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Fixed-energy inversion of 5-eVe— Xe-atom scattering
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Fixed-energy inverse scattering theory has been used to define central and spin-orhiin§ehootentials
for the scattering of 5-eV polarized electrons from Xe atoms. The results are typical for a range of such data;
including energies above threshold when the potentials become complex. The phase shifts obtained from an
analysis of the measured differential cross section and analyzing power were used as input data. Both semi-
classicalWKB) and fully quantal inversion methods were used to extract central and spin-orbit interactions.
The analysis shows that information additional to the set of input phase shifts extracted fronahese
similar) data may be needed to ascertain physical potentials.
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I. INTRODUCTION The data set we have chosen to use is intriguing for a
number of reasons. First, the differences between the values
A knowledge of the interaction between colliding quan-of & and §; (the = superscripts denoting=1=3) ex-
tum systems is central in many applications of scattering anttacted by the phase shift analy$8 are not large, indicat-
has relevance for use in other diverse fields of study. Suchg that the spin-orbit interaction is not strong. As a result
interactions have been studied in various ways with théhe approximation method of Leeb, Huber, and Fiede[&gy
method of numerical inversion common. In the numerical(LHF hereaftey can be used with confidence. Indeed, the
inversion approach, the parameter values of a purely phd-HF scheme is accurate through second order in Born ap-
nomenological parametric form, chosenpriori to be the proximation and has worked well in some nuclear scattering
(central, local interaction between the colliding entities, are data analysegl0] where the spin-orbit effect is much stron-
determined by variation until a best fit to measured data iger than in the case we study. With the LHF approximation,
found. Global inverse scattering methddg form an alter-  both the N-S and the semiclassical WKB methods of inverse
native procedural class with which to analyze the same datscattering theory can be used to specify the electron-xenon
With global inverse scattering methods, the interaction be{e-Xe) potentials. Exact quantal inversion methods to get the
tween the colliding pair is extracted from the data withaut spin-orbit interaction are know[®,7], but with these data the
priori assumptions about the shape of the potential, althoughHF approximation should be adequate and the inversion
it may belong to a certain broad class, and the validity of theprocess is facilitated by its use. Second, the phase shifts of
dynamical equation of motiotthe Schrdinger equationis  significance are not many in number and so this may be
assumed. Potentials so obtained we define hereafter as invé@nother case where phase shift values at unphysical rational
sion potentials. Application of various global inverse scattervalues of angular momentum are required in the inversion
ing methods has been made in the past for electron-f2ym process to achieve a stable reduli]. A third reason for
atom-atom[3], and electron-moleculgt] systems, but none interest is that the- andp-wave phase shifts from the analy-
of those methods permitted extraction of spin-orbit effectssis[9] of the scattering data have negative values. All other
Recent developmen{&—7] have provided means by which (physica) phase shifts of significance are positive quantities.
spin effects can be treated. In this paper we present anfls phase shifts are ambiguous to modutp an equivalent
describe results for central and spin-orbit potentials obtainedompletely positive valued and monotonically decreasing
by global inverse scattering methods. In particular, we conphase shift set can be formed by the addition eféhd = to
sider an approach based upon the WKB approximatiorthes- andp-wave values, respectively. With either the origi-
method[1,8] and one based upon the Newton-SabdfieS)  nal or the modulatedintegerl) phase shift sets as input, the
theory[1]. N-S inversion methoger segives the same inversion poten-
The data of interest come from the very high quality tial. However, that potential has a short ranged repulsion;
crossed beams experiment of Gibsairal.[9]. In that study such being requireflL2] to give significant negative- and
[9], a phase shift analysis was also made and the phase shifisvave phase shifts. The WKB inversion method, on the
so obtained were the input quantities to our studies. Thosether hand, does discriminate between these sets since to
phase shifts are purely real in line with the unitarity con-specify the WKB inversion potential interpolated functions
straint with the energy below the first threshold. Thus weé|(\) are required as input. Of course, if the N-S method is
have obtained purely real inversion potentials. Extension oéxtended to use phase shifts at rational values of the angular
the approach to deal with energies above threshold and, comomentum, found, for example, by interpolation of the origi-
comitantly, with complex potentials is straightforward. The nal setq9] and of those withs- and p-wave values adjusted
key feature about inversion potentials, given numerical accuby 27 and #, respectively, then the inversion potentials
racy in calculations and stability of the solution, is that whenfrom the two cases must differ.
used in Schrdinger equations they lead to the same phase Thus we give two elements of interest in this paper. First
shifts as are used as input. we deduce by inverse scattering theories central and spin-

