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Instabilities of vortices in a binary mixture of trapped Bose-Einstein condensates:
Role of collective excitations with positive and negative energies

Dmitry V. Skryabin*
Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
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Correspondence between frequency and energy spectra and biorthogonality conditions for the excitations of
Bose-Einstein condensates described by the Gross-Pitaevskii model have been derived self-consistently using
general properties arising from the Hamiltonian structure of the model. It has been demonstrated that frequency
resonances of the excitations with positive and negative energies can lead to their mutual annihilation and
appearance of the collective modes with complex frequencies and zero energies. Conditions for the avoided
crossing of energy levels have also been discussed. General theory has been verified both numerically and
analytically in the weak interaction limit considering an example of vortices in a binary mixture of conden-
sates. Growth of excitations with complex frequencies leads to spiraling of the unit and double vortices out of
the condensate center to its periphery and to splitting of the double- and higher order vortices to the unit-order
vortices.
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lut
s

tio
sa
g

t
at
.

ze
em
r

bi
l

ic
a
E
th
e

gi-
g.
f-
a
w
e

a
w

y a
os

e
in

ary
e
m,

ent
C

eti-
sive

the
rallel
d

e
rob-
ed

ns
ec.
ly
ctra
ap-
ow
ity
ion
al
e-
er
. A

ua-
ent
I. INTRODUCTION

Recent observations of the quantized vortices in a di
ultracold gas of87Rb atoms@1,2# are spectacular evidence
of the superfluid properties of atomic gases below transi
temperature for the formation of a Bose-Einstein conden
~BEC!. The first experimental results were obtained usin
method suggested by Williams and Holland@3#, in a binary
mixture of the hyperfine states of87Rb @1#, and more recen
experiments@2# have demonstrated vortices and vortex l
tices in an optically stirred single-component condensate

The Gross-Pitaevskii~GP! equation@4# is a widely used
approximation to describe the dynamics of the quanti
vortices in the superfluid component of Bose gases at t
peratures below critical. The GP equation falls into a gene
class of Hamiltonian nonlinear systems. The theory of sta
ity of stationary solutions~equilibria! of such systems is wel
established at the moment, see, e.g.,@5#. However, a certain
gap between formal mathematical knowledge and appl
tions to physical examples still exists and BEC field is not
exception. One of the controversial examples in the B
context is the complex or imaginary eigenfrequencies in
spectrum of elementary excitations. The existence of th
frequencies was first pointed out by Bogoliubov in his ori
nal work @6#; for more recent references see, e.
@7–11,31,12#. An unjustified negligence by the non-sel
adjointness of the Bogoliubov equations often led to the
sociation between frequencies and energies in a way that
standard for quantum mechanics based on self-adjoint op
tors, thus admitting the possibility of complex energies in
conservative system.

However, a rigorously proved theorem allowing a cle
physical interpretation of the complex frequencies is kno
from the general theory of Hamiltonian systems@5#. It states
that excitations with complex frequencies can appear onl
a result of the resonance between two excitations with p
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tive and negative energies@13#. The roots of this theorem go
back to the 19th century@14# and it has been used for th
interpretation of instabilities with complex eigenvalues
plasma physics@15# and fluid dynamics@16#. Motivated by
recent experiments on the observation of vortices in a bin
mixture of condensates@1#, we will demonstrate that thes
vortices can have complex frequencies in their spectru
thereby giving good practical grounds for a self-consist
theoretical interpretation of this phenomenon in the BE
context.

Properties of vortices in the single-component magn
cally trapped ultracold gases have been subject to inten
theoretical investigations; see, e.g.,@9,17–32#, which signifi-
cantly extended classical works@4,33# dealing with the spa-
tially unbounded case. The properties of unit vortices in
two-component condensates have also been studied, pa
to and independently from this work, by Garcia-Ripoll an
Pérez-Garcia@10,11#. The richness of the dynamics of th
two-condensate system and different approaches to the p
lem have led to only a few overlaps, which are outlin
where appropriate.

In the next section we introduce coupled GP equatio
and briefly describe their general properties. Then, in S
III, we derive Bogoliubov equations for excitations, clear
specifying differences between frequency and energy spe
of the excitations. We also explain the scenario of the
pearance of excitations with complex frequencies and sh
that they have zero energies. In Sec. IV we verify the valid
of general results presented in Sec. III using perturbat
theory in the limit of weak interaction and direct numeric
study of Bogoliubov equations. In Secs. IV and V we d
scribe how long-term dynamics of unit- and higher-ord
vortices can be interpreted using linear Bogoliubov theory
stability criterion for unit vortices, which is formally more
rigorous, compared to the one given in@11#, is also derived
in Sec. IV.

