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Fixed-energy inversion of 5-eVe– Xe-atom scattering
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~Received 14 July 2000; published 7 December 2000!

Fixed-energy inverse scattering theory has been used to define central and spin-orbit Schro¨dinger potentials
for the scattering of 5-eV polarized electrons from Xe atoms. The results are typical for a range of such data;
including energies above threshold when the potentials become complex. The phase shifts obtained from an
analysis of the measured differential cross section and analyzing power were used as input data. Both semi-
classical~WKB! and fully quantal inversion methods were used to extract central and spin-orbit interactions.
The analysis shows that information additional to the set of input phase shifts extracted from these~and
similar! data may be needed to ascertain physical potentials.
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I. INTRODUCTION

A knowledge of the interaction between colliding qua
tum systems is central in many applications of scattering
has relevance for use in other diverse fields of study. S
interactions have been studied in various ways with
method of numerical inversion common. In the numeri
inversion approach, the parameter values of a purely p
nomenological parametric form, chosena priori to be the
~central, local! interaction between the colliding entities, a
determined by variation until a best fit to measured data
found. Global inverse scattering methods@1# form an alter-
native procedural class with which to analyze the same d
With global inverse scattering methods, the interaction
tween the colliding pair is extracted from the data withoua
priori assumptions about the shape of the potential, altho
it may belong to a certain broad class, and the validity of
dynamical equation of motion~the Schro¨dinger equation! is
assumed. Potentials so obtained we define hereafter as i
sion potentials. Application of various global inverse scatt
ing methods has been made in the past for electron-atom@2#,
atom-atom@3#, and electron-molecule@4# systems, but none
of those methods permitted extraction of spin-orbit effec
Recent developments@5–7# have provided means by whic
spin effects can be treated. In this paper we present
describe results for central and spin-orbit potentials obtai
by global inverse scattering methods. In particular, we c
sider an approach based upon the WKB approxima
method@1,8# and one based upon the Newton-Sabatier~N-S!
theory @1#.

The data of interest come from the very high qual
crossed beams experiment of Gibsonet al. @9#. In that study
@9#, a phase shift analysis was also made and the phase s
so obtained were the input quantities to our studies. Th
phase shifts are purely real in line with the unitarity co
straint with the energy below the first threshold. Thus
have obtained purely real inversion potentials. Extension
the approach to deal with energies above threshold and,
comitantly, with complex potentials is straightforward. T
key feature about inversion potentials, given numerical ac
racy in calculations and stability of the solution, is that wh
used in Schro¨dinger equations they lead to the same ph
shifts as are used as input.
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The data set we have chosen to use is intriguing fo
number of reasons. First, the differences between the va
of d l

1 and d l
2 ~the 6 superscripts denotingj 5 l 6 1

2 ) ex-
tracted by the phase shift analysis@9# are not large, indicat-
ing that the spin-orbit interaction is not strong. As a res
the approximation method of Leeb, Huber, and Fiedeldey@5#
~LHF hereafter! can be used with confidence. Indeed, t
LHF scheme is accurate through second order in Born
proximation and has worked well in some nuclear scatter
data analyses@10# where the spin-orbit effect is much stron
ger than in the case we study. With the LHF approximati
both the N-S and the semiclassical WKB methods of inve
scattering theory can be used to specify the electron-xe
(e-Xe) potentials. Exact quantal inversion methods to get
spin-orbit interaction are known@6,7#, but with these data the
LHF approximation should be adequate and the invers
process is facilitated by its use. Second, the phase shift
significance are not many in number and so this may
another case where phase shift values at unphysical rati
values of angular momentum are required in the invers
process to achieve a stable result@11#. A third reason for
interest is that thes- andp-wave phase shifts from the analy
sis @9# of the scattering data have negative values. All oth
~physical! phase shifts of significance are positive quantiti
As phase shifts are ambiguous to modulop, an equivalent
completely positive valued and monotonically decreas
phase shift set can be formed by the addition of 2p andp to
thes- andp-wave values, respectively. With either the orig
nal or the modulated~integerl ) phase shift sets as input, th
N-S inversion methodper segives the same inversion poten
tial. However, that potential has a short ranged repulsi
such being required@12# to give significant negatives- and
p-wave phase shifts. The WKB inversion method, on t
other hand, does discriminate between these sets sinc
specify the WKB inversion potential interpolated functio
d l(l) are required as input. Of course, if the N-S method
extended to use phase shifts at rational values of the ang
momentum, found, for example, by interpolation of the orig
nal sets@9# and of those withs- andp-wave values adjusted
by 2p and p, respectively, then the inversion potentia
from the two cases must differ.

