P|W{?)=PVP|¥TM)+PVQ|T(?), (33
correctly formulate optical near-field problems such as inter-
actions between atoms or nanometric samples and the probe (g, — Ho) QW) =QVP|¥M)+QVQ|¥(?). (3b)
tip. We therefore try to study the problems within a quantum
theoretical framework, paying special attention to the hierarfrom the above equation E(b), it is possible to formally
chical structure of optical near-field systefids16]. Our for- expresi}|\1’§\2)> by P|\[r§\1)> as
mulation is general, but hereafter we focus on an effective

interaction between a probe tip and a neutral atom. On the Q|\P§\2)>:(E)\_HO_QV)_IQ{/P|‘P§\1)>

basis of the projection-operator method, the effective inter-

action can be exactly expressed by using a small number of :j(Ex—Ho)_lQVP|‘I’§1)>, (4a)
bases after renormalizing the effects of the other degrees of

freedom[see Eqs(7a and(7b)]. The renormalizing effects J=[1—(E,—Fy) Q¥ ? (4b)

may include cavity quantum-electrodynant@ED) effects,
energy shift and mixing of the ground and higher-level state
of the atom, and the probe tip. It is noted that the nanometri
probe tip has discrete energy levels. If we employ static or
steady states as the bases, the effective interaction corre- _ A (1)
sponds to an effective potential for the relevant system from W)= (P+ Q)W) =JP[¥)T). ®
guantum-field theoretical consideration. The potential pictures
is very appropriate for investigating atomic behavior, andW
will be adopted in the following discussion.

In order to derive an effective potentiLy(r), wherer is v )sz(PfJTf]P)‘l’ZPIf(l)). ©6)
the atom’s position measured from an arbitrary poiﬁg)( : .
inside a probe tip, we divide an optical near-field system intoysing the projection operators, we can thus consistently treat

two subsystems(i) incident propagating light consisting of the interaction as follow§l,16]:
real photons that interact with a macroscopic matter system,

typically a prism in the collection mode or a fiber probe in <q,#|\“/|q,x>:<\p£})|geﬁ|q,§1)>’ (78)
the illumination mod€g 2], and (ii) a nanometric probe tip
and an atom. Figure 1 illustrates the division considered
here. These two subsystems interact with each other, and
consequently produce the interaction between the probe tip ) A
and the atom in the subsystdii). The interaction originates Where the bare interactiov operates on exact statek) of
from the exchange of virtual exciton polaritons, as we will the total system, whilé/« operates on a small number of
see in the following. states| ¥ (1)) of the subsystenii).

The starting point is that the eigenvalues and eigenstates In order to proceed further in evaluating Ed@a), we need

of the total HamiltoniarH for the optical near-field system explicit forms ofV andJ as well asP. First the interactiotV

2nd the eigenstatd¥’, ) for the total Hamiltonian can then
e expressed in terms of the eigenstateB Bpace as

ince both of the states satisfy the normalization condition,
e can rewrite this as

Vo= (PITIP) YA PIVIP)(PITIP) "2 (7b)

are written asE, and|V,), respectively; that is, between the two subsystems is described by the multipolar
A o QED Hamiltonian 22]. We employ, for simplicity, its dipole
H|W\)=(Ho+ V)| ¥, )=E,\|¥)), (1) approximation as

where H, consists of the Hamiltonianbl,,, for the sub-

PR . V=— 0(z)n. DT , 8
system(i) andH+Hg for the subsystentii), while V de- Ea: (Z) - D) ®
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where 6(z) and u(r) are the step function and the dipole
operator, respectively. The displacement field operator is de-

noted asl5(F), and is given by the conjugate momentum

operatorf[(F) of the vector potential operat&(F). Then it

is necessary to find out an explicit form of the operatsinat
can be handled. Noting that the stétdﬂ’ﬁ”) satisfies the
following equation:

(Ex—Ho)P| ¥y =pPVIP|w), 9)

with the help of Eqs(3a) and(4a we can then write down
the equation to be solved as