II. GROSS-PITAEVSKII EQUATIONS

Studies of superfluid mixtures using coupled GP eq
tions have a long history and have attracted significant rec
©2000 The American Physical Society02-1
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activities; see, e.g.,@1,7,8,10,11,34–38#, and references
therein. Following these works we assume that the w
functions c1,2 of a two-species condensate inside an ax
harmonic trap obey

i\] tc152
\2

2m
¹W 2c11

1

2
mV2~r 21s2z2!

1~u11uc1u21u12uc2u2!c1 , ~1!

i\] tc252
\2

2m
¹W 2c21

1

2
mV2~r 21s2z2!

1~u22uc2u21u21uc1u2!c2 ,

where for simplicity we have neglected the possible diff
ences of atomic massesm1,25m and trap frequencies
V1,25V, s1,25s, ¹W 5 iWx]x1 iWy]y1 iWz]z , r 25x21y2. Co-
efficients ui j 54p\2ai j /m characterize intra- and interspe
cies interaction with corresponding two-body scatter
lengthsa115” a22 anda125a21.

At this point we introduce dimensionless time and spa
variables t̃ 5Vt and (x̃,ỹ,z̃)5(x,y,z)/aho and normaliza-
tion for the wave functionsc̃1,25aho

3/2c1,2/AN1, whereaho

5A\/(mV) is the harmonic oscillator strength andN1,2
5*dVuc1,2u2 are the numbers of particles. We will consid
the quasi-two-dimensional model to simplify our numeric
study. This approximation was previously used in seve
works; see, e.g.,@9–11#, and is applicable not only for pan
cake traps,s@1, but also captures the main qualitative fe
tures of spherical traps. To make a further reduction of E
~1! we redefine the wave functions once more:

c̃1,25F s

2pG1/4

C1,2~ x̃,ỹ, t̃ !e2s z̃2/4e2 im1,2t̃ 2 is t̃ /2, ~2!

wherem1,2 are the chemical potentials. Dropping the tilde w
find that equations forC1,2 andC1,2* can be put into Hamil-
tonian form

i ] tcW 1ĥ
dH

dcW *
50W , ~3!

cW 5F C1

C1*

C2

C2*
G , ĥ5F 21 0 0 0

0 1 0 0

0 0 21 0

0 0 0 1

G ,

dH

dcW *
5F dH/dC1*

dH/dC1

dH/dC2*

dH/dC2

G ,
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H5E dxdyH u¹W C1u21u¹W C2u21~V̂2m1!uC1u2

1~V̂2m2!uC2u21
g

2
@b11uC1u41b22uC2u4

12b12uC1u2uC2u2#J . ~4!

where H is the energy functional~or Hamiltonian!, ¹W

5 iWx]x1 iWy]y , V̂5r 2/4 is the harmonic potential,g is the
interaction parameterg58ApsN1a11/aho , b125a12/a11,
andb225a22/a11. b1151 and it is left in the equations fo
the sake of symmetry.

Invariancies ofH with respect to the infinitesimal rota
tions and two-parameter phase transformation

~C1 ,C2!→~C1eif1,C2eif2! ~5!

result in the conservation of the total angular momentum
of the total number of particles in each component.

Radially symmetric stationary states of the condens
~equilibria! can be presented in the form

C j5Aj~r !eiL ju, j 51,2 ~6!

whereu is the polar angle andAj are real functions. Using
the method suggested in@1,3# only states with a vortex in
one of the components can be created, and therefore we
consider below only cases withL2.0 andL150. Functions
Aj (r ) were found numerically using the Newton metho
Chemical potentialsm1,2 were found from the normalization
conditions

2pE rdrA1
251, 2pE rdrA2

25
N2

N1
[N. ~7!

III. FREQUENCY AND ENERGY SPECTRA OF
COLLECTIVE EXCITATIONS

A. Bogoliubov equations and the frequency spectrum

To study the spectrum of BECs at equilibrium we linea
ize Eqs.~3! using substitutions

C j5@Aj~r !1 f j~r ,u,t !#eiL ju, ~8!

where f j are small and complex. Assuming that the exci
tions are periodic inu with period 2p, we expandf j into a
Fourier series:

f j5(
l

@Ul j ~r ,t !eil u1Vl j* ~r ,t !e2 i l u#, ~9!

wherel 50,61,62, . . . . Then

i ] tWW l1ĥĤlWW l50W ~10!

is the set of linear partial differential equations resulti
from the substitution of Eqs.~8! and ~9! into Eq. ~3!. Here
WW l5(Ul1 ,Vl1 ,Ul2 ,Vl2)T,
2-2



th

lle

in

e

t

le

t

f

al
io
th

c
o
,

f

at

way

t if

il-
val-
a
ent
joint
nse-
ces-
an-
lf-
. If

en-
he
-

is

the
ce

INSTABILITIES OF VORTICES IN A BINARY . . . PHYSICAL REVIEW A63 013602
Ĥl5F L̂l ,1 gb11A1
2 gb12A1A2 gb12A1A2

gb11A1
2 L̂2 l ,1 gb12A1A2 gb12A1A2

gb12A1A2 gb12A1A2 L̂l ,2 gb22A2
2

gb12A1A2 gb12A1A2 gb22A2
2 L̂2 l ,2

G ,

is a self-adjoint operator and

L̂l , j52
1

r

]

]r
r

]

]r
1

1

r 2
~L j1 l !21V̂2m j

12gb j j Aj
21gb12Aj 8

2 ,

j 51,2, j 852,1.

