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Instabilities of vortices in a binary mixture of trapped Bose-Einstein condensates:
Role of collective excitations with positive and negative energies
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Correspondence between frequency and energy spectra and biorthogonality conditions for the excitations of
Bose-Einstein condensates described by the Gross-Pitaevskii model have been derived self-consistently using
general properties arising from the Hamiltonian structure of the model. It has been demonstrated that frequency
resonances of the excitations with positive and negative energies can lead to their mutual annihilation and
appearance of the collective modes with complex frequencies and zero energies. Conditions for the avoided
crossing of energy levels have also been discussed. General theory has been verified both numerically and
analytically in the weak interaction limit considering an example of vortices in a binary mixture of conden-
sates. Growth of excitations with complex frequencies leads to spiraling of the unit and double vortices out of
the condensate center to its periphery and to splitting of the double- and higher order vortices to the unit-order
vortices.
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[. INTRODUCTION tive and negative energi¢s3]. The roots of this theorem go
. . . . . back to the 19th centurf14] and it has been used for the
Recent obser8\7/at|ons of the quantized vortices in a dilut§yterpretation of instabilities with complex eigenvalues in
ultracold gas of°’'Rb atoms[1,2] are spectacular evidences plasma physic§15] and fluid dynamicg16]. Motivated by
of the superfluid properties of atomic gases below transitionecent experiments on the observation of vortices in a binary
temperature for the formation of a Bose-Einstein condensatmixture of condensatelsl], we will demonstrate that these
(BEC). The first experimental results were obtained using avortices can have complex frequencies in their spectrum,
method suggested by Williams and Hollaf8], in a binary  thereby giving good practical grounds for a self-consistent
mixture of the hyperfine states 6fRb[1], and more recent theoretical interpretation of this phenomenon in the BEC
experimentd2] have demonstrated vortices and vortex lat-Context. o _ _
tices in an optically stirred single-component condensate. Properties of vortices in the smgle-compqnent magnet-
The Gross-PitaevskiiGP) equation[4] is a widely used cally trapped ultracold gases have been subject to intensive

L ) ' .__theoretical investigations; see, e[§,17—33, which signifi-
approximation to descpbe the dynamics of the O|u"’mt'zeézantly extended classical work4,33] dealing with the spa-
vortices in the superfluid component of Bose gases at te

{ bel itical. The GP tion falls int jally unbounded case. The properties of unit vortices in the
peratures below critical. Ihe equation ralls into a gener 0-component condensates have also been studied, parallel

class of Hamiltonian nonlinear systems. The theory of stabily, 44 jndependently from this work, by Garcia-Ripoll and
ity of s_tatlonary solutiongequilibria) of such systems is W(_ell Paez-Garcia[10,11). The richness of the dynamics of the
established at the moment, see, €.}, However, a certain  yyo-condensate system and different approaches to the prob-
gap between formal mathematical knowledge and applicalem have led to only a few overlaps, which are outlined
tions to physical examples still exists and BEC field is not anyhere appropriate.

exception. One of the controversial examples in the BEC |n the next section we introduce coupled GP equations
context is the complex or imaginary eigenfrequencies in theind briefly describe their general properties. Then, in Sec.
spectrum of elementary excitations. The existence of theskl, we derive Bogoliubov equations for excitations, clearly
frequencies was first pointed out by Bogoliubov in his origi- specifying differences between frequency and energy spectra
nal work [6]; for more recent references see, e.g.,of the excitations. We also explain the scenario of the ap-
[7-11,31,12 An unjustified negligence by the non-self- pearance of excitations with complex frequencies and show
adjointness of the Bogoliubov equations often led to the asthat they have zero energies. In Sec. IV we verify the validity
sociation between frequencies and energies in a way that w@$ general results presented in Sec. Ill using perturbation
standard for quantum mechanics based on self-adjoint oper#2eory in the limit of weak interaction and direct numerical

tors, thus admitting the possibility of complex energies in aStudy of Bogoliubov equations. In Secs. IV and V we de-
conservative system. scribe how long-term dynamics of unit- and higher-order

However, a rigorously proved theorem allowing a clearvortices can be interpreted using linear Bogoliubov theory. A

physical interpretation of the complex frequencies is knowrsStability criterion for unit vortices, which is formally more

from the general theory of Hamiltonian systef8 It states ~ 190rous, compared to the one given[it], is also derived

that excitations with complex frequencies can appear only a1 Sec. IV.
a result of the resonance between two excitations with posi- Il. GROSS-PITAEVSKIl EQUATIONS
Studies of superfluid mixtures using coupled GP equa-

