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Near-field optical potential for a neutral atom

K. Kobayashi* and S. Sangu
ERATO Localized Photon Project, Japan Science and Technology Corporation, 687-1 Tsuruma, Machida, Tokyo 194-0004, J

H. Ito and M. Ohtsu†

Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-k
Yokohama, Kanagawa 226-8502, Japan

~Received 19 April 2000; published 11 December 2000!

We study an effective interaction potential between a neutral atom and a nanometric probe tip in optical
near-field systems. The wave-number dependence of the coupling coefficients of exciton polaritons is de-
scribed with the effective-mass approximation, where massive virtual photons are exchanged between the atom
and the probe tip. The near-field optical potential is shown as the sum of the Yukawa functions with several
kinds of effective masses or interaction ranges, and is characterized in terms of detuning for the resonance
energies of the atom and the probe tip. Consequently, we find that a potential minimum is produced for a blue
detuning case. This result indicates that an atom can be trapped in the near-field optical potential well.
Furthermore, we numerically investigate deflection and trapping of a single atom by means of optical near
fields generated from a nanometric probe tip. The dependence on the probe-tip size, the kinetic energy of the
cold atom, and the excitation energies of both probe tip and atom is clarified.
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I. INTRODUCTION

Optical near-field techniques are considered promising
enabling technologies for nanostructure fabrication with
bitrary shapes and high spatial accuracy far beyond the
fraction limit @1#. As a result of the development of a high
efficient probe tip for optical near-field systems@2–4#, local
excitation of a nanometric quantum dot@4–6# and photo-
chemical deposition of, for example, Zn@7,8# and ZnO@1#
on a sub-100-nm scale have become possible. The ultim
goal of such fabrication is to make atomic-scale crys
growth by manipulating individual atoms with optical met
ods @2,9–11#. In fact, an optical near-field probe tip with
diameter of less than 10 nm has been developed and is
pected to be used in atom manipulation experiments@2#. Mi-
croscopic or quantum-mechanical treatment@12–16# of the
interaction between such a nanometric probe tip and an a
is essential for describing the atom manipulation with opti
near fields. In particular, it is important to consider the n
nometric tip and the atom as an interacting system thro
the coupling to a macroscopic bath system made up of i
dent photons, substrate, and/or fiber probe. It should be n
that the conventional theories in near-field optics, which d
with the tip and the atom independently, have been de
oped in order to analyze scanning-microscope images
macroscopicquantities such as refractive indices. Therefo
they are not suitable for formulatingmicroscopicphenomena
associated with optical near-field techniques.

In this paper we concentrate on the theoretical deriva
and evaluation of effective interaction potentials betwee
neutral atom and a nanometric probe tip. We follow the we
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known approach of describing atomic behavior in terms
the optical potential, by which we can obtain a clear physi
image. This kind of treatment also allows us to quantitativ
discuss the interacting system. The near-field optical po
tial, however, has not been derived yet in a microscopic w
That is the chief reason why we try to microscopically deri
the potential.

Although the existing theories have predicted the pos
bility of atom trapping, they have never included a micr
scopic and consistent discussion on the near-field optical
tential since a nanometric probe tip has not been employe
produce optical near fields. Let us take an example illust
ing this point clearly. An approach for atom trapping b
evanescent fields has been proposed; it employs two l
beams that propagate through totally internal reflection b
flat prism @17#, or by the wall of a microsphere@18#. In this
scheme, the blue-detuned beam has a larger incident a
than the red-detuned beam, so that two different evanes
fields with two different penetration depths are produced i
vacuum side. The fundamental idea is based on the pote
balance due to the existence of these two fields. This kind
trapping is usually explained with reference to thefar-field
optical potential@19# qualified by the dressed atom theo
@20#, which is applied to a wide range of phenomena, fro
atom-photon interaction in general to laser cooling@21#. The
optical near field, however, is a highly mixed state with m
terial excitation rather than the propagating light field. Th
viewpoint becomes more and more important as we cons
a tiny generator of the optical near field, whose size is mu
smaller than the wavelength of light. It has therefore
mained an open question whether atomic behavior in n
field optical systems can be adequately expressed by the
tical potential borrowed from the far-field theory.