Subsyst i Ao~ PN ~ ~ ~n A An
ubsystem () [3,A0]P=(E—F)IP-J(E-Fy)P=V3P—IPViP,

(a) (10)

where we used Eqgl), (5), and(9). If we expand the op-

4 A eratorJ as
Virtual . "
exciton-poraliton o o ~

J= M3M=p4+ (M3, 11

_____ - 29 29 (11
) ) we have the following perturbative solutions in the order of

V:
JO=p, JW=Q(EP-EQ) VP, ..., (12)
Atom Probe ti

(b) B where Eg and E% are the eigenvalues of the unperturbed

HamiltonianI:IO in P andQ space, respectively. Finally let us
comment on the selection of a small number of bases in the
P space, or construction of the projection operdoiSince

we are mainly interested in the interaction potential between
the atom and the probe tip, it is preferable to choose the
bases so that the degrees of freedom of the subsystare
eliminated. We assume, for simplicity, that eigenstates and

eigenenergies o, (a«=A or B) are known as|a),

> la*), ..., andE?, E?, ... . In addition, let the bath sys-
Bath tem, or the subsysteln), be a set of excitons, photons, and
© x their interactions, by assuming that the induced electric po-

larization in the macroscopic matter system is represented as
FIG. 1. Schematic illustration of how to divide a near-field op- excitons[23]. It is well known that such a system has char-
tical system. A nanometric probe tip and an atom, referred to asicteristic elementary excitation modes, that is, exciton-
subsystent(ii), are extracted from the total system, while the re- polariton modes, or so-called “dressed” states of photons
maining part is regarded as subsystéin These two subsystems and excitong24—26. These eigenstates and eigenenergies

interact with each other via an elementary excitation mode, ofare well determined. If we rewrite the photon operators in
exciton-polaritons as shown in wavy lines. As a result, the probe tipz - . . .
and the atom also interact by exchanging virtual exciton polaritonsP (1) [Ed. (8)] as exciton-polariton operators, we can obtain
Geometry of the model is also inserted. The vectorsand rg the bare interactioV in the exciton-polariton picture. Now
denote the center of the atom and the center of the tip sphere with!gt us choose a combination of the five stgies |A*), |B),
radius ofa, respectively. An arbitrary position inside the tip sphere |B*), and|0) as theP-space bases. Here the ground state of
is represented by, measured from the origin of the coordinates H ., including no exciton polaritons, is expressed @s
system, and’ measured from the center of the tip sphere, respec- By using Eqs(7a) and(12), the effective potential in the
tively. lowest orde{27] can be written as
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an S 4B K’ (K)K'* (k) ck 0%k —-0% 4
_ Y I f(k)= , 14b)
Verl ) (277)3;3 ; Jd Qk-0(a’) W= 0w evro-oraae 1

[BIRNVAE TP
+M _ (13)  Where the wave-number dependence @) characterizes a
QK +Q(a) typical interaction range of exciton polaritons coupled to the

] o subsystentii). Here thejth component of the dipole moment
Here the eigenenergy of the elementary excitation modes Qfng the unit polarization vector for photons are, respectively,

the subsystenti), that is, of the massive virtual photons, is desi - > - .
. o . esignated as:.e; and e,(k). The quantitiesc and E,
denoted a% () (k). The electronic excitation energies of the _ /2 stand for the speed of light and the electronic exci-

atom and the probe tip in the second subsystem are denot?_ . . .
- a . ion energy of the macroscopic matter in the subsysgtem
asE,=#{)(A) andEg=4{2(B) (a,a’=A or B). Note that On the basis of the dispersion relation of an exciton-

the center.-o.f-mas,s rpotlon qf the atom is not. consmf(iread her%‘olariton with effective massn, (E,= mpcz), we perform
The coefficientsK (k) and its complex conjugat,” (k)  the usual effective-mass approximation as follows:
represent the coupling strength of the elementary excitation

modes to the atom and the probe tip, and one can obtain the )

explicit form of K’ (K) to define the coupling coefficiefitk) (k= 7

as 2 2m,

(15

2
K (K)= 0(z 6.6 (K1 (k enZ.Fa, 14 Substituting this expression into Eq4.3), (143, and(14b
oK) x§=:1 () ale- eyl 1K) (143 we can rewrite the effective potentislL(r) as

4 hE ) 1 1
Veﬁ(r)=——'fLAMB pf dkk (k)e'k’ +
3i7r (fic)2 K2+ 2E(Eq+E)(AC) "2 K2+ 2Ep(Ep—En)(fiC) 2

1 1
+ +
k?+ 2E,(Ep+Eg)(fic) % k?*+2E,(E,—Eg)(fic) ™2

B ZMAMBEE J"”

