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Dicke narrowing for rigid spheres of arbitrary mass ratio
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There is a need in spectral line shapes for a realistic treatment of the translational motion in the case of
arbitrary ratio of the mass of the perturber to the mass of the active molecule. Here we use a one-dimensional
rigid-sphere collision kernel to determine the translational motion. By discretizing the velocity we are able to
exploit the analogy between Dicke narrowing and line mixing. The validity of using a one-dimensional versus
three-dimensional kernel is explored. A comparison of the results with the well-known soft and hard collision
models is also carried out.
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I. INTRODUCTION

A description of the motion of the center of mass of m
ecules in the gas phase is of central importance in molec
dynamics. Along with a description of the relaxation of t
internal degrees of freedom it represents the essential p
lem for the determination of the spectral profile for an is
lated line. In this article we shall concentrate only on t
translational problem. As is well known, in the low-dens
regime, the translational motion for a system in thermal eq
librium leads to a Gaussian or Doppler profile. As is equa
well known, at high densities, the translational motion b
comes diffusional in nature and this leads to a Dicke n
rowed@1# Lorentzian profile, the half width of which is give
by k2D half width at half maximum~HWHM in rad/sec!,
wherek is the wave vector of the optical~ir! radiation andD
is the self-diffusion coefficient.~It is common practice to
write the self-diffusion constantD asD0 /r to emphasize its
intrinsic inverse dependence on the densityr.! In neutron
spectroscopy, the Dicke width is the high-density limit of t
width of the Fourier-Laplace transform of the self part of t
van Hove pair correlation function@2#. The latter function is
often written asSs(k,v). Two common models used to de
scribeSs(k,v) over the entire range of density, are the s
@3# and the hard@4# collision model.@In the spectral line-
shape community, these names are associated with a co
lution of Ss(k,v) with a Lorentzian profile describing th
broadening and shifting of a line.# To go beyond such simple
models for the translational motion, one must return to
fundamental relaxation transport equation that describes
evolution of the appropriate distribution function. In this p
per we first summarize the fundamental equation an
method for its solution. Then we solve for the translation
motion for the particular case of interacting rigid spheres
arbitrary mass ratio. The results are presented graphic
and compared with both the soft and the hard collision m
els. There have been several papers concerned with calc
ing Ss(k,v) for rigid spheres@5–8#. What sets ours apart i
the method of solution and its connection to line mixing a
other areas of physics.
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II. MASTER EQUATION

In the case of ir dipole absorption, the appropriate se
transport relaxation equations@9# may be written as

~vba2v1 ikvz!pba5 igbapba2 i(
dc

W~ba←dc!pdc

1 inpba2 i E A~v←v8!pba8 dv8

1naw~v!mba , ~1!

where there is a separate equation for each component o
optical coherence. To arrive at this equation one ignores
vector nature of the dipole, writes the off-diagonal eleme
of the density matrix,rba , aspbaE exp2i(vt2kz), assumes
that levelsb andd are above levelsa andc, and makes the
rotating-wave approximation. HereE exp2i(vt2kz) is the
applied optical field,vba , the transition frequency, equa
(vb2va), a positive number, andA(v←v8) is the collision
kernel. The transport termsnpba and*A(v←v8)pba8 dv8 rep-
resent the collisional loss from and return to a velocity cla
by collisions with a thermal bath and are the source of Dic
narrowing. The raten is given byn5*A(v8←v)dv8. The
relaxation termsgba and W(ba←dc) represent the colli-
sional loss from and return to a component of the opti
coherence and are the source of line mixing. All of the va
ous rates are, in general, functions of the speed of the ac
molecule. It is usual to think of the components of the c
herence as discrete in the internal degrees of freedom, b
distribution function in the classical variables of position a
velocity of the center of mass of the active molecule. T
prime onp8 means the component is a function of the v
locity v8. The quantitiesna , w(v), andmba are the popula-
tion per unit volume in statea, the normalized, equilibrium,
Maxwellian velocity distribution function, and matrix ele
ment of the transition dipole between statesa andb. Equa-
tion ~1! is a scalar version of the generalized Waldman
Snider equation@10–13#, where by scalar we mean that th
tensorial nature of the interactions between the active m
ecule with both the probe and the perturbers is neglec
©2000 The American Physical Society01-1
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Equation~1! and the approximations leading to it have be
discussed in@9#. An earlier, heuristic treatment, for the ca
of an isolated line, can be found in@14#. The set of equations
can be used to derive all of the well-known spectral li
shapes, including line mixing. Omitted from Eq.~1! are
terms in which both changes in the component of the coh
ence and changes in velocities occur, i.e., terms assoc
with the statistical correlation between the relaxation of
internal and translational degrees of freedom.