1050-2947/2000/63)/0127079)/$15.00 63012707-1 ©2000 The American Physical Society



A. LOVELL AND K. AMOS PHYSICAL REVIEW A 63012707

orbit potentials for 5-eV electron—xenon-atom scatteringwhere, withp=Kkr,
Second, we show that information additional to the physical

phase shiftdi.e., those determined by the usual phase shift S E

analyses of scattering data needed to identify the the most L1 ' =75

likely physical inversion potential. In the next section we a =—(sh)= 2
. L . h ) 1

give a summary of the LHF approximation for phase shifts —(I+1), j=I- 5.

as well as of the inverse scattering methods used, the N-S

and WKB semiclassical schemes specifically. Then in Sec. If th . bit t is relativel K th | it
[l we discuss the origins and characteristics of the 5-eV. € spin-orbitterm IS relatively weak, the usual scatter-

e-Xe scattering phase shifts that were used as input to o9 Phase shifts can be expanded in powers af . Spe-

inversion studies. The-Xe potentials that result are pre- cifically [S]
sé(-:ér(l:te\c} and discussed in Sec. IV, and we draw conclusions in 5=t a CV(k) + (a")2CP (k) + - - - &)

While the leading tern#®" is due solely to the central com-
ponent of the potentiaV.,, higher terms must be consid-
In this section we give brief outlines of the methods usecered to define the spin-orbit properties. But the specific ana-
in the calculations, the results of which we report later. Firstytic forms of the coefficient€(" do not have to be known
we set out the LHF scheme by which the spin-orbit interacto extract the central and spin-orbit potential values. The
tion can be defined from two independéspinless inver-  LHF approximation is initiated by considering combinations
sion calculations. This not only identifies the special phas®f §° and 8~ from which separate inversion potentials can

shift sets{8)} and{$,} of the method, but also defines the be estimated. The relevant combinations are
central and spin-orbit potentials in terms of the results of

inversions of those new phase shift sétsand V, respec- Ezm
tively. Then we give the salient features of the Newton- + 4
Sabatier and semiclassical WKB inverse scattering theories, (4)

which we have used to specify th¥ @ndV) potentials. and

II. FIXED-ENERGY INVERSION METHODS

{(1+1) 8 +16 =611+ 1)CP+. ..

A. The LHF approximation _ 0l P (+1)67)

While exact quantal inverse scattering theories that yield R I
central and spin-orbit interactions from input scatterin _ «cen 1 2 2
phase shift setz exi§6,7], Leeb, Huber, and Eiedelde{ﬁ] ’ =M= G (121 +1)C - ®)
developed an approximation scheme to transform the input
phase shift sets so that more facile quantal inverse scatterin
methods, such as the N-S schefi$ and the semiclassical '
WKB approximation[8], can be used to give results from
which central and spin-orbit potentials can be extracted.
Those more facile schemes do not allow for an angular mo-
mentum dependence in the intrinsic equation of motion, such 5= scen_ M v~y — l
as is given by a spin-orbit potential. They are designed only e ! cen 2
to provide central local potential functions. ] ) )

The LHF method is based on the assumption that the corAs these new sets of phase shifts can be inverted indepen-

tribution of the spin-orbit potential to the phase shifts can bedently using any of the conventional techniques, the central
evaluated using a distorted wave born approximation. Thi&nd spin-orbit components can then be identified by
technique has been formulated specifically for spipar-

To first order ina;, these new phase shifts and their
Rversion potentiald/ andV are

’EI: 5lcen‘_"\7wvcenv (6)

Vso- (7

ticles incident on spin zero targets and is accurate to second Veed 1) =~V(r), 8
order in the Born expansiofb]. The approximation identi- _ R

fies first the special phase shift sé&} and{4}, and then Vso1)=~2[V(r)=V(r)]. 9
defines the central and spin-orbit potentials in terms of the

results,V andV, respectively, from inversion of those new B. The N-S method

phase shift sets.