We develop a consistent theory appropriate for investig
ing the near-field optical manipulation of an atom. The ato
is considered to interact with the nanometric probe tip via
d
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elementary excitation mode of real photons and the ma
scopic matter system. We discuss the possibility of trapp
a single atom, giving a numerical estimation of the near-fi
optical potential. The paper is organized as follows. Sec
II presents a formulation for the derivation of a near-fie
optical potential with the help of the projection-operat
method. Section III clarifies the fundamental features of
near-field optical potential. In Sec. IV a numerical analy
of atom deflection and trapping is performed. Section V
fers some concluding remarks.

II. FORMULATION

It is reasonable to use classical electromagnetic theo
for macroscopic descriptions of the behavior of light a
matter. However, when the size of the probe tip or apert
becomes nanometric, that is, comparable to an atomic s
there is no guarantee that we can use classical theorie
correctly formulate optical near-field problems such as in
actions between atoms or nanometric samples and the p
tip. We therefore try to study the problems within a quantu
theoretical framework, paying special attention to the hier
chical structure of optical near-field systems@1,16#. Our for-
mulation is general, but hereafter we focus on an effec
interaction between a probe tip and a neutral atom. On
basis of the projection-operator method, the effective in
action can be exactly expressed by using a small numbe
bases after renormalizing the effects of the other degree
freedom@see Eqs.~7a! and ~7b!#. The renormalizing effects
may include cavity quantum-electrodynamic~QED! effects,
energy shift and mixing of the ground and higher-level sta
of the atom, and the probe tip. It is noted that the nanome
probe tip has discrete energy levels. If we employ static
steady states as the bases, the effective interaction c
sponds to an effective potential for the relevant system fr
quantum-field theoretical consideration. The potential pict
is very appropriate for investigating atomic behavior, a
will be adopted in the following discussion.

In order to derive an effective potentialVeff(r ), wherer is
the atom’s position measured from an arbitrary point (rW2)
inside a probe tip, we divide an optical near-field system i
two subsystems:~i! incident propagating light consisting o
real photons that interact with a macroscopic matter syst
typically a prism in the collection mode or a fiber probe
the illumination mode@2#, and ~ii ! a nanometric probe tip
and an atom. Figure 1 illustrates the division conside
here. These two subsystems interact with each other,
consequently produce the interaction between the probe
and the atom in the subsystem~ii !. The interaction originates
from the exchange of virtual exciton polaritons, as we w
see in the following.

The starting point is that the eigenvalues and eigenst
of the total HamiltonianĤ for the optical near-field system
are written asEl and uCl&, respectively; that is,

ĤuCl&5~Ĥ01V̂!uCl&5EluCl&, ~1!

where Ĥ0 consists of the HamiltoniansĤbath for the sub-
system~i! and ĤA1ĤB for the subsystem~ii !, while V̂ de-
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notes the interaction between the two subsystems. It is n
that the HamiltonianĤA (ĤB) describes the states of th
atom~the probe tip! as an isolated quantum-mechanical sy
tem. The suffixl distinguishes each eigenstate. Defining t
projection operatorsP andQ512P in the usual manner a

uCl
(1)&5PuCl&, uCl

(2)&5QuCl&, ~2a!

P25P, PQ5QP50, ~2b!

@P,Ĥ0#5@Q,Ĥ0#50, ~2c!

we divide the eigenstatesuCl& into two groups,uCl
(1)& in P

space anduCl
(2)& in Q space. By using Eqs.~2a!–~2c!, Eq.

~1! is then rewritten as a set of equations

~El2Ĥ0!PuCl
(1)&5PV̂PuCl

(1)&1PV̂QuCl
(2)&, ~3a!