= Smriio? dkkF(k)e'", (16)

—o0

where we average the summation o%eas 2/3, and define The four kinds of effective masses of the Yukawa function
F(k) as are denoted ad, , Ag , Ap , andAg , of which the first

two are heavier and thus have shorter interaction ranges.
Two constants\c andAc_, omitted in Eq.(183, mainly

give the periodic functions related to the property of the
macroscopic matter, not the Yukawa function related to the
C. C_ microscopic subsystem. Here, we use the following explicit
Al KerAl (17)  expression for the effective masses:

N _

A, A_

F(k)= -
(k) k2+A,§+ k2+A%

. B. B_
K2+ A§+ k?+A3

V2E,(En*Ep) A V2E (Ep*Ep)

Finally, as the sum of the Yukawa functions with several A, =

y B. y
kinds of masses, we obtain the following near-field optical he B he 19
potential: (19
5 £2 assuming a blue detuning cajse (k) >E,,>E, and Eg].
MaMB iti
V(1) = : p{A+Y(AA+r) ~A_Y(Ap T) Note 'Fhat the positive oneg\(, | andAB+) are k-ept for a red
3(%c) detuning cas€E,<#Q(k)<E, andEg]. The first and sec-
_ ond pairs of terms in Eq.17) come from the coupling be-
+ B+Y(AB+r) B_Y(Ag N} (189 tween the exciton polaritons and the subsyst@mwhile the
third pair of terms originates from the macroscopic matter.
Y(ur)= exp(— ur) (18b) The weight factors in Eq(18a), that is, the numerators of
- r ' each term in Eq(17), are functions oE,, Eg, Ej,, andE,.
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Depending on whether the weight factor is positive or nega- S 15F ' ' ‘ ' ' ' '
tive, it contributes to a repulsive or an attractive part of the 2
effective potentiaV ¢«(r). s 104
T 5¢
Ill. PROPERTIES OF THE NEAR-FIELD OPTICAL f’
POTENTIAL £
[J]
Let us examine the features of the effective potential de- 8
scribed by Eq(183. The potential is formally symmetric in
terms of AL andB.., and thus the discussion on one of the , , , , ,
pairs is applicable to the other, though they are not necessar- 6 8 10 12 14
ily the same in sign and magnitude. In the following, we will (a) rla
abbreviatéA.. or B.. to G.. unless otherwise stated. The sign
and magnitude ofG. depend on the detuning 6=E,, % 15¢
—Eg and E,,. We consider a case where the detuning is S 10t
large and the natural linewidth and saturation are negligible. 2
The difference betwee@, andG_ is written as 5 St
- 0
B 9(hd Ep| 7t £
G+—G,=G+ 1—§(E—m+%) , (20) §
10f
when A6 stays between 0 anH,, in blue detuning. This 5L
detuning dependence is qualitatively consistent with that of 0 12 14
the usual far-field optical potential in the large detuning limit (b) rla
[19,20. Spontaneous emission and radiation pressure are
also negligible in this limif28]. If G, is positive, that is, S 15F° ]
blue detuned, and if the detunirfgs is chosen so that the § 10
difference betwee , andG _ is positive, the total potential °
then becomes repulsive, because the repul8yeterm is ‘§ 5t ]
larger than the attractiv@ _ term. Note that the decay length =
of the repulsiveG ;. term is shorter than that of the attractive .g
G_ term. 2 ]
As an example, we assume a typical alkali-metal atom o ]
with Ep=1.6 eV, where infrared and/or visible excitations
of a macroscopic matter system and a probe tip are taken as s : o
E,=1-1.8 eVandkg=1.0-1.2 eV, respectively. Figure 2 10 12 14
represents several examples of the effective potentials. In © ria
Fig. 2@ we use E,=1.6 eV, Eg=1.2 eV, and Ep FIG. 2. Examples of the near-field optical potentials. An

=1.0 eV for a red-detuning case. Th&n, is negative for  atractive Yukawa potential in a red-detuning case. The resonance
red detuning and results in the attractive Yukawa potentialenergy of an atom is assumedBg=1.6 eV. The electronic exci-