For spin3 particles incident on a spin 0 target, and allow- ap
ing central and spin-orbit Schdmger potentials, the scatter-
ing is defined by reduced radial Schinger equations

Since the Newton-Sabatier inverse scattering theory and
plications have been widely reported, only pertinent points
of the scheme are presented herein. A full treatment of the
development of this method is given elsewhEtg

2 1(1+1) 1 ] Tdhe N-S method is oneh odf th\? most suclces_sf#I OLthe
- - + 0N ixed-energy inversion methods. Very recently, it has been
dp?2  p? T glNVeedp) +ai Vs )17 (p) =0, applied successfully to electron—helium-atom scattejrirgj

(1) using as input experimental phase shifts of Neghdj at
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low | values and dipole polarization phase shifts at the highesolutions forp=p,, py being the value at which the un-

| values. But it is knowrj15] that fixed-energy inverse scat- known quantal interactions are presumed to be vanishingly

tering theory requires th& matrix (equivalently, the phase small. There is also a presumption that the solution functions

shifts) as a function of the angular momentum variable if oneof the reference potential are completely known so that the

is to define the scattering potential uniquely. This equates tinitiating L matrices can be defined exactly. The reference

knowing theS matrix exactly at all of theinfinite) set of  solutions are obtained from

physicall values, as then the unit step in the quantum num-

ber is infinitesimal against the range. Most studies of the D”O(p)daluo(p)zl(l+1)¢|”°(p) a7

fixed-energy inverse scattering problem, and notably those

involving the N-S method, have been applied using only thevith

values of theS matrix specified at a finite sel{,,) of physi-

cal angular momentum values. In cases where there are rela- ¢|”0(p) — Sin(p— ;I T+ 5|°
p—os

, 18
tively few important partial wave phase shift values to be 18

used, it may be necessary to extdid] the usual N-S for-

mulation to include rational values of angular momenta tQNhereé,O is a reference input phase shift. With the normal-

form the matrix inherent in the N-S scherf. ization and expansion coefficients so given, the complete so-
However, it serves to consider for this section just thejution functions can be determined from E@5) at all p

integer values of angular momentum for which the Sehro <. Thereby one gets the Jost transformation kernels and

dinger equations take the formp € kr being dimensionles$s thence the sought after potential.

DUY(p) i (p)=1(1+1)¢}'(p), (10 C. The WKB method

where the operator In the WKB approximation with\=I+3, scattering
o2 phase shifts are defingd,12] by
D”(P)ZPZ[FJrl—U(P)} 11 . o
p 5(>\)=5>\—kro+f [K,(r")—k]dr’ (19)
with U(p)=V(p)/Ecm, Ecm=(%K)?/(21), andp=kr. The o
solutions are subject to boundary conditions whereK, (r) describes the local momentum through the in-
teraction region and, is the classical turning point. Thus the
(12) scattering potential is embedded i, (r’) and inversion

amounts to an integral transformation. To effect such a trans-

. _ _ _ formation it is convenient to consider the deflection function
with vy, being the relevant phase shifts to be taken as input

) 1
#i'(p) — Aﬁ'”(ﬂ‘ §|7T+ 04
p—>*

guantities. The N-S method gives as output dé(N)
O =2—5—, (20
U(p)=U 2 d 1K (13
(p)=Uo(p) pdpp (p.p) where now\ is taken as the angular momentum variable.

) ) ) _ This deflection function satisfies an Abel-like equation,
whereinU, is a reference_potentlal and(p,p) is the J_os_t_ found by applying the Sabatier transformation
transformation kernel, which can be written as the infinite

sum of solution function products, Vwig(r) ]2
o= kr[ - Yweell) (21)
E
K(p,p')=2, cdl'(p)d p’). 14
(p.p")= 20 Cid(p) 4 (p") A9 Eq.(19. One finds
The solution functiongto D) can be expressed by the New- 1 (= Qo)
ton equationgl N)=—z=| —=—=odo, 22
B'(p)=b°(p) = 2 cirLi:(p) &} (p), (19  whereQ(o) is a quasipotential defined by
II
h g
where Q(cr)=2EIn(W). (23)
P 1
Ly (p)= fo ¢|”°(p’)¢|u,°(p’)—,2dp’. (16)  The Abel-like integral equation fof(\) can be inverted to
p give
These equations are of central importance. From them one AE1 d [+ 60\
can determine the unknown quantitids and (,A|) by Q(o)=— = —| ———\dA, (24)
matching asymptotically to the defined boundary condition m o do), \[gZ—)\2
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which can be written in terms of the deflection function as 6 ' . . '
2E O(N) 4 J
Q(O')_ - \/7)\2 (29) =) . N i
g _