~El2Ĥ0!QuCl
(2)&5QV̂PuCl

(1)&1QV̂QuCl
(2)&. ~3b!

From the above equation Eq.~3b!, it is possible to formally
expressQuCl

(2)& by PuCl
(1)& as

QuCl
(2)&5~El2Ĥ02QV̂!21QV̂PuCl

(1)&

5 Ĵ~El2Ĥ0!21QV̂PuCl
(1)&, ~4a!

Ĵ5@12~El2Ĥ0!21QV̂#21, ~4b!

and the eigenstatesuCl& for the total Hamiltonian can then
be expressed in terms of the eigenstates inP space as

uCl&5~P1Q!uCl&5 ĴPuCl
(1)&. ~5!

Since both of the states satisfy the normalization conditi
we can rewrite this as

uCl&5 ĴP~PĴ†ĴP!21/2uCl
(1)&. ~6!

Using the projection operators, we can thus consistently t
the interaction as follows@1,16#:

^CmuV̂uCl&5^Cm
(1)uV̂effuCl

(1)&, ~7a!

V̂eff5~PĴ†ĴP!21/2~PĴ†V̂ĴP!~PĴ†ĴP!21/2, ~7b!

where the bare interactionV̂ operates on exact statesuC& of
the total system, whileV̂eff operates on a small number o
statesuC (1)& of the subsystem~ii !.

In order to proceed further in evaluating Eq.~7a!, we need
explicit forms ofV̂ andĴ as well asP. First the interactionV̂
between the two subsystems is described by the multip
QED Hamiltonian@22#. We employ, for simplicity, its dipole
approximation as

V̂52(
a

u~za!mŴ a•DŴ ~rWa!, ~8!
6-2
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FIG. 1. Schematic illustration of how to divide a near-field o
tical system. A nanometric probe tip and an atom, referred to
subsystem~ii !, are extracted from the total system, while the
maining part is regarded as subsystem~i!. These two subsystem
interact with each other via an elementary excitation mode,
exciton-polaritons as shown in wavy lines. As a result, the probe
and the atom also interact by exchanging virtual exciton polarito

Geometry of the model is also inserted. The vectorsrWA and rWB

denote the center of the atom and the center of the tip sphere w
radius ofa, respectively. An arbitrary position inside the tip sphe

is represented byrW2 measured from the origin of the coordinat

system, andrW8 measured from the center of the tip sphere, resp
tively.
01380
where u(z) and mŴ (rW) are the step function and the dipo
operator, respectively. The displacement field operator is

noted asDŴ (rW), and is given by the conjugate momentu

operatorPŴ (rW) of the vector potential operatorAŴ (rW). Then it
is necessary to find out an explicit form of the operatorĴ that
can be handled. Noting that the statePuCl

(1)& satisfies the
following equation:

~El2Ĥ0!PuCl
(1)&5PV̂ĴPuCl

(1)&, ~9!

with the help of Eqs.~3a! and ~4a! we can then write down
the equation to be solved as

@ Ĵ,Ĥ0#P5~E2Ĥ0!ĴP2 Ĵ~E2Ĥ0!P5V̂ĴP2 ĴPV̂ĴP,
~10!

where we used Eqs.~1!, ~5!, and ~9!. If we expand the op-
eratorĴ as

Ĵ5 (
n50

`

g(n)Ĵ(n)5P1 (
n51

`

g(n)Ĵ(n), ~11!

we have the following perturbative solutions in the order
V̂:

Ĵ(0)5P, Ĵ(1)5Q~EP
02EQ

0 !21V̂P, . . . , ~12!

where EP
0 and EQ

0 are the eigenvalues of the unperturb

HamiltonianĤ0 in P andQ space, respectively. Finally let u
comment on the selection of a small number of bases in
P space, or construction of the projection operatorP. Since
we are mainly interested in the interaction potential betwe
the atom and the probe tip, it is preferable to choose
bases so that the degrees of freedom of the subsystem~i! are
eliminated. We assume, for simplicity, that eigenstates
eigenenergies ofĤa (a5A or B) are known asua&,
ua* &, . . . , andEa