The problem of determining a spectral profile thus co
sists of two main parts. First, from the interaction betwe
the active and bath molecules, one needs to determine
speed dependence of the relaxation ratesgba and W(ba
←dc), and of the transport ratesn andA(v←v8). Then one
must solve the equation forpba(v). The final step is to con-
struct the complex linear susceptibilityx from
Tr@pba(V)mab# by integrating over the velocity.~One ob-
serves all the active molecules, not simply those of a sin
speed class.! The absorption coefficient is then simply pr
portional to the imaginary part ofx.

For an isolated line, the sum involving the off-diagon
elements of the relaxation matrixW(ba←dc) may be omit-
ted. This decouples the different equations for the com
nents of the optical coherence. In general, the remain
relaxation/transport rates are a function of the speed of
active molecule. However, we are primarily concerned o
with the problem of a realistic treatment of the translatio
motion. Consequently, we will takegba as a constant and a
speed independent. It may be considered as the natural
width. Thus our basic starting equation is

~v02v1kvz2 ig2 in!p1 i E A~vuv8!p8 dv85naw~v!m,

~2!

where we have writtenA(v←v8) as A(vuv8), replacedvba
by v0 ~the more common forms!, and otherwise dropped th
now unnecessary subscriptba. Since we are interested in th
problem of an active molecule of massm interacting with a
perturber of massmp , the collision frequencyn and the
collision kernelA(vuv8) are to be taken as proportional to th
number densitynp of the perturbers.~The connection
between np and the densityr, in Amagat units, isnp
5n0r, where n0 is Loschmidt’s number, 2.6931019

molecules/cm3.!
A major point made in@9# and@15# was that this integra

equation may be reduced to a set of coupled linear equat
if velocity space is discretized. The integral term contain
the collision kernel is then replaced by(A(vuv8)p8, where
p8 is the number of molecules with a coherence that lies
box in velocity space, centered atv8. The velocity relaxation
matrix A(vuv8), the analog ofW in line mixing, describes the
rate of transfer from a cell centered atv8 to a cell centered a
v. A cell is thus labeled by three coordinates, say the speev
and the polar coordinatesu andw relative to the wave vecto
or z direction.

This completes the introduction of the basic relaxatio
transport equation for an isolated line. We now turn to so
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finer details and an application of the equation to the c
where the collision kernel is that for a rigid sphere.

III. RIGID SPHERE

For a rigid sphere~or any spherically symmetric interac
tion! the discretized collision kernel is intrinsically three d
mensional. Invoking cylindrical symmetry about thez axis
we could integrate Eq.~2! over the polar anglew ~before
discretization!, thus reducing the problem to two dimension
Suppose we divide these into 100 divisions in each ofv and
vz for a total of 104 cells. We must then evaluate the rigid
sphere kernel, 108 times and we must solve a problem in
volving 104 coupled linear equations. It may just be possib
to do this with a large computer, but it is hardly enlightenin
With a PC our only option is to use a one-dimensional a
proximation to Eq.~2! by replacing the three-dimensiona
rigid-sphere collision kernel in Eq.~2! by the one-
dimensional form,A(vzuvz8), and n by *A(vz8uvz)dvz8 . We
need then only discretize the equation in one dimension
considerable simplification.

Essentially, we assume that our functionp may be written
in the form w(v')p(vz), where w(v') is the equilibrium
two-dimensional Maxwellian in the transverse velocity (v'

2

5vx
21vy

2). When inserted into Eq.~2! the result is a one-
dimensional equation inp(vz) in which the one-dimensiona
collision kernels are the integral overv' or v'8 , of the three-
dimensional kernels weighted by a two-dimensional Ma
wellian. Below, we show that this is an excellent approxim
tion.

The one-dimensional rigid-sphere collision kernel h
been given in@16–18#. It may be written in terms of reduce
velocity components,v5vz /vT ,v85vz8/vT , as

A~vuv8!5
n0

2
$12s~v2v8!erf~a1v1a2v8!

1@11s~v2v8!erf~a2v1a1v8!#ev822v2
%,

~3!

where vT is the most probable speed, (2kBT/m)1/2, of the
active molecule, erf is the error function, ands equals11 or
21 according to (v2v8) being positive or negative@s(0)
50#. The factorsa1 anda2 are given by (11b)/2b1/2 and
(12b)/2b1/2, respectively. The rate constantn0 equals
pd2npvT(b11)/2b and is related to the thermally average
collision frequencŷ n& by ^n&54n0@b/p(11b)#1/2. Here,
d is the sum of the radii of the rigid spheres andb is mp /m,
the mass ratio. We repeat thatA(vuv8) and the related quan
tities n0 and ^n& are proportional to the number density
the bath, whereas in the present calculationsg is taken as
density and speed independent. Some general propertie
the one-dimensional rigid-sphere collision kernel are giv
in Appendix A.