*URL: www://http.cngo.strath.ac.uk/dmitry tions have a long history and have attracted significant recent
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activities; see, e.g.[1,7,8,10,11,34-38 and references N . .

therein. Following these works we assume that the wave HZJ dXdB/{|V‘1’1|2+|V‘1’2|2+(V—M1)|‘I'1|2

functions ¢, , of a two-species condensate inside an axial

harmonic trap obey . g
+ (V=) | W5+ 5[511|\1’1|4+,322|‘1’2|4

2

i =— ﬁ—§2¢1+£m02(r2+ a?z?%)
2m 2 +2312|‘1’1|2|‘I'2|2]]- (4)
+ (U ]2+ Ul o] ) 1, (1) R
where H is the energy functionallor Hamiltonian, V
2 1 =i, <Oy +1, yOy V=r?/4 is the harmonic potentiay is the
ih&th=—ﬁvzzﬁ2+§m92(r2+ 0%z%) interaction parameteg 8VmoNya/an,, Bro=ay/a;;,
and B,,=ax/a;;. B11=1 and it is left in the equations for
+ (Ugg| |2+ Una| 1|?) 102, the sake of symmetry.

Invariancies ofH with respect to the infinitesimal rota-

where for simplicity we have neglected the possible differ-UOnS and two-parameter phase transformation

ences of atomic Massesly ;=M and trap frequencies (W, W,)— (V61 7,6 %) (5)
Q1,=0Q, 01~0, V=i,dx+1ydy+i,9,, r?=x2+y2. Co-

efficients uj; —47rfi2aIJ /m charactenze intra- and interspe- result in the conservation of the total angular momentum and
cies interaction with corresponding two-body scatteringof the total number of particles in each component.

lengthsay # a,, anda;,=ay; . Radially symmetric stationary states of the condensate
At this point we introduce dimensionless time and spacdequilibria) can be presented in the form
variablest=Qt and ,y,z)=(Xx,y,2)/a,, and normaliza- W=A (r)e'L =12 ®)

tion for the wave functionsj, ,= a2y, ,/ /Ny, whereay,

\/ﬁ/(mQ) is the harmonic oscillator strength and,,  Where @ is the polar angle and,; are real functions. Using
= [dV| ¢, 4? are the numbers of particles. We will consider the method suggested [11,3] only states with a vortex in
the quasi-two-dimensional model to simplify our numericalone of the components can be created, and therefore we will
study. This approximation was previously used in severafonsider below only cases witty,>0 andL;=0. Functions
works; see, e.g[9-11], and is applicable not only for pan- A;(r) were found numerically using the Newton method.
cake trapsg>1, but also captures the main qualitative fea-Chemical potentialg:; , were found from the normalization
tures of spherical traps. To make a further reduction of Eqsconditions
(1) we redefine the wave functions once more:

N>,
2_ 2__
v i o wJ' rdrAf=1, frdrA N1 . !
'le 2:{21} \PlZ(Q’V,T)ef0Z2/4efi,u.1’2tfi0't/2’ (2)
, T )

IIl. FREQUENCY AND ENERGY SPECTRA OF

. . . . COLLECTIVE EXCITATIONS
whereu, , are the chemical potentials. Dropping the tilde we

find that equations foW; , and W7, can be put into Hamil- A. Bogoliubov equations and the frequency spectrum
tonian form To study the spectrum of BECs at equilibrium we linear-
ize Eqgs.(3) using substitutions
_oLH L
i&tzp—kné—lz*zo, 3 Wi=[A;(r)+f(r,0,t)]e"i?, (8
wheref; are small and complex. Assuming that the excita-
tions are periodic irg with period 2, we expand; into a
¥y -10 0 O Fourier series:
o | vy R 0O 1 0 O
"“lw,|" 7| 0 o -1 ol fi=20 [Uy(r,0e Vi (r,t)e 7, 9
|
3 O 0 0 1
wherel=0,+1,+2,....Then
* - A A - -
ORI oWy i a\W, + 7R W, =6 (10
SH SH/5W
= | sm/swr | is the set of linear partial differential equations resulting
oY 2 from the substitution of Eq98) and (9) into Eq. (3). Here
SHI oW, Wi=(U1,Vi1,Up2, Vi) T,