The frequency spectra ofĥĤl are discrete, providingV̂
Þ0; therefore, phonons, strictly speaking, are absent in
trap geometry. In accord with standard terminology@4,39#,
all spatially bounded elementary excitations can be ca
collective excitations~or collective modes! of an equilibrium
under consideration. Linearized equations for excitations
Bose gas, similar to Eq.~10!, were first derived by Bogoliu-
bov, and expansion~9! was first applied in the context of th
vortex excitations by Pitaevskii@4#. To find the frequency
spectrum and collective modes we need to solve the se
eigenvalue problems

ĥĤlwW ln5v lnwW ln . ~11!

ĥĤl are non-self-adjoint operators, and therefore comp
frequencies are not forbidden. IfwW ln is an eigenvector of
2ĥĤl with eigenvaluev ln it is self-evident thatwW ln* is also
an eigenvector with eigenvaluev ln* , and it can be shown tha

ĥĤ2 l has eigenvectorswW 2 ln5 t̂wW ln andwW 2 ln* with eigenval-
ues2v ln and2v ln* , respectively. Here

t̂5F 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

G .

Thus the spectrum ofĥĤ2 l can be obtained by reflection o
the spectrum ofĥĤl with respect to the line Rev50 in the
plane (Rev,Im v). In other words, it means that purely re
or purely imaginary frequencies of the elementary excitat
exist in pairs, complex frequencies exist in quartets, and

Tr$ĥ~Ĥl1Ĥ2 l !%5(
n

~v ln1v2 ln!50. ~12!

Any equilibrium state of the condensate isspectrallystable
@5# if its spectrum is real. If there is at least one frequen
with a negative imaginary part, then the corresponding c
lective mode will grow in time, destabilizing the equilibrium
which is called spectrally unstable.
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B. Biorthogonality

The eigenmodes ofĥĤl are biorthogonal to the modes o
the adjoint eigenvalue problem@40#, i.e.,

^wW ln ,aW ln8&50, ~13!

wheren5” n8 andaW ln obey

~ ĥĤl !
†aW ln5Ĥl ĥaW ln5v ln* aW ln , ~14!

and ^bW ,cW &52p(k*0
`rdrbk* ck for any bW , cW . Factor 2p is

introduced to mimic integration overu. The key feature of
our model, originating in its Hamiltonian structure, is th
transformation linkingwW ln and its adjointaW ln can be found in
the explicit and simple form. IfwW ln is an eigenmode ofĥĤl

with frequencyv ln , then it can be checked thatĥwW ln* and

ĥwW ln are eigenmodes ofĤl ĥ with eigenvaluesv ln* andv ln,

respectively. The mode adjoint towW ln is ĥwW ln* ; therefore, if
Im v ln5” 0, then biorthogonality condition~13! implies

^wW ln ,ĥwW ln&50. ~15!

If v ln is real, thenwW ln is also real and̂wW ln ,ĥwW ln&Þ0. The
normalization constant can always be chosen in such a
that

u^wW ln ,ĥwW ln&u52. ~16!

The convenience of making the left-hand side of Eq.~16!
equal to 2 will become clear below, when Eqs.~19!,~20! for
energies of elementary excitations are derived. Equation~16!

makes it explicit that the inner product^wW ln ,ĥwW ln& can be
either positive or negative. This point often remains silen
one derives conditions similar to Eq.~16! as part of the di-
agonalization procedure of the second-quantized Ham
tonian, disregarding eigenmodes with negative and zero
ues of^wW ln ,ĥwW ln& @33#. The fact that the inner product of
real eigenmode with its adjoint can be negative is differ
from standard quantum mechanics based on the self-ad
operators. These difference can have a series of co
quences and one of them is that energy levels are not ne
sarily linked to the eigenfrequencies according to the st
dard rule\v; see below. Note that the origin of the non-se
adjointness in our case is the nonlinearity of GP equations
particles in the condensate do not interact,g50, thenĥĤl
become diagonal and self-adjoint.