When v is discretized into an odd number of cellsN,
centered aboutv50, our problem is reduced to solvingN
coupled linear equations that may be written as
1-2
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@x1v i2 iG2 in~v i !#pi1 i (
k51

N

A~v i uvk!pk5w~v i !, ~4!

wherex5(v02v)/kvT is a dimensionless frequency com
monly used in the neutron transport literature~and else-
where! and G5g/kvT is the natural linewidth in units o
kvT . On the right-hand side of Eq.~4! we have, for conve-
nience, setnamba equal to 1, since we are not interested
the absolute line intensity. There is one equation for eac
the N cells, i.e., for eachpi5p(v i). As shown in@15# this
may be put in matrix form and solved using an eigenva
and matrix inversion technique developed for line mixi
@9,19,20#. An important outcome is that the spectrum c
always be written in terms ofN doubly complex Lorentzian
components. By this we mean that the spectrum may be w
ten as

Ss~k,v!5Im (
k51

N
I k

x2 iG1Lk
, ~5!

where both the amplitudeI k and the eigenvalueLk are com-
plex numbers~and a function of the density!. Consequently,
when the imaginary part is taken, the spectrum hasN Lorent-
zian components andN associated dispersion curves. This
a well-known result for line mixing. It is also well known in
line mixing that allI k except one approach zero as the de
sity is increased and that one becomes a real number. T
the spectrum collapses to a single Lorentzian, the width
which decreases with increasing density. For the tran
tional motion, this single component is termed the hydro
namic mode and its width is the Dicke width. We note
passing that there have been many comments in the lit
ture, connecting Dicke narrowing and line mixing. Howev
the only other quantitative connection~besides@9,15#! of
which we are aware was made by Alekseev and Malyu
@21#.

In Appendix B we give the details of the discretization
the collision kernel and an alternative method of solving E
~4! for the line shape, using projection operators. The
merical solution of Eq.~4! is sufficiently simple that it may
be handled on a desk top computer, providedN does not
greatly exceed 100. We now proceed to examine the res
of the calculations for different mass ratios and to comp
them with those predicted by both the soft and the hard
lision models.

IV. GENERAL RESULTS

As with all numerical solutions the results must be p
sented graphically. We first illustrate the analogy betwe
Dicke narrowing and line mixing@15# by choosing a coarse
division of v5vz /vT and a small value of the ‘‘natural’
linewidth. Figure 1 shows the computed spectrum at sev
densities, or rather reduced collision frequenciesy
5^n&/kvT . @The parametery introduced here is the sam
dimensionless collision frequency used in nonequilibriu
statistical mechanics to separate the free streaming or
density regime (y!1) from the hydrodynamic or high
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density regime (y@1).# For y50 we see the individua
coarse-grained components~each of widthG) with a Gauss-
ian distribution of amplitudes. At ay50.16 the discrete
‘‘lines’’ coalesce, but the overall distribution is still roughl
Gaussian. At ay516 the spectrum has collapsed to a smo
profile, Lorentzian in shape with a width that decreases f
ther with increasing collision frequency~density!. Thus, as
indicated above, the key signature of Dicke narrowing
identical to the key signature of line mixing.

As indicated in the Introduction, one expects on gene
grounds a translational width at high density given bydv
5k2D5k2D0 /r, to which must be added the natural wid
~see for example@9#!. Thus we anticipate that the widt
~HWHM in rad/sec!, at high density, will satisfy the equatio

Dv5k2D0 /r1g. ~6!

However, we do not know at this stage if the value ofD or
D0 extracted from a fit of the calculated width to Eq.~6! will
correspond to the diffusion constant for a rigid sphere. T
doubt arises because we have used a one-dimensional
sion kernel in the calculation. It is known that the first-ord
Chapman-Enskog calculation of the self-diffusion const
(D8) involves the longitudinal current@8# and is equivalent
to the use of a one-dimensional collision kernel if calcula
directly. Note, we calculate neitherD nor D8 directly but
rather we calculate spectra over a range of high densities
extract a numerical value of the diffusion constant (Dn) by
fitting the widths to Eq.~6!. We now digress from the main
thrust of this paper and examine the question of how seri
is the use of a one-dimensional collisional kernel in the h
drodynamic regime. The test is to determineDn and to com-
pare it withD8 or D.