0 , Ea*
0 . . . . In addition, let the bath sys

tem, or the subsystem~i!, be a set of excitons, photons, an
their interactions, by assuming that the induced electric
larization in the macroscopic matter system is represente
excitons@23#. It is well known that such a system has cha
acteristic elementary excitation modes, that is, excit
polariton modes, or so-called ‘‘dressed’’ states of photo
and excitons@24–26#. These eigenstates and eigenenerg
are well determined. If we rewrite the photon operators

DŴ (rW) @Eq. ~8!# as exciton-polariton operators, we can obta
the bare interactionV̂ in the exciton-polariton picture. Now
let us choose a combination of the five statesuA&, uA* &, uB&,
uB* &, andu0& as theP-space bases. Here the ground state
Ĥbath, including no exciton polaritons, is expressed asu0&.

By using Eqs.~7a! and~12!, the effective potential in the
lowest order@27# can be written as

s
-

r
ip
s.

a

-
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Veff~r !52
4p

~2p!3 (
j 53

3

(
aÞa8

(A,B) E d3kF Ka8 ~kY !Ka8
8* ~kY !

V~kY !2V~a8!

1
Ka8

8 ~kY !Ka8* ~kY !

V~kY !1V~a!
G . ~13!

Here the eigenenergy of the elementary excitation mode
the subsystem~i!, that is, of the massive virtual photons,
denoted as\V(k). The electronic excitation energies of th
atom and the probe tip in the second subsystem are den
asEA5\V(A) andEB5\V(B) (a,a85A or B). Note that
the center-of-mass motion of the atom is not considered h
The coefficientsKa8 (kW ) and its complex conjugateKa8* (kW )
represent the coupling strength of the elementary excita
modes to the atom and the probe tip, and one can obtain
explicit form ofKa8 (kW ) to define the coupling coefficientf (k)
as

Ka8 ~kW !5 (
l51

2

u~za!ma@eW•eWl~kW !# f ~k!eikW•rWa, ~14a!
ra
ca

01380
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AV~k!

AV2~k!2V2/ 4

A2V2~k!2V2/ 42c2k2
, ~14b!

where the wave-number dependence off (k) characterizes a
typical interaction range of exciton polaritons coupled to t
subsystem~ii !. Here thej th component of the dipole momen
and the unit polarization vector for photons are, respectiv
designated asmaeW j and eWl(kW ). The quantitiesc and Em
5\V/2 stand for the speed of light and the electronic ex
tation energy of the macroscopic matter in the subsystem~i!.

On the basis of the dispersion relation of an excito
polariton with effective massmp (Ep5mpc2), we perform
the usual effective-mass approximation as follows:

\V~k!5
\V

2
1

~\k!2

2mp
. ~15!

Substituting this expression into Eqs.~13!, ~14a!, and ~14b!
we can rewrite the effective potentialVeff(r ) as
Veff~r !52
4mAmB\Ep

3ipr ~\c!2 E dkk f2~k!eikr H 1

k212Ep~Em1EA!~\c!22
1

1

k212Ep~Em2EA!~\c!22

1
1

k212Ep~Em1EB!~\c!22
1

1

k212Ep~Em2EB!~\c!22J
5

2mAmBEp
2

3ipr ~\c!2E2`

`

dkkF~k!eikr , ~16!
on

ges.

he
the
icit

-

er.
f

where we average the summation overl as 2/3, and define
F(k) as

F~k![S A1

k21DA1

2
2

A2

k21DA2

2 D 1S B1

k21DB1

2
2

B2

k21DB2

2 D
1S C1

k21DC1

2
2

C2

k21DC2

2 D . ~17!

Finally, as the sum of the Yukawa functions with seve
kinds of masses, we obtain the following near-field opti
potential:

Veff~r !5
2mAmBEp

2

3~\c!2
$A1Y~DA1

r !2A2Y~DA2
r !