C. Energy spectrum

As a prelude to the calculation of energies of the elem
tary excitations it is instructive to introduce the notion of t
nonlinear stability, i.e., stability under the full nonlinear dy
namics. According to Dirichlet’s theorem@5#, nonlinear sta-
bility is ensured if an equilibrium state under consideration
either the minimum or maximum of the functionalH. Note
here that excitations change the number of particles in
equilibrium state; therefore it was convenient to introdu
2-3
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DMITRY V. SKRYABIN PHYSICAL REVIEW A 63 013602
the energy functionalH, which is actually the so-called
modified energy@33#, i.e., it is the energy functional for Eq
~1! modified by the addition of the number of particles int
grals; see terms proportional tom j in Eq. ~4!. To analyze the
problem of the nonlinear stability one needs to expandH up
to the second order in perturbations, which leads to

H5H01
1

2 (
l

^wW l ,ĤlwW l&1•••, ~17!

whereH is the energy of the perturbed equilibrium andH0 is
calculated at the exact equilibrium. The equilibrium is no
linearly stable if the eigenvalue problems

ĤlbW lm5a lmbW lm ~18!

have all their eigenvalues either negative or positive, exc
zero eigenvalues generated by continuous symmetries. S
tral instability implies a nonlinear one, and nonlinear stab
ity implies a spectral one, but notvice versa@5#. In the non-
rotating traps all the higher-order states of the conden
including vortices are not the local extrema of the ene
@19,23,25,27#. Let us stress, however, that their nonline
instability cannot be guaranteed by this fact alone and
quires separate consideration.

If wW l in Eq. ~17! is an eigenmodewW ln of ĥĤl , then

e ln5
1

2
^wW ln ,ĤlwW ln&5

1

2
v ln^wW ln ,ĥwW ln& ~19!

measures energy of this mode. Assuming thatv ln is real and
using biorthogonality conditions~16! one gets

e ln5v ln sgn̂ wW ln ,ĥwW ln&. ~20!

If Imv ln5” 0 then Eq.~15! implies

e ln50. ~21!

The energy in physical units is given bye ln\V.
It is readily demonstrated that

^wW ln ,ĥwW ln&52^t̂wW ln ,ĥ t̂wW ln&52^wW 2 ln ,ĥwW 2 ln&; ~22!

therefore, modes with frequenciesv ln and v2 ln52v ln
have their energies equal in sign and value.

The eigenfunctionsbW ml are orthogonal ^bW lm ,bW lm8&
5dmm8 and form a complete basis. ThereforewW ln in Eq. ~19!

can be expanded in terms ofbW lm , which gives e ln

5(ma lmu^wW ln ,bW lm&u2. Thus an equilibrium can have collec
tive modes carrying energy with opposite signs only if it
not a local extremum of the energy functional.

D. Resonances and instabilities, crossings and avoided
crossings

Instabilities with imaginary eigenvalues have been fou
to dominate the dynamics of the homogeneous BEC w
attractive interaction@6# and the mixture of two condensate
with repulsive interaction@7,8#. Higher-order vortices and
01360
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dark solitons in single-component trapped condensates
be unstable with respect to modes with complex frequen
@9,12#. In our problem, instabilities with complex eigenva
ues are the most important ones also. Therefore it is desir
to have a criterion or theorem allowing the interpretation a
prediction of these instabilities. Such a theorem is actua
known from the general theory of the Hamiltonian dynam
cal systems@5# and, in our context, it can be reformulated
the following: ~i! The sign of the energy of a collective ex
citation preserves as parameters vary as long as there
frequency resonance with another excitation.~ii ! The con-
densate at equilibrium can lose spectral stability as par
eters vary only in two ways: either via frequency resonan
of two elementary excitations with positive and negative e
ergies or by resonance at zero frequency. Proof of these
sults @5# is based on the fact, that a transition from spect
stability to instability cannot violate the energy conservati
law, ] tH50.

From this theorem and preceding considerations one
conclude that the complex eigenvalues in the spectrum of
vortices in the Bose-Einstein condensate can appear only
to mutual annihilation of the collective excitations with pos
tive and negative energies. The theorem does not prohibi
frequencies of two excitations with either the same or op
site signs of the energies from simply crossing each ot
without change of the spectral stability. In our example
typically happens when corresponding eigenmodes rem
orthogonal at the exact resonance. If, however, eigenmo
of the colliding excitations start to compete for the sam
direction in the functional phase space and become dege
ate at the resonance, then crossing is not a generic scen
If the signs of the energies of the excitations are oppos
then a quartet of complex frequencies appears upon pas
the resonance. Alternatively, if the signs are the same,
exact resonance cannot be achieved and it becomes rep
by the so-called avoided crossing of the energy levels@5#.

