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Trapping of single atoms with single photons in cavity QED
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~Received 5 June 2000; published 27 November 2000!

Two recent experiments have reported the trapping of individual atoms inside optical resonators by the
mechanical forces associated with single photons@Hoodet al., Science287, 1447~2000!; Pinkseet al., Nature
~London! 404, 365 ~2000!#. Here we analyze the trapping dynamics in these settings, focusing on two points
of interest. First, we investigate the extent to which light-induced forces in these experiments are distinct from
their free-space counterparts, and whether or not there are qualitatively different effects of optical forces at the
single-photon level within the setting of cavity QED. Second, we explore the quantitative features of the
resulting atomic motion, and how these dynamics are mapped onto experimentally observable variations of the
intracavity field. Toward these ends, we present results from extensive numerical simulations of the relevant
forces and their fluctuations, as well as a detailed derivation of our numerical simulation method, based on the
full quantum-mechanical master equation. Not surprisingly, qualitatively distinct atomic dynamics arise as the
coupling and dissipative rates are varied. For the experiment of Hoodet al., we show that atomic motion is
largely conservative and is predominantly in radial orbits transverse to the cavity axis. A comparison with the
free-space theory demonstrates that the fluctuations of the dipole force are suppressed by an order of magni-
tude. This effect is based upon the Jaynes-Cummings eigenstates of the atom-cavity system and represents
distinct physics for optical forces at the single-photon level within the context of cavity QED. By contrast, even
in a regime of strong coupling in the experiment of Pinkseet al., there are only small quantitative distinctions
between the potentials and heating rates in the free-space theory and the quantum theory, so it is not clear that
a description of this experiment as a novel single-quantum trapping effect is necessary. The atomic motion is
strongly diffusive, leading to an average localization time comparable to the time for an atom to transit freely
through the cavity, and to a reduction in the ability to infer aspects of the atomic motion from the intracavity
photon number.

DOI: 10.1103/PhysRevA.63.013401 PACS number~s!: 42.50.Vk, 42.50.Ct, 32.80.Pj
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I. INTRODUCTION

An exciting advance in recent years has been the incr
ing ability to observe and manipulate the dynamical p
cesses of individual quantum systems. In this endeavor
important physical system has been a single atom stro
coupled to the electromagnetic field of a high-Q ~optical or
microwave! cavity within the setting of cavity quantum elec
trodynamics ~cavity QED!. @1,2# Here the coupling fre-
quency of one atom to a single mode of an optical reson
is denoted byg0 ~i.e., 2g0 is the one-photon Rabi frequency!,
with the regime of strong coupling defined by the requi
ment thatg0@(g,k), whereg is the atomic decay rate t
modes other than the cavity mode, andk is the decay rate o
the cavity mode itself. In this circumstance, the number
photons required to saturate an intracavity atom isn0

;g2/g0
2!1, and the number of atoms required to have

appreciable effect on the intracavity field isN0;kg/g0
2!1

@3#.
Although there have been numerous laboratory advan

which demonstrate the effect of strong coupling on theinter-
nal degrees of freedom of an atomic dipole coupled to
quantized cavity field~i.e., g0@k,g), the consequences o
strong coupling for theexternal, atomic center-of-mass mo
tion with kinetic energyEk have only recently been explore
experimentally@4–9#. In a regime of strong coupling for th
externaldegrees of freedom,g0.Ek /\, a single quantum is
sufficient to profoundly alter the atomic center-of-mass~CM!
motion, as an atom moves through a region of spatially va
1050-2947/2000/63~1!/013401~24!/$15.00 63 0134
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ing coupling coefficientg(rW)5g0c(rW) @e.g., as arises in the

Gaussian mode of a Fabry-Perot cavity,c(rW)#.
Perhaps most strikingly, the spatial variation of the cav

mode can lead to a confining potential sufficient to trap
atom within the cavity mode even for a single quantum
excitation of the atom-cavity system, as first discussed in
work of Refs. @10,11#. This is illustrated in Fig. 1, which
shows the the possibility for trapping by excitation to t
lower componentu2& in the Jaynes-Cummings manifold o
eigenstates. Modifications of the atomic CM dynamics can
turn significantly alter the cavity field. This situation is ve
different from the usual case for trapped atoms or ions
fixed external potentials, in that here the confining field a
the atomic motion can be strongly interacting, in which ca
the overall state of the system must be determined in a s
consistent fashion.

The experimental requirements to investigate strong c
pling for both theinternal and externaldegrees of freedom
are stringent@namely,g.(Ek /\,g,k)#, and have required
the integration of the techniques of laser cooling and tr
ping with those of cavity QED, as initially achieved in 199
@12# and as illustrated in Fig. 2. Mechanical effects due
strong coupling with single quanta were first observed
1998 @4#, in an experiment with peak coupling energy\g0
.5 mK and with initial atomic kinetic energyEk
.400 mK.

Following this theme, two groups recently reported tra
ping of single atoms with intracavity fields at the singl
photon level, beginning with the work of Ref.@5# and culmi-
©2000 The American Physical Society01-1
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nating in that of Refs.@7,8#. That such trapping might be
possible in these experiments is indicated by the fact that
ratio R of initial atomic kinetic energyEk to the coherent
coupling energy\g0 , R[Ek /\g0, is less than unity. For the
work in Refs. @5,7#, R.0.06, while for that in Ref.@8# R
.0.27. Although these ratios are indicative of the possibi
of trapping with single quanta in cavity QED, the actu
forces and confining potentials are somewhat more com
to analyze, as we shall see. Moreover, beyond provid
single-quantum forces sufficient for atomic localizatio
strong coupling also means that the presence of one atom
significantly modify the intracavity field, thereby providing
means to track atomic motion by way of the light emergi
from the cavity.

To understand the basic scheme for trapping of sin
atoms with single quanta in cavity QED, consider the en
gies\b6 for the first excited statesu6& of the atom-cavity
system. Along the radial directionr5Ay21z2 and for opti-
mal x ~standing-wave! position,b6(r) has the spatial depen
dence indicated in Fig. 1, which neglects dissipation. T
ground state of the atom-cavity system isua,0&; the atom is

FIG. 1. The energy- level diagram for the coupled atom-cav
system, as a function of the atom’s radial positionr. When the
atom is near the cavity center, driving at frequencyvp populates the
stateu2& to trap the atom. Herev (p,c,a)5v (probe,cav i ty ,atom) of the
text.
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in its ground statea, and there are no photons in the cavit
For weak coupling~atom far from the cavity mode center!,
the first two excited states are that of one photon in
cavity and the atom in the ground state,ua,1&, and of the
atom in the excited statee with no photons in the cavity,
ue,0&. These two states are separated by an energy\Dac ,
where Dac[vcav i ty2vatom is the detuning between th
‘‘bare’’ ~uncoupled! atom and cavity resonances.

As an atom enters the cavity alongr it encounters the
spatially varying mode of the cavity field, and hence a s
tially varying interaction energy\g(rW), given by g(rW)
5g0cos(kx/)exp(2(y21z2)/w0

2) (k52p/l). The bare states
map via this coupling to the dressed statesu6& shown in the
figure, with energies

b65
vatom1vcav i ty

2
6Fg~rW !21

Dac
2

4 G1/2

.

Our interest is in the stateu2&; the spatial dependence of th
energy\b2(rW) represents a pseudopotential well that can
selectively populated by our choice of driving fieldEprobe(t)
and Dprobe to trap the atom, as first suggested by Park
@13#. The system is monitored with a weak probe beam as
atom enters the cavity mode; detection of an atom tra
signal triggers an increase in driving strength to populate
stateu2& and trap the atom. Because the experiments in
optical domain have atomic and cavity decay tim
(k21,g21) that are small compared to the timet for motion
through the cavity field, the atom-cavity system must be c
tinually re-excited by way ofEprobe, thereby providing an
effective pseudopotential on time scalesdt such that
(k21,g21)!dt!t.

Although a full theory based on the preceding discuss
is sufficientto provide detailed agreement with the expe
mental observations of Refs.@5,7,8# ~as we shall show in
subsequent sections!, it is reasonable to ask to what exte
such a theory based on the interactions in cavity QED
necessary. In particular, it might well be that the well
established theory of laser cooling and trapping in free sp
@14# could provide an adequate description of the potent
and heating rates, with the cavity merely providing a con

y

FIG. 2. Experimental schematic for the case of Hoodet al. At-
oms are captured in a magneto-optical trap~MOT!, and dropped or
launched through a high-finesse optical cavity. A single atom~trace
with arrow! transiting the cavity mode alters the measured transm
sion of a probe beam through the cavity. In the experiment
Pinkseet al., rubidium atoms are captured in a MOT below th
cavity and launched upward through it.
1-2
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nient means for attaining a strong drive field. With respec
the experimental results of Pinkseet al. ~Ref. @8#!, we find
that this is in fact largely the case; there are only small qu
titative distinctions between the free-space theory and
appropriate quantum theory. One interesting feature to n
in this experiment is enhanced cooling of the atomic mot
relative to the parameters of Hoodet al. @7#. This effect,
which enables trapping in this parameter regime, ari
through cavity-mediated cooling@15,16#. For these param
eters, the average localization time from simulations is
tended by 75% relative to the equivalent free-atom sign
both these times are shorter than the time for an atom
transit freely through the cavity.

By contrast, in the regime of the experiment of Ho
et al. ~Ref. @7#!, the cavity QED interactions result in
strong suppression of dipole heating along the cavity a
relative to the free-space theory, which has a strong effec
both the duration and character of the observed atom tran
In the cavity QED setting it becomes possible to creat
potential deep enough to trap an atom without simu
neously introducing heating rates that cause rapid esc
from that potential. For these parameters, the average ex
mentally observed localization time is a factor of 3.5 long
than the equivalent free-atom average. The results of ex
sive numerical simulations of trapping times and radial
cillation frequencies, and their validation by way of compa
sons to experimentally measured distributions, demonst
the essential role of the single-photon trapping mechanism
the experiment of Ref.@7#. At root is the distinction between
the nonlinear response of an atom in free space and
strongly coupled to an optical cavity. For these experimen
parameters, the eigenvalue structure of Fig. 1 leads to
found differences between the standard theory of laser c
ing and trapping, and the extension of this theory to
regime of strong coupling in cavity QED.

Note that prior experiments in our group have confirm
that the full quantum treatment of the one-atom master eq
tion in cavity QED is required for a description of the d
namics associated with the internal degrees of freedom f
single atom in an optical cavity in the regimeg.(g,k).
These experimental confirmations come by way of meas
ments of the nonlinear susceptibility for the coupled syst
in settings close to that for the experiment of Re
@7,4,5,17#. A principal goal of this paper is to investigate th
extent to which a theory of atomic motion within the setti
of cavity QED is likewise anecessarycomponent in describ
ing the center-of-mass dynamics for the experiments of R
@7,8#.