013602-2



INSTABILITIES OF VORTICES IN A BINARY . .. PHYSICAL REVIEW A63 013602
Z,,l 9,311A§ 9B1A1A2  9B1AIA; B. Biorthogonality
9B1,A2 Z3—|,1 9BLAA,  gBLALA, The_ e_|gen_modes ofH, are blorthogonal to the modes of
N , the adjoint eigenvalue problefd0], i.e.,
9B1A1A2  9B1AIA, L 9822A5
9B1AIA; OB1AIA;,  9BxAS L\,

|=
<V0Inié)ln’>:01 (13

is a self-adjoint operator and wheren#n’ anday, obey
s 1 A (nH) 'an=H,najn= ofhan, (14
Lyj=———r—+ —(Lj+1)2+V—py; .. e . .
r and (b,c)=27Z,[,rdrbgc for any b, c. Factor 27 is
5 9 introduced to mimic integration ovet. The key feature of
+29B8j;Ai 9B1A our model, originating in its Hamiltonian structure, is that
transformation linkingv,,, and its adjoint,,, can be found in

the explicit and simple form. W, is an eigenmode ob%,

The frequency spectra of7, are discrete, providing/ ~ With frequencyw,, then it can be checked thagw};, and
#0; therefore, phonons, strictly speaking, are absent in thegw;, are eigenmodes df, 7 with eigenvalueso};, and wyy,
trap geometry. In accord with standard terminoldgy39],  respectively. The mode adjoint ta,, is 7w, ; therefore, if

all spatially bounded elementary excitations can be callegm ,,#0, then biorthogonality conditiof.3) implies
collective excitationgor collective modesof an equilibrium

under consideration. Linearized equations for excitations in a (Win , 7Wip) =0. (15
Bose gas, similar to Eq10), were first derived by Bogoliu-
bov, and expansio(®) was first applied in the context of the ¢ wy, is real, therw,, is also real andw,, , 7W;,)#0. The

vortex excitations by Pitaevskji]. To find the frequency  hormajization constant can always be chosen in such a way
spectrum and collective modes we need to solve the set gf 4t

eigenvalue problems

R R Wi, 7Wi )| = 2. 16
W= o1 W - (11) |< In»77 In>| (16)

ji=1,2, j'=21.

L o The convenience of making the left-hand side of ELp)
nH, are non-self-adjoint operators, and therefore complexqual to 2 will become clear below, when E&9),(20) for
frequencies are not forbidden. W, is an eigenvector of  energies of elementary excitations are derived. Equafién

— T, with eigenvaluew,, it is self-evident thatvy, is also  makes it explicit that the inner produw,, , 7w;,) can be

an eigenvector with eigenvalu4, , and it can be shown that either positive or negative. This point often remains silent if

#F{_, has eigenvectors_,, = w,, andw* . with eigenval-  °N€ derives conditions similar to E(L6) as part of the di-

ues—wy, and — ’, , respectively. Here agqnallzz_mon prpcedgre of the s_econd-qganhzed Hamil-
n’ tonian, disregarding eigenmodes with negative and zero val-

ues of(w, , W) [33]. The fact that the inner product of a
real eigenmode with its adjoint can be negative is different
from standard quantum mechanics based on the self-adjoint
operators. These difference can have a series of conse-
quences and one of them is that energy levels are not neces-
sarily linked to the eigenfrequencies according to the stan-
dard rulef w; see below. Note that the origin of the non-self-
adjointness in our case is the nonlinearity of GP equations. If

particles in the condensate do not interapt 0, then 77,
rpecome diagonal and self-adjoint.

o O ~» O
o O O B
=~ O O O
o B, O O

Thus the spectrum of7{_, can be obtained by reflection of

the spectrum ofyH, with respect to the line Re=0 in the
plane (Reaw,Im w). In other words, it means that purely real
or purely imaginary frequencies of the elementary excitatio

exist in pairs, complex frequencies exist in quartets, and that
C. Energy spectrum

T VP As a prelude to the calculation of energies of the elemen-
Trim(Fu+H-)}= ; (@nt©-1n)=0. (12 tary exciﬁations it is instructive to introduc?a the notion of the
nonlinear stability i.e., stability under the full nonlinear dy-
Any equilibrium state of the condensatesigectrallystable  namics. According to Dirichlet’s theorefd], nonlinear sta-
[5] if its spectrum is real. If there is at least one frequencybility is ensured if an equilibrium state under consideration is
with a negative imaginary part, then the corresponding coleither the minimum or maximum of the functionidl Note
lective mode will grow in time, destabilizing the equilibrium, here that excitations change the number of particles in the
which is called spectrally unstable. equilibrium state; therefore it was convenient to introduce
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the energy functionaH, which is actually the so-called dark solitons in single-component trapped condensates can
modified energy33], i.e., it is the energy functional for Eq. be unstable with respect to modes with complex frequencies
(1) modified by the addi@ion of the number of particles inte-[9,12]. In our problem, instabilities with complex eigenval-
grals; see terms proportional tg in Eq. (4). To analyze the ues are the most important ones also. Therefore it is desirable

problem of the nonlinear stability one needs to explnap
to the second order in perturbations, which leads to