Provided there is a one-to-one mapping of the transcendentc« ~ 0

equation s
2t N

0- 1 1 1 1
kr=o ex QZ(E))’ (26)
6 T T T T
and the energf exceeds that at which “orbiting” occurs, . ’ "
ie., Foo ]
=) R
1 dv £ 27 ) 1
E>V(r)+—r— (27 - 1
dr L _ o . T re
S
then the Sabatier transformation equation provides a relation  _» 1
ship from which the scattering potential can be found, ! ‘ ‘ ! ! '
namely, 0 1 2 3 N 4 5 6 7

Q(o) FIG. 1. The scattering phase shifts found from a phase shift
VWKB(r)_E[l_exi{_ E } (28) analysis of 5-eVe-Xe scagttgring data. The filled circleg are the
results specified by Gibscet al. [9] while the open circles are the
For largeo, the quasipotentials decrease so that with w-adjusted values. The results of interpolations of the basic two sets
—kr, Q(o)—V(r). As c—0, however, the quasipotentials of (physica) phase shifts are portrayed by the solid and dashed
diverge and the transforms then lead to the lower limits curves.
— ¢ (the turning point radius V(r)—E. However, in prac-
tical cases the validity of the WKB approximation breaksAssociated with such phase shifts are purely attractive inter-
down at a radius larger tharn,, when the transcendental actions, which are expected in the physical potentials for

relationship between andr becomes ambiguous. electron-atom scattering.
To investigate the effect of additional input on the form of
lIl. SPECIFICATION OF SETS OF PHASE SHIFTS the inversion potentials, the two data sets were interpolated.

Several interpolations were made in seeking suitable input

The 5-eVe-Xe phase shifts determined by Gibsebal.  for the different inversion schemes. A many point interpola-
[9] have interesting structure, notably, that while the@nd  tion was made on each phase shift set to obtain the input for
p-wave phase shifts are negative, for all othelues they the WKB inversion scheme. Values of the phase shift func-
are positive. The filled circles in Fig. 1 depict the the phase&ijons had to be found at quite small step si2ds since in
shifts that have been extracted from the data. The topmoshe WKB method we have not only to evaluate the deflection
graph identifies the phase shifts associated withjthé+3  functions but also integrate over thefmumerically. A step
angular momentum set while the bottom panel contalns thossize Al of 0.01 was used. Also, two extended sets of input
associated withi=1— 3. It is evident from the data displayed phase shift values were generated for use with the N-S
in this figure that there is only a small difference between thescheme. One hadl=0.5 and the otheAl=0.2. This was
8 sets. The largest difference occurs with frerave phase done to assess the effect of differing amounts of nonphysical
shifts, and that is only of order O(tadian). input on the N-S inversion potentials. The sets of interpo-

As the phase shift analyses of tlkeeXe scattering data lated phase shifts obtained usidd =0.2 are displayed in
gave negative values for ttee andp-wave phase shifts, one Fig. 1, with the solid and dashed curves giving the results of
can expecf12] scattering potentials that have a short rangedhese(spline interpolations. Clearly, the phase shift func-
repulsion. But fore-Xe scattering it is known that the poten- tions so specified are no longer equivalent and so we expect
tial should be attractive at all radii and especially so near thany inversion process that requires such functions as input to
origin where the incoming electron should experience essergive different inversion potentials.
tially only the presence of the nucleus. Thus one would ex-
pect the phase shifts for lolwalues to be positive. Such can
be formed with the phase shift values having a monotonic
decrease with by the addition of 2r to 55" and 7 to 67 . The results we have obtained using the N-S inverse scat-
We define such modulated values as the@djusted phase tering theory are discussed first and, subsequently, those
shifts hereafter. Naturally, multiples of any integer amountfound from our WKB study of the two chosen phase shift
may be used, but this set is the simplest. The newunctions are considered. We present in three subsections the
(m-adjustedl values are shown by the open circles in Fig. 1.potentials that result, the phase shifts found from solutions of

IV. RESULTS AND DISCUSSION
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the Schrdinger equations containing those potentials, and 2 - - - '
the cross sections that ensue in each case.

A. The results from N-S inverse scattering theory ’;

Our N-S studies have lead to six inversion potentials; <
three found by using the original phase shift values of Gib-, 8
son et al. [9] and the other three obtained by using the
mr-adjusted phase shifts. For each case, we first calculated th
N-S inversion potentials using as input solely the phase shifts
corresponding to the physicdl angular momentum sdt
€0,1,2...,7. Such results we identify as case 1 results, 0.6
e.g., case 1 inversion potentials from threadjusted phase 0.4
shift sets. Two other calculations were made with N-S inver-
sion. First the N-S inverse scattering theory equations wer€g
solved using the discretizatioAl =0.5; these results we S, 00
identify by the designation case 2. The third set of N-S cal-;>8 —02
culations were made usingl=0.2 to give what we term
case 3 results.