A second goal is to examine the related question of
extent to which inferences about atomic motion within t
cavity can be drawn from real-time observations of the c
ity field, either via photon counting@8# or heterodyne detec
tion @7# of the cavity output. The interactions in cavity QE
bring an in principle enhancement in the ability to sens
atomic motion beyond that which is otherwise possible
free space. Stated more quantitatively, the ability to se
atomic motion within an optical cavity by way of the tran
mitted field can be characterized by the optical informat
I 5a(g0

2Dt/k)[aRDt, which, roughly speaking, is the
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maximum possible number of photons that can be collec
as signal in timeDt with efficiency a as an atom transits

between a region of optimal couplingg0 and one withg(rW)
!g0. A key enabling aspect of the experiments in Refs.@7,8#
is that R5g0

2/k@(k,g), leading to information abou
atomic motion at a rate that far exceeds that from eit
cavity or spontaneous decay~as in fluorescence imaging!. In
practice, for detection strategies employed experimenta
information is extracted at a somewhat lower rate. For
ample, in the experiment of Hoodet al. @7#, the photon count
rate would be (2.73107/s) ~including the overall escape an
detection efficiencya'0.15), while for the experiment o
Pinkseet al. @8# it is (2.23106/s) ~including an estimated
overall escape and detection efficiencya'0.11) @18#. For
time scalesDt;10 ms, as relevant to the following discus
sion, atomic motion through the spatially varying cavi
mode leads to variations in the transmitted field that can
recorded with a high signal-to-noise ratio, namely, a sig
of 2.73102 photons for the experiment of Hoodet al. and
2.23101 for that of Pinkseet al., where each is calculate
for an intracavity field strength of one photon.

The value of the optical information itself does not tell th
complete story. For cavity QED experiments like those co
sidered here, one records either the sequence of photoele
counts or the heterodyne current versus time, from wh
necessarily only limited inferences about atomic motion c
be drawn. However, if center-of-mass dynamics~i.e., axial
and radial motions! occur on well-separated time scales, th
it is reasonable to suggest that appropriate signal proces
techniques could extract information about these moti
from the single time sequence of the photocurrenti (t). Such
processing could presumably occur in real time ifaR is
much faster than the rates for radial and axial motion@e.g.,
the oscillation frequencies (f r , f a) in a potential well, with
f r! f a#. Unfortunately, in neither experiment@7,8# is aR
large enough to resolve the axial dynamics directly, so
task of disentangling the radial and axial motion signals
comes more difficult, and theoretical simulations of the e
periment become useful in understanding the nature of
observed transmission signals.

This difficulty arises in the experimental regime of Pink
et al. @8#. For these parameters, axial heating leads to
quent bursts of large-amplitude motion along the cavity ax
with envelopes extending over time scales comparable
those for radial motion. Consequently, at experimental ba
widths ~averaging times!, both types of motion give rise to
qualitatively similar modulations in the measured transm
sion signal. Furthermore, motion in the radial direction ha
strong diffusive component, giving rise to a wide spread
time scales for radial motion. Our simulations discussed
Sec. V suggest that for these parameters, short-time-s
modulations (&300 ms) tend to be mostly due to bandwidt
averaging over axial motion, while longer (*500 ms) varia-
tions such as presented in Fig. 2 of Ref.@8# typically reflect
radial motion, though these long-time-scale variations
generally modified in amplitude by the presence of axial m
tion. Modulations on intermediate time scales appear a
biguous in their dynamical origin.
1-3
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By contrast, as shown in Ref.@7#, for the parameters o
Hoodet al.atoms are well localized along the standing-wa
direction throughout most of the trapping interval, with ax
motion giving rise to negligible signal until finally rapi
axial heating leads to atomic escape. Consequently, obse
variations in the photocurrenti (t) are simpler than those o
Ref. @8#, and directly yield the radial atomic position. Fu
thermore, in this experiment the radial oscillation frequen
is large compared to the spontaneous emission heating
meaning that the resulting atomic motion is largely cons
vative ~rather than diffusive! in nature, taking place in a
known potential~as demonstrated both experimentally a
by way of numerical simulation!. Hence, fromi (t) it be-
comes possible to make detailed inferences about the ra
motion, even to the point of real-time observations of t
anharmonic motion of a single atom and of the reconstr
tion of actual atomic trajectories.

The structure of the paper is as follows. Following th
introduction, in Sec. II we present a detailed description
our theoretical model and its use for the implementation
numerical simulations. Section III compares effective pot
tials and momentum diffusion rates derived for the two e
periments, along with their analogs for the hypothetical c
of an equal-intensity free-space trap. These calculations
plore the distinction between quantum and classical, and
give insight into the nature of atomic motion expected
both experiments. Sample simulated trajectories are
sented for both cases. In Sec. IV we present experime
and simulation results for the case of Hoodet al., which
serve both to verify the simulations and also to demonst
important features of the resulting motion. Section V giv
the application of the same tools to analyze the experim
of Pinkseet al.; we see that standing-wave motion and d
fusive radial motion complicate the correlation betwe
atomic position and detected field in this case. Finally, ax
motion is explored in more depth, and Fourier analysis of
simulations show that oscillations of comparable amplitu
and frequency should be visible for both atoms confined~but
heated! within a well, and atoms skipping along the standi
wave.

Principal findings

The theoretical treatment and numerical simulation of
motion of a single atom strongly coupled to an optical cav
as described in Sec. II, lead to a surprisingly rich range
often qualitatively different dynamics. The motion may
essentially conservative and tightly confined around a
nodes of the standing wave, or essentially dissipative
diffusive and involve interesting flights between different p
tential wells of the standing wave. Indeed we find that
existing experimental results of Hoodet al. and Pinkseet al.
exemplify these very different dynamical regimes. Key fe
tures of the atomic motion in both experimental regimes
addressed as follows.

Figures 3–5 and their associated discussion in Sec
elucidate the nature of the trapping potential and momen
diffusion in an optical cavity as opposed to a free spa
standing wave. In particular we find that, even when
atom-cavity system is strongly coupled and driven such
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it has a mean intracavity photon number of roughly 1, t
trapping potential and momentum diffusion may be on
slightly different from those in a free-space standing wa
and in fact this is the case for the parameters of Pinkseet al.
On the other hand, for the parameters of Hoodet al. the
usual fluctuations of the dipole force along the standing w
are suppressed by an order of magnitude, which to
knowledge represents qualitatively new physics for opti
forces at the single-photon level within the context of cav
QED. We show that in the parameter regime of Pinkseet al.
the heating rates are such that the atom could be expecte
gain energy equal to a significant fraction of the total tra
ping potential during a single motional oscillation period f
both axial and radial motion. By this measure the heat
rates in the experiment of Hoodet al. are much slower, in-
dicating more nearly conservative motion, and this could
expected to have a profound effect on the qualitative na
of the dynamics in the two experiments.

Figures 6 and 7 and the corresponding text in Sec.
present simulated transits for both experiments, and disc
the qualitative features of atomic dynamics in both cases.
the parameter regime of Hoodet al., conservative radial mo-
tion dominates diffusion and standing-wave motion, w
atomic trajectories localized at peaks of a single standi
wave antinode. Atoms trapped with the mean trapping ti
execute several radial orbits. The eventual escape is typic
due to heating along the cavity axis. By contrast, for t
experiment of Pinkseet al., a trajectory of typical duration
as in Fig. 7~a!, does not experience a complete radial or
and in fact resembles a scattering event, with a large con
bution from radial diffusion as well. For these events t
observed localization time is comparable to the time for f
flight through the cavity. Axially the simulations show th
in longer duration transits the atom frequently skips betwe
wells of the standing-wave potential due to repeated hea
and recooling.

Section IV, with Figs. 8–10, presents a more detailed a
quantitative investigation of trapping and motional dynam
for the experiment of Hoodet al. The ability of our simula-
tions to closely reproduce the mean trapping times obser
in the experiment provides evidence of their accuracy a
utility. As illustrated in Fig. 9, the triggering strategy leads
significant modifications of the distribution of residen
times within the cavity. The essentially conservative nat
of the dynamics and the strong axial confinement mak
possible to confidently ascribe oscillations in the transmit
intensity to radial motion of the atom. As shown in Fig. 1
the experimentally observed oscillations are consistent w
the calculated potential. The conservative nature of the m
tion is further confirmed by the separation of orbital perio
by angular momentum that is also apparent in this figure

Section V, with Figs. 11–15, presents a detailed analy
of trapping and motional dynamics for the experiment
Pinkseet al. Again, our simulations are sufficient to repro
duce the reported mean localization time. In this case,
triggering strategy leads to relatively minor modifications
the distribution of residence times for an atom within t
cavity. In this case the dissipative nature of the evolution
significant; essentially no long-term localization is observ
1-4
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TRAPPING OF SINGLE ATOMS WITH SINGLE . . . PHYSICAL REVIEW A 63 013401
if the sign of the friction coefficient is reversed, whereas t
has little effect in the parameter regime of Hoodet al. These
largely dissipative and diffusive motional dynamics a
found to have significant effect on the information about
motion that is available in the transmitted field. For tho
events with a long localization time, the axial motion of t
atom is repeatedly heated and cooled, resulting in slow va
tions in envelope of the amplitude of the rapid oscillations
the transmitted light. The time scale of these variations
comparable to that for radial motion of the atom. There
thus no unambiguous signatures for radial motion, and o
longer time-scale excursions of the atom in the radial pot
tial lead to variations of the output field that may be con
dently ascribed to the radial motion. Likewise, although
formation about axial motion is also available in the outp
light, we find that it is in general difficult to distinguish larg
oscillations in a single well of the axial potential from fre
flight over several wells, as attempted in Ref.@8#.

II. THEORETICAL MODEL AND NUMERICAL
SIMULATIONS

In this section we outline the derivation from the fu
quantum-mechanical master equation of the ‘‘semiclass
model’’ for the atomic motion used in Ref.@7#. It turns out
that this model is able to reproduce the experimental ob
vations very accurately. Note that here the term ‘‘semicl
sical’’ refers to approximations with respect to the atom
center-of-mass motion, and not to the internal degrees
freedom, for which the full quantum character is retain
This situation should not be confused with the semiclass
theory of cavity QED for which expectation values of fie
operatorsÔf ield and atomic operatorsÔf ield are assumed to
factorize,^Ôf ieldÔatom&5^Ôf ield&^Ôatom&; no such approxi-
mation is made here. To distinguish these two cases,
introduce the termquasiclassicalfor the case of atomic mo
tion.

The validity of the quasiclassical model depends on
separation of time scales between the atomic motion and
cavity and internal atomic dynamics. We adapt the work
Dalibard and Cohen-Tannoudji@14# to the situation of a
quantized cavity mode. A similar derivation in the bad-cav
limit appeared in Ref.@19#. The details of the derivation ar
essentially unchanged from free space, since the terms o
master equation which refer to the dynamics of the cav
have no explicit dependence on the operators describing
atomic motion. However, we do find conditions for the v
lidity of the approximation for this system which depend
the properties of the cavity. Finally, we describe in mo
detail the numerical simulations of the resulting model fi
presented in Ref.@7#. These simulations are of the kind di
cussed in Refs.@20,21#.

