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Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beam
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We theoretically investigate the use of red-detuned Laguerre-Gaussian~LG! laser beams of varying azi-
muthal mode index for producing toroidal optical dipole traps in two-dimensional atomic Bose-Einstein con-
densates. Higher-order LG beams provide deeper potential wells and tighter confinement for a fixed toroid
radius and laser power. Numerical simulations of the loading of the toroidal trap from a variety of initial
conditions are also given.
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I. INTRODUCTION

Recent work has seen unprecedented advances in
preparation of Bose-Einstein condensates~BEC’s! of dilute
alkali-metal vapors@1–3#. These quantum degenerate sy
tems have paved the way for numerous innovative studie
weakly interacting Bose gases. An important area within t
field is the generation and study of quantized vortices
atomic mesoscopic rings and the potential to study effe
due to persistent currents and Josephson effects@4–10#. Cen-
tral to such studies is investigation of geometries for gene
tion of a BEC in a toroidal trap@11,12#. Typically, BEC is
created in a magnetic trap that confines atoms in weak-fi
seeking states and is thus dependent on the atomic hype
states. A toroidal trap can then be formed by piercing a m
netic trap with a blue-detuned laser at its center@2#. How-
ever, the state dependence of the trapping is a limitation
advanced studies including multicomponent spinor cond
sates. Further, the magnetic field is primarily dictated by
trapping requirements, setting limitations on its spatial fo
and amplitude. Optical dipole traps can potentially circu
vent these problems, being state independent@13#. Impor-
tantly, the spatial form of the optical trap is dictated by t
light beams used. This allows one potentially to gener
arbitrary shapes of condensate@14#. Experimental work has
shown the ability to transfer a condensate from a magn
trap to an optical dipole trap created from a tightly focus
Gaussian light beam@13#.

The circularly symmetric Laguerre-Gaussian~LG! laser
modes have generated substantial interest in recent y
This stems from the identification that they possess an orb
angular momentum ofl \ per photon@15#. This is in addi-
tion to the spin angular momentum associated with the
larization state of the beam. The azimuthal indexl refers to
the number of 2p phase cycles around the mode circumf
ence. A given mode hasp11 radial nodes in the mode pro
file, wherep is the other index used in the LG mode descr
tion. One finds that LG beams with radial indexp50 are in
the form of an annulus@16#. There are several techniques f
production of LG modes including the use of a cylindric
lens mode converter@17# and holographic methods@18#. The
latter technique allows generation of LG modes from
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fundamental output of a laser beam. The annulus beco
thinner as one increases the azimuthal indexl of the mode
@16#.

In this work we present a technique for generating a t
oidal BEC employing a Laguerre-Gaussian light bea
Single-ringed forms of such beams offer a direct possibi
of generating ring-shaped condensates in an optical poten
We study the operation of this dipole trap as a function
azimuthal mode index and discuss the loading of cond
sates into such optical traps from a variety of initial con
tions.

II. BASIC MODEL AND EQUATIONS

A. Gross-Pitaevskii equation

The basic model we consider is shown in Fig. 1 and co
prises a two-dimensional~2D! BEC whose normalized mod
profile is frozen by tight confinement along thez direction,
and which is placed at the focus of an off-resonant LG la
beam of frequencyvL incident along thez axis that provides
a two-dimensional optical potential@13#. The tight confine-
ment may be provided, for example, by an independent s
potential using a scanned optical dipole potential@14#. Then

i-
FIG. 1. Our basic model comprises a two-dimensional B

which is illuminated by a red-detuned LG beam traveling along
z axis and which acts as a toroidal trap.
©2000 The American Physical Society08-1
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the Gross-Pitaevskii equation~GPE! describing the macro
scopic wave functionc(r' ,t) for the quasi-2D motion can
be written as@19,20#

i\
]c

]t
52

\2

2M
¹'

2 c1U~r'!c1gNucu2c, ~1!

wherer' is the two-dimensional position vector in the pla
perpendicular toz, ¹'

2 the corresponding two-dimension
Laplacian,M the atomic mass, andg the effective short-
range interaction strength. The potential term on the rig
hand-side,

U~r'!5
\G2

8D S I ~r'!