0.2

-0.4

-0.6
. . . 2 3
1. The N-S inversion potentials Radius (a.u.)

Physical arguments dictate that theXe scattering poten-

tial for 5-eV electrons should be reéhe energy is below the FIG. 2. Potential§central top; spin-orbit bottojrobtained from

. : . . N-S inversion of the three sets of phase shift values described in the
first thr4esho|()| and aftractive, Wlth.long range behavior of text and formed by using ther-adjusted phase shift values. The
—|a|/r* and short ranged behavior efZe?/r. One may dashed. lona dashed. and solid deict th its desi d

Iso expect that the intermediate range potential would b ashed, long dashed, and solld curves depict the results designate
a gases 1, 2, and 3 in the text, respectively.

essentially a monotonic function between the extremes as the

ggzrge density of the atom is believed to be a smooth funcéion. However, between 0.75 and 2.5 a.u., flease 1 cen-
| fhe potentials resulting from the inversion of the phasetral) potential has an attractive well with a depth of
shifts based upon the original & are all strongly repul- —1.3 a.u. while beyond 2.5 a.u. it behaves approximately

. N . .~ asr~* The spin-orbit component of the case 1 potential is
sive at small radii and hence are not cpns_lder_ed physma_llylery small weakly attractive in the vicinity of 1 a.u., mildly
significant. They also have marked oscillation in both the'rrepulsive between 1 and 2.5 a.u.. and after thét éssentially

central and spin-orbit results. When used in the Sdimger zero
equations, however, the solutions do reproduce the inpu Obviously the most realistic potential comes with the case

phase shifts quite well cqmparably to th? results we shoy\é potentials found using the-adjusted phase shift sets. That
subsequently. But as the inversion potentials are not consis-

X o concurs with the hypothesis that the inverse scattering theory
:)?‘rlth;vtltshcg:tz :i?]rmsolféﬁe \?vztigtr;zli ddéftatggetmvlggrgffgseul{sesuIt stabilizes with increase in the number of noninteger
no further 9sy ' angular momenta phase shifts commensurate with numerical

In Fig. 2 the potentials obtained by inversion of the accuracy of evaluation. Essentially, the angular momentum

m-adjusted phase shift values are displayed. The top and bogEep size should be small in comparison to the number of

tom segments portray the central and spin-orbit componen ignificant partial wave input data.(,,). This case 3 poten-

of the potentials, respectively. The dashed, long dashed, aq'@l’ shown in Fig. 2 by the .SOI'd lines, h"?‘s exactly the str"uc-
. tre one would associate witiXe scattering. At small radii
solid curves represent the case 1, case 2, and case 3 poten

- . 71 . _
tials, respectively. The dashed curves in this figure are idenII Is strongly attractive and af - form, with a smooth tran

-y _4 . . ..
tical to the results of inversion found using the original phasets)lémn/;]egon 6;?:823 rrzni%f]s .;[.?]t -srhiir-?)rlk?itaresgjigtgltsrgr:rlgonqore
shift values of Gibsomt al.[9]. That is as it should be, since, 9 : P

within the N-S inversion scheme made with just the phaséeasonable. The case(@ith =-adjusted phase shifts as in-

shift values specified at the physical angular momentapu_’[) spin-orbit potential is not as extensive as the others. But
modulo 7 adjustment means that one uses exactly the samseom'orb't potentials are all small in generiaave for the

expansion wave functions in defining the internal matricesnatura"y occurring divergence at Fhe. origiand so these
three results do not by themselves indicate convergence. The

But the other cases have quite different outcomes. The pge production of phase shifts and observables, however, tends

tentials shown in Fig. 2 tend to the physical expectation an({g suagest that the results we show are reasonable
clearly demonstrate that the inclusion of greater numbers o 99 '

phase shifts at noninteger angular momentum leads to
smoother, more realistic potential forms. The inversion po-
tential found using the phase shifts at solely the physical An indication of the success of an inversion scheme is to
angular momenta does not represent a structure expected faproduce the input phase shifts from solutions of the Schro
5-eV electrons on Xe atoms as it has the short ranged reputlinger equations using the inversion potentials. In this case