Thus we give two elements of interest in this paper. F
we deduce by inverse scattering theories central and s
©2000 The American Physical Society07-1
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orbit potentials for 5-eV electron–xenon-atom scatteri
Second, we show that information additional to the physi
phase shifts~i.e., those determined by the usual phase s
analyses of scattering data! is needed to identify the the mos
likely physical inversion potential. In the next section w
give a summary of the LHF approximation for phase sh
as well as of the inverse scattering methods used, the
and WKB semiclassical schemes specifically. Then in S
III we discuss the origins and characteristics of the 5-
e-Xe scattering phase shifts that were used as input to
inversion studies. Thee-Xe potentials that result are pre
sented and discussed in Sec. IV, and we draw conclusion
Sec. V.

II. FIXED-ENERGY INVERSION METHODS

In this section we give brief outlines of the methods us
in the calculations, the results of which we report later. F
we set out the LHF scheme by which the spin-orbit inter
tion can be defined from two independent~spinless! inver-
sion calculations. This not only identifies the special ph
shift sets$d̂ l% and $d̃ l% of the method, but also defines th
central and spin-orbit potentials in terms of the results
inversions of those new phase shift sets,V̂ and Ṽ, respec-
tively. Then we give the salient features of the Newto
Sabatier and semiclassical WKB inverse scattering theo
which we have used to specify the (V̂ and Ṽ) potentials.

A. The LHF approximation

While exact quantal inverse scattering theories that y
central and spin-orbit interactions from input scatteri
phase shift sets exist@6,7#, Leeb, Huber, and Fiedeldey@5#
developed an approximation scheme to transform the in
phase shift sets so that more facile quantal inverse scatte
methods, such as the N-S scheme@1# and the semiclassica
WKB approximation@8#, can be used to give results from
which central and spin-orbit potentials can be extract
Those more facile schemes do not allow for an angular m
mentum dependence in the intrinsic equation of motion, s
as is given by a spin-orbit potential. They are designed o
to provide central local potential functions.

The LHF method is based on the assumption that the c
tribution of the spin-orbit potential to the phase shifts can
evaluated using a distorted wave born approximation. T
technique has been formulated specifically for spin1

2 par-
ticles incident on spin zero targets and is accurate to sec
order in the Born expansion@5#. The approximation identi-
fies first the special phase shift sets$d̂ l% and $d̃ l%, and then
defines the central and spin-orbit potentials in terms of
results,V̂ and Ṽ, respectively, from inversion of those ne
phase shift sets.

For spin1
2 particles incident on a spin 0 target, and allo

ing central and spin-orbit Schro¨dinger potentials, the scatte
ing is defined by reduced radial Schro¨dinger equations

d2

dr2
2

l ~ l 11!

r2
112

1

E
@Vcen~r!1al

6Vso~r!#c l
6~r!50,

~1!
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where, withr5kr,

al
65

1

\2
^s• l&5H l , j 5 l 1

1

2

2~ l 11!, j 5 l 2
1

2
.

~2!

If the spin-orbit term is relatively weak, the usual scatte
ing phase shiftsd l

6 can be expanded in powers ofal
6 . Spe-

cifically @5#,

d l
65d l

cen1al
6Cl

(1)~k!1~al
6!2Cl

(2)~k!1•••. ~3!

While the leading termd l
cen is due solely to the central com

ponent of the potential,Vcen, higher terms must be consid
ered to define the spin-orbit properties. But the specific a
lytic forms of the coefficientsCl

(n) do not have to be known
to extract the central and spin-orbit potential values. T
LHF approximation is initiated by considering combinatio
of d1 andd2 from which separate inversion potentials c
be estimated. The relevant combinations are

d̃ l5
1

2l 11
$~ l 11!d l

11 ld l
2%5d l

cen1 l ~ l 11!Cl
(2)1•••

~4!

and

d̂ l5
1

2l 11
$ ld l

11~ l 11!d l
2%

5d l
cen2Cl

(1)1~ l 21 l 11!Cl
(2)1••• . ~5!

To first order inal
6 , these new phase shifts and the

inversion potentialsṼ and V̂ are

d̃ l5d l
cen↔Ṽ;Vcen, ~6!

d̂ l5d l
cen2Cl

(1)↔V̂;Vcen2
1

2
Vso . ~7!

As these new sets of phase shifts can be inverted inde
dently using any of the conventional techniques, the cen
and spin-orbit components can then be identified by

Vcen~r !'Ṽ~r !, ~8!