1 A s
H:Ho+_2l (W Hw)+ - - -, (17)

2

whereH is the energy of the perturbed equilibrium ag is

calculated at the exact equilibrium. The equilibrium is non-

linearly stable if the eigenvalue problems

HBim= imPBim (18

to have a criterion or theorem allowing the interpretation and
prediction of these instabilities. Such a theorem is actually
known from the general theory of the Hamiltonian dynami-
cal systemg5] and, in our context, it can be reformulated as
the following: (i) The sign of the energy of a collective ex-
citation preserves as parameters vary as long as there is no
frequency resonance with another excitatiGn. The con-
densate at equilibrium can lose spectral stability as param-
eters vary only in two ways: either via frequency resonance
of two elementary excitations with positive and negative en-
ergies or by resonance at zero frequency. Proof of these re-

have all their eigenvalues either negative or positive, excepults[5] is based on the fact, that a transition from spectral
zero eigenvalues generated by continuous symmetries. Spestability to instability cannot violate the energy conservation
tral instability implies a nonlinear one, and nonlinear stabil-law, 9;H=0.

ity implies a spectral one, but neice versg5]. In the non-

From this theorem and preceding considerations one can

rotating traps all the higher-order states of the condensateonclude that the complex eigenvalues in the spectrum of the
including vortices are not the local extrema of the energwortices in the Bose-Einstein condensate can appear only due
[19,23,25,2]. Let us stress, however, that their nonlinearto mutual annihilation of the collective excitations with posi-

instability cannot be guaranteed by this fact alone and retive and negative energies. The theorem does not prohibit the

quires separate consideration.
If vT/, in Eq. (17) is an eigenmod@,n of 7H,, then
1. .. 1 I
€|n:§<W|n H\Win) = §w|n<W|n s W) (19

measures energy of this mode. Assuming thgtis real and
using biorthogonality condition€l6) one gets

€1n= Oin SY{Win , PWipn). (20
If Imw;,# 0 then Eq.(15) implies
€n=0. (21)
The energy in physical units is given lay,% ).
It is readily demonstrated that
<VT’In 1;7VT/In>: _<ATVT’|n ; ;IATVT/W: —<VT/—|n ; ;7VT’—|n>i (22)

therefore, modes with frequencias, and w_;,=— o,
have their energies equal in sign and value.

The eigenfunctions 3., are orthogonal {Bim,Bim’)
= 6mm and form a complete basis. Theref(\ﬁﬁ, in Eq. (19
can be expanded in terms q@,m, which gives e,

frequencies of two excitations with either the same or oppo-
site signs of the energies from simply crossing each other
without change of the spectral stability. In our example it
typically happens when corresponding eigenmodes remain
orthogonal at the exact resonance. If, however, eigenmodes
of the colliding excitations start to compete for the same
direction in the functional phase space and become degener-
ate at the resonance, then crossing is not a generic scenario.
If the signs of the energies of the excitations are opposite,
then a quartet of complex frequencies appears upon passing
the resonance. Alternatively, if the signs are the same, the
exact resonance cannot be achieved and it becomes replaced
by the so-called avoided crossing of the energy le{&]s
Figures 1a) and Xb) show numerically calculated fre-
quency and energy spectra of the collective excitations with
|==+1 for spectrally stabldleft pane) and spectrally un-
stable (right pane] unit vortices (;=0, L;=1). The
negative-energy excitation is clearly seen in the spectrally
stable situation. At the transition threshold to spectral insta-
bility this excitation and another one, having energy with the
same absolute value but opposite sign, annihilate each other.
This transition is accompanied by the appearance of the zero
energy excitations. Examples of frequency and energy evo-
lution under the parameter variation resulting in instabilities,
crossings, and avoided crossing are given in Sec. IV. Figures

=2 paim|(Win, Bim)|?. Thus an equilibrium can have collec- 1(c) show the spectra of{.,. There are no qualitative
tive modes carrying energy with opposite signs only if it ischanges in these spectra after the appearance of complex

not a local extremum of the energy functional.

D. Resonances and instabilities, crossings and avoided
crossings

Instabilities with imaginary eigenvalues have been foun

frequencies.