Figures 1~a! and 1~b! show numerically calculated fre
quency and energy spectra of the collective excitations w
l 561 for spectrally stable~left panel! and spectrally un-
stable ~right panel! unit vortices (L150, L151). The
negative-energy excitation is clearly seen in the spectr
stable situation. At the transition threshold to spectral ins
bility this excitation and another one, having energy with t
same absolute value but opposite sign, annihilate each o
This transition is accompanied by the appearance of the
energy excitations. Examples of frequency and energy e
lution under the parameter variation resulting in instabilitie
crossings, and avoided crossing are given in Sec. IV. Figu
1~c! show the spectra ofĤ61. There are no qualitative
changes in these spectra after the appearance of com
frequencies.

The possibility of the observation of collective mod
with complex frequencies has caused some concerns and
cussions@12,27#. However, initial perturbations of the equ
librium state having nonzero projections on the adjoint mo
ĥwW ln* with Im v ln* .0 will lead to the ultimate growth of the

corresponding modewW ln because it has Imv ln,0. The con-
sequences of this growth is in no way diminished by the f
2-4
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that the energy of this mode is zero. A wealth of referen
and examples of instabilities with complex eigenvalues
isting in other physical contexts can be found in@5,43#.

E. Goldstone and dipole modes

Infinitesimal variations off j , see Eq.~5!, generate two
zero-energy eigenmodes ~Goldstone modes! (A1 ,
2A1,0,0)T and (0,0,A2 ,2A2)T belonging to the null eigens
pace ofĥĤ0. Harmonic trapping modifies the spectrum
such a way thatĥĤ61 acquire a couple of paramete
independent eigenvaluesv561 with eigenfunctions

wW 61d53
vS dA1

dr
7

1

r
L1A1D1

1

2
rA1

vS dA1

dr
6

1

r
L1A1D2

1

2
rA1

vS dA2

dr
7

1

r
L2A2D1

1

2
rA2

vS dA2

dr
6

1

r
L2A2D2

1

2
rA2

4 , ~23!

wherev can take values of61 for both eigenmodes.wW 61d
are often called dipole modes ande61d51. Equations~23!
generalize expressions previously derived for single-spe
condensates@23#. The existence of the dipole modes can a
be associated with Kohn’s theorem@41,42#.

IV. COLLECTIVE EXCITATIONS OF UNIT VORTICES:
L 1Ä0, L 1Ä1

We begin our analysis considering a weakly interact
condensate:g!1, N;1. In this limit potential energy due
to harmonic trappingV̂ strongly dominates over the intera

FIG. 1. Numerically calculated frequency~a! and energy~b!
spectra corresponding to the collective modes withl 561 of the
spectrally stable~left panel! and spectrally unstable~right panel!
unit vortices:L150, L251, g5250, N51; other parameters
for the left/right panel correspond to the vortex in the state 1/stat
see text after Eq.~32!. The correspondence between frequency a
energy spectra is obvious; see Eqs.~20!, ~21!. ~c! Spectrum of the

eigenvalue problemsĤ61bW n5anbW n ; parameters, as for~a!,~b!.
01360
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es
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tion energy, which allows one to make explicit calculatio
of the frequency and energy spectra of the elementary e
tations. Calculations of the excitation spectra of the vortic
and dark solitons in the single-component weakly interact
condensates have been recently done by several group
authors@12,25#. However, these calculations lack an analy
of the energy sign in the sense explained in the preced
section.

We substitute asymptotic expansionsm1,25m1,2
(0)1gm1,2

(1)

1O(g2), A1,25A1,2
(0)1gA1,2

(1)1O(g2) into the stationary
(] t50) version of Eqs.~3! and derive a recurrent system o
linear equations. In the zero approximation we have two
coupled harmonic-oscillator problems with eigenmodes

A1
(0)5

1

A2p
e2r 2/4, A2

(0)5AN

p

r

2
e2r 2/4. ~24!

Using the solvability condition of the first-order proble
we find asymptotic expressions for the chemical potenti
m1511g(2b111nb12)/(8p)1O(g2), m2521g(nb22
1b12)/(8p)1O(g2).

Then we expand the operatorsĤl , eigenmodeswW l , and
frequenciesv l into the seriesĤl5Ĥl

(0)1gĤl
(1)1O(g2),

wW l5wW l
(0)1gwW l

(1)1O(g2), v l5v l
(0)1gv l

(1)1O(g2). After
substitution into Eq.~11! in the first order, we find the stan
dard equation

~ ĥĤl
(0)2v l

(0)!wW l
(1)5~v l

(1)2ĥĤl
(1)!wW l

(0) . ~25!