1B1Y~DB1
r !2B2Y~DB2

r !%, ~18a!

Y~mr ![
exp~2mr !

r
. ~18b!
l
l

The four kinds of effective masses of the Yukawa functi
are denoted asDA1

, DB1
, DA2

, andDB2
, of which the first

two are heavier and thus have shorter interaction ran
Two constantsDC1

and DC2
, omitted in Eq.~18a!, mainly

give the periodic functions related to the property of t
macroscopic matter, not the Yukawa function related to
microscopic subsystem. Here, we use the following expl
expression for the effective masses:

DA6
5

A2Ep~Em6EA!

\c
, DB6

5
A2Ep~Em6EB!

\c
,

~19!

assuming a blue detuning case@\V(k).Em.EA and EB#.
Note that the positive ones (DA1

andDB1
) are kept for a red

detuning case@Em,\V(k),EA andEB#. The first and sec-
ond pairs of terms in Eq.~17! come from the coupling be
tween the exciton polaritons and the subsystem~ii !, while the
third pair of terms originates from the macroscopic matt
The weight factors in Eq.~18a!, that is, the numerators o
each term in Eq.~17!, are functions ofEA , EB , Ep , andEm .
6-4
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Depending on whether the weight factor is positive or ne
tive, it contributes to a repulsive or an attractive part of t
effective potentialVeff(r ).

III. PROPERTIES OF THE NEAR-FIELD OPTICAL
POTENTIAL

Let us examine the features of the effective potential
scribed by Eq.~18a!. The potential is formally symmetric in
terms ofA6 andB6 , and thus the discussion on one of t
pairs is applicable to the other, though they are not neces
ily the same in sign and magnitude. In the following, we w
abbreviateA6 or B6 to G6 unless otherwise stated. The sig
and magnitude ofG6 depend on the detuning\d[Em
2EG and Em . We consider a case where the detuning
large and the natural linewidth and saturation are negligi
The difference betweenG1 andG2 is written as

G12G2>G1F12
9

5 S \d

Em
1

Em

2\d D 21G , ~20!

when \d stays between 0 andEm in blue detuning. This
detuning dependence is qualitatively consistent with tha
the usual far-field optical potential in the large detuning lim
@19,20#. Spontaneous emission and radiation pressure
also negligible in this limit@28#. If G1 is positive, that is,
blue detuned, and if the detuning\d is chosen so that the
difference betweenG1 andG2 is positive, the total potentia
then becomes repulsive, because the repulsiveG1 term is
larger than the attractiveG2 term. Note that the decay lengt
of the repulsiveG1 term is shorter than that of the attractiv
G2 term.

As an example, we assume a typical alkali-metal at
with EA51.6 eV, where infrared and/or visible excitation
of a macroscopic matter system and a probe tip are take
Em51 –1.8 eV andEB51.0–1.2 eV, respectively. Figure
represents several examples of the effective potentials
Fig. 2~a! we use EA51.6 eV, EB51.2 eV, and Em
51.0 eV for a red-detuning case. ThenG1 is negative for
red detuning and results in the attractive Yukawa poten
The solid line shows the total potential, while the dotted a
dashed lines represent the attractive potentials with light
heavy effective masses, respectively. In contrast to red
tuning, Fig. 2~b! shows a blue-detuning case, where we e
ploy EA51.6 eV, EB51.0 eV, andEm51.8 eV. This set
of parameters leads to a repulsive potential for theA6 term
and an attractive potential for theB6 term; the (A12A2)
term, in addition, is smaller than the (B12B2) term; as a
result, the attractive Yukawa potential occurs, as similar
Fig. 2~a!. If a value ofEB is carefully chosen, it is possible t
have a potential well for blue detuning. We show such
example in Fig. 2~c!, where excitation energy of the prob
tip is taken asEB51.2 eV, while the other conditions ar
the same as in Fig. 2~b!. In this case, the (A12A2) term is
larger than the (B12B2) term, and thus the total potentia
forms a well as shown in the solid line. Figures 2~b! and 2~c!
show how the difference in the balance between the (A1