We begin by marshalling a number of facts. First, t
lowest-order Chapman-Enskog calculation gives an excel

FIG. 1. A sample spectrum illustrating the analogy betwe
Dicke narrowing and line mixing, computed withG50.01 andb
51 (N525,U52.5). Curve 1,y50; curve 2,y50.16; and curve 3,
y516. For clarity curve 2 has been expanded vertically by a fac
of 7 and only 4-1/2 of the 25 discrete components are shown for
lowest density.
1-3
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D. A. SHAPIRO AND A. D. MAY PHYSICAL REVIEW A 63 012701
approximation to the self-diffusion constant. It can
worked out from@8,18,22#. The result for rigid spheres is th
same as the first-order solution to the mutual-diffusion c
stant@23# and can be written as

D85
3vT

16Apd2np

A11b

b
5

D08

r
. ~7!

It turns out that Eq.~7! is exact forb small, i.e.,D→D8 as
b→0. Second, it is known that the Boltzmann equation
duces to the linearized Navier-Stokes equations in the hy
dynamic limit @24#. For our case this is the diffusion equ
tion. It then follows from statistical mechanics that th
results quoted earlier are exact, i.e., that the spectrum
Lorentzian in this limit with a width given byk2D1g
@9,25#. Consequently the value ofD extracted from our nu-
merical treatment would be exact if we had used a full c
lision kernel. Furthermore, we know the exact results, si
Lindenfeld@8# ~following the standard method of evaluatin
D) has given a table ofD/D8 as a function ofb. It varies
from 1.018 forb51 to about 1.13 forb large. Forb50 the
ratio is 1, a number that supports the claim made above
Eq. ~7! becomes exact asb approaches 0.

Based on these facts, we make two observations. Ou
sults forb approaching zero should be exact. Any errors
the results must be due to the numerical treatment, i.e.,
may not have extended the range ofvz and the value ofN to
large enough values to achieve convergence. For largeb, if
Dn /D8 falls between 1 and 1.13, then the use of a o
dimensional kernel is better than the first-order Chapm
Enskog approximation, itself regarded as an excellent e
mate ofD.

Figure 2 shows, as a function of density, a plot of the h
width Dx ~HWHM in units of kvT). The widths were deter
mined by fitting a Lorentzian profile to the numerically ca
culated spectrum. For the calculation, the range ofvz cov-

FIG. 2. Half width at half maximum (Dx) as a function of the
density~for units of density, see text!. The circles are from fits to
spectra computed withG50.01 andb51 (N5101,U52.5). The
solid curve is a fit to an equation of the formDx5a/r81b.
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ered,U, was 2.5 (22.5kvT<vz<2.5kvT), b was set equal
to 1, and the number of cells used was 101. Here we h
chosen density units such that the Dicke width would be 1r8
if D were given by Eq.~7!, and we have usedG5g/kvT
50.01. The value ofD0 derived from fitting the expression
Dx5D0 /r81G to the curve of Fig. 2 isD050.99. By ex-
tending the rangeU and the numberN we attain a converged
value of 1.01. Forb51/4 we find 1.001, forb516 we find
1.051, and forb564 we find 1.057. Thus, with some effor
we do achieve convergence, but what is more important
comparing our results with the exact results of Lindenfe
@8#, we succeed in establishing that the use of a o
dimensional kernel yields a better result for the diffusi
constant ~Dicke width! than the lowest-order Chapman
Enskog calculation, Eq.~7!.

We have just shown that we can obtain a reliable sp
trum in the hydrodynamic region when using a on
dimensional kernel. It is clear, in the low-density or fre
streaming limit (y!1), that any collision kernel will suffice
since the kernel vanishes atr50. Being reliable~but not
exact! in the low- and high-density limits we can anticipa
that the calculated spectra at intermediate densities will
close to the spectra one would calculate with a full collisi
kernel. We proceed on that assumption. Rather than com
complete spectral profiles over a range of densities an
range of mass ratios, we will, as above, restrict the pres
tation to that of comparing only half widths for differen
mass ratios. However, there is a minor problem we must
overcome.

For a meaningful comparison of spectra in the hydrod
namic regime, we are obliged to introduce a density sca
that is different from that used in defining the variabley. We
can see the need by examining Eq.~7!. If all we did were to
let b go to zero by lettingmp go to zero, thenD8 would
become infinite, as would the Dicke width calculated fro
Eq. ~6!. This apparent nonsense arises because the velo
of the active molecule becomes unperturbed as the mas
the perturber goes to zero.~Recall that the diffusion constan
is related to the decay of the velocity correlation functio!
Thus one escapes the hydrodynamic regime on lowerinb
while keeping the density constant. Let us digress, for
moment, to discuss what is meant by the hydrodynamic
gime, both in general and for the case at hand.