ĥĤl
(0) is diagonal and self-adjoint and all its eigenmodes a

eigenvalues can be found explicitly. Then using the solva
ity condition for Eq. ~25! one can find corrections for al
frequencies and coefficients in the linear superposition of
zero approximation eigenmodes. Computer algebra ma
the technical realization of this plan a straightforward ex
cise. We will present and analyze explicit analytical resu
only for the operatorĥĤ21 considering the vicinity of the
spectral pointv51, because it contains information abo
the origin of the spectral instabilities of unit vortices. A
equivalent analysis ofĥĤ1 nearv521 gives the same re
sults.

ĥĤ21
(0) has three unit frequencies,v21

(0)51. The corre-
sponding eigenmodes are

bW 15~0,1,0,0!T
r

2Ap
e2r 2/4,

bW 25~0,0,1,0!T
1

A2p
e2r 2/4, ~26!

bW 35~0,0,0,1!T
r 2

4Ap
e2r 2/4.

The solvability conditions for Eq.~25! lead to the character
istic determinant of the three by three matrix. We find th

2,
d

2-5
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one of the three frequencies is associated with the dip
modewW 21d and that the other two are

v21
6 511

g

32p
~23b122Nb226AR!1O~g2!, ~27!

R[~3b121Nb22!
228b12

2 ~N11!.

The corresponding unnormalized eigenmodes are

wW 21
6 5A2N~Nb222b126AR!bW 1

1A2~3Nb221@124N#b127AR!bW 2

14N~b122b22!bW 31O~g!. ~28!

The pair of frequencies~27! becomes complex ifR,0,
signaling a spectral instability of the unit vortex. IfR.0,
then

FIG. 2. ~a!,~b! Frequencies v21
6 vs b12: N52, g

50.1, b2250.97/1.03. ~c! Inner productŝ wW 21
6 ,ĥwW 21

6 & charac-
terizing energy signs of the corresponding excitations; see Eq.~30!.

The dotted lines are numerical solutions ofĥĤ21wW l5v lwW l and the
full lines correspond to Eqs.~28! and ~30!.
01360
le

^wW 21
6 ,ĥwW 21

6 &5 ~29!

4@R~N21!6AR$~125N!b121N~31N!b22%#

and one can check that

e21
6 56v21

6 , ~30!

i.e., modes with frequenciesv21
1 and v21

2 have, respec-
tively, positive and negative energies; see Fig. 2~c!. One can
also verify biorthogonality^wW 21

6 ,ĥwW 21
6 &505e21

6 for R

,0, see Eq.~15!, and ^wW 21
6 ,ĥwW 21

7 &50 for R.0, see Eq.
~16!.

Assumingb i j .0 and rewriting the instability condition
R,0 in the form

b22

b12
,

1

N
~2A2~N11!23!, ~31!

one can see that unit vortices are more stable if the intra
cies interaction of atoms in the vortex containing part of t
condensate is somewhat larger than the interspecies inte
tion. The choices of scattering lengths corresponding to
experiment@1# areb2251.03/0.97,b1251/0.97 (b22.b11)
and b2250.97/1.03, b1251/1.03 (b22,b11). The former
case corresponds to the vortex in the spin state$F51,mf
521% of 87Rb and the latter to the vortex in the state$2,2%.
These two states will be called state 1 and state 2. It is c
that for N51 Eq. ~31! predicts instability for the vortex in
state 2 and stability for the vortex in state 1, which suppo
the results of the experimental observations@1#.

Figure 2 shows frequency resonance accompanied by
simultaneous mutual annihilation of excitations with positi
and negative energies happening at some critical value
b12; see Eq.~31!. In fact, it models the transition from th
situation with vortex in state 1 to the case with vortex in st
2. Performing numerical studies for a wide range of para
eters, outside the validity region of analytical consideratio
we have not been able to find regions of spectral instab
of the unit vortex in state 1. Contrarily, the existence
instabilities of the vortex in state 2 due to exactly the sa
scenario, which is predicted in the weak interaction limit, c
be readily demonstrated; see Fig. 3.

FIG. 3. Instability growth rate of the unit vortex in state 2 vs t
interaction parameterg. The full line, N51; the dashed line,N
50.3; the dotted line,N59.
2-6
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It is important to stress that, if two condensates are
coupled,b1250, then the negative-energy modewW 21

2 be-
longs to the vortex-containing component and the positi
energy modewW 21

1 belongs to the vortex-free componen
Because of this separation, the instability is not possible
any values ofg, which agrees with spectral stability of un
vortices in the single-component case reported in@9#. Thus
we can conclude that the vortex instability in our exam
has essentially a two-component nature and its analog
also exist in the case when the second component is a
condensate one.

A criterion similar to Eq.~31!, but without a correspond
ing energy analysis, has also been independently obtaine
@11# using the two-mode approach, i.e., condensate w
functionsC1 andC2 have been presented as the linear
perposition of modes~24! with time-dependent coefficient
and GP equations having been reduced to the set of ordi
differential equations for these coefficients@11#. However,
this method fails to take into account an eigenmode prop
tional to r 2, seebW 3 in ~26!, which makes an important con
tribution to the expressions for frequencies. Therefore, E
~27! and ~31! are different from the corresponding resu
presented in@11#.