Vso~r !'2@Ṽ~r !2V̂~r !#. ~9!

B. The N-S method

Since the Newton-Sabatier inverse scattering theory
applications have been widely reported, only pertinent po
of the scheme are presented herein. A full treatment of
development of this method is given elsewhere@1#.

The N-S method is one of the most successful of
fixed-energy inversion methods. Very recently, it has be
applied successfully to electron–helium-atom scattering@13#
using as input experimental phase shifts of Nesbet@14# at
7-2
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FIXED-ENERGY INVERSION OF 5-eVe–Xe-ATOM . . . PHYSICAL REVIEW A 63 012707
low l values and dipole polarization phase shifts at the hig
l values. But it is known@15# that fixed-energy inverse sca
tering theory requires theS matrix ~equivalently, the phase
shifts! as a function of the angular momentum variable if o
is to define the scattering potential uniquely. This equate
knowing theS matrix exactly at all of the~infinite! set of
physicall values, as then the unit step in the quantum nu
ber is infinitesimal against the range. Most studies of
fixed-energy inverse scattering problem, and notably th
involving the N-S method, have been applied using only
values of theSmatrix specified at a finite set (l max) of physi-
cal angular momentum values. In cases where there are
tively few important partial wave phase shift values to
used, it may be necessary to extend@11# the usual N-S for-
mulation to include rational values of angular momenta
form the matrix inherent in the N-S scheme@1#.

However, it serves to consider for this section just t
integer values of angular momentum for which the Sch¨-
dinger equations take the form (r5kr being dimensionless!

Du~r!f l
u~r!5 l ~ l 11!f l

u~r!, ~10!

where the operator

Du~r!5r2F d2

dr2 112U~r!G ~11!

with U(r)5V(r)/Ecm , Ecm5(\k)2/(2m), andr5kr. The
solutions are subject to boundary conditions

f l
u~r! →

r→`

AlsinS r2
1

2
lp1g l D ~12!

with g l being the relevant phase shifts to be taken as in
quantities. The N-S method gives as output

U~r!5U0~r!2
2

r

d

dr

1

r
K~r,r! ~13!

whereinU0 is a reference potential andK(r,r) is the Jost
transformation kernel, which can be written as the infin
sum of solution function products,

K~r,r8!5(
l

clf l
u~r!f l

u0~r8!. ~14!

The solution functions~to Du) can be expressed by the New
ton equations@1#

f l
u~r!5f l

u0~r!2(
l 8

cl 8Lll 8~r!f l 8
u

~r!, ~15!

where

Lll 8~r!5E
0

r

f l
u0~r8!f

l 8

u0~r8!
1

r82
dr8. ~16!

These equations are of central importance. From them
can determine the unknown quantitiesAl and (clAl) by
matching asymptotically to the defined boundary condit
01270
r

to

-
e
e

e

la-

o

e

ut

ne

n

solutions forr>r0 , r0 being the value at which the un
known quantal interactions are presumed to be vanishin
small. There is also a presumption that the solution functi
of the reference potential are completely known so that
initiating L matrices can be defined exactly. The referen
solutions are obtained from

Du0~r!f l
u0~r!5 l ~ l 11!f l

u0~r! ~17!

with

f l
u0~r! →

r→`

sinS r2
1

2
lp1d l

0D , ~18!

whered l
0 is a reference input phase shift. With the norm

ization and expansion coefficients so given, the complete
lution functions can be determined from Eq.~15! at all r
,r0. Thereby one gets the Jost transformation kernels
thence the sought after potential.

C. The WKB method

In the WKB approximation withl5 l 1 1
2 , scattering

phase shifts are defined@1,12# by

d~l!5
p

2
l2kr01E

r 0

`

@Kl~r 8!2k#dr8 ~19!

whereKl(r ) describes the local momentum through the
teraction region andr 0 is the classical turning point. Thus th
scattering potential is embedded inKl(r 8) and inversion
amounts to an integral transformation. To effect such a tra
formation it is convenient to consider the deflection functi

Q~l!52
dd~l!

dl
, ~20!

where nowl is taken as the angular momentum variab
This deflection function satisfies an Abel-like equatio
found by applying the Sabatier transformation

s5krF12
VWKB~r !

E G1/2

~21!

to Eq. ~19!. One finds

d~l!52
1

2EEl

` Q~s!