In general, by ‘‘hydrodynamic regime’’ one means th
low-frequency and low-wave-vector~long-wavelength! limit.
The questions are, what ‘‘v ’’ and what ‘‘k’’ are small with
respect to what? In the present case, the characteristic
quency of the collisionless system is the mean Doppler s
kvT , and the characteristic frequency for the collisions
^n&. Thus the parametery5^n&/kvT is an appropriate pa
rameter to quantify the low-frequency constraint in order
a system to be in the hydrodynamic regime. Under the c
straint b approaching zero for a fixed density, the collisio
frequency^n& approaches infinity simply because the spe
of the perturbers also approaches infinity. Thus at any fin
density, the hydrodynamic limit, in frequency space (y@1),
can be reached simply by loweringb.

In order to discuss the spatial hydrodynamic limit, w
need to capture the scaling with distance or, alternativ
1-4
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DICKE NARROWING FOR RIGID SPHERES OF . . . PHYSICAL REVIEW A 63 012701
with the wave vector. An appropriate scaling procedure,
used in statistical mechanics, involves the introduction of
Péclet parameterz. It is defined as the product of som
collision-free characteristic speed and characteristic len
divided by the diffusion constant, a parameter characteri
of collisions. For the characteristic speed we choosevT/2 and
for the characteristic length we choosek21. The wave vector
characterizes the spatial variation in the optical coherenc
being driven by the optical field. Thus we definez by the
equation,z5vT/2kD. If we multiply top and bottom by the
wave numberk we see thatz is a measure of the Dopple
width, kvT divided by the full Dicke width 2k2D. Clearly we
are in the hydrodynamic or diffusion-limited Dicke regim
whenz is greater than 1. The inverse dependence ofz on D
means thatz scales linearly with density. Withz defined this
way it is identical to the narrowing parameter used in the s
collision model by the spectral line-shape community an
is the same as the parameterY introduced by Lindenfeld@8#.
In gas flow dynamics, a Pe´clet parameter can be used
define the Knudsen regime. There the condition is that
mean-free path must be large with respect to the diamete
the tube.

To expand on the physics of the narrowing parameter
note that the diffusion constant may be defined in terms
the velocity correlation functionF. If it is assumed that the
F decays as exp(2jt), even at short times@the assumption
made to reach Eq.~7! and an assumption that becomes va
as ^n& approaches infinity#, then the Einstein relationshi
D85vT

2/2j follows @24#. Based on its use in the velocity
correlation function,F may be thought of as a collision fre
quency for velocity-changing collisions. Defining a mea
free path byL5vT /j, the condition for Dicke narrowing
kL,1 becomesz.1. It is the mean-free path that ‘‘ex
plodes’’ if b is made to approach zero while keeping t
density fixed and why one escapes the hydrodynamic re
under these conditions. Clearly the narrowing parameter
suitable dimensionless quantity to define the wave-ve
limit of the hydrodynamic regime. Since the narrowing p
rameter may be written asj/kvT , it too is a dimensionless
collision frequency or relaxation rate and is proportional
density. We compare results for varying mass ratio no
equal densities but at equal narrowing parameters.

V. HWHM Dx„b… VERSUS z8

In order to plot half widths~in units ofx) as a function of
z, for different values ofb, we need to know the diffusion
constant. However, as we pointed out above, there is no
plicit diffusion constant in the master equation. Fortunate
as Fig. 2 showed, we can calculateD reasonably well using
Eq. ~7!. We then define az8 in terms of the calculated valu
of D8 and plot the widths measured from the computed p
files as a function ofz8. In these units we expect the widt
~HWHM! to follow closely the universal relationshipDx
51/2z81G at values ofz8 much greater than 1. Figure 3~a!
shows plots of the half width as a function of the narrowi
parameter, for a selection of mass ratios. The widths w
measured directly from the computed profiles. As ant
pated, on the scale of Fig. 3~a!, all curves show the universa
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behavior anticipated at high density. At low density@26# the
curves approach the value calculated for a Voigt profile@see
arrow in Fig. 3~a!#. While the calculated widths are the sam
at the two density extremes, at intermediate values of
narrowing parameter there is a clear progression towa
lower half widths with higher values of the mass ratiob.
What Fig. 3~a! illustrates is that there is no universal expre
sion for Ss(k,v) at intermediate densities. This has impo
tant consequences for experimentalists. It should be c
that extracting collisional widths from experimental profil
measured over the range spanned by most of Fig. 3~a!, with-
out allowance for the relative mass of the perturber and
active molecule will lead to biased values for broaden