To illustrate the crossings and avoided crossings in
spectrum of unit vortices we show in Fig. 4 the positive p
of the frequency spectra ofĥĤ61 and ĥĤ62. One can see
numerous points, which at first glance can be interpreted
crossings in the frequency spectrum. However, under c
investigation, those that are marked by open circles, turn
to be the avoided crossing of the excitations with equal
ergy signs; see Fig. 5.

V. DRIFT OF UNIT VORTICES

The unstable modes of the vortex in state 2 are of
dipole type, i.e.,u l u51; therefore their growth leads to th

FIG. 4. Positive part of the frequency spectrum of the collect
excitations withu l u51 ~full lines! and u l u52 ~dotted lines! of the
unit vortex in state 1 vs the interaction parameterg: N51. Open
circles mark the avoided crossings~i.e., avoided frequency reso
nances! of the excitation with positive energies.
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initial displacement of the vortex from the trap center. T
displaced vortex carries less of the total angular moment
compared to the momentum of the vortex positioned at
trap center. A lack of angular momentum is compensated
two factors. First, the vortex acquires a nonzero tangen
velocity and therefore its trajectory is actually a spiral, whi
is similar to the dynamics of an optical vortex displaced fro
the center of a Gaussian beam@44#. Second, angular momen
tum, and the vortex itself, become gradually transferred i
the second condensate component, which was first dem
strated in@10,11#.

If drift instability is absent, then dissipative effects st
can result in the vortex drift, which was predicted for th
single-component condensates by several authors@19,32#.
The presence of the second condensate opens a chann
the energy and angular-momentum transfer from the vo
into the vortex-free component. It can be seen that the ve
bW 1, being excited by the instability, provides a channel
this transfer. Thus drift instability can also be interpreted
due to dissipation of the energy and momentum by
vortex-free condensate component.

In the limits N@1 andN!1 our model can be approxi
mately considered as a single-component condensate
(N@1) or without (N!1) a vortex. The unit vortex and
ground state of the single-component condensate are kn
to be spectrally stable. Therefore drift instability disappe
in both limits; see Fig. 3. An increase ofg for fixed N also
results in the suppression of the instability, see Fig. 3, wh

e

FIG. 5. Dependencies of energies of two elementary excitati
with l 52 vs g showing details of the rightmost from the avoide
crossings marked in Fig. 4.

FIG. 6. Growth rate of the driftu l u51 ~full lines! and splitting
u l u52 ~dotted lines! instabilities of the double vortex in state 2 vsN
for g5900.
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FIG. 7. Development of the drift instability of the double vortex in state 2:g5900,N52.5. Top,uC1(x,y)u2; bottom,uC2(x,y)u2. The
time interval between snapshots is 20. The first snapshot corresponds tot560.
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means that not only a relative, but also an absolute, incre
of the number of atoms in the vortex-free component sta
lizes the condensate.

VI. DRIFT AND SPLITTING OF HIGHER-ORDER
VORTICES

Considering higher-order vortices one can expect to fi
an instability scenario resulting in their splitting into un
vortices. This scenario is expected to be due to a growth
the collective modes withu l u.1. However, as we will see
below the drift instability linked to the dipolelike mode
u l u51, can also be presented. It leads to displacement of
whole vortex from the trap center without splitting, at least
the onset of the instability.

Both the drift and splitting instabilities of the higher-ord
01360
se
i-

d

of

he
t

vortices appear as a result of the frequency resonances o
elementary excitations with negative and positive energ
similar to the case of unit vortices.N!1 corresponds to the
vortex-free condensate, and therefore both instabilities dis
pear in this limit. In the limitN@1 only drift instability is
suppressed and one can recover periodic inN bands of the
instabilities with complex frequencies andu l u.1, similar to
the results reported for higher-order vortices in a sing
component condensate@9#. Note, that splitting itself was no
explicitly demonstrated in@9#. It is also interesting to note

that higher-order vortices in the free,V̂50, single-
component condensate are spectrally stable@45#. Thus split-
ting can be considered as induced by the trapping. T
vortex-free condensate component plays a crucial role in
drift instability, but whether the latter one will be present
without trapping or not remains an open problem.
FIG. 8. Development of the splitting instability of the double vortex in state 2:g5900,N50.7. Top,uC1(x,y)u2; bottom,uC2(x,y)u2.
The time interval between snapshots is 20. The first snapshot corresponds tot530.
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A. Double vortices: L 1Ä0, L 2Ä2