2. Reproduction of the phase shifts
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8" (rad)

do/dQ (A%/sr)

-

8" (rad)

0 60 120 180
O (deg)

FIG. 4. The 5 eVe-Xe differential cross sections obtained from
the potentials shown in Fig. 2 compared with the data of Gibson

FIG. 3. The 5-eVe-Xe phase shifts obtained from the potentials €t &l- [9] (dots with error bars The notation defining the results
shown in Fig. 2 compared with the values specified by Gitetal. 70 the three cases is as in Fig. 2.
[9]. Note that the lines are simply to guide the eye and to identify
the three cases. The notation is as used in Fig. 2. tential to introduce error since its value influences the inter-
olation. A poor choice of this value can become evident
hen the inversion potential is used to recalculate the phase
shifts, particularly for the low-partial waves. A reasonable
choice seems to be to set the phase siift”*? equal to

8= Y2 Admittedly this is an arbitrary point. In this study,

1/2

such reproduction is reasonably good but not exact; perha
being a measure of the LHF approximation.

In Fig. 3, the original phase shift valugg] are portrayed
by the filled circles and are compared with those obtaita¢d
integer angular momentaising each of the three inversion ) i _ _ o>
potentials defined by the-adjusted input sets. Case 1 resultstWO.Erl‘il'ges were considered; the first being to tae _
lie within the filled circles, case 2 values are shown by the=d  and the other to use an Akima spline to determine
Open Squaresy and case 3 gave the resu'ts portrayed by tﬂ@ Value by extl’.ap0|a.tlon. .In th|S Stu-dy, a”OW|ng the Ak|ma
open circles. The three lines now are meant only to guide théPline to determine this point was slightly more successful.
eye by connecting the phase shift values arising from use of
the three inversion potentials. 3. The cross section from the N-S inversion potentials

The best reproduction of the phase shifts defined from
experimen{9] is found by using the case 1 inversion poten-
tial, notwithstanding that the potential contains unphysicalpigs 5 further test of the inversion results is to see how
characteristics. Essentially, the inversion scheme in this Castfccur’ately use of the potentials reproduces experimental
produces a potential that has been defined from just the W9ata. This is displayed in Fig. 4 wherein the experimental
sets of eight phase shift values found by Gibstml. at the data(with error bars as found by Gibsoet al.[9] are com-

phhysicr?l vzﬂue; of=0 t%' 77' C_Zase 2 and 3 poterr]ltials, (;]r:c ared with the cross sections calculated from the three inver-
the other hand, were built using many more phase shiftg,, potentials obtained using theadjusted phase shift sets.
s_pecn‘led at nonintegervalues and, as the inversion poten- Results found using the case 1, case 2, and case 3 inversion
tials then seek to reproduce all of those extra values equa"%otentials are depicted by the dashed, long dashed, and solid

Welll’ srpall Vﬂnanonsf g.;he reTuIts at thle E_i_'r?ht Eh_ys'ba}l curves respectively. Further, we display the results here on a
values from the set of Gibscet al. can result. The choice of 051 scale to distinguish the bulk of the results in relation-

those additionalunphysical phase shifts then is crucial if cpiy 6 the error bars. Later, when discussing the WKB cal-

the resulting potentials are to reproduce the eight physic ulated cross sections, we will display also the case 3 N-S

values very well. One has to balance the need for a SUffIE:omparison with data shown on a semilogarithmic plot. That

qiently large basis so th‘f"t the inve_rsion_ p_otentia_l has Stabiémphasizes the comparison of results with data at the large
lized to the proper(physically crediblg limit, against the

) . ) .~ scattering angles and particularly in the vicinity of the
numerical accuracy one needs to achieve in reproduction Qhinima at 120°. As one might expect from the reproduction
the physical phase ;hn‘ts and scattering d_ata. . of the phase shifts, we see in Fig. 4 that a good reproduction
A source of possible error in qddltlon is the chqlce th"?uof the cross-section data is found with the case 1 results. That
m.lfStlge made for the phase shift at the unphy5|cal~po|nFesult passes through the error bars of most data points. The
8 . That value is needed in the calculations of béth case 2 cross section has similar structure to the experimental
and § and also in the N-S scheme. This choice has the podata, but the shape is slightly at variance, falling just outside

Although the potentials all look reasonably good, particu-
arly that found from case 3 with the-adjusted input phase
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FIG. 5. Potential§central top; spin-orbit bottojrobtained from 0 0 i é é "; ; 6
WKB inversion of the phase shift functions described in the text. Radius (a.u.)