An analytical calculation of force, momentum diffusio
and friction coefficients for the quasiclassical model
atomic motion in the low driving limit was derived by Hora
and co-workers@15,22#, who found a regime in which the
steady-state temperature scaled as the cavity decay rate.
allows a cooling of the atom below the Doppler limit, s
long as the cavity can be made to have lower loss than
01340
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atom. However, the parameters of Refs.@7,8# are very far
from this low driving limit. Hence we employ numerica
techniques based on solving the appropriate master equa
by expansions in terms of Fock states of the cavity field@23#.
Note that a very early contribution developed a different th
oretical framework and numerical scheme for calculating
force and friction~but not the momentum diffusion! of an
atom in a cavity~or ‘‘colored vacuum’’! @24,25#. Very re-
cently, Vuletic and Chu@16# found cavity-mediated cooling
in a slightly different regime to that considered by Hor
et al.

A. Model of atom-light interaction in a cavity

The Hamiltonian for a two-level atom interacting with
single mode of the electromagnetic field in an optical cav
using the electric dipole and rotating-wave approximatio
~in the interaction picture with respect to the laser frequen!
is

H5
pW 2

2m
1\~vatom2vprobe!s

†s1\~vcav i ty2vprobe!a
†a

1\g~rW !~a†s1s†a!1\~Ea†1E* a!. ~1!

This is the familiar Jaynes-Cummings Hamiltonian modifi
to take into account the external degrees of freedom of
atom and the spatial variation of the cavity mode. The fi
term is the kinetic energy of the atom, and the next two ter
are the energy in the internal state of the atom and the ca
excitation. The fourth term describes the position-depend
interaction of the cavity mode and the atomic dipole. It
important to note thatrW and pW are operators. Thus, for ex
ample, the exact strength of the coupling between the ato
internal state and the cavity field depends on the shape o
atomic wave packet, which is in turn determined by the m
chanical effects of the cavity field. Some implications of th
Hamiltonian are considered in detail by Vernooy and Kimb
@26#. The Hamiltonian has been written in terms of cav
and dipole operators that rotate at the frequency of the pr
field vprobe. The real atomic transition~cesium in Ref.@7#
and rubidium in Ref.@8#! in fact involves several degenera
magnetic sublevels, but we assume that the cavity is dri
by circularly polarized light and that the atom is optical
pumped such that it occupies an effective two-level syst
described by the dipole operators with the quantization axis
alongx.

Dissipation in the system is due to cavity losses and sp
taneous emission. By treating modes external to the cavit
heat reservoirs at zero temperature in the Born, Markov,
rotating-wave approximations, it is possible to derive t
standard master equation for the density operatorr of the
system@14,27# as

dr

dt
5

2 i

\
@H,r#1k~2ara†2a†ar2ra†a!

1
3g

4pE d2k̂S~ k̂• x̂!exp~2 ik k̂•r !srs†exp~ ik k̂•r !

2g~s†sr1rs†s!. ~2!
1-5
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The third and fourth terms describe the effect of spontane
emission on the atomic motion including the momentu
kick experienced by the atom as a result of the spontane
emission. The unit vectork̂ is the direction of an emitted
photon. The pattern of dipole radiation is accounted for
the angular factorS( k̂• x̂)5@11( k̂• x̂)2#/2 @28#.

B. Quasiclassical motion of the center of mass

It is possible to eliminate the internal and cavity dynam
adiabatically in favor of the slower dynamics of the motion
state in parameter regimes of direct relevance to current
periments. Intuitively, for the quasiclassical approximati
to work, the state of the atom needs to be sufficiently loc
ized in position and momentum on the scales importan
the problem so that it can be thought of as a classical
ticle. The conditions for adiabatically eliminating the intern
and cavity dynamics roughly correspond to this idea. It tu
out that it is necessary first that exchanges of momen
with either the cavity field or by spontaneous emission i
free space should result in momentum kicks that are sm
compared with the momentum spreadDp of the atomic
Wigner function, thus

«1.\/Dp!1. ~3!

For an atom which is in a minimum uncertainty state w
respect to the position-momentum Heisenberg inequa
this requires that the state is localized to better than a wa
length. The atomic motional state will in general be a m
ture allowing the position spread to be broader. Howev
this requirement means that the motional state can be tho
of as a probabilistic mixture of pure states localized to with
a wavelength and so places a limit on the coherence leng
the motional state@29#. Second, it is important that the rang
of Doppler shifts of the atom due to its momentum spread
small compared to the atomic and cavity linewidths; thus

«2.kDp/mg.kDp/mk!1. ~4!

In this paper it will be assumed that the root-mean-squ
atomic momentum obeys this inequality, thus making a l
velocity approximation, but the arguments here can in fac
generalized to arbitrary mean velocities of the atom@30#.
The Heisenberg inequality means that this also require
minimum position spread of the atom

Dr @\k/mg,\k/mk. ~5!

These criteria are a simple generalization of the situation
laser cooling in free space which can be imagined as
situationk→`. The consistency of these conditions, whi
effectively put lower and upper limits on the atomic mome
tum spread, requires that

\2k2/2m

\g
!1,

\2k2/2m

\k
!1. ~6!

The first of these conditions is well known for laser cooli
in free space—the requirement that the recoil energy of
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atomic transition be much lower than the Doppler ener
which effectively controls the limiting temperature of th
laser cooling. This condition is well satisfied for heavy atom
such as cesium and rubidium, and the optical transitions
ployed in cavity QED experiments considered here. T
analogous condition brought about by the cavity dynam
requires that the recoil energy associated with exchang
excitation with the cavity field is much smaller than the e
ergy width of the cavity resonance. Just as the first criter
implies that the atom is still in resonance with a driving fie
at its transition frequency after spontaneously emitting,
second criterion implies that absorbing or emitting a pho
from the cavity will leave the atom near the cavity res
nance. In the experiments of Refs.@5,7,8# k;g, so that this
second criterion does not place a stronger restriction on
validity of the approximations than the free-space lim
However, it is important to note that the design of the cav
as well as the atom and transition that are chosen, now ha
effect on the validity of the approximation. It would be po
sible, for example, to change the cavity length in such a w
that the system moves from a regime in which the quasic
sical treatment is appropriate into one in which it is not.
practice for cold atoms cooled to roughly the Doppler lim
(Dp2/2m;\g,\k) it will be the case that «1.«2

;A(\2k2/2m)/\g,A(\2k2/2m)/\k, and so a consistent ex
pansion should be to equal order in these small paramet

The derivation of Ref.@14# may be applied to our prob
lem, and proceeds by transforming the master equation@Eq.
2# into an evolution equation for a Wigner operator,

W~rW,pW ,t !5
1

h3E d3uW K rW1
1

2
uWUrUrW2

1

2
uW L exp~2 ipW •uW /\!,

~7!

describing the complete state of the system. An approxim
Fokker-Planck equation for the Wigner function describi
the motional degrees of freedom alone is found by writi
this equation as a Taylor expansion in terms of the sm
parameters«1 and«2, and truncating that expansion at thir
order. The force operator is defined as the gradient of
atom-cavity coupling

FW ~rW !52\g0¹W c~rW !~a†s1s†a!. ~8!

It is possible to show that the Fokker-Planck equation for
atomic Wigner functionf takes the form

]

]t
f 1

pW

m
•

]

]rW
f 52fW ~rW !•

]

]pW
f 1(

i j
Di j

]2

]pi]pj
f

1\2k2g^s†s&rs(i j Ei j

]2

]pi]pj
f

1(
i j

h i j

]2

]pi]r j
f 1(

i j
G i j

]

]pi
~pj f !.

~9!
1-6
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TRAPPING OF SINGLE ATOMS WITH SINGLE . . . PHYSICAL REVIEW A 63 013401
The quantities appearing in the Fokker-Planck equation
be calculated from the master equation for the internal
cavity degrees of freedom alone, which is obtained by set
rW to some real number valuerW0, and disregarding the kinetic
energy term. We definers(rW) as the steady state of this ma
ter equation, with the steady-state expectation value of
arbitrary operatorc given by^c&rs

5Tr(crs(rW)). The param-
eters appearing in the Fokker-Planck equation can then
expressed as follows:

fW ~rW !5Tr@FW ~rW !rs~rW !#,

Di j 5E
0

`

dtF1

2
^Fi~t!F j~0!1F j~0!F j~t!&rs

2f if j G ,
Ei j 5

3

8pE d2k̂S~ k̂• x̂!k̂i k̂ j ,

h i j 5
1

mE
0

`

dttF1

2
^Fi~t!F j~0!1F j~0!F j~t!&rs

2f if j G ,
G i j 5

i

m\E0

`

dtt^@Fi~t!,F j~0!#&rs
.

Simple integrations giveExx52/5 andEyy53/105Ezz and
all other components ofE are zero. Excepting the differen
definition of the force operatorFW , these are the expression
that can be derived in the case of a free-space light field@14#.
However, it is important to bear in mind the extra conditio
on the validity of the adiabatic elimination. The master eq
tion @Eq. ~2!# means that the force expectation values a
correlation functions can be very different from those th
are calculated in free space. In practice, the contribu
from the parametric tensorh is often smaller than that from
the diffusion tensorD by a factor of order,«, and is usually
disregarded in treatments of free-space laser cooling@14#.

Thus, as assumed in earlier work, calculating the qu
classical motion of the atom in a cavity field only requir
that the force and its correlation function be evaluated for
full atom-cavity master equation. Such prior treatments
sumed that the atom is motionless; however, they can
extended to atoms moving at some velocity under the s
conditions@30,31#. The diffusion coefficients may be foun
by first calculating the correlation functions via the quantu
regression theorem and numerical integration, or directly
matrix-continued fraction techniques@30,31#. A matrix-
continued fraction calculation requires that the field mode
periodic, and as such it only works along the standing-w
axis of the cavity mode. In directions perpendicular to th
the calculation of correlations from the master equation
essentially the only option if the atom is not slowly movin

C. Stochastic simulations of the quasiclassical model

It is possible to recast the Fokker-Planck equation of
~9! into a simple set of stochastic equations that desc
atomic trajectories in the cavity field. These equations can
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used to gain intuition about the atomic motion and how it
affected by mechanical forces. The diffusion and friction te
sors can be rewritten using the definition of the force ope
tor @Eq. ~8!#

D5\2g0
2@¹W c~rW !#@¹W c~rW !#TE

0

`

dtF1

2
^F~t!F~0!

1F~0!F~t!&rs
2^F&rs

2 G5\2g0
2j~rW !@¹W c~rW !#@¹W c~rW !#T,

~10a!

G5
i

m
\g0

2@¹W c~rW !#@¹W c~rW !#TE
0

`

dtt^@F~t!,F~0!#&rs

5
\g0

2

m
x~rW !@¹W c~rW !#@¹W c~rW !#T, ~10b!

whereF5a†s1s†a. Writing the parameters of the quas
classical model in this form relies on the approximation th
the atom is slowly moving, namely, that it does not move
significant fraction of a wavelength during a cavity or atom
lifetime. Note that the functionsj andx depend on position
only through the couplingg5g0c. They can be calculated
efficiently by finding Dxx and Gxx using matrix-continued
fractions, and then dividing off the gradient factors.
matrix-continued fraction technique cannot be used to fi
the other components of the momentum diffusion or the fr
tion tensors directly, since the field mode is not period
across the Gaussian profile of the mode.