As22l2
sds, ~22!

whereQ(s) is a quasipotential defined by

Q~s!52E lnS s

kr D . ~23!

The Abel-like integral equation ford(l) can be inverted to
give

Q~s!5
4E

p

1

s

d

dsEs

` d~l!

As22l2
ldl, ~24!
7-3



s

n

,

io
d

ls
s

ks
l

s
o

o
d
th

e
e
-
th
e

ex
n
n

n
e
1

ter-
for

of
ted.
put
la-
t for
nc-

ion

ut
-S

ical
o-

of
c-
pect
t to

cat-
ose
ift

s the
s of

hift
e

sets
hed

A. LOVELL AND K. AMOS PHYSICAL REVIEW A 63 012707
which can be written in terms of the deflection function a

Q~s!5
2E

p E
s

` Q~l!

As22l2
dl. ~25!

Provided there is a one-to-one mapping of the transcende
equation

kr5s expS Q~s!

2E D , ~26!

and the energyE exceeds that at which ‘‘orbiting’’ occurs
i.e.,

E.V~r !1
1

2
r

dV

dr
, ~27!

then the Sabatier transformation equation provides a relat
ship from which the scattering potential can be foun
namely,

VWKB~r !5EH 12expF2
Q~s!

E G J . ~28!

For larges, the quasipotentials decrease so that withs
→kr, Q(s)→V(r ). As s→0, however, the quasipotentia
diverge and the transforms then lead to the lower limitr
→r 0 ~the turning point radius!, V(r )→E. However, in prac-
tical cases the validity of the WKB approximation brea
down at a radius larger thanr 0, when the transcendenta
relationship betweens and r becomes ambiguous.

III. SPECIFICATION OF SETS OF PHASE SHIFTS

The 5-eVe-Xe phase shifts determined by Gibsonet al.
@9# have interesting structure, notably, that while thes- and
p-wave phase shifts are negative, for all otherl values they
are positive. The filled circles in Fig. 1 depict the the pha
shifts that have been extracted from the data. The topm
graph identifies the phase shifts associated with thej 5 l 1 1

2

angular momentum set while the bottom panel contains th
associated withj 5 l 2 1

2 . It is evident from the data displaye
in this figure that there is only a small difference between
d l

6 sets. The largest difference occurs with thep-wave phase
shifts, and that is only of order 0.1~radian!.

As the phase shift analyses of thee-Xe scattering data
gave negative values for thes- andp-wave phase shifts, on
can expect@12# scattering potentials that have a short rang
repulsion. But fore-Xe scattering it is known that the poten
tial should be attractive at all radii and especially so near
origin where the incoming electron should experience ess
tially only the presence of the nucleus. Thus one would
pect the phase shifts for lowl values to be positive. Such ca
be formed with the phase shift values having a monoto
decrease withl by the addition of 2p to d0

(1) andp to d1
6 .

We define such modulated values as thep-adjusted phase
shifts hereafter. Naturally, multiples of any integer amou
may be used, but this set is the simplest. The n
(p-adjusted! values are shown by the open circles in Fig.
01270
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Associated with such phase shifts are purely attractive in
actions, which are expected in the physical potentials
electron-atom scattering.

To investigate the effect of additional input on the form
the inversion potentials, the two data sets were interpola
Several interpolations were made in seeking suitable in
for the different inversion schemes. A many point interpo
tion was made on each phase shift set to obtain the inpu
the WKB inversion scheme. Values of the phase shift fu
tions had to be found at quite small step sizesD l , since in
the WKB method we have not only to evaluate the deflect
functions but also integrate over them~numerically!. A step
size D l of 0.01 was used. Also, two extended sets of inp
phase shift values were generated for use with the N
scheme. One hadD l 50.5 and the otherD l 50.2. This was
done to assess the effect of differing amounts of nonphys
input on the N-S inversion potentials. The sets of interp
lated phase shifts obtained usingD l 50.2 are displayed in
Fig. 1, with the solid and dashed curves giving the results
these~spline! interpolations. Clearly, the phase shift fun
tions so specified are no longer equivalent and so we ex
any inversion process that requires such functions as inpu
give different inversion potentials.

IV. RESULTS AND DISCUSSION

The results we have obtained using the N-S inverse s
tering theory are discussed first and, subsequently, th
found from our WKB study of the two chosen phase sh
functions are considered. We present in three subsection
potentials that result, the phase shifts found from solution

FIG. 1. The scattering phase shifts found from a phase s
analysis of 5-eVe-Xe scattering data. The filled circles are th
results specified by Gibsonet al. @9# while the open circles are the
p-adjusted values. The results of interpolations of the basic two
of ~physical! phase shifts are portrayed by the solid and das
curves.
7-4
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FIXED-ENERGY INVERSION OF 5-eVe–Xe-ATOM . . . PHYSICAL REVIEW A 63 012707
the Schro¨dinger equations containing those potentials, a
the cross sections that ensue in each case.