The possibility of the observation of collective modes
with complex frequencies has caused some concerns and dis-
cussiong12,27]. However, initial perturbations of the equi-

dibrium state having nonzero projections on the adjoint mode

to dominate the dynamics of the homogeneous BEC witt7Win With Im wf,>0 will lead to the ultimate growth of the
attractive interactiofi6] and the mixture of two condensates corresponding modw,,, because it has Im,,<0. The con-
with repulsive interactior{7,8]. Higher-order vortices and sequences of this growth is in no way diminished by the fact
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832 ] (az 298E PR E tion energy, which allows one to make explicit calculations
2 000 s 0% of the frequency and energy spectra of the elementary exci-
" oost - §§§ ol tations. Calculations of the excitation spectra of the vortices
B 10 05 00 05 10 15 B 10 05 00 05 10 15 and dark solitons in the single-component weakly interacting
0.10 Reo 0.40 Rew condensates have been recently done by several groups of
0.05F i 0.05} E authorg12,25. However, these calculations lack an analysis
g-gg_ 1(b) ggg of the energy sign in the sense explained in the preceding
010 .10t ] section.
1.5 -1.0 0.5 oéo 05 1.0 15 -15 1.0 05 oéo 05 10 15 We substitute asymptotic expansiops ,= M(102)+9M(112)
o101 1o ] +0(g?), A;=A+gAN+0(g?) into the stationary
0.00 ° (©) 0.00 o (0,=0) version of Eqs(3) and derive a recurrent system of
205 i 005 3 linear equations. In the zero approximation we have two un-
"45 1.0 05 00 05 10 15 "5 10 05 00 05 10 15 coupled harmonic-oscillator problems with eigenmodes
o o

FIG. 1. Numerically calculated frequendg) and energy(b) A0 —r2 A(0)_ \ﬁi 2 24
spectra corresponding to the collective modes With+1 of the 1= \/ﬂe ’ 2 ﬂ-ze ) (24)
spectrally stablgleft pane) and spectrally unstabl&ight panel

unitvorticeslL,=0, L,=1, g=250, N=1; other parameters |jging the solvability condition of the first-order problem

for the left/right panel correspond to the vortex in the state 1/state 2we find asymptotic expressions for the chemical potentials:
see text after EQ.32). The correspondence between frequency and '

~ . m1=1+9(2B11+nB1y)/ (8m) +0(g?), M2=2+9(NB22
energy spectra is obvious; see E(0), (21). (¢c) Spectrum of the +,812)/(877)+O(gz).

Then we expand the operatot, eigenmodesy,, and
that the energy of this mode is zero. A wealth of referencedrequenciese, into the seriesft;=H(”+gHM+0(g?),
and examples of instabilities with complex eigenvalues exy, =W+ gw(V+0(g?), w;=w?+gu{P+0(g?). After
isting in other physical contexts can be found #43]. substitution into Eq(11) in the first order, we find the stan-

dard equation

eigenvalue problem®(. ,3,= a5, parameters, as fag),(b).

E. Goldstone and dipole modes

Infinitesimal variations of¢;, see Eq.(5), generate two (7= o)WV = (o= pHP)W. (29

zero-energy  eigenmodes (Goldstone  modgs (Aq, A o0y g o o

—A;,0,0)" and (0,0A,,—A,)T belonging to the null eigens- 7Hf |s|d|agonalbanfd sel(;-adjollnt Iand r<'?1II its elgent:nodels a;)nld
2 : - . . eigenvalues can be found explicitly. Then using the solvabil-

pace ofHo. Harmonic trapping modifies the spectrum in ity condition for Eq.(25) one can find corrections for all

frequencies and coefficients in the linear superposition of the

zero approximation eigenmodes. Computer algebra makes

- the technical realization of this plan a straightforward exer-

such a way thaty/., acquire a couple of parameter-
independent eigenvalues= +1 with eigenfunctions

dA; 1 1 . : - .
® d_rlIFLlAl + ErA1 cise. We will present and analyze explicit analytical results
only for the operatoryH_, considering the vicinity of the
ﬂ+1|_ Al er spectral pointw=1, because it contains information about
R \gr Tyt T2 the origin of the spectral instabilities of unit vortices. An
Wi1d dA, 1 1 , (23 equivalent analysis of7;, nearw=—1 gives the same re-
o| —=—F =LA | +zTAy sults.
dr r 2 ~ 2/(0) - i0g,(0)
dA 1 1 nH=1 h:_:\s three unit frequenciesy;=1. The corre-
® —zi—LzAz ~ZtA, sponding eigenmodes are
L dr ~r 2 i
- - r .2
wherew can take values of 1 for both eigenmodesv.. ;4 b1=(0,1,O,QTﬁe o
are often called dipole modes ard ;q=1. Equationg23) ™
generalize expressions previously derived for single-species
condensatef23]. The existence of the dipole modes can also b,=(0,0,1,0" 1 o 26
be associated with Kohn's theordmhl,42]. 2 0,1, —TW )
IV. COLLECTIVE EXCITATIONS OF UNIT VORTICES: r2 )
L;=0, L;=1 b3=(0,0,0,)T —=e ",
: N

We begin our analysis considering a weakly interacting

condensateg<1, N-~1.In this limit potential energy due The solvability conditions for E¢(25) lead to the character-
to harmonic trapping/ strongly dominates over the interac- istic determinant of the three by three matrix. We find that
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one of the three frequencies is associated with the dipole

modew_,4 and that the other two are
+ g
0Z1=1+ 25— (=31~ NBz= R +0(g%),  (27)

R=(3B1+ NB2)?—8B(N+1).