It is now straightforward to convert the Fokker-Plan
equation for the Wigner function into an equivalent set ofˆ
stochastic differential equations~SDE’s!. The resulting~Itô!
equations are@32#

dxW5
1

m
pW dt, ~11a!

dpW 52\g0^F&¹cdt2
\g0

2

m
x~rW !~pW •¹W c!¹W c

12\g0Aj~rW !¹W cdW112\kgA^s†s&AEdWW .

~11b!

The Wiener incrementdW1 has the usual properties, in pa
ticular dW1

25dt. The vectordWW is a vector of three such
increments. The terms in the equation for the momentum
the mean radiative force, its first-order dependence on
mentum, and its fluctuations due to the atom-cavity syst
and due to the coupling to free space, respectively. Th
equations depend on the quantities^F&,x,j, and ^s†s&,
which are functions of position throughg only. A straight-
forward simulation of these equations only needs to st
ordered look-up tables of these quantities for given value
g, rather than for all possible values ofrW. All of the other
quantities that appear, includingg, are simple functions ofrW

andpW . At each time step the algorithm searches the look
1-7
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A. C. DOHERTY, T. W. LYNN, C. J. HOOD, AND H. J. KIMBLE PHYSICAL REVIEW A63 013401
table for the current value ofg, starting from the previous
value, and reads off the current values of^F&,x,j, and
^s†s&. A linear interpolation for the two closest values ofg
was used but more sophisticated interpolation schemes c
be implemented. Sinceg will not change by a large amoun
in any one time step, the search can be very efficien
routine from Ref.@33# was used for this. In the low-velocity
limit of the quasiclassical theory, these stochastic differen
equations describe all the motional dynamics of the at
inside the cavity. The term proportional toh i j leads to cor-
relations between the atomic position and momentum.
effect of h i j is typically small compared to friction and dif
fusion and has been ignored for the moment as is comm
practice in free-space standing waves. Terms in the S
corresponding to theh term in the Fokker-Planck equatio
could easily be added. This would mean adding a new n
source which would affect the evolution of the position
well as the momentum.

III. APPLICATION OF THE MODEL TO EXPERIMENTAL
REGIMES

A. Potentials and heating rates for atomic motion

The ‘‘quasiclassical’’ model discussed in Sec. II can gi
us a great deal of information about the nature of the dyn
ics that may be expected in the parameter regimes releva
the experiments of Hoodet al. @7# and Pinkseet al. @8#. In
particular we are interested in whether quantization of
cavity field leads to any significant change in the dynam
in the sense of asking whether the atomic motion is v
different in the cavity from how it would be in a free-spa
standing wave of the same intensity and geometry as
cavity mode. Second, we can investigate the nature of
resulting atomic motion in the cavity field, which can b
either predominantly conservative or significantly diffusi
and dissipative, depending on the particular parameter
interest.
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To obtain a feel for the type of atom dynamics expect
effective potentials and heating rates were calculated for b
axial and radial directions of motion. The effective potent
of the atom in the cavity field may be calculated from t
force by

U~rW !52E
0

rW

FW ~rW8!•drW8.

The heating rates represent the average increase in the
tional energy due to the momentum diffusion at a given p
sition rW, and may be calculated from the diffusion tens
according to

dE

dt
~rW !5Tr@D~rW !#/m.

Thus the axial potential at the center of the mode isU(0,x)
52*0

xFW (0,x8)dx8, and the associated axial heating rate
dE(0,x)/dt5Dxx(0,x)/m. These quantities along with the
radial equivalentsU(r,0) anddE(r,0)/dt are plotted in Fig.
3 for the parameters of Hoodet al. @7#. The force and mo-
mentum diffusion coefficient for the cavity system were c
culated according to the formulas described above using
merical techniques based on Ref.@23#. The field state is
expanded in terms of number states, and truncated at an
propriate level and a matrix-continued fraction algorithm
used to calculateD. The axial potentials and heating rate
havel/25426 nm periodicity inherited from the standing
wave field strength. Observe that the axial heating rates h
minima at both field antinodes and field nodes.

The first thing to note is that the axial and radial heati
rates are very different. In the radial direction, heating
dominated by diffusion due to spontaneous-emission reco
Axially, however, the reactive or dipole fluctuation comp
nent of the diffusion dominates. This is because the reac
component is proportional to the gradient of the fie
r

as

r-
al
ote

ld
FIG. 3. Effective potentialsUe f f and heating
ratesdE/dt in the radial and axial directions fo
the experiment of Hoodet al. ~solid traces!. The
cavity field has a Gaussian waistw0514 mm in
the radial direction. The axial standing wave h
antinodes atx5(0,60.426)mm and nodes atx
560.213mm. All quantities are calculated for
Dprobe/2p52125 MHz and Dac/2p5
247 MHz, with an empty cavity mean-field

strength ofm̄50.3 photons. For comparison, co
responding quantities for an equivalent classic
free-space trap are shown as dashed traces. N
that the axial heating in the cavity trap is tenfo
smaller, greatly enhancing the trap lifetime.
1-8
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FIG. 4. Effective potentialsUe f f and heating
ratesdE/dt in the radial and axial directions fo
the experiment of Pinkseet al. ~solid traces!. The
cavity field has a Gaussian waistw0529 mm in
the radial direction. The axial standing wave h
antinodes atx5(0,60.390) mm and nodes atx
560.195 mm. All quantities are calculated fo
Dprobe/2p5245 MHz and Dac/2p5
240 MHz, with an empty cavity photon numbe

n̄50.9. For comparison, corresponding quantiti
for an equivalent classical free-space trap a
shown as dashed traces. Note that the poten
depths and heating rates are comparable in
cavity QED and free-space cases.
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squared, which is much larger for the axial direction whe
variations are greater~by a factor of 2pw0 /l). This contri-
bution also has the property that it does not saturate with
atomic response.

It is already clear that it should be possible to trap in
vidual atoms, since the potential depth of roughly 2.5 mK
greater than the initial energy of the atoms in the experim
~around 0.46 mK!, and the heating rate in the radial potent
is relatively slow. Over 50ms ~a time scale over which the
atomic motion is strongly affected by the potential! the total
heating will typically still be small compared to the depth
the potential. However, the importance of the quantum ch
acter of the relevant fields or phenomena is not ensured
the statement that trapping occurs with a mean field stren
of m̄;1 photon, since this is trivially the case in an equiv
lent free-space volume for a field of the same intensity
that inside the cavity.

In order to see whether a full quantum description of
atom-cavity is necessary in order explain observed effe
Fig. 3 also shows the values calculated for an atom in
equivalent free-space standing wave, calculated by stan
techniques@29#. This free-space standing wave has the sa
geometry as the cavity mode, and the same peak fi
strengthg0u^a&u2(0,0). The detuning between the free-spa
field and the atom is chosen to beDprobe. Perhaps surpris
ingly, the only large difference between the two models is
the axial heating rate, where a strong suppression of the a
heating is seen in the quantum calculation. This suppres
is an effect of the quantized nature of the intracavity fie
The self-consistent coupling of the cavity field and atom
position ~in a semiclassical sense! cannot explain this sup
pression; in fact, by itself this coupling would lead to a
increase in diffusion over the free-space case, since
atomic motion within the cavity induces steeper gradients
the field. The suppression of diffusion is then evidence tha
is necessary to use a fully quantum description, and spea
single photons rather than classical fields for these exp
01340
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mental parameters. As discussed in Ref.@7#, this suppression
of the axial heating was essential for the trapping of atom
the cavity. Thus for these experimental parameters, the
genvalue structure of Fig. 1 leads to profound differenc
between the standard theory of laser cooling and trapp
and the extension of this theory to the regime of strong c
pling in cavity QED.

By way of comparison, the same quantities are plotted
the parameters relevant to Pinkseet al. @8# in Fig. 4 @34#. The
smaller value ofg0 in this experiment leads to a smalle
effective potential, since the spatial gradients of the dress
state energy levels~which lead to the potential! are propor-
tional to g0. More importantly, the diffusion values calcu
lated from the full quantum model discussed above are n
little different from those of the equivalent free-space sta
ing wave. This lack of a clear difference in potentials
diffusion indicates that the quantized nature of the field is
required to explain the radial trapping observed in Ref.@8#.
Note that the resulting axial heating rates are essentially
same as those of Ref.@7# in absolute magnitude; however, i
Ref. @7# the potential was made deeperwithout the expected
corresponding increase in diffusion. For the parameters
Ref. @8# one additional interesting feature appears
enhanced cooling of the atom motion relative to the para
eters of Ref.@7#. This arises through cavity-mediated coolin
@15,16# and, as we shall see, has an important effect on
axial dynamics of atoms in the experiment of@8#.

We now wish to use these potentials and heating rate
gain an intuitive understanding of the character of atom
motion that we would expect to observe in each case
particular, we are interested in exploring the degree to wh
the atomic motion in the potential can be close to conser
tive motion, or likewise the degree to which it could b
dominated by diffusion.

The time scales of relevance to the conservative mo
may be characterized by the period associated with sm
amplitude oscillations in the bottom of the axial (ta51/f a)
1-9
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FIG. 5. Comparison of effective potential
and heating rates in the experiments of Ho
et al. ~solidline! and Pinkseet al. ~dash-dotted
line!. Heating rates are shown in units of tra
depths per harmonic oscillation period~in the ap-
propriate trap dimension!, providing a direct
measure of the degree to which oscillatory m
tion can be expected to be conservative in natu
Note that differences inw0 and l between the
two experiments lead to quite different radi
widths and slightly different axial periodicities
for the quantities plotted.
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and radial (t r51/f r) potential wells. If the energy change
only by a small fraction~relative to the the total well depth
U0) on this time scale, motion will be nearly conservativ
Figure 5 plots the potentials and heating rates for the
cases in this new set of scaled units; heating rates are
pressed as an energy increase per oscillation period,
fraction of U0 ~note as the atom heats and explores the
harmonicity of the potential, this only lengthens the period
oscillation!. Interestingly, we see a clear qualitative diffe
ence in the nature of the atomic motional dynamics. For
parameters of Hoodet al., in the radial plane spontaneou
emission only gives small perturbations to the energy o
the time-scale of single orbits, and motion is nearly cons
vative. We note that this low level of diffusion enabled t
reconstructions of single-atom trajectories in Ref.@7#, for
which the small changes in angular momentum could be
curately tracked. A quite different regime is found for th
parameters of Pinkseet al., where the radial atomic motion i
strongly affected by heating from spontaneous emiss
kicks. Here an average atom gains an energy of nearly
the well depth in what would be a radial orbit time, adding
large diffusive component to the motion. This same scal
shows that the axial heating rate is also much more rapid
the scale of the potential in@8#, which suggests that the atom
will more quickly escape its confinement near an antino
and begin to skip along the standing wave. The qualita
understanding of the atomic motion gained here is borne
by the simulations of Refs.@7# and @8#, and is explored in
more detail in the simulations to follow.