I Sat
D , ~2!

describes the 2D optical dipole potential withD5vL2vA
the laser detuning from the optical transition frequencyvA ,
G the natural linewidth of the optical transition,I Sat the reso-
nant saturation intensity, andI (r')5 1

2 e0cnuE(r',0)u2, as-
suming the BEC is centered atz50 and has a thickness les
than the Rayleigh range of the focused beam. In addition,
assume that the intensity profile of the LG beam is und
torted upon propagation through the 2D BEC, which is r
sonable for a thin BEC. We remark, however, that the
beam becomes spatially phase modulated upon transiting
BEC, resulting in a changed far field profile of the beam t
could prove a useful diagnostic of the BEC density profil

For later purposes we point out that the GPE conser
both the wave function norm

n~ t !5E d2r'uc~r' ,t !u2 ~3!

and also the effective single-particle Hamiltonian

H~ t !5E d2r'F \2

2M
u¹cu21U~r'!ucu21

gN

2
ucu4G . ~4!

B. Toroidal optical dipole potential

Our goal in this work is to explore theoretically the use
LG beams for producing toroidal optical dipole traps, t
dipole potential being proportional to the laser intensity
the limit of large detunings considered here. The intens
profile of a LG beam at its focus (z50) in cylindrical coor-
dinates@r'5(r ,u)# takes the form

I p,l ~r !5
2p!

~p1ul u!!
P0

pwp,l
2 S 2r 2

wp,l
2 D ul u

3e22r 2/wp,l
2 FLp

ul uS 2r 2

wp,l
2 D G 2

, ~5!

whereP0 is the beam power,l is the azimuthal mode index
the field having a variation exp(il u), p is the radial mode
index, which is the number of radial intensity maxima,wp,l

is the mode spot size, andLp
ul u is a generalized Laguerr
01360
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polynomial. Here we create a single-ringed toroidal trap
ing a red-detuned laser field (D,0), so the atoms are ligh
seeking, using a LG beam withp50, in which caseL0

ul u

51, and we hereafter drop thep index and takel .0. Then
for each value ofl the intensity profile has a single max
mum atr l 5wl Al /2 @21#. Thus, in order to produce a toroi
of a fixed radiusr l 5r T , we need to choose the spot sizewl

for each azimuthal mode such that

wl 5r TA2

l
. ~6!

Furthermore, for a givenl the peak intensity at the toroid
centerr 5r T may be written as

I l 5
2P0

pwl
2 S l l e2l

l ! D5I 1S l l 11e2(l 21)

l ! D'I 1Al , ~7!

with I 15e21P0 /pr T
2 the peak intensity forl 51 @21#. Here

in the expression forI l we have used Stirling’s formula
l !'A2pl l l /el , and we see that the peak intensity sca
asAl .

Gathering the above results together, for a fixed la
powerP0 we may write the optical dipole potential@Eq. ~2!#
in the following form, which is useful for comparison be
tween different values ofl :

U l ~r !5U l S r

r T
D 2l

e2l (r 2/r T
2

21), ~8!

where

U15
\G2

8D S e21P0

pr T
2I Sat

D , U l 5U1S l l 11e2(l 21)

l ! D'U1Al ,

~9!

U1 being the optical dipole potential well depth forl 51 at
the toroid radiusr T . Note thatU l is negative for a laser red
detuned from resonance. Figure 2 shows the normalized
tical dipole potentialU l (r )/uU1u versusr /r T for various azi-

FIG. 2. Normalized optical dipole potentialU l (r )/uU1u versus
r /r T for various azimuthal mode indicesl for fixed laser power and
toroid radius. For the red detuning assumed here, asl increases the
toroidal trap becomes deeper and tighter.
8-2
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TOROIDAL OPTICAL DIPOLE TRAPS FOR ATOMIC . . . PHYSICAL REVIEW A 63 013608
muthal mode indicesl , a red-detuned laser, and fixed las
power and toroid radius, i.e., fixedU1. Here we see that asl
increases the toroidal trap becomes deeper and tighter, m
ing that higher-order LG beams present advantages for m
ing tight toroidal dipole traps.