The corresponding unnormalized eigenmodes are

W=, = V2N(NB— B1= VR)by
+V2(3NBo+ [1-4N]B1,+ VR)D,
+4N(B12— B22)b3+O(Q).

The pair of frequencie$27) becomes complex iIR<O,

signaling a spectral instability of the unit vortex. >0,
then

(28)

1.000
0.998

Reo

0.996 i\

0.994

0.992 .
0.0 05

0.0050
0.0040f (b)

o
o
S
@
o

0.0 05

Bre

-20

-40
-60

00 05 1.0 15
Biz

FIG. 2. (a),(b) Frequencies w”; vs B0 N=2, g
=0.1, B,=0.97/1.03.(c) Inner products(w™,,7w=,) charac-
terizing energy signs of the corresponding excitations; se¢3B.

The dotted lines are numerical solutionsygf._ ;w,= w;w; and the
full lines correspond to Eq$28) and (30).

(@21, 70Z,)
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0.050
0.040

= 0.030
£ o020} i4
0.010f ! &
0.000

9

FIG. 3. Instability growth rate of the unit vortex in state 2 vs the
interaction parameteg. The full line, N=1; the dashed lineN
=0.3; the dotted lineN=9.

~A >

(W2y, W= )= (29
A[R(N=1)= JR{(1-5N)B1,+ N(3+N)B5}]
and one can check that
€ =*w,, (30)

i.e., modes with frequenciee’; and w_; have, respec-
tively, positive and negative energies; see Fig).20ne can
also verify biorthogonality(w=,,7w*;)=0=¢*, for R
<0, see Eq(15), and(w*,, 7w~ ,)=0 for R>0, see Eq.
16).

( ,Z\ssuming,Bij>O and rewriting the instability condition
R<O0 in the form

'8—22<£(2\/2(N+1)—3),
B2 N

one can see that unit vortices are more stable if the intraspe-
cies interaction of atoms in the vortex containing part of the
condensate is somewhat larger than the interspecies interac
tion. The choices of scattering lengths corresponding to the
experimen{ 1] are B,,=1.03/0.97,81,=1/0.97 (B2>>B11)
and 3,,=0.97/1.03, B1,=1/1.03 (B,,<Bi1). The former
case corresponds to the vortex in the spin s{&te 1,m;
=—1} of 'Rb and the latter to the vortex in the stag2}.
These two states will be called state 1 and state 2. It is clear
that for N=1 Eq. (31 predicts instability for the vortex in
state 2 and stability for the vortex in state 1, which supports
the results of the experimental observatiphk

Figure 2 shows frequency resonance accompanied by the
simultaneous mutual annihilation of excitations with positive
and negative energies happening at some critical value of
B12; see Eq(31). In fact, it models the transition from the
situation with vortex in state 1 to the case with vortex in state
2. Performing numerical studies for a wide range of param-
eters, outside the validity region of analytical considerations,
we have not been able to find regions of spectral instability
of the unit vortex in state 1. Contrarily, the existence of
instabilities of the vortex in state 2 due to exactly the same
scenario, which is predicted in the weak interaction limit, can
be readily demonstrated; see Fig. 3.

(31)
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2007 5 1.384
1 5ENO. 1.382
RN W w
2 1.380
8 1.0 1.378
706 708 710 712 714
0.5 g
A R FIG. 5. Dependencies of energies of two elementary excitations
001, . T with =2 vs g showing details of the rightmost from the avoided
0 500 1000 1500 crossings marked in Fig. 4.

9 initial displacement of the vortex from the trap center. The
FIG. 4. Positive part of the frequency spectrum of the collectivedisplaced vortex carries less of the total angular momentum,
excitations with|l|=1 (full lines) and|I|=2 (dotted lines of the ~ cOmpared to the momentum of the vortex positioned at the
unit vortex in state 1 vs the interaction paramegeN=1. Open  trap center. A lack of angular momentum is compensated by
circles mark the avoided crossingise., avoided frequency reso- two factors. First, the vortex acquires a nonzero tangential
nance} of the excitation with positive energies. velocity and therefore its trajectory is actually a spiral, which
is similar to the dynamics of an optical vortex displaced from
It is important to stress that, if two condensates are dethe center of a Gaussian be§##]. Second, angular momen-
coupled, 8;,=0, then the negative-energy modEl be- tum, and the vortex itself, become gradqally transferred into
longs to the vortex-containing component and the positivethe second condensate component, which was first demon-