B. Simulated transits

Simulations of the kind described in Sec. II were pe
formed for the parameters of the two experiments, and in
vidual instances of these simulations give insight into
dynamics of the motion—for example, the relative sign
cance of conservative or dissipative dynamics—and the
01340
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relation between atomic motion and the cavity field sta
which is in turn measured by detection of the output fie
Ensembles of these trajectories provide the statistics of
motion described by the Fokker-Planck equation@Eq. ~9!#,
which may then be used to provide histograms of tran
times to compare to the experimental data or to test rec
struction algorithms for the motion. In order to approxima
the experiment as closely as possible, some effort was m
to match the detailed experimental conditions. The two g
eral considerations were to reasonably accurately estim
the initial distribution of atomic positions and momenta f
atoms and to consider detection noise and bandwidth w
simulating the feedback switching of the probe laser pow

For each trajectory in the simulations, initial atomic po
tion and momentum values were drawn from a probabi
distribution, which was chosen to correspond to the cloud
atoms following laser cooling and then free fall@7# or
launching by an atomic fountain@8# to the cavity mirrors. In
the simulations, all the atoms started in a horizontal pla
13

4 mode waists above or below the center of the cav
mode, where mechanical effects on the atom are negligi
Since the MOT from which the atoms are falling or risin
has dimensions much larger than the cavity mode, the in
position in the axial direction was chosen from a flat dist
bution over the cavity mode, and the initial position alo
the y axis was also chosen from a flat distribution over1

2

mode waists on either side of the mode center—this dista
could be modified but atoms that are far out in the mo
radially do not typically cause large increases in the cav
transmission, and therefore do not trigger the feedback.
velocity of the atom along the cavity axis is limited by th
fact that it must not hit one of the mirrors while fallin
toward the cavity, and this was also chosen from a flat d
tribution where the speed was not more than 0.46 cm/s
the cavity of Hoodet al. @7#. Although the two experiments
have rather different geometries, we estimate that this c
sideration leads to a very similar limiting velocity for motio
1-10
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FIG. 6. Typical trajectories from simulation
of the experiment of Hoodet al. as described in
the text. The driving parameters areDprobe/2p
52125 MHz andDac/2p5247 MHz, with an

empty cavity mean-field strength ofm̄50.3 pho-
tons. The trajectories have transit durations of~a!
345 ms ~b! 680 ms, and~c! 1032 ms. This is
one, two, and three mean transit times resp
tively. ~i! The radial trajectory of the atom; thez
position is plotted against they position.~ii ! The
y position~dashed line! andz position~solid line!
are plotted as a function of time.~iii ! The axial
position, where zero is an antinode of the cav
field. ~iv! The noiseless infinite-bandwidth trans

mission m̄ ~solid line! and the radial distance
from the center of the mode~dashed line!.
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along the axis. In the experiment of Pinkseet al. @8#, we used
0.4 cm/s The velocity along thez axis was chosen from a
Gaussian distribution appropriate to the temperature of
MOT (;20 mK) after polarization gradient cooling. Fo
Ref. @7# the velocities in the vertical direction were chos
by calculating as appropriate for an atom falling freely fro
the MOT~the MOT is situated 3.2 mm above the mode, w
a spatial extent of standard deviation 0.6 mm!. Thus atoms
arriving at the cavity axis have a mean vertical velocityv̄
525 cm/s. Some of these parameters such as the he
size and temperature of the initial MOT are not precis
known for the experiment, so that some consideration of
variation of the histograms and other features of the resul
simulations has been made although no systematic optim
tion in order to obtain the best agreement has been un
taken. In Ref.@8# the mean initial vertical velocity of atom
entering the cavity is 20 cm/s. This speed is very much l
01340
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ht,
y
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than the mean velocity imparted to the atoms by the push
beam which launches them from the MOT 25 cm below, a
as a result the atoms are all near the top of their trajector
Simple kinematical calculations show that the resulting d
tribution of velocities should be rather broad compared to
mean. In the absence of more detailed information about
MOT temperature and spatial size and the strength of
pushing beam, we choose the initial vertical velocity dist
bution to be a Gaussian of mean 20 cm/s and standard
viation 10 cm/s—this leads to a distribution of trapping tim
with a mean that matches the mean reported in Ref.@8#. Each
trajectory proceeds until the atom is either a greater ra
distance from the center of the mode than it started from o
has moved sufficiently far in the axial direction that it wou
hit one of the cavity mirrors.

The detection and triggering are modeled as follows.
the parameter range in which the ‘‘quasiclassical’’ mode
valid, the cavity field comes to equilibrium with the atom
1-11
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FIG. 6. ~Continued!.
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position on a time scale much faster than the atomic mo
itself, and thus the light transmitted through the cavity~over
bandwidths of the order of tens to hundreds of kilohertz! is
associated with the atomic motion. At each point in the sim
lation the intracavity field and intensity expectation valu
are stored in order to record for each trajectory a noise
and infinite-bandwidth trace. In practice, experimental tra
will look like filtered and noisy versions of these traces.
an atom enters the cavity mode, a weak driving field
present for probing. In order to model the triggering step,
field intensity ^a†a& or field amplitude modulus square
u^a&u2 is averaged over a time equal to the bandwidth of
detection in the case of heterodyne detection as in Ref.@7#,
or over the time windows in which photocounts are binned
the case of direct photodetection as in Ref.@8#. A random
number with the appropriate variance to represent the
noise is added, and the total is compared with some pre
cided level—if the transmission exceeds this level the pr
laser beam is increased in strength in order to attempt to
the atom. In the case of Ref.@7# the trigger level isu^a&u2

50.32, the averaging time is 9ms and there is a 2-ms delay
between triggering and changing the driving laser power.
the experimental bandwidth of 100 kHz, the appropri
noise has standard deviation 0.05 at a transmitted signa
0.32. These parameters are chosen so as to match as c
as possible the conditions of the experiment. The same
cedure is followed for simulations of the parameters Ref.@8#.
Although the exact triggering protocol is not described th
we assumed that counts over a period of 10ms were used to
decide whether or not to trigger and the noise was chose
be consistent with the reported photon count rate
23106s21 @18#.

Examples of such trajectories are plotted for the para
eters of Ref.@7# in Fig. 6 and for those of Ref.@8# in Fig. 7.
The chosen trajectories range in length from the experim
tally reported mean transit time upward, and are chosen
cause they show typical features of the dynamics in e
case. It is clear that the two experiments are in quite differ
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parameter regimes, as already indicated by the relative s
of the potentials and heating rates.

For the parameters of Ref.@7#, the atoms orbit in a radia
plane; some have nearly circular and some very eccen
orbits. The motion along the axial direction is usually we
localized near an antinode of the standing wave, where
axial heating rate is small. This localization occurs beca
atoms are channeled into the antinodes by the weak pote
associated with the initial probing field, which slowly begin
to affect an atom as it falls across the mode waist during
detection stage of the experiment. However the strong a
heating that is present away from the antinodes means
once an atom begins to heat axially, it suffers a burst
heating~over several hundred microseconds!, which leads to
its loss from the potential well associated with a single an
node of the field. Frequently the atom leaves an axial pot
tial well when it is radially far from the center of the cavit
mode, since in this case the axial potential becomes wea
Note that the mean transit time in Ref.@7# corresponds to
;3.5 radial orbits around the center of the cavity mode,
transits with multiple oscillations are frequently observed.
Ref. @8# the radial oscillation frequency is slower, so an ato
of mean transit time does not in fact make a complete ro
tion about the mode center. The radial motion in this cas
also visibly more stochastic in nature, as a result of the re
tively faster spontaneous emission momentum diffusion d
cussed above.

Another interesting difference between the two parame
regimes is, as suggested in Ref.@8#, the relative importance
of atomic motion along the standing wave as opposed
oscillations around a single antinode. In the case of Ref.@8#,
long, strongly trapped transits almost always involve int
vals when an atom is skipping along the standing wave
well as intervals when it is oscillating in an individual wel
By contrast, for the parameters of Ref.@7#, only a few per-
cent of trajectories involve skipping during times in whic
the atom is trapped, and this is usually associated w
movement over one or two wells with the atom falling ba
1-12
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FIG. 7. Typical trajectories from simulations of the experiment of Pinkseet al. as described in the text. The driving parameters

Dprobe/2p5240 MHz andDac/2p5235 MHz, with empty cavity photon numbern̄50.9. The trajectories have transit durations of~a!
247 ms ~b! 514 ms, and~c! 1358 ms. The experimentally reported mean transit time is 250ms. ~i! The radial trajectory of the atom; th
z position is plotted against they position.~ii ! The y position~dashed line! andz position~solid line! are plotted as a function of time.~iii !

The axial position, where zero is the mean axial position over the transit.~iv! The noiseless infinite-bandwidth transmissionn̄ ~solid line! and
the radial distance from the center of the mode~dashed line!.
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into the adjacent or a nearby well. This happens so quic
that it does not affect the radial motion in practice, or lead
a detectable signal in the output light, so that these r
events of skipping do not affect the reconstructions of R
@7#. As noted in Ref.@7#, the axial motion often become
more significant at the end of a transit and as the atom
leaving the mode, which leads to atoms skipping a well
perhaps as many as one in five cases at the end of the tra
We find from the simulations that in Ref.@8#, the first escape
time from an axial potential well for an atom initially loca
01340
ly
o
re
f.

is
n
sit.

ized near an antinode is sufficiently short compared to
mean trapping time that skipping along the wells almost
ways takes place. On the other hand, the first escape tim
of the order of several times the mean trapping time for
parameters of Ref.@7#, so skipping between standing wells
correspondingly rare.

It is interesting to note that the friction coefficient for th
parameters of Pinkseet al. is much more significant than fo
the experiment of Hoodet al., and plays an important role in
the axial motion of the atom. As in the trajectories show
1-13
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FIG. 7. ~Continued!.
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here it is a feature of essentially every trajectory for t
parameters of Ref.@8# that the atom spends time in potenti
wells associated with several different antinodes of the fie
However, we performed simulations with the sign of the fr
tion coefficient reversed, and found that no more than a
percent of trajectories were recaptured in a second well a
having begun to skip along the standing wave. Clearly
dissipative nature of the motion is an integral feature of
dynamics in this regime, and in particular it enables the
oms to fall back into axial potential wells after escape due
the rapid heating in that dimension.