A. The results from N-S inverse scattering theory

Our N-S studies have lead to six inversion potentia
three found by using the original phase shift values of G
son et al. @9# and the other three obtained by using t
p-adjusted phase shifts. For each case, we first calculate
N-S inversion potentials using as input solely the phase sh
corresponding to the physicall angular momentum setl
P0,1,2, . . . ,7. Such results we identify as case 1 resu
e.g., case 1 inversion potentials from thep-adjusted phase
shift sets. Two other calculations were made with N-S inv
sion. First the N-S inverse scattering theory equations w
solved using the discretizationD l 50.5; these results we
identify by the designation case 2. The third set of N-S c
culations were made usingD l 50.2 to give what we term
case 3 results.

1. The N-S inversion potentials

Physical arguments dictate that thee-Xe scattering poten-
tial for 5-eV electrons should be real~the energy is below the
first threshold! and attractive, with long range behavior o
2uau/r 4 and short ranged behavior of2Ze2/r . One may
also expect that the intermediate range potential would
essentially a monotonic function between the extremes as
charge density of the atom is believed to be a smooth fu
tion.

The potentials resulting from the inversion of the pha
shifts based upon the original set@9# are all strongly repul-
sive at small radii and hence are not considered physic
significant. They also have marked oscillation in both th
central and spin-orbit results. When used in the Schro¨dinger
equations, however, the solutions do reproduce the in
phase shifts quite well; comparably to the results we sh
subsequently. But as the inversion potentials are not con
tent with the form ofe-Xe potential dictated by knowledg
of that scattering system, we consider those inversion res
no further.

In Fig. 2 the potentials obtained by inversion of th
p-adjusted phase shift values are displayed. The top and
tom segments portray the central and spin-orbit compon
of the potentials, respectively. The dashed, long dashed,
solid curves represent the case 1, case 2, and case 3 p
tials, respectively. The dashed curves in this figure are id
tical to the results of inversion found using the original pha
shift values of Gibsonet al. @9#. That is as it should be, since
within the N-S inversion scheme made with just the ph
shift values specified at the physical angular momen
modulop adjustment means that one uses exactly the s
expansion wave functions in defining the internal matric
But the other cases have quite different outcomes. The
tentials shown in Fig. 2 tend to the physical expectation a
clearly demonstrate that the inclusion of greater number
phase shifts at noninteger angular momentum leads
smoother, more realistic potential forms. The inversion
tential found using the phase shifts at solely the phys
angular momenta does not represent a structure expecte
5-eV electrons on Xe atoms as it has the short ranged re
01270
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sion. However, between 0.75 and 2.5 a.u., that~case 1 cen-
tral! potential has an attractive well with a depth
21.3 a.u. while beyond 2.5 a.u. it behaves approximat
as r 24. The spin-orbit component of the case 1 potentia
very small weakly attractive in the vicinity of 1 a.u., mildl
repulsive between 1 and 2.5 a.u., and after that essent
zero.

Obviously the most realistic potential comes with the ca
3 potentials found using thep-adjusted phase shift sets. Th
concurs with the hypothesis that the inverse scattering the
result stabilizes with increase in the number of noninte
angular momenta phase shifts commensurate with nume
accuracy of evaluation. Essentially, the angular momen
step size should be small in comparison to the numbe
significant partial wave input data (l max). This case 3 poten-
tial, shown in Fig. 2 by the solid lines, has exactly the stru
ture one would associate withe-Xe scattering. At small radii
it is strongly attractive and ofr 21 form, with a smooth tran-
sition to a long ranger 24 tail. There is a smooth transition
between those regions. The spin-orbit results also are m
reasonable. The case 3~with p-adjusted phase shifts as in
put! spin-orbit potential is not as extensive as the others.
spin-orbit potentials are all small in general~save for the
naturally occurring divergence at the origin! and so these
three results do not by themselves indicate convergence.
reproduction of phase shifts and observables, however, te
to suggest that the results we show are reasonable.