2A2) and (B12B2) terms affects the final potentia
shapes.
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We can simply explain the detuning dependence of
near-field optical potential discussed above, on the basi
the wave-number dependence of the coupling coeffic
f (k) in Eq. ~14b!. It follows from Fig. 3 thatf (k) is constant
when k is larger than the lower cutoffkc'2AmpV/\
52A2EpEm/(\c), while it is approximately proportional to
k below kc . The solid and dashed lines represent two ca

FIG. 2. Examples of the near-field optical potentials.~a! An
attractive Yukawa potential in a red-detuning case. The resona
energy of an atom is assumed asEA51.6 eV. The electronic exci-
tation energiesEB51.2 eV andEm51.0 eV are used for a probe
tip and a macroscopic matter system, respectively. The solid
shows the total potential, while the dotted and dashed lines re
sent the attractive potentials with light and heavy masses.~b! An
attractive Yukawa potential in a blue-detuning case. The excita
energies of the probe tip and the macroscopic matter system
chosen asEB51.0 eV andEm51.8 eV, respectively. The dotted
dashed, and solid lines represent the repulsive, attractive, and
potentials, respectively.~c! A potential well in a blue-detuning case
The excitation energy of the probe tip is chosen asEB51.2 eV,
while the other conditions are the same as in~b!.
6-5
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of Ep5Em andEp52Em , respectively. The coefficientf (k)
in the case ofEp5Em is always smaller than the asymptot
value, while in the case ofEp52Em it becomes larger than
the asymptotic value near the cutoffkc . Simple estimation
@29# yields kc'1/100 nm, which characterizes the intera
tion range of the exciton polaritons or massive virtual ph
tons coupled to the subsystem~ii !. It also shows that the
coupling coefficientf (k) is almost constant for a large red
detuning case and thus the Yukawa potential becomes at
tive. For a blue-detuning case, the nonconstant term is
negligible and contributes to the repulsive potential.

As mentioned above, we can control the polarities and
interaction ranges of the Yukawa potentials, changing
detuning and material properties. It is thus possible to fi
the condition for forming a potential well due to the balan
between the attractive and the repulsive potentials. Figu
illustrates such a condition. The solid curve shows how
weight factor ofB22B1 depends on the excitation energ
EB of a probe tip. The dashed line, which is independen
EB , represents the weight factorA12A2 when the detuning
and the resonance energies of both an atom and a ma
scopic matter are fixed. The shaded area corresponds t
condition that the repulsiveA12A2 term for blue detuning
becomes larger than the attractiveB12B2 term, that is, the
condition that the total potential has a minimum. If w

FIG. 3. Wave-number dependence of the coupling coeffic
f (k). The horizontal and vertical axes are measured in units
AEmEp/\c and AEp /\. The solid and dotted lines represent tw
cases ofEp5Em andEp52Em , respectively.

FIG. 4. Weight factor dependence on the excitation energy
probe tip. If we take one of the excitation energiesEB in the shaded
area, we can obtain a potential well as shown in Fig. 2~c!.
01380
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choose a smaller value thanEB51.12 eV, the smalles
value in the shaded area, theB12B2 term becomes large
than the (A12A2) term and the total potential results in a
attractive Yukawa potential as shown in Fig. 2~b!. Both Figs.
2 and 4 indicate that a near-field optical potential can hav
minimum if we employ an appropriate detuning and mate
of a probe tip for the relevant system.

IV. NUMERICAL ANALYSIS

In the preceding sections we microscopically describ
the near-field optical potential as the sum of the Yuka
functions with several kinds of effective masses, and d
cussed the fundamental features of the potential. As an
ample of the application of the near-field optical potential,
us consider two cases of single-atom manipulation using
tical near fields generated by a nanometric probe tip:~1!
atom deflection, where an atom is cooled down on the or
of millikelvins, and ~2! atom trapping, where an atom i
further cooled down on the order of microkelvins. Our inte
tion is to provide an experimental guideline as well as
deepen the physical understanding of optical near fields
related phenomena. The cases considered involve ex
mentally unique techniques that will be essential for carry
an atom to a desired point on a substrate with high spa
accuracy far beyond the diffraction limit.