FIG. 3. ~a! Half width at half maximum (Dx) from fits to spec-
tra calculated withG50.01 (N5401,U55). From top to bottom,
b51/25, 1/5, 1, 5, 25. The arrow indicates the calculated Vo
width for the same Doppler width and the same valueG. Horizontal
axis, narrowing parameterz8 ~see text for definition!. ~b! Plot of d,
deviation in HWHM from value for soft collision model. From
bottom up,b51/25, 1/5, 1, 5, 25. The topmost curve was calc
lated for the hard collision model with the same diffusion const
as for the soft collision model (d50).
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coefficients. The hard and soft collision model for the tra
lational motion are generally wrong in that they are univ
sal, i.e., they require only a single input parameter, the
fusion constant, to characterize collisions. In Fig. 3~b!, we
examine departures from these simple models for the cas
rigid spheres.

In Fig. 3~b!, we show, on an expanded vertical scale,
difference in width,d5Dxref2Dx, as a function ofz8. The
reference profile used was that for the soft collision mo
with D5D8(b→0). We see thatd vanishes as the mass o
the perturber is reduced relative to the mass of the ac
molecule. Since the soft collision model is a solution of t
Fokker-Planck equation, this is numerical proof that t
Boltzmann equation approaches the Fokker-Planck equa
@27# as b goes to zero. This question was previously a
dressed by Lindenfeld@8# using in effect the full rigid-sphere
collision kernel. It has also been reexamined recently
Rautian@28#.

Also shown in Fig. 3~b! is a plot ofd for the hard colli-
sion model, with the same value ofD as for the soft collision
model. We see that as the mass of the perturber is incre
the rigid-sphere results approach those for the hard collis
model. However, they are not the same in the Lorentz
limit ( b5`). Analytical solutions for the hard collision
model are known@4,9,29# and they differ from the known
analytical solutions for the Lorentz gas of rigid spher
@9,30,31#. Even for a mass ratio of 25, the results for a rig
sphere interaction are measurably different from those
dicted by the hard collision model. This illustrates the er
in the common perception that the hard collision model is
appropriate model for heavy perturbers. Very recently, R
tian @32# has discussed the role of the mass ratio in the s
the hard and the Lorentz collision models.

Initially we shared with others@17,33# some reservation
about the use of a one-dimensional collision kernel. Abo
we have argued~for the treatment of the translational mo
tion! that the use of a one-dimensional kernel is a good
proximation in the low density and in the hydrodynamic r
gime. We now use Fig. 3~b! to discuss the problem a
intermediate densities. Note forb51 that our results fall
about 1/3 of the way between the exact solution to the
and hard collision model. This approximation has been no
experimentally by Ref.@34# and by Ref.@35# and it has been
justified by the the calculations of Refs.@5# and @6# using
essentially the full collision kernel for a variety of interactio
potentials, including that for rigid spheres. Our results ba
on a one-dimensional kernel are thus at least semiquan
tively correct. However, as we discussed above, if we w
to consider the case of an isolated line with speed-depen
broadening and shifting, rather than the constant ‘‘natu
width’’ considered here, it will be necessary to extend t
kernel to two dimensions, sayv andvz . The question of the
accuracy of calculations with a one-dimensional collisi
kernel then becomes academic.

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented, for rigid spheres, a
merical procedure for calculatingSs(k,v), a function de-
01270
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scribing the translational motion of a molecule in a bath
perturbers. The ratio of the two masses was allowed to v
This represents an important first step in calculating the sp
trum of an isolated line with speed-dependent broaden
and shifting where the same numerical procedure may
applied. By introducing a density scaling rule based on
narrowing parameter, we have illustrated the universal
havior of the translational contribution to line shapes at v
low densities~free streaming regime! and very high densities
~hydrodynamic regime!. The lack of universal behavior, i.e
showing a dependence on the mass ratiob at intermediate
densities was quantified and led to the conclusion, gener
speaking, that neither the soft nor the hard collision mode
an appropriate model for the translational motion.

The use of a rigid-sphere interaction is not a serious dr
back. First, it is generally accepted that rigid spheres prov
an excellent statistical description of the translational mot
of atoms and molecules. Second, the formal connection
tween a cross section and the corresponding collision ke
is well known and may be used to generate numerical va
for many collision kernels. This is precisely the form r
quired in the calculations. Consequently the way is open
generatingSs(k,v) for a variety of potentials.