IV. SIMULATION RESULTS FOR THE EXPERIMENT
OF HOOD et al.

Having presented the theoretical basis underlying
simulated atom trajectories, in this section we present res
of these simulations and their comparison with experime
results as reported in Ref.@7#. We generate a set of simulate
trajectories for the parameters (g0 ,g,k)
52p(110,2.6,14.2) MHz with detuning parametersDac
5vcav i ty2vatom522p347 MHz and Dprobe5vprobe
2vatom522p3125 MHz. In correspondence with the e
perimental protocol, the initial pretriggering level of the dri
ing laser gives a 0.05-photon mean-field strength in
empty cavity; when this level rises to 0.32 photons, indic
ing the presence of an atom, we trigger a sixfold increas
the driving strength to a trapping level of a 0.3-phot
empty-cavity mean-field strength. A close corresponde
between theory and experiment is obtained for these res
demonstrating the relevance of this theoretical model to
physics of the actual experiment. In addition, both theoret
and experimental results exhibit features which are relev
to building up a picture of the nature of the single-ato
single-photon trapping and atomic dynamics, both qual
tively and quantitatively.

We begin by presenting the qualitative similarity of e
perimental and simulated atom transit signals, as obse
via detection of cavity transmission as a function of tim
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Figure 8 shows two sample experimental transits@~a! and
~b!# and two sample simulated transits@~c! and ~d!#. For the
simulated transits, traces of the corresponding radial
axial motion are also shown. Transmission is shown here
m̄5u^a&u2, as is appropriate for the balanced heterodyne
tection of Ref.@7#. In the case of the simulated results, t
simulated transmission signal has been filtered down to
experimental detection bandwidth of 100 kHz, and both te
nical noise and shot noise have been added@35#. The trans-
mission signal thus processed can be seen to lose some o
clarity with which it reflects the full atomic dynamics, i
comparison to the transmission traces of Fig. 6. In particu
the experimental detection bandwidth is much slower th
the time scale for axial oscillation in the confining potenti
so that observed transmission signals are averaged ove
fast variation ing caused by these axial oscillations. Th
observed maximum transmission should therefore be l
ered relative to theoretical predictions, by an amount dep
dent on the amplitude of typical axial motion. Thus th
finite-bandwidth effect allows for an experimental estimati
of the axial confinement of a typical transit. Such a proc
dure gives an estimate of confinement within;70 nm of an
antinode, in good agreement with simulation results wh
suggest typical confinement within;50 nm. It is important
to note that while such tight confinement appears typi
over the duration of a trajectory, atoms commonly unde
rapid diffusive heating near the end of their confinement li
time, which leads to their escape in a majority of cases.

A. Trapping lifetimes

From the entire set of experimental and simulated traj
tories like those of Fig. 8, it is possible to investigate so
quantitative aspects of the trapping dynamics. First we fo
on the trap lifetimes produced by the triggered-trapp
scheme. Figures 9~a! and 9~b! show histograms of experi
mental transit times for untrapped atoms and for ato
trapped by means of the triggered-trapping strategy. Tra
durations are determined from the experimental data by
1-14
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TRAPPING OF SINGLE ATOMS WITH SINGLE . . . PHYSICAL REVIEW A 63 013401
cording the time interval during which the transmission s
nal is clearly distinguishable from the empty-cavity transm
sion level, in the presence of experimental noise. Since
signal-to-noise ratio for observing transits depends on
specific probe parameters, one must be careful to com
untriggered and triggered transits observed with the sa
detunings and intracavity field strengths. The sole differe
must be that in the untriggered case, the empty cavity fiel
set at a constant strength so that the atom falls through
effective potential, whereas in the triggered case the fi
begins at a lower level and is only turned up once the a
enters the cavity, thus confining the atom. For example,
8~a! shows sample untriggered~dashed! and triggered~solid!
transit signals which correspond to one another in this w

In Fig. 9 the difference in transit lifetimes between tri
gered~b! and untriggered~a! cases is immediately striking
For their initial fall velocity of v̄525 cm/s, atoms have
free-fall time of ;110 ms across the cavity waist 2w0
52(14.06 mm). As discussed above, the duration of o
served transits is limited by the signal-to-noise ratio, wh
provides a slightly more restrictive cut on transit duratio
so the untriggered data set shows a mean duration of 92ms.
In contrast, when the triggered-trapping strategy is e
ployed, the mean trapping lifetime is 340ms. The dispersion
about the mean likewise changes drastically from 75ms in
the untriggered case to 240ms in the triggered case. Thes
results represent a clear signature of the trapping of sin
atoms with single photons via this method. In this setti
atoms have been observed to remain trapped in the ca
field for as long as 1.9 ms.

The corresponding theoretical histograms are shown
Fig. 9~c! and 9~d! for the untriggered and triggered case
The start of the transit is taken to be the time at which
atom could be distinguished in the cavity given the signa
noise, and the final time is taken to be the last point at wh
the transmission dropped to within the noise of the transm
sion with no atom. This definition accounts for the fact th
as atoms move out in the radial direction the transmiss
often drops to around the free space value, but returns a
to some large value over the time scales of the atomic
tion. These levels were chosen to duplicate as closely
possible the protocol for deciding transit times for the expe
mental data.

The simulated transit set shows a mean trapping time
96 ms in the untriggered case and 383ms in the triggered
case and dispersions of 84 and 240ms, respectively. This
result is in good agreement with the experimental res
when statistical errors and uncertainties in the initial MO
parameters are taken into account. The agreement betw
experimental and simulated trap lifetimes, in both mean
distribution, gives an indication of the validity of the the
retically calculated trapping potential and diffusive forces
the atom. The 3.5-fold increase in observed lifetimes due
trapping is made possible by the cavity QED interactio
which allows creation of a deep trapping potential witho
correspondingly large diffusion as in the free-space case

B. Oscillations and radial motion

We now turn to a more detailed investigation of the d
namics of motion experienced by a trapped atom. As
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have seen, the transmission signal for a single trapped a
exhibits large variations over time which may be tentative
identified with atomic motion in the radial~Gaussian! dimen-
sions of the cavity field. Thus, for example, the highest tra
mission occurs when the atom passes closest to the ca
axis, r50. To determine the validity of such an identifica
tion, we examine the periods of observed oscillation in
transmission signal. The calculated effective potential is
proximately Gaussian in the radial dimension, so a o
dimensional conservative-motion model predicts periods a
function of oscillation amplitude in this anharmonic effectiv
potential well. Referring to the sample transits of Fig. 8, o
does indeed note a trend toward large modulations with l
periods and smaller modulations with shorter periods.

FIG. 8. ~a! and~b! Examples of atom transits, i.e., cavity tran
mission as a function of time as an atom passes through the c
field for the experiment of Hoodet al. Solid traces show atoms

trapped using the triggering method described, with anm̄.1 pho-
ton peak field strength. For comparison, an untriggered~untrapped!
atom transit is shown in the dashed trace. For these traces
parameters are those of Fig. 3. The empty-cavity 0.3-photon m
field strength is indicated by the horizontal dashed line.~c! and~d!
Theoretical simulation of atom transits for the sameDprobe and
Dac . Shot noise and technical noise have been added to the tr
mission signals, which have also been filtered to experimental ba
width. Other traces show the radial~dashed line! and axial~solid-
line! motion of the atom. Motion alongx, the standing-wave
direction, has been multiplied by 10 to be visible on the plot. N
that the atom is very tightly confined inx until rapid heating in this
direction causes the atom to escape.
1-15
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FIG. 9. Observed atomic transit durations f
untriggered and triggered cases, with the para
eters of Fig. 3~a! and~c! Experimental data show
a mean observation time of 92ms in the untrig-
gered case~a! and 340 ms in the triggered case
~c!, indicating the significant trapping effect. Fo
comparison, the free flight time across the cav
waist is 110 ms. ~b! and~d! The simulated transit
set shows a mean of 96ms for the untriggered
case~b! and 383 ms for the triggered case~d!, in
good agreement with experiment.
ng
he
-
-
-
e
he
ng
a
ha
e
in
co
tia
s

os-
of
u-
u-
ic

the
of
re

les.
ith
he
-
, is
a

an
ct

ex-
ly
quantify this observation, we plot periodP versus the ampli-
tude A for individual oscillations, whereA[2@(H11H2)/2
2Hc#/(H11H2), with $H1 ,H2 ,Hc% as indicated in Fig. 8.

Figure 10~a! shows the experimental data plotted alo
with the calculated curve for one-dimensional motion in t
effective potentialU(r,0) ~see Fig. 3!, for the same param
eters as Fig. 8.~This is a different data set from that pre
sented in Fig. 4 of Ref.@7#.! Note that since an atom ap
proaches the cavity axisr50 twice over the course of on
orbital period, the predicted period for oscillations in t
transmission signal is half the period of the underlyi
atomic motion. Experimental data clearly map out this c
culated curve for radial atomic motion, demonstrating t
oscillations in the observed cavity transmission do inde
reflect radial position of an atom as it varies over time with
the trap. The agreement also indicates the quantitative
rectness of the theoretical model for the radial poten
depth and spatial profile. Note that the comparison is ab
lute with no adjustable parameters.
01340
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The same analysis may be performed for transmission
cillations in the set of simulated transits, yielding the plot
Fig. 10~b!. This plot again shows agreement with the calc
lated curve, with some spread away from the line. For sim
lated transits, it is possible to turn to the underlying atom
position record to determine an angular momentum for
atom during a given oscillation. Thus the oscillation data
Fig. 10~b! are plotted by atomic angular momentum, whe
lower angular momentum data points are shown with circ
A separation by angular momentum is clearly evident, w
lower angular momentum points most closely following t
calculated one-dimensional~and thus zero angular momen
tum! curve. This separation, while it may seem expected
in fact a nontrivial indication that angular momentum is
valid quantity for the atomic motion over the course of
oscillation period. Since the atomic motion is not in fa
conservative, but is also influenced by random~diffusive!
forces, a separation by angular momentum can only be
pected to occur if the effect of diffusive forces is sufficient
1-16
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FIG. 10. ~a! For experimental transmissio
data of Hoodet al., the modulation period is
shown as a function of amplitude. If modulation
in transmission are tentatively identified with ra
dial atomic motion, their expected period is ha
that of the radial motion. The solid curve give
calculated period vs amplitude based on this
sumption and on one-dimensional motion in th
effective potentialU(r,0) of Fig. 3. ~b! Corre-
sponding plot for simulated transmission dat
Points with lowest underlying atomic angula
momentum are plotted with circles; separation
angular momentum reflects the conservative n
ture of atomic dynamics on time scales comp
rable to a radial period.
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small over the time scale of an orbit in the conservat
potential. The plots of Fig. 3 provide an initial indication th
this is indeed the case for these parameters, and this id
borne out by the current investigation. Confidence in
relatively small effect of diffusion over a single orbital p
riod is crucial in the reconstruction of two-dimension
atomic trajectories as in Ref.@7#.