> strated in[10,11].
energy modew”, belongs to the vortex-free component. T S .
Because of this separation, the instability is not possible for If drift instability is absent, then dissipative effects still

any values ofg, which agrees with spectral stability of unit g%n |:ee-iglr£1I%égitvg;tﬁgegngeghtl)(:h svt\a/f/erglr e;&%%g S;OZr the
vortices in the single-component case reportefi9ih Thus 9 P y '

we can conclude that the vortex instability in our exampIeTZeepnrsrsen;i dOfatnheuIsaer?rcr)\g?nZ?\?l?rintsrgaesf%??jma tﬁgacggéior
has essentially a two-component nature and its analog ma 9y 9

also exist in the case when the second component is a noljte the vortex-free component. It can be seen that the vector

condensate one. b;, being excited by the instability, provides a channel for
A criterion similar to Eq.(31), but without a correspond- this transfer. Thus drift instability can also be interpreted as
ing energy analysis, has also been independently obtained f€ t0 dissipation of the energy and momentum by the
[11] using the two-mode approach, i.e., condensate wav¥Oriex-free condensate component. _
functions W, and¥, have been presented as the linear su- [N the limitsN>1 andN<1 our model can be approxi-
perposition of mode$24) with time-dependent coefficients Mately considered as a single-component condensate with
and GP equations having been reduced to the set of ordinakN>1) or without (N<1) a vortex. The unit vortex and
differential equations for these coefficierjts1]. However, ~ground state of the single-component condensate are known
this method fails to take into account an eigenmode propori® be spectrally stable. Therefore drift instability disappears

tional tor?, see53 in (26), which makes an important con- in bOth."mitS; see Fig..3. An i”CFease _g_ffor fixed_N also .
tribution to the expressions for frequencies. Therefore, quhesults in the suppression of the instability, see Fig. 3, which

(27) and (31) are different from the corresponding results

presented if11]. 0.070
To illustrate the crossings and avoided crossings in the 0.060
spectrum of unit vortices we show in Fig. 4 the positive part 0.050F :
of the frequency spectra of{., and 7H.,. One can see g 0.040¢:
numerous points, which at first glance can be interpreted as ~ 0.030
crossings in the frequency spectrum. However, under close 0.020
investigation, those that are marked by open circles, turn out 0.010
to be the avoided crossing of the excitations with equal en- 0.000

ergy signs; see Fig. 5.

V. DRIFT OF UNIT VORTICES
FIG. 6. Growth rate of the driffl|=1 (full lines) and splitting

The unstable modes of the vortex in state 2 are of thel|=2 (dotted linesinstabilities of the double vortex in state 2 Ms
dipole type, i.e.|l|=1; therefore their growth leads to the for g=900.
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10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30

FIG. 7. Development of the drift instability of the double vortex in statg2:900,N=2.5. Top,|¥,(x,y)|?; bottom,|¥,(x,y)|2. The
time interval between snapshots is 20. The first snapshot correspotd$fo

means that not only a relative, but also an absolute, increas@rtices appear as a result of the frequency resonances of the
of the number of atoms in the vortex-free component stabielementary excitations with negative and positive energies,
lizes the condensate. similar to the case of unit vorticedl<1 corresponds to the
vortex-free condensate, and therefore both instabilities disap-
pear in this limit. In the limitN>1 only drift instability is
VI. DRIFT AND SPLITTING OF HIGHER-ORDER suppressed and one can recover periodi®libands of the
VORTICES instabilities with complex frequencies ahid> 1, similar to
Considering higher-order vortices one can expect to fin(}he results reported for higher-order _V(_)rticgs in a single-
an instability scenario resulting in their splitting into unit com_p(_)nent condensa]i@]: Note, _that spll_ttmg |ts_elf was not
vortices. This scenario is expected to be due to a growth ofXPlicitly demonstrated ii9]. It is also interesting to note
the collective modes withl|>1. However, as we will see that higher-order vortices in the freey=0, single-
below the drift instability linked to the dipolelike modes, component condensate are spectrally st Thus split-
[l|=1, can also be presented. It leads to displacement of théng can be considered as induced by the trapping. The
whole vortex from the trap center without splitting, at least atvortex-free condensate component plays a crucial role in the
the onset of the instability. drift instability, but whether the latter one will be presented
Both the drift and splitting instabilities of the higher-order without trapping or not remains an open problem.