In order to establish a connection to line mixing we ha
discretized the velocity distribution. This amounts to choo
ing a set of ‘‘top hat’’ distributions as a set of basis fun
tions. For reasons of convergence and accuracy it is lik
that a different set of basis functions will prove more usef
It is common practice in statistical mechanics to use the
nine polynomials and some device, such as the Gro
Jackson procedure@8#, to keep the dimension of the problem
to a manageable level. A process similar to this has b
used by Podivilov and co-workers to treat the case of Dic
narrowing in a dense plasma@36#.
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APPENDIX A: THE ONE-DIMENSIONAL RIGID-SPHERE
COLLISION KERNEL

The one-dimensional collision kernel has been given
the main text as Eq.~3!. It is an asymmetric function of its
two variables, and it satisfies the detailed balance relatio

A~vuv8!e2v82
5A~v8uv !e2v2

[ApK~vuv8!. ~A1!

Figure 4 shows a plot ofA(vuv8)/n0 for light, medium, and
heavy perturbers. It has a cusp that is especially sharp w
the perturbers have a small mass relative to the mass o
active molecule. For heavier bath particles the cusp is m
blunt. For heavy perturbers the surface also has a triang
1-6
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plateau. This is a result of averaging over the transve
components of the velocity vector. The kernel, as a funct
of the velocity difference, becomes wider for heavier ba
particles. It is not a symmetric function of the veloci
change (v2v8), except for the particular case ofv850.
Note, for the hard collision model,A(vuv8) is the one-

FIG. 4. One-dimensional kernel for rigid spheres as a funct
of velocitiesv,v8 at ~a! b51/16, ~b! 1, ~c! 16.
01270
e
n
h

dimensional Maxwellianw(v) for all values ofv8 and looks
similar to thev850 plot in Fig. 4~c!. In general, a derivation
of the soft collision model relies upon the collision kern
having a sharp cusp, such as that exhibited for rigid sphe
with light perturbers.@See Fig. 4~a!.#

We now consider some mathematical properties of
one-dimensional kernel. The auxiliary functionK(vuv8) has
the symmetry properties:

K~vuv8!5K~v8uv !, K~2vu2v8!5K~vuv8!.

The second property follows directly from Eq.~3!. The av-
erage collision frequencŷn& is given by

^n&5
1

Ap
E

2`

`

n~v !e2v2
dv

5
1

Ap
E

2`

` E
2`

`

A~vuv8!e2v82
dv dv8

[E
2`

` E
2`

`

K~vuv8!dv dv8.

The result is

^n&5
4b1/2n0

Ap~11b!
5pd2npū, ~A2!

where the mean relative velocityū is given by ū52vT(1
1b)1/2/b1/2Ap.

The velocity relaxation rate,j, may be calculated from

j52E
2`

`

v2n tr~v ! f 0~v !dv, ~A3!

where the transport frequency,n tr(v), is given by

n tr~v !5E
2`

` S 12
v8

v DA~vuv8!dv8.

For rigid spheres, the result is

j5
16b3/2n0

3Ap~11b!3/2
. ~A4!

The Einstein relationshipD85vT
2/2j connectsj to the

first-order diffusion constantD8. Consequently, for rigid
spheres the first-order diffusion coefficient is given by

D85
3Ap

32 S 11
1

b D 3/2vT
2

n0
5

3vT

16Apd2np
S 11

1

b D 1/2

,

~A5!

in agreement with the first-order three-dimensional self d
fusion coefficient of Chapman and Cowling@23#. The speed-
dependent collision raten(v) is given by

n

1-7



-

lu

n

f

s
-

we
ute

er

tor

the
a

tor
ve

p-

g

D. A. SHAPIRO AND A. D. MAY PHYSICAL REVIEW A 63 012701
n~v !

pd2npvTp

5b1/2v erf~b1/2v !1
e2bv2

Ap

1
11b

b1/2
ev2E

uvu

`

erf~b1/2t !e2t2 dt, ~A6!

wherevTp5A2kBT/mp is the thermal velocity of bath par
ticles.

The speed dependence is shown in Fig. 5 for three va
of b. At v50, the expression simplifies to

n~0!

^n&
5

1

2 S 1

A11b
1

A11b

b1/2
arctanb1/2D . ~A7!

It varies fromp/4 for b@1 to 1 atb!1. The asymptote for
v@1 is linear withn(v) varying asb1/2v/A11b. We see
that the slope is gentle for light perturbers (b!1) and
steeply inclined for heavy bath particles (b@1). For equal
masses the integral is given explicitly by

n~v !