2. Reproduction of the phase shifts

An indication of the success of an inversion scheme is
reproduce the input phase shifts from solutions of the Sch¨-
dinger equations using the inversion potentials. In this c

FIG. 2. Potentials~central top; spin-orbit bottom! obtained from
N-S inversion of the three sets of phase shift values described in
text and formed by using thep-adjusted phase shift values. Th
dashed, long dashed, and solid curves depict the results desig
cases 1, 2, and 3 in the text, respectively.
7-5
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A. LOVELL AND K. AMOS PHYSICAL REVIEW A 63 012707
such reproduction is reasonably good but not exact; perh
being a measure of the LHF approximation.

In Fig. 3, the original phase shift values@9# are portrayed
by the filled circles and are compared with those obtained~at
integer angular momenta! using each of the three inversio
potentials defined by thep-adjusted input sets. Case 1 resu
lie within the filled circles, case 2 values are shown by
open squares, and case 3 gave the results portrayed b
open circles. The three lines now are meant only to guide
eye by connecting the phase shift values arising from us
the three inversion potentials.

The best reproduction of the phase shifts defined fr
experiment@9# is found by using the case 1 inversion pote
tial, notwithstanding that the potential contains unphysi
characteristics. Essentially, the inversion scheme in this c
produces a potential that has been defined from just the
sets of eight phase shift values found by Gibsonet al. at the
physical values ofl 50 to l 57. Case 2 and 3 potentials, o
the other hand, were built using many more phase sh
specified at nonintegerl values and, as the inversion pote
tials then seek to reproduce all of those extra values equ
well, small variations in the results at the eight physical
values from the set of Gibsonet al. can result. The choice o
those additional~unphysical! phase shifts then is crucial i
the resulting potentials are to reproduce the eight phys
values very well. One has to balance the need for a su
ciently large basis so that the inversion potential has st
lized to the proper~physically credible! limit, against the
numerical accuracy one needs to achieve in reproductio
the physical phase shifts and scattering data.

A source of possible error in addition is the choice th
must be made for the phase shift at the unphysical p
d0

j 521/2. That value is needed in the calculations of bothd̃

and d̂ and also in the N-S scheme. This choice has the

FIG. 3. The 5-eVe-Xe phase shifts obtained from the potentia
shown in Fig. 2 compared with the values specified by Gibsonet al.
@9#. Note that the lines are simply to guide the eye and to iden
the three cases. The notation is as used in Fig. 2.
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tential to introduce error since its value influences the int
polation. A poor choice of this value can become evide
when the inversion potential is used to recalculate the ph
shifts, particularly for the low-l partial waves. A reasonabl
choice seems to be to set the phase shiftd0

j 521/2 equal to
d0

j 511/2. Admittedly this is an arbitrary point. In this study
two choices were considered; the first being to taked0

j 521/2

5d0
j 511/2 and the other to use an Akima spline to determ

the value by extrapolation. In this study, allowing the Akim
spline to determine this point was slightly more successf

3. The cross section from the N-S inversion potentials

Although the potentials all look reasonably good, partic
larly that found from case 3 with thep-adjusted input phase
shifts, a further test of the inversion results is to see h
accurately use of the potentials reproduces experime
data. This is displayed in Fig. 4 wherein the experimen
data~with error bars! as found by Gibsonet al. @9# are com-
pared with the cross sections calculated from the three in
sion potentials obtained using thep-adjusted phase shift sets
Results found using the case 1, case 2, and case 3 inve
potentials are depicted by the dashed, long dashed, and
curves respectively. Further, we display the results here o
linear scale to distinguish the bulk of the results in relatio
ship to the error bars. Later, when discussing the WKB c
culated cross sections, we will display also the case 3 N
comparison with data shown on a semilogarithmic plot. T
emphasizes the comparison of results with data at the la
scattering angles and particularly in the vicinity of th
minima at 120°. As one might expect from the reproducti
of the phase shifts, we see in Fig. 4 that a good reproduc
of the cross-section data is found with the case 1 results. T
result passes through the error bars of most data points.
case 2 cross section has similar structure to the experime
data, but the shape is slightly at variance, falling just outs

y

FIG. 4. The 5 eVe-Xe differential cross sections obtained fro
the potentials shown in Fig. 2 compared with the data of Gibs
et al. @9# ~dots with error bars!. The notation defining the result
from the three cases is as in Fig. 2.
7-6
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the error bars associated with a number of the data. The
3 cross section, however, is in excellent agreement with m
of the experimental data. In general it falls within most of t
data error bars except at the larger scattering angles; the
ter indicative of the phase shifts at integer values ofl not
being reproduced with sufficient accuracy.