III. GROUND-STATE TOROIDAL SOLUTIONS

In this section we elucidate the ground-state propertie
toroidal traps using the harmonic oscillator and Thom
Fermi approximations. These approximate solutions am
illustrate the key features of the problem.

A. Thomas-Fermi solution

Settingc(r ,u,t)5f(r )exp(2imt/\) for the cylindrically
symmetric ground state we obtain

mf52
\2

2M
¹'

2 f1U l ~r !f1gNufu2f, ~10!

with m the chemical potential. To obtain insight into th
solutions of this equation we consider the harmonic osci
tor approximation to the toroidal dipole potential@Eq. ~8!#
trap aroundr 5r T ,

U l ~r T1dr !'U l S 122l
dr 2

r T
2

1••• D , ~11!

where U l is negative for a red-detuned laser, as assum
throughout the paper. If we furthermore employ the Thom
Fermi approximation@22,23#, in which the kinetic energy
term is neglected in comparison to the mean field ene
then we obtain the approximate GPE

~m2U l !f'
1

2
MV l

2 dr 2f1gNufu2f, ~12!

where the effective harmonic oscillator frequencies are

V l 52AuU1u

Mr T
2S l l 12e2(l 21)

l ! D 1/2

'2AuU1u

Mr T
2
l 3/4,

~13!

where Stirling’s formula was used in the last expressi
Equation~12! has the approximate ring solution (r T2Dr l

<r<r T1Dr l )

m5U l 1
gN

2pr TDr l

, uf~r !u25
1

2pr TDr l
S 12

~r 2r T!2

Dr l
2 D ,

~14!

where the ring width is given by
01360
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S Dr l

r T
D5S gN

4puU1ur T
2D 1/3S l !

l l 12e2(l 21)D 1/3

'S gN

4puU1ur T
2D 1/3

l 21/2. ~15!

These solutions correspond to ring-shaped BEC density
files which are peaked atr 5r T and have a width 2Dr l . We
see that as the azimuthal mode indexl is increased with all
other parameters fixed the radial harmonic oscillator f
quency increasesV l }l 3/4, and the ring width decrease
Dr l }l 21/2. Thus, using higher-order LG beams provides
advantage for making tight bound toroidal rings as no
earlier.

The 2D Thomas-Fermi solution above should be ap
cable under the combined conditionsgN@\2/2M and
Dr l /r T!1, which ensure that the mean field energy
greater than the kinetic energy, and the ring width is le
than the toroid radius. The latter condition is also requir
for the validity of the harmonic oscillator approximation.

B. Scaling

To explore the parameter space for the toroidal trap i
useful to introduce appropriately scaled units. For a trap
radiusr T we scale all lengths asr'5r' /r T , all energies are
scaled to\vT5\2/Mr T

2 , and we introduce a dimensionles
time t5vTt. In these units the GPE becomes

i
]w

]t
52

1

2
¹'

2 w1ul ~r!w1phNuwu2w, ~16!

wherew5r Tc, ul 5U l /\vT , andh5Mg/p\2 is a dimen-
sionless measure of the repulsive many-body interacti
@19,20,24#. We shall use the above scaled GPE in our n
merical simulations of loading toroidal optical dipole trap

Turning to the Thomas-Fermi solution, in dimensionle
units the radial harmonic oscillator frequency and the r
width become

V l

vT
'2Auu1ul 3/4,

Dr l

r T
'S hN

4uu1u D
1/3

l 21/2, ~17!

and the chemical potential is given by

m

\vT
'u1l 1/2F112 sgn~u1!S hN

4uu1u D
2/3G , ~18!

where Stirling’s formula has been used. These solutions
pend on the dimensionless well depthu1 for l 51, which is
given explicitly by

u15
U1

\vT
5

G2

8\D S e21M P0

pI Sat
D ~19!

and is independent of the toroid radius.
In dimensionless form the conditiongN@\2/2M for ap-

plicability of the Thomas-Fermi approximation becom
8-3
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hN@1/(2p). Combining this with the conditionDr l /r T

,1 yields the constraint on the number of particles

1

2p
,hN,4uu1ul 3/2, ~20!

which shows that traps using higher azimuthal mode in
can hold more atoms, all other parameters being equal.