V. SIMULATION RESULTS FOR THE EXPERIMENT
OF PINKSE et al.

Having provided a validation of our capabilities for n
merical simulation by way of the results of Sec. IV we ne
apply this formalism to the experiment reported in Ref.@8#.
At the outset, we note that the various approximations d
01340
e

is
e

t

-

cussed in Sec. II related to the derivation of this quasicla
cal model are satisfied to a better degree for this experim
than for the experiment of Ref.@7#. Hence we expect that th
correspondence between the simulations and experim
should be at least of the quality as in the preceding sect

Our starting point is the generation of a large set of sim
lated trajectories for the parameters reported in Ref.@8#,
namely, (g0 ,g,k)52p(16,3,1.4) MHz with detuning pa-
rameters Dac5vcav i ty2vatom522p335 MHz and
Dprobe5vprobe2vatom522p340 MHz. The initial pre-
triggering level of the driving laser gives 00.15-photon me
intensity in the empty cavity; when this level rises to 0.
photons, indicating the presence of an atom, we trigger
increase in the driving strength to a trapping level of 0
photon empty-cavity intensity. These criteria are intended
1-17
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FIG. 11. Simulated atomic transit duration
for untriggered and triggered cases, with the p
rameters of Pinkseet al., as in Fig. 7.~a! The
untriggered transit set shows a mean observat
time of 160 ms. ~b! The triggered transit se
shows mean duration 280ms, in good agreemen
with the experimentally quoted mean of 25
650 ms. For comparison, free-fall time acros
the cavity waist is 290ms.
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follow the parameters indicated in Figs. 2 and 3 of Ref.@8#.
Note that for the cavity geometry of this experiment, the tim
for an atom to transit freely through the cavity mode in t
absence of any light forces ist052w0 / v̄5290 ms, where
as before we take twice the cavity waistw0 as a measure o
the transverse dimension of the cavity.

A. Histograms of transit durations

From the set of such simulated trajectories (;400 in this
particular case!, we can construct histograms for the numb
of events as a function of total transit signal duration. F
lowing the experimental protocol of Ref.@8#, which em-
ployed photon counting, we base this analysis upon the
racavity photon numbern̄5^a†a& rather thanu^a&u2 as in
Ref. @7#, although this distinction is not critical to any of th
following considerations. The resulting histograms for t
experiment of Ref.@8# are displayed in Fig. 11 for the case
of untriggered and triggered trajectories. As in the discuss
of Fig. 9, the external drive strengths are set to be equa
this comparison to provide equal detectability for an at
passing through the cavity mode. Detection with lower e
ternal drive strength gives a lower signal-to-noise ratio
atom detection, which results in detected transit durati
much shorter than the actual passage time through the c
~which is of ordert052w0 / v̄), as for example in Fig. 2~a!
of Ref. @8#.

In support of the validity of our simulations for the ex
periment of Pinkseet al. ~including the initial atomic veloc-
ity and position distribution and the triggering conditions!,
note that the mean of 280ms for the histogram in the trig
gered case of Fig. 11~b! corresponds quite well with tha
quoted in Ref.@8#, namely,t̄exp5250 ms650 ms. Further,
the histograms in Fig. 11 exhibit an extension of the me
transit duration from 160ms for the case of no triggering in
~a! to 280 ms with triggering in~b!, in support of the claim
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of trapping in Ref.@8#. The dispersion of events around th
mean is quite large in both cases, 161ms in the untriggered
set and 282ms in the triggered set. The increase in the me
is largely associated with an increase in the number of ev
in the range 200–300ms, as well as in the number of rar
events much longer than the mean duration. Once again
note that the dissipative nature of the dynamics plays a
cial role in the observed motion for the experiment of Pink
et al. A histogram of transit durations calculated with th
sign of the friction coefficient reversed has a lower me
than that of transits with no triggering.

However, it is certainly worth noting that the observe
‘‘average trapping time’’t̄exp5250650 ms quoted in Ref.
@8# as well as the corresponding mean time from our sim
lations, are smaller than the timet05290 ms for an atom to
transit freely through the cavity mode. Additionally, even
the case of no triggering, there already a significant num
of events with similar long duration to those in~b! with
triggering. Such events arise from the relatively large con
bution of diffusion-driven fluctuations whereby an atom ra
domly loses a large fraction of its initial kinetic energy as
enters the cavity. That such fluctuations play a critical r
should already be clear from the plots of the confining p
tentials and diffusion coefficients in Fig. 4.

B. Radial motion

Trapping dynamics can also be explored if atomic os
lation in the trapping potential can be directly observed. C
tainly the observations presented in Fig. 10 make this c
for the experiment of Ref.@7#, with the observed oscillation
frequencies found to be in good quantitative agreement w
those computed directly from the anharmonic potential wi
out adjustable parameters and with the results of the num
cal simulations.

Towards the goal of constructing a similar plot for th
parameters of Ref.@8#, consider a long-duration transit eve
1-18
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TRAPPING OF SINGLE ATOMS WITH SINGLE . . . PHYSICAL REVIEW A 63 013401
FIG. 12. Transmission data for the simulate

transit of Fig. 7~c!. The full ideal signaln̄(t),
with infinite bandwidth and no degradation due
cavity escape efficiency or subsequent syst
losses, is shown in gray. Slow variations a
caused by radial motion while fast variations r
flect axial motion. The black trace results from
applying to this ideal signal a low-pass filter wit
cutoff f c510 kHz intended to optimize the vis
ibility of any radial oscillations for frequencies
f &5 kHz, where f 0

(r )52.6 kHz is the orbital
frequency for small-amplitude oscillation nea
the bottom of the radial potential. The resultin
filtered transmission signal shows variations d
to both radial motion and axial heating.
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such as that in Fig. 7~c!. Recall that the output flux from the
cavity is given by the cavity decay rate 2kd into the relevant
detection channel times the intracavity photon number, oI

52kdn̄52kd^a
†a&, with then the detected count rate foun

from the overall propagation and detection efficiency asR
5jI . Of course, in any actual experiment the full inform
tion displayed for the intracavity photon numbern̄ is not
available because of finite detection efficiencies (j,1) and
the requirement to average over many cavity lifetimes
order to achieve an acceptable signal-to-noise ratio~roughly
for a time such thatARdt.@1).

Rather than attempt a detailed analysis of such effects
the experiment of Ref.@8#, here we wish to illustrate severa
generic effects that hinder definitive observation of rad
oscillations in this regime. We therefore takethe full ideal

signal n̄(t) with no degradation due to cavity escape e
ciency or subsequent system losses~which we estimate to be
kd /k;0.17 andj;0.6 for an overall efficiency of 0.11!. As
shown in Fig. 12, to this ideal signal we apply a low-pa
filter with cutoff f c510 kHz intended to optimize the vis
ibility of any radial oscillations for frequenciesf &5 kHz,
where f 0

(r )52.6 kHz is the orbital frequency for smal
amplitude oscillation near the bottom of the radial potent
As before, recall that a periodic variation in the radial co
dinate at frequencyf results in a variation inn̄ at 2f . Pre-
cisely such a filtering protocol was implemented for t
analysis in Fig. 10, there withf c525 kHz in correspon-
dence to the larger radial oscillation frequencies (f 0

(r )

59.4 kHz for Ref.@7#! @36#.
Not surprisingly, the frequent and large bursts of ax

heating evident for the simulated trajectories of Fig. 7 res
in large variations in the intracavity photon number on tim
scales set by twice the axial oscillation frequencyf 0

(a)

'430 kHz. While these axial oscillations cannot be direc
resolved in the detected counting signalR(t), their envelope
nonetheless leads to variations inn̄(t) and henceR(t) on
01340
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or
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time scales comparable to that associated with radial mo
~i.e., 1/2f 0

(r )), as is apparent in Fig. 12. Consequently, t
low-pass filtering@or equivalently, the time averaging ove
segments inR(t)# that is required experimentally to obtai
an acceptable signal-to-noise ratio gives rise to obser

variations inn̄(t) that can arise from either axial or radia
atomic motion. In the particular transit shown in Fig. 12, tw
apparent variations on time scales.200 ms are introduced
by a filtering of the axial motion, whereas the longer mod
lation (.6002ms duration! does reflect the radial positio
of the atom. This is something of a generic feature of
several hundred simulated transits examined; shorter-ti
scale modulations (&300 ms) can reflect either a genuin
radial excursion or a filtering of axial motion, whereas ve
long period variations (500–600ms) are indicative of radial
atomic motions. This simply reflects the fact that the bur
of axial motion tend to have time scales limited to a fe
100 ms.

To illustrate these points further, we have constructe
plot of period versus normalized amplitude of transmiss
oscillations from our simulations of the experiment of Pink
et al. @8#, with the result given in Fig. 13. We emphasize th
the protocol followed is precisely as for the analysis that
to Fig. 10~b! for the experiment of Hoodet al. @7# ~see also
Fig. 4 of Ref.@7#!, with the exception of the aforementione
reduction in the low-pass cutoff frequency. In marked co
trast to that case, here there is a poor correspondence
tween the distribution of orbital periods from the ensem
of simulated trajectories and the prediction from the poten
obtained from Eq.~8!. Referring to the discussion of Fig. 1
above, we note that about 2/3 of the points in the 10
300-ms range result from averaging over axial motio
whereas for longer-period (P.300 ms) modulations, 80%
of the observed points reflect changes in the radial mot
but with associated transmission amplitude typically mo
fied by the presence of axial motion. The results of Fig.
1-19
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FIG. 13. For simulated transmission data co
responding to the parameters of Pinkseet al., the
modulation period is shown as a function of am
plitude. If modulations in transmission are tent
tively identified with radial atomic motion, their
expected period is half that of the radial motio
The solid curve gives calculated period vs amp
tude based on this assumption, and on on
dimensional motion in the effective potentia
U(r,0) as in Fig. 4. Points with lowest underly
ing atomic angular momentum are plotted wi
circles. Lack of separation by angular momentu
reflects the diffusive nature of atomic dynamic
on time-scales comparable to or shorter than o
radial period.
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@which are for the ideal case ofn̄(t) without signal degrada
tion due to finite escape and detection efficiency# suggest
that only in restricted cases can temporal variations inR(t)
be attributed to radial motion, and not instead of~or in addi-
tion to! the envelopes of axial heating processes. Inde
such effects are well known in the literature, having be
previously discussed for the case of individual atoms fall
through the cavity mode~albeit without triggering or trap-
ping! @21,37#. A similar conclusion was reached, name
that axial heating processes contaminate the frequency
associated with radial motion, thereby precluding inferen
about radial motion. For the data presented by Pinkseet al.
@8#, the long (.500 ms) time scale of the modulations su
gests an assignment of these signals to radial motion; h
ever, a more detailed characterization of the atom dynam
over a larger ensemble of transits should yield this m
definitively.

It is also worth noting that the quoted average trapp
time t̄exp5250650 ms in Ref. @8# is itself less than 1/f 0

(r )

5390 ms, which is shortest timefor a full radial orbit.
Hence any conclusion about motion in the radial plane m
necessarily be based upon rare events in the tail of the
tograms of Fig. 11. The rare occurrence of these long ev
is reflected in the small number of data points in Fig. 1
which was constructed from the same number of simula
transits as Fig. 10~b!.