B. The results from semiclassical WKB inversion theory

The WKB inversion results have been obtained by for
ing the d̃(l) and d̂(l) phase shift functions and using the
to evaluate two quasipotentials. The potentials that result
discussed in the first subsection. Subsequently, we pre
and discuss the phase shift reproductions and the cross
tions that result on using those inversion potentials.

1. The WKB inversion potentials

The inversion potentials we have found using the se
classical WKB method are presented in Fig. 5. Once ag
the central potential is shown in the top section of the figu
the spin-orbit potential in the bottom. Clearly two very d
ferent structures have been generated. The result from u
the p-adjusted functions has physically sensible characte
tics but that found using the deflection function defined fro
the original phase shifts does not. Indeed the inversion p
cedure based upon the original phase shift set does not
to a spin-orbit potential one can identify as anything sens
and so that is not displayed.

The p-adjusted phase shift data set gives smooth mo
tonic phase shift functions and hence work well with t
WKB scheme. Furthermore, it leads to the form of poten

FIG. 5. Potentials~central top; spin-orbit bottom! obtained from
WKB inversion of the phase shift functions described in the te
The solid curves depict the results found using thep-adjusted phase
shifts to define the phase shift function; the long dashed curve g
the ~central! potential found using actual Gibsonet al. @9# tabled
values for that purpose.
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~the continuous lines in Fig. 5! one would expect for the
central component of ane-Xe interaction, i.e., a smooth
function that is highly attractive toward the origin and has
attractive r 24 long range behavior. The spin-orbit comp
nent of the potential would also be small and short rang
Essentially, the potential from this WKB analysis that is d
played in Fig. 5 has this desired prescription. Howev
given that the input was not optimally smooth at large an
lar momenta~close inspection of the input data showed th
there were small oscillations in the phase shift function!,
there are small oscillations at large radii in the WKB inve
sion potential. Nevertheless, after smoothing, the long ra
WKB inversion potential does behave on average liker 24,
and the central component of this WKB inversion potent
resembles that found using the N-S scheme.

Only the central potential found from WKB inversion o
the original phase shift data@9# is shown in Fig. 5~by the
long dashed line!. Quite evidently it is nonsensical. It exhib
its ambiguous behavior at many radii, resulting from a lo
of 1:1 correspondence betweens and r in this case. Appar-
ently if the input phase shift function contains a large deg
of curvature then that input is unsuitable for use with t
WKB procedure. This is emphasized when one considers
deflection function, quasipotential, and the associateds vs r
plots. The deflection function resulting from differentiatin
the phase shift function defined from interpolation of t
original phase shift values has a rapid variation as is evid
from the top panel in Fig. 6. Consequently the quasipoten
will also be quite structured and that is shown in the mid
panel of Fig. 6. As a result the stability condition brea
down at a fairly large radius. This condition, the correspo
dence betweens andr, is displayed in the bottom section o

.

es FIG. 6. The deflection function~top!, the quasipotential
~middle!, and thes vs r plot ~bottom! from the WKB study framed
upon the original phase shift values of Gibsonet al. @9#.
7-7
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Fig. 6. Clearly, between 3 and 5 a.u. there is an ambigu
relation with s and so one finds ambiguous values of t
associated WKB inversion potential in that region. Inde
one can only hope to obtain a sensible result with this in
to the WKB inversion for radii in excess of 4–5 a.u.

The realistic e-Xe potentials found by using th
p-adjusted phase shift sets and with both the N-S~case 3!
and WKB inversion schemes are compared in Fig. 7. T
potentials found using the N-S scheme are shown by
solid curves while those found by WKB inversion are d
played by the filled circles. The latter are taken to the lim
radius at which the 1:1 correspondence betweens and r is
maintained. Overall the~semiclassical! WKB potentials
compare very well with those found using the~full quantal!
N-S scheme. Clearly the central potentials look almost
actly the same. There are differences between the two w
become apparent when the observables are calculated
the other hand, the spin-orbit WKB potential is very smoo
and weak in comparison to the corresponding N-S com
nent. Also, it is repulsive at all radii while the N-S potenti
has a small attractive well between approximately 0.3 a
0.6 a.u.