C. Parameter values

To illustrate the basic scales involved in toroidal traps
consider the case of thelA5589 nm transition of Na using a
laser wavelength oflL5985nm and a toroid radius ofr T
510 mm, these values being used throughout this pa
Then using the parameter valuesI Sat563 W/m2, G52p
39.89MHz, we obtainul 5u1Al 522533P0Al , with P0
in milliwatts. Using \vT[2.1310210 K, with correspond-
ing time scale 1/vT536 ms, for a given azimuthal mod
index l this potential depth translates toul 52533P0Al
nK. The corresponding effective oscillator frequencies in
toroidal trap are thenV l 52p30.14P0

1/2l 3/4 kHz. Consider
therefore the case of P051mW so that u1
52253. For two-dimensional BEC’s a characteristic val
for the many-body parameter ish'1023 @20,24#. Then for
N5105 and l 56 we have Dr 651.9 mm, and V6
52p30.54 kHz. This is not a particularly tight ring bu
tighter confinement can be achieved by increasing the
muthal mode index. Figure 3 shows the variation of the
cillator frequencyV l /2p in kHz ~solid line!, andDr l in mm
~dashed line! both versusl for u152253,hN5100, and
displays the advantage of using a high azimuthal mode
dex. We note that it is difficult to produce LG modes wi
very high azimuthal index (l .6) due to decreasing mod
purity from holographic generation. However, other tec
niques exist for generating narrow annular beams, e.g., u
an axicon@25#. Typically the radial spread of such beams

FIG. 3. Variation of the oscillator frequencyV l /2p in kHz
~solid line!, and widthDr l in mm ~dashed line! both versusl for
u152253, hN5100.
01360
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very small; thus they would allow one to explore the regi
of tight radial confinement seen for LG beams withl >20
~see Fig. 3!.

IV. LOADING A TOROIDAL OPTICAL DIPOLE TRAP

Having established that LG beams can provide toroi
traps for 2D BEC’s the issue arises of how to load atoms i
the ground state of the trap. It does not seem feasible
condense directly in the toroidal trap as it does not lend its
to evaporative cooling and the laser field could lead to he
ing. The solution is then to load into the toroidal trap from
existing BEC, e.g., a magnetic trap or sheet dipole poten
trap@14#. Here we consider loading of a toroidal trap from a
initial 2D ring BEC, for example, using a magnetic trap wi
a blue-detuned laser piercing its center@2#, and also from a
centrally peaked BEC as is the case for conventional h
monic traps. The calculations presented here demons
that it is in principle possible to load toroidal traps, and w
use illustrative examples that highlight the issues involve

A. Types of initial condition

We have numerically solved the GPE~16! for a variety of
initial conditions with the exact optical dipole potential
Eq. ~8!. We consider the situation that fort,0 the BEC is in
the ground state of a prescribed potential which is turned
for t.0 and the toroidal LG trap is turned on. To model th
situation we have considered a variety of initial conditions
t50 and their subsequent evolution. Rather than dwelling
a specific potential model fort,0 we consider the super
Gaussian initial macroscopic wave functions

c~r ,0!5Ne2(r 2r peak)
m/wm

, ~21!

whereN is a normalization constant,w is the width of the
initial wave function, m>2 is the order of the super
Gaussian,m52 being the usual Gaussian, andr peak is the
displacement of the density peak away from the origin:
r peak50 we have a centrally peaked initial density andr peak
5r T gives an initial ring BEC with its peak at the toroi
radius. Asm increases the initial condition becomes mo
top-hat-like, representative of the broadening due to rep
sive many-body effects. For the numerics presented here
setm58.

We have numerically solved the GPE~16! for a variety of
initial conditions with the exact optical dipole potential
Eq. ~8! subject to the above initial conditions, using the sp
step beam propagation method@26#. In implementing this
scheme we have included absorbing boundary condition
the edge of the numerical grid, thereby simulating losses
to radially outward going atoms. We tested that the num
cal results presented were not sensitive to the placemen
the absorber. Thus, in our simulations the normn(t) in Eq.
~3! of the macroscopic wave function is not conserved
unity. However, the normn(t)<1 is actually a measure o
the fraction of initial atoms that are captured in the toroid
trap.
8-4
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For most of the simulations presented we chosel 56 as
this is characteristic of the LG beams that can be gener
reliably experimentally at present@16#.