Considering the double vortex, we have found that it c
be unstable with respect to theu l u51,2 excitations. The vor-
tex in state 1 has been found to be surprisingly stable. O
has to take relatively small values ofg and largeN to find
splitting instability. The vortex in state 2 is more unstable
the sense that splitting exists already forN;1; see Fig. 6.
As is evident from Fig. 6, either drift or splitting instabilit
can dominate vortex dynamics. If drift instability is dom
nant, then the vortex first gets displaced from the trap ce
and only then splits into the unit ones; see Fig. 7. The la
happens due to the curved background that breaks cylind
symmetry with respect to the vortex axis. Afterwards, t
splitting vortices remain close to each other and move
wards the condensate periphery. Results of the nume
simulation of the GP equations~1! presented in this sectio
were obtained starting from equilibrium states perturbed
random noise with amplitude;0.05A1,2.

The dynamics is quite different when the splitting ins
bility is dominant; see Fig. 8. In this case unit vortices app
straight at the onset of the instability development and sp
out of the condensate center, always being positioned s
metrically with respect to it. After a certain period of tim
vortices move back to the trap center and the conden
state close to the initial one is restored, see Fig. 8; then
cycle is repeated with a gradually worsening degree of p
odicity.

During the development of the instability, angular m
mentum becomes partially transferred into the second c
densate. An analysis of the transverse profiles of the ph
corresponding to the density profiles shown in Fig. 8 h
revealed that black spots appearing in the second conde
are indeed unit vortices, not the density holes without to
logical structure.

B. Triple vortices: L 1Ä0, L 2Ä3

A rich variety of beautiful vortex lattices can be foun
considering instabilities of vortices of the order 3 and high
This richness can be understood in terms of spatial pro
of the unstable collective modes. E.g., the triple vortex
been found to be unstable with respect to the perturbat
with u l u51,2,3. All components of theu l u52 excitations are
equal to zero at the trap center. Therefore one can expec
the growth of this mode will develop into a spatial structu
preserving the vortex at the trap center. Contrarily some

FIG. 9. u l u52 instability of the triple vortex in state 2:g
5900,N50.9, t570. Left, uC1(x,y)u2; right, uC2(x,y)u2.
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the components of theu l u53 modes have humps at the ce
ter. Therefore their growth should repel all unit vortices o
of the center, which leads to the breaking of the triple vor
into a triangular structure of the unit vortices moving aw
from the trap center. Both instabilities can be found for t
same parameters values and can have close growth r
Therefore the winning mode is selected through the proc
of complex competition; see Figs. 9 and 10.

VII. SUMMARY

We have described the general approach to the stabilit
equilibrium in a BEC using Bogoliubov theory and GP equ
tion. Biorthogonality conditions~15! and~16! and the corre-
spondence between frequency and energy spectra of th
ementary excitations~20! and ~21! have been derived
selfconsistently from first principals revealing several alt
native and conceptually important aspects.

It has been demonstrated that frequency resonances o
excitations with positive and negative energies can lead
their mutual annihilation and the appearance of collect
modes with complex frequencies and zero energies. Co
tions for the avoided crossing of energy levels have a
been discussed. The general theory has been verified
numerically and analytically in the weak interaction lim
considering an example of vortices in a binary mixture
condensates.

The growth of excitations with complex frequencies lea
to the two main scenarios of the instability development. T
first one is the spiraling of the unit and double vortices out
the condensate center to its periphery. The second scena
the splitting of the double- and higher-order vortices into u
ones. An absolute and/or relative increase of the numbe
particles in the vortex-free condensate component has b
found to have a stabilizing effect.
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FIG. 10. u l u53 instability of the triple vortex in state 2:g
5900,N50.9, t585. Left, uC1(x,y)u2; right, uC2(x,y)u2.
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@39# P. Noziéres and D. Pines,The Theory of Quantum Liquids

Vol. II. Superfluid Bose Liquid~Perseus Books, Cambridge
1999!, p. 169.

@40# P. M. Morse and H. Feshbach,Methods of Theoretical Physics
Part 1 ~McGraw-Hill, New York, 1953!, p. 884.

@41# W. Kohn, Phys. Rev.123, 1242~1961!.
@42# J. F. Dobson, Phys. Rev. Lett.73, 2244~1994!.
@43# D. V. Skryabin, Physica D139, 186 ~2000!; D. V. Skryabin,

Phys. Rev. E60, 7511~1999!; D. V. Skryabin and W. J. Firth,
ibid. 58, R1252~1998!; 58, 3916~1998!.

@44# Y. S. Kivshar, J. Christou, V. Tikhonenko, B. Luther-Davie
and L. M. Pismen, Opt. Commun.152, 198 ~1998!.

@45# I. Aranson and V. Steinberg, Phys. Rev. B53, 75 ~1996!.
2-10