The solid line shows the total potential, while the dotted andation energie€g=1.2 eV andE,,=1.0 eV are used for a probe
dashed lines represent the attractive potentials with light anflp and a macroscopic matter system, respectively. The solid line
heavy effective masses, respectively. In contrast to red deshows the total potential, while the dotted and dashed lines repre-
tuning, Fig. Zb) shows a blue-detuning case, where we em-=ent the attractive potentials with light and heavy masg®sAn

ploy E,=1.6 eV,Ez=1.0 eV, andE,,=1.8 eV. This set attractive Yukawa potential in a blue-detuning case. The excitation
of parameters leads to a repulsive potential forAheterm  energies of the probe tip and the macroscopic matter system are
and an attractive potential for tHg. term; the @, —A_) chosen a£g=1.0 eV andE,,=1.8 eV, respectively. The dotted,
term, in addition, is smaller than th&(—B_) term; as a dashed, and solid lines represent the repulsive, attractive, and total
result, the attractive Yukawa potential occurs, as similar tgPotentials, respectivelyc) A potential well in a blue-detuning case.
Fig. 2(a). If a value ofEg is carefully chosen, it is possible to The excitation energy of the probe tip is chosenEas=1.2 eV,
have a potential well for blue detuning. We show such arVhile the other conditions are the same agin

example in Fig. &), where excitation energy of the probe

tip is taken asEg=1.2 eV, while the other conditions are ~ We can simply explain the detuning dependence of the
the same as in Fig.(B). In this case, theA, —A_) term is  near-field optical potential discussed above, on the basis of
larger than the B, —B_) term, and thus the total potential the wave-number dependence of the coupling coefficient
forms a well as shown in the solid line. FiguredPand Zc)  f(K) in Eq.(14b). It follows from Fig. 3 thatf (k) is constant
show how the difference in the balance between the ( Wwhen K is larger than the lower cutofk.~2ymyQ/%
—A_) and B,—B_) terms affects the final potential =2y2EyE./(%C), while it is approximately proportional to
shapes. k belowk;. The solid and dashed lines represent two cases
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14F ' ' ' ' ] choose a smaller value thag=1.12 eV, the smallest
< 1.2} ] value in the shaded area, tBg. —B_ term becomes larger
:‘f 1.0 s than the A, —A_) term and the total potential results in an
5 attractive Yukawa potential as shown in FigbR Both Figs.
p 08 7 2 and 4 indicate that a near-field optical potential can have a
§ 0.6 minimum if we employ an appropriate detuning and material
2 0.4 of a probe tip for the relevant system.
S 02
o 0.0 . . . ] IV. NUMERICAL ANALYSIS

4 6 8 10 In the preceding sections we microscopically described
Wave number k the near-field optical potential as the sum of the Yukawa

FIG. 3. Wave-number dependence of the coupling coefficienlfunCtlons with several kinds of effective mas;es, and dis-
f(k). The horizontal and vertical axes are measured in units ofUSSed the fundamental features of the potential. As an ex-
\/KEplﬁc and \/Epw The solid and dotted lines represent two ample o_f the application of 'the near-field optlcal potent!al, let
cases of,=E,, andE,=2E,,, respectively. us consider two cases of single-atom manipulation using op-
tical near fields generated by a nanometric probe ({p:
atom deflection, where an atom is cooled down on the order
of millikelvins, and (2) atom trapping, where an atom is
further cooled down on the order of microkelvins. Our inten-
tion is to provide an experimental guideline as well as to
deepen the physical understanding of optical near fields and
related phenomena. The cases considered involve experi-
mentally unique techniques that will be essential for carrying
an atom to a desired point on a substrate with high spatial

of E,=E, andE,=2E,, respectively. The coefficieri(k)
in the case oE,=E,, is always smaller than the asymptotic
value, while in the case d&,=2E, it becomes larger than
the asymptotic value near the cutdff. Simple estimation
[29] yields k.~ 1/100 nm, which characterizes the interac-
tion range of the exciton polaritons or massive virtual pho-
tons coupled to the subsystefin). It also shows that the
coupling coefficientf (k) is almost constant for a large red- . S
detuning case and thus the Yukawa potential becomes attrageeuracy far beyond the'd|ffract|on “m't'. L
tive. For a blue-detuning case, the nonconstant term is not In order to takg the size of a prob_e-tlp sphere exphutly
negligible and contributes to the repulsive potential. Into account, we S|mply integratée(r) in Eq. (189 within