B. Initial ring BEC

First we will discuss the loading of the toroidal optic
dipole trap with a BEC that is already ring shaped. Althou
the BEC already has the desired shape, this transfer fro
magnetic-based ring trap to a toroidal trap is still of impo
tance as this trap can confine multicomponent condensat
different Zeeman sublevels. For an initial ring BEC t
ground state of the toroidal trap can be excited by reason
matching the initial and ground state wave functions. Fig
4 shows two examples of the computed dynamics for
initial ring BEC formed in Na withu15225.3 (P050.1
mW!, and hN550. For these parameters andl 56 the

FIG. 4. Loading of a toroidal trap from an initial ring BEC wit
r peak510 mm and m58: gray-scale plots of the evolution of th
atomic densityuwu2 for u15225.3, hN550, and~a! w54 mm
with l 56, ~b! w54 with l 52.
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Thomas-Fermi theory of the last section gives a ring width
Dr 653.2 mm. In Fig. 4~a!, which shows a gray-scale plot o
the 2D atomic densityuw(x,0,t)u2 versus time in ms along
the horizontal axis and radiusx in mm along the vertical
axis, we usedl 56, w54mm, and after a transient the den
sity profile settles down to a steady ring of smaller wid
than the input. The transient involves expansion of the ato
outward from the ring and also inward toward the origin, a
the peak at the origin seen fort'3.2 ms is due to interfer-
ence between the inwardly propagating circular atom
waves. The outward propagating atomic waves lead to
effective loss mechanism which allows for the damping
the initial wave function toward the ground-state toroid
BEC. The final ring containsn'90% of the initial atoms.
Figure 4~b! shows a gray-scale plot of the 2D atomic dens
for the same parameters as 4~a! except l 52, for which
Dr 255.6 mm, so that the input withw52.5 mm is now half
the expected ring width. After a considerably larger transi
than in Fig. 4~a! the density again settles down but now to
larger ring than the input, containing aboutn'80% of the
initial atoms. Notice, however, that fort.15 ms the atomic
density shows a further transient, and this is caused by w
atomic waves caught around the origin that start to leak o
as revealed by detailed examination of the data.

For these simulations we have used a rather low la
power P050.1 mW, so that the toroidal trap depth is on
about 13 nK forl 56. We have chosen such a loosely bou
toroidal trap as an illustrative example of loading sin
tighter traps~larger uu1u) are generally easier to excite b
suitably matched initial ring BEC’s as the ground state a
next excited state have a larger energy separation. Thus
present example shows that there is considerable robus
in loading from initial ring BEC’s, as expected intuitively
One might expect such shallow traps to be very suscept
to heating and losses induced by noise and background
collisions. However, the heating due to position and intens
noise increase with the fourth and second power of the
frequencyV l , respectively, and heating due to backgrou
gas collisions is proportional to the square of the trap de
@27,28#. Therefore our shallow traps~with low trap oscilla-
tion frequencies and small trap depth! should be relatively
immune to these detrimental effects.