^n&
5Ap

8Fv erfv1
e2v2

Ap
1

Ap

2
ev2

~12erf2 v !G .

~A8!

APPENDIX B: DISCRETE MODEL

We solve Eq.~4!, the discrete analog of the Boltzman
equation. For convenience we write this in the form

2 i (
j 51

N

Bi j pj5wi , ~B1!

whereBi j 5(G1 ix1 iv i)d i j 1Li j are the matrix elements o
the kinetic operatorB̂, and v i5U(2i 2N21)/(N21), i
51,2, . . . ,N, is the vz component ofi th velocity class of

FIG. 5. Collision frequency for rigid spheres in units of^n&.
Solid line, calculated from Eq.~A6! with b51/16; dotted curve,
calculated from Eq.~A6! with b516; dashed line, calculated from
Eq. ~A6! with b51; and crosses, calculated from Eq.~A8!.
01270
es

molecules in units ofvT . N is the number of velocity classe
andwi5CN exp(2vi

2) is the discrete one-dimensional Max
wellian distribution. The constantCN , which may be found
by the summing up over all classes, is not important since
are interested only in the line profile and not its absol
strength. The collision operatorL̂ in this representation is
given by the matrix

Li j 5hS (
k51

N

Akid i j 2Ai j D , ~B2!

where the elementsAi j 5A(v i uv j ) are given by Eq.~3!. Here
h52U/(N21) is the size of the cell in unitsvT . Numerical
integration is carried out over the region2U<vz /vT<U.
We chooseN odd to provide one velocity group in the cent
vz50. Note that the sum overk in Eq. ~B2! is the replace-
ment for the collision frequencyn @Eq. ~2!# that determines
the total loss from the velocity classv i .

The matrix elements of the discrete collision opera
obey two sum rules

(
i 51

N

Li j 50 and (
j 51

N

Li j wj50.

The former is a result of particle number conservation;
latter follows from the principle of detailed balance. At
given narrowing parameterz8, the collision raten0 is calcu-
lated from the formula

n0

kvT
5

3Apz8

32 S 11
1

b D 3/2

.

When the collision rate is not equal to zero, the opera
B̂ is not diagonal. To diagonalize the matrix we first sol
the eigenvalue problem

(
j 51

N

~v id i j 2 iL i j !Vj
( l )5L lVi

( l ) , l 51,2, . . . ,N, ~B3!

whereL l is the l th eigenvalue;Vi
( l ) is the i th component of

l th eigenvector. All the vectors are normalized, i.e.,

~V(m),V(n)![(
i 51

N

Vi
(m)* Vi

(n)5dmn .

A solution can be found by constructing the projection o
eratorPi j

( l ) onto the subspace of a given eigenvalueL l . This
is, given by

Pi j
( l )5Vi

( l )Vj
( l )* . ~B4!

The projection operator is Hermitian with the followin
properties:

(
k51

N

Pik
( l )Pk j

( l )5Pi j
( l ) and (

l 51

N

Pi j
( l )5d i j . ~B5!
1-8
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The former property directly follows from the definitio
~B4!, while the latter allows one to write the inverse matr
as a sum over projectors, viz.,

B̂215(
l 51

N
P̂( l )

x1L l2 iG
. ~B6!

The line profile then can be expressed now in terms of p
jectors as

I ~x!}Im (
i , j ,l 51

N Pi j
( l )wj

x1L l2 iG
. ~B7!

Thus as presented in the text@see Eq.~5!# this decomposition
leads to a line shape as the sum ofN ‘‘doubly’’ complex
Lorentzian lines. When the numerator is real, their cen
are determined byx52ReL l , while their widths are given
by G2Im L l .
nt

ys

y

01270
-

rs

In the free streaming regime (n0!kvT) we can neglect

the collision operatorL̂. Then the eigenvectors and eigenva
ues are given byVi

( l )5d i l ,L l5v l , respectively, and corre
spond to selected velocity groups. At a higher collision r
the ‘‘dressed states’’ are linear combinations of the unp
turbed bases vectors. In the hydrodynamic limitn0@kvT we

can, on the contrary, neglectv i in the operatorB̂. In this
limit the Boltzmann distributionwi is an eigenvector with

zero eigenvalue, sinceL̂w50. Except at these two densit
extremes, there are no known analytic expressions for
eigenvalues and eigen functions. We can find the eigenva
and eigenfunctions numerically at any density. The num
cal calculation of projectors can be carried out by a meth
well known in mathematical physics, namely, by the integ
tion of the resolvent operator over the closed loop around
corresponding eigenvalue in the complex plane@37#.
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