The solid curves depict the results found using#hadjusted phase . . ) .
shifts to define the phase shift function; the long dashed curve gives FIG. 6. The deflection function(top), the quasipotential
the (centra) potential found using actual Gibscet al. [9] tabled  (middle), and thes vsr plot (bottom from the WKB study framed
values for that purpose. upon the original phase shift values of Gibseinal. [9].

) ) (the continuous lines in Fig.)5one would expect for the
the error bars associated with a number of the data. The cag@niral component of ae-Xe interaction, i.e., a smooth

3 cross section, however, is in excellent agreement with MO, tion that is highly attractive toward the origin and has an
of the experimental data. In general it falls within most of theattractiver“‘ long range behavior. The spin-orbit compo-

data error bars except at the larger scattering angles; the Izt of the potential would also be small and short ranged.
ter indicative of the phase shifts at integer valued @bt £qqentially, the potential from this WKB analysis that is dis-
being reproduced with sufficient accuracy. played in Fig. 5 has this desired prescription. However,

given that the input was not optimally smooth at large angu-

B. The results from semiclassical WKB inversion theory lar momentaclose inspection of the input data showed that
there were small oscillations in the phase shift functipns

The WKB inversion resits have been obtained by form_there are small oscillations at large radii in the WKB inver-

ing the 5(\) and 6(A) phase shift functions and using them gjon hotential. Nevertheless, after smoothing, the long range
to evaluate two quasipotentials. The potentials that result arg kg inversion potential does behave on average 1iké,
discussed in the first subsection. Subsequently, we presegfj the central component of this WKB inversion potential
and discuss the phase shift reproductions and the cross sgsembles that found using the N-S scheme.
tions that result on using those inversion potentials. Only the central potential found from WKB inversion of
the original phase shift daf®] is shown in Fig. 5(by the
long dashed ling Quite evidently it is nonsensical. It exhib-
The inversion potentials we have found using the semiits ambiguous behavior at many radii, resulting from a loss
classical WKB method are presented in Fig. 5. Once againf 1:1 correspondence betweenandr in this case. Appar-
the central potential is shown in the top section of the figuregntly if the input phase shift function contains a large degree
the spin-orbit potential in the bottom. Clearly two very dif- of curvature then that input is unsuitable for use with the
ferent structures have been generated. The result from usingKB procedure. This is emphasized when one considers the
the w-adjusted functions has physically sensible characterisdeflection function, quasipotential, and the associatec r
tics but that found using the deflection function defined fromplots. The deflection function resulting from differentiating
the original phase shifts does not. Indeed the inversion prothe phase shift function defined from interpolation of the
cedure based upon the original phase shift set does not leatliginal phase shift values has a rapid variation as is evident
to a spin-orbit potential one can identify as anything sensiblérom the top panel in Fig. 6. Consequently the quasipotential
and so that is not displayed. will also be quite structured and that is shown in the middle
The mr-adjusted phase shift data set gives smooth monopanel of Fig. 6. As a result the stability condition breaks
tonic phase shift functions and hence work well with thedown at a fairly large radius. This condition, the correspon-
WKB scheme. Furthermore, it leads to the form of potentialdence between andr, is displayed in the bottom section of

1. The WKB inversion potentials
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FIG. 7. Comparison of the WKB inversion potentigffilled 1

circles with those of the case 3 N-S inversion study made using
phase shift sets from interpolation of theadjusted phase shifts of
Gibsonet al. [9].

FIG. 8. The 5-eVe-Xe phase shifts obtained from tlealistio
potential shown in Fig. 5 compared with the values specified by
Gibsonet al.[9]. Note that the lines are simply to guide the eye.