C. Initial centrally peaked BEC

Figure 5 shows representative 2D atomic density pl
from simulations of loading from an initial centrally peake
(r peak50) Na BEC withm58, u152100 (P050.40 mW!,
the corresponding trap depth being 21.2Al nK, and hN
5400. The plots are for different initial BEC widths~a! w
5r T510 mm with l 56, ~b! w514 mm with l 56, and~c!
same as~b! exceptU152253. Case~a! shows very little
sign of trapping in the toroid that is centered atr T510 mm,
but ~b! with an increased BEC width ofw514 mm now
shows substantial trapping withN590% of the initial atoms
trapped. What distinguishes these two case is that the in
Hamiltonian in Eq.~4!, which we evaluated numerically, i
H(0)/\vT5148 in case~a! andH(0)/\vT5216.6 for case
~b!. The Hamiltonian has three contributions, the kinetic e
8-5
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FIG. 5. Loading of a toroidal trap from an initial super-Gauss
with m58: gray-scale plots of the evolution of the atomic dens
uwu2(x,0,t) for u152100,hN5400, l 56, and~a! w5r T510mm
with H(0)/\vT5148, ~b! w514 mm with H(0)/\vT5216.6.~c!
is for the same parameters as~b! except u152253, giving
H(0)/\vT52216.
01360
ergy, which is positive, the optical dipole potential, whic
for a red-detuned laser is negative, and the nonlinear t
due to many-body repulsion, which is positive. As we sim
late the effects of atom losses due to outward propaga
atoms using the absorbing boundary, the atom number
creases and so typically does the Hamiltonian as the in
BEC evolves. Physically, as we consider red-detuned tr
that have negative optical dipole potentials which go to z
away from the trap, atoms with energies above the trap
ergy of zero will tend to be lost from the toroidal trap. F
case~a! the initial Hamiltonian or energy is above the tra
energy and the atoms fly above the toroidal trap under
influence of the repulsive many-body effects. Indeed, the
tial density profile withw510 mm overlaps the toroidal trap
very little, leaving only positive contributions to the Hami
tonian in Eq.~4!. In contrast, for the wider initial BEC in
Fig. 5~b! the initial density profile overlaps the toroidal tra
giving a net Hamiltonian less than the trap energy, so tr
ping becomes possible. We remark that the requirement
the initial Hamiltonian be less than the trap energy is a n
essary but not sufficient condition for trapping, as there
still dependence on the initial density profile. For examp
Fig. 5~c! is the same as 5~b! exceptu152253 (P051 mW!,
the corresponding trap depth being 130 nK forl 56. In this
caseH(0)/\vT52216, well below the trap energy, but Fig
5~c! shows that the atoms do not cleanly load into the grou
state of the toroidal trap, but rather the density displays
damped oscillations on the time scale of the simulation. T
oscillatory behavior is typically a feature for deeper trap
We have begun to explore methods of smoothing the load
of deeper toroidal traps, such as tapering the turn-on of
optical potential and phase-imprinting the initial BEC so th
it moves toward a ring. These methods do smooth the lo
ing process and we shall report on these issues along with
effects of beam misalignments in a future publication.

V. SUMMARY AND CONCLUSIONS

In this paper we have shown that Laguerre-Gauss
beams provide a flexible means for forming toroidal optic
dipole traps in 2D atomic BEC’s, and that the toroidal tra
can be loaded from initial conditions representative of co
ventional magnetic traps. It remains to be seen how tigh
the atoms can be confined in these rings, and detailed
merical studies are underway. This work is a first step tow
developing toroidal traps which will act as mesoscopic rin
for atoms for a variety of basic and applied studies@4–10#.
For example, once a BEC is prepared in its ground state
the toroidal trap a vortex state of variable angular moment
can be excited using Raman coupling~involving a second
LG beam! to another Zeeman sublevel@29#, hence allowing
for studies of ring vortices and persistent currents on a to
@4,5,9#. Also, as our toroidal trap does not involve a ma
netic trap, it allows for studies of multicomponent BEC
trapped on a ring@10#. In the limit of small number of atoms
there is also the possibility of realizing a Tonk’s gas of im
penetrable bosons on a ring@30–32#, which has been pre
dicted to exhibit dark solitons@33#. Furthermore, by looking
at higher-order LG modes with different radial indexp, and
8-6
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hence multiple concentric rings, we can create coaxial to
dal traps for the BEC’s, allowing for radial tunneling b
tween condensates. In particular, multiple rings could cre
a circular grating for atoms, which could in principle act
the feedback mechanism for a 2D atom laser, by analog
circular grating optical lasers@34#. On the applied side, onc
a ring BEC is formed we can further pierce it with blu
detuned lasers at positions along its perimeter to form tun
junctions akin to superconducting links. One can then en
sion a range of sensors, e.g., rotation, based on the sensi
of the tunneling current to any perturbation of the system
principle, large rings could be made by first loading a sm
an

n,
tt.
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ys
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e

P
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01360
i-

te

to

el
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ity
n
ll

ring and then adiabatically expanding the LG light mo
incident on the BEC; hence very sensitive matter-wave s
sors of inertial forces could result.
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