As mentioned above, we can control the polarities and thé‘he spherdvariable radiusa) as
interaction ranges of the Yukawa potentials, changing the
detuning and material properties. It is thus possible to find ()= 1 fv (|F —(F'+¥ )d3r!
the condition for forming a potential well due to the balance amadzl EMUA B
between the attractive and the repulsive potentials. Figure 4

illustrates such a condition. The solid curve shows how the wamsES iG;j

weight factor ofB_—B. depends on the excitation energy = hoya® | ot F{(l_l'aAGj)

Eg of a probe tip. The dashed line, which is independent of )

Eg, represents the weight factdr, — A_ when the detuning

and the resonance energies of both an atom and a macro- xXexp(—Agja)—(1—-alg)expAg;a)}Y(Agr) |,
scopic matter are fixed. The shaded area corresponds to the

condition that the repulsivA, —A_ term for blue detuning (21)

becomes larger than the attractBe —B_ term, that is, the

condition that the total potential has a minimum. If we redefining the argument of the potentialV asr=|F|=|FA

—FB|. Thus the total potentiaV(r) is expressed as a func-
tion of the distance between the center of the tip sphere and
the atomic center. Here we assume that the atom is pointlike
with discrete energy levels, while the Yukawa sources are
homogeneously distributed within the probe-tip spH&E.
The total potentiaV(r) is used in the following simulation
of atom deflection and trapping. As a test case, let us use a
8Rb atom withE,=1.59 eV andu,=7.5 debye. For the
effective mass of the exciton polaritoriép:mch:ﬁQ is
employed.

First we discuss Rb-atom deflection by the effective po-

Weight factor

0.0 0.5 1.0 1.5 , ) . ,
E. (eV) tential V(r). It is formulated as a potential scattering prob-
lem in the first Born approximation. As the velocity of the
FIG. 4. Weight factor dependence on the excitation energy of &tom decreases, the first Born approximation becomes in-
probe tip. If we take one of the excitation energigsin the shaded ~ valid. It is known, however, that the breakdown of the first
area, we can obtain a potential well as shown in Fig).2 Born approximation occurs when the incident velocity is

013806-6



NEAR-FIELD OPTICAL POTENTIAL FOR A NEUTRAL ATOM PHYSICAL REVIEW A63 013806

~10° < 2F7 ' 3

Ngww E’ 15¢ é E

g g’ 5 10_ ]
1 2 0

c € 5¢ / E

'%106 ~ o %

7] 8

% 104 "qc'; 5t Z 3

§ 17 5 -10f % 3

% 10° 19t é 3

9_’ -20L % L L L 3

£ 10° 10 15 20

e rla

—_—
[+
=

FIG. 6. Example of near-field optical potential f8¥Rb (reso-
nance energy of 1.59 eVrepresented by the solid line. The probe
tip is assumed to have a radius of 10 nm and an electronic excita-
tion energy of 1.51 eV. The probe tip and atom system is coupled
with a macroscopic matter system withy,=2.0 eV. Approximat-
ing it by a harmonic-oscillator potential around the minimum point,
vibrational levels with the labela=0, 1, and 2 are shown. The
shaded area shows the probe-tip size.

Next let us consider an example of a near-field optical
potential for atom trapping. Figure 6 shows a case for the
system of a®Rb atom with an excitation energg
o (deg) =1.59 eV and a probe tip with a radias=10 nm, a tran-

sition dipole momenjug=1.5 debye, and an excitation en-

FIG. 5. Differential scattering cross section 8Rb with an ~ ergy Eg=1.51 eV. They are coupled with a macroscopic
incident velocity of 1 m/s in the first Born approximation. The matter withE,,=2.0 eV. In order to determine the value of
near-field optical potential is generated by a probe tip with a radiug¢he excitation energ¥g, we perform a similar analysis de-
of 10-50 nm for(a) a red-detuning case ar(®) a blue-detuning veloped in Fig. 4 by means of the total potentflr). As a
case. Solid: a=10 nm; dashed: a=30 nm; and dotted: result, the smallest value of 1.51 eV is chosen from the pos-
a=50 nm. sible values giving a potential well in the case af