Fig. 6. Clearly, between 3 and 5 a.u. there is an ambiguous
relation with o and so one finds ambiguous values of thewith the interpolation required to specify the phase shift
associated WKB inversion potential in that region. Indeedfunctions and particularly for points below=1 for the j
one can only hope to obtain a sensible result with this input=| — 1 input set.
to the WKB inversion for radii in excess of 4-5 a.u. A spline was used to determine the deflection function,
The realistic e-Xe potentials found by using the and that influences the quasipotential and ultimately also the
m-adjusted phase shift sets and with both the Ke&se 3  potential. Given that points found from the:| -3 input set
and WKB inversion schemes are compared in Fig. 7. Theyre extrapolated for values af<%, ambiguity in those val-
potentials found using the N-S scheme are shown by th@es is inevitable. That ambiguity persists when these splined
solid curves while those found by WKB inversion are dis-, 51 ,es are used to determine the input functigr@) and
played by the filled circles. The latter are taken to the limit+ . . .
radius at which the 1:1 correspondence betweeandr is S/(\). That may result in a poor reproduction of the physical
maintained. Overall the(semiclassical WKB potentials
compare very well with those found using ttfell quanta) 100 ' : : : :
N-S scheme. Clearly the central potentials look almost ex-
actly the same. There are differences between the two whicl
become apparent when the observables are calculated. C
the other hand, the spin-orbit WKB potential is very smooth
and weak in comparison to the corresponding N-S compo- &
nent. Also, it is repulsive at all radii while the N-S potential « >
has a small attractive well between approximately 0.3 and -~
0.6 a.u.

A

do/dQ

2. Reproduction of the phase shifts

Despite the very pleasing form generated for the potential
using the WKB scheme, the reproduction of the phase shifts
although reasonable, is not as good as those generated usi
the N-S scheme. However, this discrepancy is not disconcert . . '
ing given that the WKB scheme is a semiclassical approxi- 0 30 60 0 (aoeg)
mation. The phase shifts found from our WKB calculation en
are shown by the open circles in Fig. 8, and joining lines £, 9. The 5-eVe-Xe differential cross section obtained from
have been included solely to guide the eye. The data of Gibthe WKB potential(solid curveé compared with the data of Gibson
sonet al.[9] again are represented by the filled black circles.et al.[9] as well as with the case 3 N-S res(dashed curve Both
As with the N-S case, part of the discrepancy between théwversion studies used interpolations of theadjusted set of phase
calculated values and the data may be due to the ambiguishifts as input data.

120 150 180
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phase shifts, particularly of the and p-wave values, when tions of the Schrdinger equations specified with each of the
the solutions of the Schdinger equations specified with the potentials, “inversion” phase shifts were extracted that re-
relevant WKB potentials are found to complete the studyproduced well the startin¢physica) phase shift values and

loop. also the empirical cross section. However, when the input is
taken solely to be théphysica) phase shifts at integér-
3. The cross section from the WKB inversion potentials values of angular momentum, the inversion potential con-

Already, from the reproduction of the phase shifts, Wetai_ns a marked repulsion at' small radii. That is nqt_ physical.
suspect that with the WKB method, reproduction of the crosé_N'th increased numbers of input data p(_)lnts s_pecmed at non-
section will not be as good as that obtained using the relevarfitéger values of angular momentum, inversion produced a
N-S inversion potentials. This is indeed true. The solid curve?otential with sensiblephysically crediblg characteristics.
shown in Fig. 9 depicts the WKB cross section result which ~AS two disparate inversion methods find cengae po-
is compared therein against the Gibsenal. data[9] and tentla_lls that are essentially the; same and have pert_lnent
also against the cross section determined by using the pr@hysmal properties of the scattering system, we are confident
ferred case 3 N-S inversion potentishown by the dashed that the N-S approach hasearly converged and that the
curve. We now present the results in a semilogarithmic plotcentral potential obtained by expandesadjusted physical
since the WKB cross section is similar in magnitude to thePhase shift sets is the appropriate candidate for the local
data; however, it does not display quite the right structure apchralinger interaction. The spin-orbit potential is reason-
any scattering angle. The reproduction simply is not as googble but more detailed |r_1vest|gat|ons are negded b(_afore the
as that found using the N-S scheme. This figure also emphé:haracte_rls_tlcs found for it can be adopted Wlt.h confldence.
sizes the mismatch of the case 3 N-S inversion results at 1he similarity between the WKB and N-S inversion po-
large angles that we commented on earlier. tentials also implies that the introduction of unphysical phase
shifts in the N-S calculation is essential if a stable inversion
potential is to be obtained in this case. That would be so with
other energies measurf®] and, by implication, for any such

Inversion potentials for the 5-eV electron—xenon-atom in-electron-atom scattering at eV energies. There is the diffi-
teraction have been found using both the full quantal N-Sulty, however, of accurately specifying the phase shifts for
and the semiclassical WKB inverse scattering theories. Thaoninteger angular momenta. Obviously some kine qfri-
results from application of the N-S inversion were veryori information regarding the colliding system is necessary.
good. Several inputs were used in this approach, each coin this instance simplyr-adjusting the given phase shift data
taining a different number of phase shift values. From solusufficed.
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