2. Reproduction of the phase shifts

Despite the very pleasing form generated for the poten
using the WKB scheme, the reproduction of the phase sh
although reasonable, is not as good as those generated
the N-S scheme. However, this discrepancy is not disconc
ing given that the WKB scheme is a semiclassical appro
mation. The phase shifts found from our WKB calculati
are shown by the open circles in Fig. 8, and joining lin
have been included solely to guide the eye. The data of G
sonet al. @9# again are represented by the filled black circl
As with the N-S case, part of the discrepancy between
calculated values and the data may be due to the ambig

FIG. 7. Comparison of the WKB inversion potentials~filled
circles! with those of the case 3 N-S inversion study made us
phase shift sets from interpolation of thep-adjusted phase shifts o
Gibsonet al. @9#.
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with the interpolation required to specify the phase sh
functions and particularly for points belowl 51 for the j
5 l 2 1

2 input set.
A spline was used to determine the deflection functio

and that influences the quasipotential and ultimately also
potential. Given that points found from thej 5 l 2 1

2 input set
are extrapolated for values ofl, 1

2 , ambiguity in those val-
ues is inevitable. That ambiguity persists when these spli
values are used to determine the input functionsd̃ l(l) and
d̂ l(l). That may result in a poor reproduction of the physic

FIG. 9. The 5-eVe-Xe differential cross section obtained from
the WKB potential~solid curve! compared with the data of Gibso
et al. @9# as well as with the case 3 N-S result~dashed curve!. Both
inversion studies used interpolations of thep-adjusted set of phase
shifts as input data.

g
FIG. 8. The 5-eVe-Xe phase shifts obtained from the~realistic!

potential shown in Fig. 5 compared with the values specified
Gibsonet al. @9#. Note that the lines are simply to guide the eye
7-8



e
d

we
os
va
rv
ic

p

lo
th

oo
h

s

in
-

Th
ry
co
lu

e
re-

t is

on-
al.
on-
d a

nent
ent

cal
n-
the
e.

o-
se

ion
ith

iffi-
for

ry.
ta

FIXED-ENERGY INVERSION OF 5-eVe–Xe-ATOM . . . PHYSICAL REVIEW A 63 012707
phase shifts, particularly of thes- andp-wave values, when
the solutions of the Schro¨dinger equations specified with th
relevant WKB potentials are found to complete the stu
loop.

3. The cross section from the WKB inversion potentials

Already, from the reproduction of the phase shifts,
suspect that with the WKB method, reproduction of the cr
section will not be as good as that obtained using the rele
N-S inversion potentials. This is indeed true. The solid cu
shown in Fig. 9 depicts the WKB cross section result wh
is compared therein against the Gibsonet al. data @9# and
also against the cross section determined by using the
ferred case 3 N-S inversion potential~shown by the dashed
curve!. We now present the results in a semilogarithmic p
since the WKB cross section is similar in magnitude to
data; however, it does not display quite the right structure
any scattering angle. The reproduction simply is not as g
as that found using the N-S scheme. This figure also emp
sizes the mismatch of the case 3 N-S inversion result
large angles that we commented on earlier.

V. CONCLUSIONS

Inversion potentials for the 5-eV electron–xenon-atom
teraction have been found using both the full quantal N
and the semiclassical WKB inverse scattering theories.
results from application of the N-S inversion were ve
good. Several inputs were used in this approach, each
taining a different number of phase shift values. From so
A

.
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tions of the Schro¨dinger equations specified with each of th
potentials, ‘‘inversion’’ phase shifts were extracted that
produced well the starting~physical! phase shift values and
also the empirical cross section. However, when the inpu
taken solely to be the~physical! phase shifts at integer-l
values of angular momentum, the inversion potential c
tains a marked repulsion at small radii. That is not physic
With increased numbers of input data points specified at n
integer values of angular momentum, inversion produce
potential with sensible~physically credible! characteristics.

As two disparate inversion methods find centrale-Xe po-
tentials that are essentially the same and have perti
physical properties of the scattering system, we are confid
that the N-S approach has~nearly! converged and that the
central potential obtained by expandedp-adjusted physical
phase shift sets is the appropriate candidate for the lo
Schrödinger interaction. The spin-orbit potential is reaso
able but more detailed investigations are needed before
characteristics found for it can be adopted with confidenc

The similarity between the WKB and N-S inversion p
tentials also implies that the introduction of unphysical pha
shifts in the N-S calculation is essential if a stable invers
potential is to be obtained in this case. That would be so w
other energies measured@9# and, by implication, for any such
electron-atom scattering at eV energies. There is the d
culty, however, of accurately specifying the phase shifts
noninteger angular momenta. Obviously some kind ofa pri-
ori information regarding the colliding system is necessa
In this instance simplyp-adjusting the given phase shift da
sufficed.
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