=10 nm. This condition would be satisfied if we choose, for
close to the sub-meter-per-second range or the kinetic energgxample, a 11l-V compound of AGa, _,As. It follows from
is in the submillikelvin rangg29]. Figure 5 represents the Fig. 6 that the potential has a minimum 20 neV, near the
differential scattering cross section, or angular distribution ofpositionr =2a from the probe-tip surface. Approximating it
8Rb with an incident velocity of 1 m/s, or 10 mK in terms of by a harmonic-oscillator potential around the minimum
temperature, as the radia®f the probe tip varies from 10 to point, we find that two or three vibrational levels can be
50 nm. The solid, dashed, and dotted lines show the resultsupported; the lowest vibrational energy with the lahel
for a=10 nm, a=30 nm, anda=50 nm, respectively. =0 corresponds to 3.1 neV, or equivalently 3&K. This
Figure Ja) is calculated with the red-detuned potential simi- result suggests the possibility of a single Rb-atom trapping at
lar to that in Fig. 2a), while Fig. 5b) is calculated with the this level.
blue-detuned potential similar to that in Figic The peri- It may be interesting to compare the depth of the above
odic structure seen in the figures results from the finite sizgotential well with the ones obtained for an atom and a mi-
of the probe tip. From the analytic expression it follows thatcrosphere system, where the radius of the sphere is much
the periodic length is inversely proportional to the tip size:larger than ours. The potential depth for a Rb atom semi-
the larger the tip size is, the shorter the period is. Both fig<classically calculated in Ref31] is the same order of mag-
ures show that a smaller probe tip can deflect the atom moneitude, or a little shallower, as our results. However, their
strongly, though an optimum size should be determined fronminimum position of the potential depends on the wave-
a discussion on the de Broglie wavelength of the atom. Théength used and is different from ours. This is because they
difference between Figs(& and §b) can be understood as use a microsphere with a dielectric constant of 6 and a radius
follows: In Fig. 5a), two components with the same signs of of about 1 um for visible light. The potential for a Cs atom
the effective potentiaV/(r) constructively contribute to the quantum-mechanically calculated with a n®n sphere
scattering amplitudefr sin@r)V(r)dr, whereq is the trans-  shows the similar tendengg2]. It follows that the nonreso-
ferred momentum. On the other hand, in Figp)5two com-  nant term neglected in Ref31], which is the optical near
ponents with opposite signs &f(r), the repulsive and at- field leading to the size-dependent effect, becomes important
tractive, are destructively summed up in the scatteringas a tip sphere becomes smaller. The effect of an ideally
amplitude. This reduces the deflection anglie Fig. 5(b) in conducting conical surface on an atom was also classically
comparison with those in Fig.(8). estimated 33], and an energy shift of the atom in the region

iy
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of interest seems to be a similar order of magnitude thoughvires produced on a glass substrate by photolithography and

the details of the parameters used are not known. subsequent electroplating2]. In addition to these methods,
atom deflection and trapping with a nanometric tip will
V. CONCLUSIONS greatly advance the manipulation techniques. In fact, we

have shown the possibilities of such atom deflection and

We have microscopically derived an effective interactiontrapping. These analyses also illustrate the usefulness of the
potential between a neutral atom and a nanometric probe timicroscopic theory developed in this paper. The probe-tip
in optical near-field systems. The near-field optical potentiakize and potential shape are quantitatively shown as key pa-
consists of the sum of the Yukawa functions with severarameters of atom deflection. The difference in the deflection
kinds of effective masses, which is attractive or repulsiveangles for the attractive and the repulsive potentials is ex-
depending on the detuning and material properties. This agplained by the Yukawa potentials with two kinds of effective
proach succeeds in quantitatively analyzing the probe-tipnasses. Besides, by choosing appropriate detuning and ma-
size and material dependence of the potential. It also can Werial properties, it is numerically shown that a potential well
applied to a variety of phenomena inherent to optical nearis generated to be suitable for Rb-atom trapping. It means
field techniques. that we can form a well in the near-field optical potential

Recent experiments in atom manipulation and nanostruawith single blue-detuned light, though the methods based on
ture fabrication[34] have made remarkable progress. Anthe existing far-field theories mentioned in Sec. | require
atomic mirror[35—37 and an atomic guide with a hollow both red- and blue-detuned laser beams. Moreover, we ex-
fiber and blue-detuned optical near fig¢88,39 have been pect that we can apply the near-field optical potential method
experimentally demonstrated. An atomic guide using magto atom depositiof43] and nanostructure fabrication. These
netic forces has been recently reporfd®,41]. A beam of  microscopic analyses will provide useful information for the
laser-cooled atoms was also guided by a pair of parallefuture experimental demonstration.
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