C. Axial motion

We next turn to analyzing motion along the axial dire
tion, and to the statement of Pinkseet al. @8# that Fig. 4 of
Ref. @8# ‘‘is direct evidence for the atom moving along th
cavity axis,’’ as opposed to instances of localization arou
an antinode for which ‘‘hardly any periodic structure is vi
ible.’’ In their analysis, Pinkseet al. employed a function
g(4)(e,t,e), whose intention is to pick out two-time correla
tions in intensity, with an enhanced signal-to-noise ratio
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intensity fluctuations by measuring coincidences of pho
pairs. Here we attempt to investigate manifestations of
axial motion independent of the details of any specific su

function by analyzingn̄(t) directly by way of a windowed
fast-Fourier transform~FFT!. More specifically, for each tra
jectory from a large ensemble from our simulations, we a

ply a FFT to the recordn̄(t) with a Hanning window cen-
tered at timet i and of total width 25ms, with the window
then offset sequentially tot i 115t i15 ms to cover the
whole range of a given atomic trajectory. The window wid
25 ms is chosen to be in close correspondence to the re
length of 20 ms employed by Pinkseet al. Longer window
widths do not qualitatively change the results of our analy
while a substantially shorter-duration window leads to a lo
of requisite frequency resolution.

Two examples from an extended set of such transfo
are given in Figs. 14 and 15. Parts~a! of each of these figures
show the mean intracavity photon numbern̄(t), the axial
coordinatex(t), and a contour plot of the windowed FF
Nt i

(V) for a single atomic trajectory for the parameters

Ref. @8#. HereNt i
(V) is the windowed FFT ofn̄(t) over the

entire duration of the trajectory, witht i5t01 i 35 ms. Parts
~b! of Figs. 14 and 15 compareNt i

(V) for two particular

values oft i , namely, at a timet f l ight corresponding to the
midst of a flight of the atom over several antinodes of t
intracavity standing wave~i.e., variations in axial coordinate
x by several units ofl/2) and at a timet localized for which
there is appreciable heating along the axial direction but
which there is no flight~i.e., the atom remains localize
within the same axial well!. The times (t f l ight ,t localized) are
indicated by the arrows in the top two panels of parts~a!.

Perhaps the most striking aspect of the comparison of
spectral distributions$Nf l ight(V),Nlocalized(V)% for the
cases with and without flight is their remarkable similar
@in ~b! of Figs. 14 and 15#. Both display prominent peak
1-20
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FIG. 14. ~a! Mean intracavity photon numbe

n̄(t), axial positionx(t), and a contour plot of the

modulus of the windowed FFTNt(V) of n̄(t) for
a simulated transit for the parameters of Pink
et al. ~b! At the times indicated in ~a!,
uNlocalized(V)u is plotted corresponding to the ar
row at t localized5652 ms ~solid curve! and
uNf l ight(V)u corresponding to the arrow att f l ight

5867 ms ~dash-dotted curve!. There are appar-
ently only minor differences between these tw
spectra, which does not support the conclusi
about axial motion drawn from Fig. 4 in Ref.@8#.
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near Vp/2p5 f p.500–600 kHz, which is in accord with
the expected frequency for large-amplitude oscillation in
axial potential, for which the harmonic frequencyf 0

(a)

'430 kHz@recall that frequency of atomic dynamics is ha
the frequency of the associated variations inn̄(t)]. This re-
sult is also in accord with that from Fig. 4~b! of Pinkseet al.,
for which their simulation leads to 1/tp.550 kHz for varia-
tions in the functiong(4).

However, our analysis, as in the comparison
$Nf l ight(V),Nlocalized(V)% above, indicates that neither th
observation of a peak inN(V) aroundVp nor of oscillatory
structure ing(4)(e,t,e) aroundtp.2p/Vp is sufficient to
justify direct evidence for the atom moving along the cav
axis. Rather, peaks inNt i

(V) are ubiquitous around frequen
01340
e

f

cies Vp/2p.500–600, and appear whether the atom’s m
tion is localized~but heated! within a given axial well or
whether the atom is in flight across several wells. This f

ture follows from an analysis of the full record ofn̄(t) with-
out the deleterious effects of finite escape and detection
ficiency, or of finite detection bandwidth. Such a res
suggests that the measurements of Fig. 4 in Ref.@8# are not
in and of themselves sufficient to establish unambiguous
servation of atomic motion across several wells of the cav
field standing wave.

Our analysis does suggest that it may still be possible
distinguish between axial motion confined within a well a
flight along the cavity axis through a more careful quanti
tive analysis of the respective spectral distributio
1-21
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FIG. 15. ~a! Mean intracavity photon numbe

n̄(t), axial positionx(t), and a contour plot of the

modulus of the windowed FFTNt(V) of n̄(t) for
a simulated transit for the parameters of Pink
et al. ~b! At the times indicated in ~a!,
uNlocalized(V)u is plotted corresponding to the ar
row at t localized5673 ms ~solid curve! and
uNf l ight(V)u corresponding to the arrow att f l ight

5780 ms ~dash-dotted curve!. See the text for
discussion.
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$Nf l ight(V),Nlocalized(V)%. With reference to Figs. 14 an
15, note that a principal distinction between these case
that in the case of flight there is a largedecreaseof spectral
content in the lowest frequency components aroundV50.
This decrease reflects the fact that axial skipping causes
range variation ing, and thereby pulls down the time
averaged value of transmissionn̄(t). In addition, we note an
increase in Nf l ight(V) as compared toNlocalized(V) for
Fourier components in a broad range aroundVp/2 and up to
Vp . The increase appears to reflect atomic motion that, d
ing skipping, explores the full nonlinear~anharmonic! range
of the axial potential. These characteristics of the ove
spectral distributions seem to discriminate more reliably
tween flight and localized heating than does a sing
01340
is

ll-

r-

ll
-
-

frequency peak criterion; they may still offer an avenue
observing atomic skips across the standing wave.

VI. CONCLUSIONS

A principal objective of this paper has been to investig
the extent to which light-induced forces in cavity QED a
distinct from their free-space counterparts. Our perspec
has been to seek qualitatively new manifestations of opt
forces at the single-photon level within the setting of cav
QED. Note that the importance of a quantum character
the relevant fields or phenomena is not ensured by the s

ment that the mean photon numbern̄;1, since this is trivi-
ally the case in an equivalent free-space volume for a field
1-22
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the same intensity as that inside the cavity.
As a starting point, we have presented comparisons

tween the effective potentialUe f f(r,x) in cavity QED and
the corresponding free-space potential, as well as of the
fusion coefficients in both contexts~Figs. 3 and 4!. Perhaps
surprisingly, even in a regime of strong coupling as in R
@8#, there are only small differences between the cavity Q
and free-space potentials and diffusion coefficients. Note
the comparison of Fig. 4 includes ‘‘the back action of t
atom on the cavity field’’@8#, and yet there are nonethele
no substantive differences between the cavity QED and f
space cases for the experiment of Pinkseet al. Hence, al-
though the cavity QED interactions do bring a substan
advantage for atomic detection within the cavity volume,
conclude that the claim of trapping an atom with single ph
tons in Ref.@8# involves no new characteristics unique to t
cavity QED environment, with the conservative forces a
diffusion largely described by the well-known free-spa
theory ~Fig. 4!. Friction which enhances trapping in this r
gime can be ascribed to cavity-mediated cooling effe
@15,16#, which are in themselves not uniquely features of
quantized-field treatment. However, more analysis is
quired to determine if the observed effects of friction
indeed rely on the cavity-field quantization.

By contrast, for the experiment of Hoodet al., a compari-
son of the free-space theory and its cavity QED counter
demonstrates that the usual fluctuations associated with
dipole force along the standing wave are suppressed b
order of magnitude. A semiclassical treatment of the cav
field yields large diffusions like those calculated for the fre
space trap. Indeed, if it were not for the reduction of heat
in the quantized cavity QED case, an atom would be trap
for less than the period of a single radial orbit before be
heated out of the well for the parameters of Ref.@7#. Our
calculations support the conclusion that the suppressio
dipole-force heating is based upon the Jaynes-Cumm
ladder of eigenstates for the atom-cavity system, which
our knowledge represents qualitatively new physics for o
cal forces at the single-photon level within the setting
cavity QED.

In terms of a more complete analysis, the effective pot
tial Ue f f(r,x) and the diffusion coefficientD(r,x) are im-
portant ingredients in the quasiclassical theory that we h
developed for atomic motion in cavity QED. By way of d
tailed, quantitative comparisons with the experiment of Ho
et al. in Sec. IV, we have validated the accuracy and util
of our numerical simulations based upon the quasiclass
theory. As part of this comparison, we have demonstra
agreement between experiment and simulation for hi
grams of the duration of transit events, with meant̄ t
5340 ms for the histogram in the triggered case of Fig. 9~b!

extended well beyond the meant̄u592 ms for the untrig-
gered case. Furthermore,t̄ t exceeds the transit timet0
5110 ms for an atom to transit freely through the cavi
mode. The simulated trajectories of Fig. 6 together with
comparison of Fig. 10 for the experiment of Hoodet al.
strongly support the conclusion that atomic motion is larg
01340
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conservative in nature, with only smaller contributions fro
fluctuating and velocity-dependent forces. Atomic motion
predominantly in radial orbits transverse to the cavity ax
The~suppressed! axial heating is important, but only toward
the end of a given trajectory leading to ejection from t
trap. Knowledge of the time dependencer(t) for the radial
coordinate~by way of the detected field emerging from th
cavity and the solution of the master equation! as well of the
confining potentialU(r,0) allow an algorithm to be imple-
mented for inference of the actual atomic trajectory, as de
onstrated in Ref.@7# and discussed in greater detail in Re
@38#.

In the case of Ref.@8#, numerical simulations for the pa
rameters appropriate to this experiment lead to histogra
with mean 280ms in the triggered case of Fig. 11~a! and
160 ms for the untriggered case of Fig. 11~b!, which should
be compared to the timet05290 ms for an atom to transit
freely through the cavity mode in this experiment. The sim
lated transits of Fig. 7 indicate that atomic motion in th
case is dominated by diffusion-driven fluctuations in both
radial and axial dimensions with friction playing an impo
tant role in the axial direction. The character of the moti
hampers inference of atomic motion from the record of i
racavity photon number. Axial heating leads to repea
large bursts of axial excursions during an atomic transit, a
hence to large oscillations in the intracavity photon num
n̄(t). The envelopes of these oscillations have apprecia
Fourier content in the range of interest for observation
radial motion, so that there is not an unambiguous signa
for the radial motion in the record ofn̄(t) on short time
scales, such as those presented in Ref.@8#. Similarly, the
result by Pinkseet al. for hopping or flights over the anti
nodes of the cavity standing wave is not substantiated b
closer inspection of the Fourier content of the relevant s
nals. As documented in Figs. 14 and 15, similar signals
be observed for an atom localized~but heated! within a
single standing-wave well. We emphasize that these con
sions concerning the work of Ref.@8# are based upon the
analysis of several hundred simulated trajectories, appare
well beyond the few cases presented in that paper.

Beyond these comments directed to the prior work
Refs. @7,8#, we suggest that the capability for numeric
simulation of the quasiclassical model of atom motion
cavity QED should have diverse applications. For examp
we are currently applying the simulations to the problem
feedback control of atomic motion. Given the capability
infer an atomic trajectory in real time, it should be possib
to apply active feedback to cool the motion to the bottom
the effective potentialUe f f(rW).
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