3
2
2
15
10
3
2
2
15
10

10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30

o O O

o O O

FIG. 8. Development of the splitting instability of the double vortex in statg=2900,N=0.7. Top,|¥(x,y)|?; bottom,|¥,(x,y)|>.
The time interval between snapshots is 20. The first snapshot correspard3Qdo
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30 30
25 25
20 20
15 15
10 10
10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30
FIG. 9. |I|=2 instability of the triple vortex in state 2g FIG. 10. |[I|=3 instability of the triple vortex in state 2g
=900,N=0.9,t=70. Left,|¥(x,y)|? right, | ¥(x,y)|?. =900,N=0.9,t=85. Left,|¥(x,y)|? right, |¥(x,y)|2.

A. Double vortices: L,=0, L,=2
the components of thig| =3 modes have humps at the cen-

Ner. Therefore their growth should repel all unit vortices out

: . of the center, which leads to the breaking of the triple vortex

Le;sl?oS::Iiz %elrzisvgleesnrr:gllljr:/ilhoege ?;I:grizlrn%l{l féaﬁ:%' Onl%to a triangular structure of the unit vortices moving away
litting instabilit T}/l vortex in st ? o mgr nstabl infrom the trap center. Both instabilities can be found for the

SPitling Instabiiity. The vorte state 2 1S more unstable g, e parameters values and can have close growth rates.

the sense that splitting exists already for-1; see Fig. 6. L -
As is evident from Fig. 6, either drift or splitting instability ngg?;%rliihc%r\fnvggmgnmggg ;:sigsselgc;?]c(ij t:fll(r)ough the process

can dominate vortex dynamics. If drift instability is domi-
nant, then the vortex first gets displaced from the trap center
and only then splits into the unit ones; see Fig. 7. The latter VIl. SUMMARY
happens due to the curved background that breaks cylindrical

symmetry with respect to the vortex axis. Afterwards, the \ve have described the general approach to the stability of
splitting vortices remain close to each other and move togquilibrium in a BEC using Bogoliubov theory and GP equa-
wards the condensate periphery. Results of the numericgbn. Biorthogonality condition$15) and(16) and the corre-
simulation of the GP equatior(&) presented in this section Spondence between frequency and energy spectra of the e|_
were obtained starting from equilibrium states perturbed b)émemary excitations(20) and (21) have been derived
random noise with amplitude-0.0%A, ,. selfconsistently from first principals revealing several alter-
The dynamics is quite different when the splitting insta- native and conceptually important aspects.
bility is dominant; see Fig. 8. In this case unit vortices appear |t has been demonstrated that frequency resonances of the
straight at the onset of the instability development and spiragxcitations with positive and negative energies can lead to
out of the condensate center, always being positioned symhejr mutual annihilation and the appearance of collective
metrica”y with reSpeCt to it. After a certain pel’iod of time modes with Comp|ex frequencies and zero energies_ Condi-
vortices move back to the trap center and the condensaigyns for the avoided crossing of energy levels have also
state close to the initial one is restored, see Fig. 8; then thgeen discussed. The general theory has been verified both
cycle is repeated with a gradually worsening degree of perinumerically and analytically in the weak interaction limit,
odicity. considering an example of vortices in a binary mixture of
During the development of the instability, angular mo- condensates.
mentum becomes partially transferred into the second con- The growth of excitations with complex frequencies leads
densate. An analysis of the transverse profiles of the phasgs the two main scenarios of the instability development. The
corresponding to the density profiles shown in Fig. 8 hasirst one is the spiraling of the unit and double vortices out of
revealed that black spots appearing in the second condensaf condensate center to its periphery. The second scenario is
are indeed unit vortices, not the density holes without topothe splitting of the double- and higher-order vortices into unit

Considering the double vortex, we have found that it ca
be unstable with respect to thie=1,2 excitations. The vor-

logical structure. ones. An absolute and/or relative increase of the number of
particles in the vortex-free condensate component has been
B. Triple vortices: L;=0, L,=3 found to have a stabilizing effect.

A rich variety of beautiful vortex lattices can be found
considering instabilities of vortices of the order 3 and higher.
This richness can be understood in terms of spatial profiles ACKNOWLEDGMENTS
of the unstable collective modes. E.g., the triple vortex has
been found to be unstable with respect to the perturbations The author acknowledges discussions with S. M. Barnett
with [I|=1,2,3. All components of thf|=2 excitations are and W. J. Firth. The numerical part of the work was signifi-
equal to zero at the trap center. Therefore one can expect theantly speeded up due to access to the computer equipment
the growth of this mode will develop into a spatial structureobtained via U.K. EPSRC Grant No. GR/M31880 and the
preserving the vortex at the trap center. Contrarily some ofissistance of G. Harkness and R. Martin.
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