In order to take the size of a probe-tip sphere explici
into account, we simply integrateVeff(r ) in Eq. ~18a! within
the sphere~variable radius:a) as

V~r !5
1

4pa3/3
E Veff„urWA2~rW81rWB!u…d3r 8

5
mAmBEP

2

~\c!2a3 F (
G, j 56

jG j

DG j
3 $~11aDG j!

3exp~2DG ja!2~12aDG j!exp~DG ja!%Y~DG jr !G ,

~21!

redefining the argumentr of the potentialV as r 5urWu5urWA

2rWBu. Thus the total potentialV(r ) is expressed as a func
tion of the distance between the center of the tip sphere
the atomic center. Here we assume that the atom is poin
with discrete energy levels, while the Yukawa sources
homogeneously distributed within the probe-tip sphere@30#.
The total potentialV(r ) is used in the following simulation
of atom deflection and trapping. As a test case, let us us
85Rb atom withEA51.59 eV andmA57.5 debye. For the
effective mass of the exciton polaritons,Ep5mpc25\V is
employed.

First we discuss Rb-atom deflection by the effective p
tential V(r ). It is formulated as a potential scattering pro
lem in the first Born approximation. As the velocity of th
atom decreases, the first Born approximation becomes
valid. It is known, however, that the breakdown of the fir
Born approximation occurs when the incident velocity

t
f

a
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close to the sub-meter-per-second range or the kinetic en
is in the submillikelvin range@29#. Figure 5 represents th
differential scattering cross section, or angular distribution
85Rb with an incident velocity of 1 m/s, or 10 mK in terms o
temperature, as the radiusa of the probe tip varies from 10 to
50 nm. The solid, dashed, and dotted lines show the res
for a510 nm, a530 nm, anda550 nm, respectively.
Figure 5~a! is calculated with the red-detuned potential sim
lar to that in Fig. 2~a!, while Fig. 5~b! is calculated with the
blue-detuned potential similar to that in Fig. 2~c!. The peri-
odic structure seen in the figures results from the finite s
of the probe tip. From the analytic expression it follows th
the periodic length is inversely proportional to the tip siz
the larger the tip size is, the shorter the period is. Both
ures show that a smaller probe tip can deflect the atom m
strongly, though an optimum size should be determined fr
a discussion on the de Broglie wavelength of the atom. T
difference between Figs. 5~a! and 5~b! can be understood a
follows: In Fig. 5~a!, two components with the same signs
the effective potentialV(r ) constructively contribute to the
scattering amplitude,*r sin(qr)V(r)dr, whereq is the trans-
ferred momentum. On the other hand, in Fig. 5~b!, two com-
ponents with opposite signs ofV(r ), the repulsive and at
tractive, are destructively summed up in the scatter
amplitude. This reduces the deflection angleu in Fig. 5~b! in
comparison with those in Fig. 5~a!.

FIG. 5. Differential scattering cross section of85Rb with an
incident velocity of 1 m/s in the first Born approximation. Th
near-field optical potential is generated by a probe tip with a rad
of 10–50 nm for~a! a red-detuning case and~b! a blue-detuning
case. Solid: a510 nm; dashed: a530 nm; and dotted:
a550 nm.
01380
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Next let us consider an example of a near-field opti
potential for atom trapping. Figure 6 shows a case for
system of a 85Rb atom with an excitation energyEA
51.59 eV and a probe tip with a radiusa510 nm, a tran-
sition dipole momentmB51.5 debye, and an excitation en
ergy EB51.51 eV. They are coupled with a macroscop
matter withEm52.0 eV. In order to determine the value o
the excitation energyEB , we perform a similar analysis de
veloped in Fig. 4 by means of the total potentialV(r ). As a
result, the smallest value of 1.51 eV is chosen from the p
sible values giving a potential well in the case ofa
510 nm. This condition would be satisfied if we choose,
example, a III-V compound of AlxGa12xAs. It follows from
Fig. 6 that the potential has a minimum,220 neV, near the
positionr 52a from the probe-tip surface. Approximating
by a harmonic-oscillator potential around the minimu
point, we find that two or three vibrational levels can
supported; the lowest vibrational energy with the labeln
50 corresponds to 3.1 neV, or equivalently 35mK. This
result suggests the possibility of a single Rb-atom trappin
this level.

It may be interesting to compare the depth of the abo
potential well with the ones obtained for an atom and a m
crosphere system, where the radius of the sphere is m
larger than ours. The potential depth for a Rb atom se
classically calculated in Ref.@31# is the same order of mag
nitude, or a little shallower, as our results. However, th
minimum position of the potential depends on the wav
length used and is different from ours. This is because t
use a microsphere with a dielectric constant of 6 and a ra
of about 1 mm for visible light. The potential for a Cs atom
quantum-mechanically calculated with a 50-mm sphere
shows the similar tendency@32#. It follows that the nonreso-
nant term neglected in Ref.@31#, which is the optical near
field leading to the size-dependent effect, becomes impor
as a tip sphere becomes smaller. The effect of an ide
conducting conical surface on an atom was also classic
estimated@33#, and an energy shift of the atom in the regio

s

FIG. 6. Example of near-field optical potential for85Rb ~reso-
nance energy of 1.59 eV!, represented by the solid line. The prob
tip is assumed to have a radius of 10 nm and an electronic ex
tion energy of 1.51 eV. The probe tip and atom system is coup
with a macroscopic matter system withEm52.0 eV. Approximat-
ing it by a harmonic-oscillator potential around the minimum poi
vibrational levels with the labelsn50, 1, and 2 are shown. The
shaded area shows the probe-tip size.
6-7
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of interest seems to be a similar order of magnitude tho
the details of the parameters used are not known.

V. CONCLUSIONS

We have microscopically derived an effective interacti
potential between a neutral atom and a nanometric probe
in optical near-field systems. The near-field optical poten
consists of the sum of the Yukawa functions with seve
kinds of effective masses, which is attractive or repulsi
depending on the detuning and material properties. This
proach succeeds in quantitatively analyzing the probe
size and material dependence of the potential. It also ca
applied to a variety of phenomena inherent to optical ne
field techniques.

Recent experiments in atom manipulation and nanost
ture fabrication@34# have made remarkable progress. A
atomic mirror @35–37# and an atomic guide with a hollow
fiber and blue-detuned optical near field@38,39# have been
experimentally demonstrated. An atomic guide using m
netic forces has been recently reported@40,41#. A beam of
laser-cooled atoms was also guided by a pair of para
l.

nd

.

.

.

B

01380
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wires produced on a glass substrate by photolithography
subsequent electroplating@42#. In addition to these methods
atom deflection and trapping with a nanometric tip w
greatly advance the manipulation techniques. In fact,
have shown the possibilities of such atom deflection a
trapping. These analyses also illustrate the usefulness o
microscopic theory developed in this paper. The probe
size and potential shape are quantitatively shown as key
rameters of atom deflection. The difference in the deflect
angles for the attractive and the repulsive potentials is
plained by the Yukawa potentials with two kinds of effectiv
masses. Besides, by choosing appropriate detuning and
terial properties, it is numerically shown that a potential w
is generated to be suitable for Rb-atom trapping. It me
that we can form a well in the near-field optical potent
with single blue-detuned light, though the methods based
the existing far-field theories mentioned in Sec. I requ
both red- and blue-detuned laser beams. Moreover, we
pect that we can apply the near-field optical potential meth
to atom deposition@43# and nanostructure fabrication. Thes
microscopic analyses will provide useful information for th
future experimental demonstration.
.
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