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Dicke narrowing for rigid spheres of arbitrary mass ratio
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There is a need in spectral line shapes for a realistic treatment of the translational motion in the case of
arbitrary ratio of the mass of the perturber to the mass of the active molecule. Here we use a one-dimensional
rigid-sphere collision kernel to determine the translational motion. By discretizing the velocity we are able to
exploit the analogy between Dicke narrowing and line mixing. The validity of using a one-dimensional versus
three-dimensional kernel is explored. A comparison of the results with the well-known soft and hard collision
models is also carried out.
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I. INTRODUCTION II. MASTER EQUATION

o . In the case of ir dipole absorption, the appropriate set of
A description of the motion of the center of mass of mol- transport relaxation equatiofi§] may be written as

ecules in the gas phase is of central importance in molecular
dynamics. Along with a description of the relaxation of the
internal degrees of freedom it represents the essential prob- (wba_w+ikvz)pba:i')’bapba_idz W(ba—dc)pgc
lem for the determination of the spectral profile for an iso- ¢

lated line. In this article we shall concentrate only on the ] ) o ,
translational problem. As is well known, in the low-density +'Vpba_'f A(Ve=V')ppa dv
regime, the translational motion for a system in thermal equi-

librium leads to a Gaussian or Doppler profile. As is equally +NW(V) ipa, 1)

well known, at high densities, the translational motion be- . .
comes diffusional in nature and this leads to a Dicke naryvht_are there is a separate equation for ea(_:h component of the
rowed[1] Lorentzian profile, the half width of which is given optical coherence. To arrive at.thls equanon one ignores the
by k2D half width at half r,naximum(HWHM in rad/seq vector nature of the dipole, writes the off-diagonal element

. S .y of the density matrixpp,, asppsE exp—i(wt—k2), assumes
wherek is the wave vector of the opticé) radiation andd 5+ jevelsh andd are above levela andc, and makes the
is the self-diffusion coefficient(lt is common practice to

) S e rotating-wave approximation. Here exp—i(wt—k2) is the
write the self-diffusion constari? asDo/p to emphasize its  gpplied optical field,wy,, the transition frequency, equals
intrinsic inverse dependence on the dengity In neutron (,, _, y "a positive number, and(v—v’) is the collision
spectroscopy, the; Dicke width is the high-density limit of the yarnel. The transport termgpy, and f A(v—V’)p;,.dv’ rep-
width of the Fourier-Laplace transform of the self part of theesent the collisional loss from and return to a velocity class
van Hove pair correlation functiof2]. The latter function is  py collisions with a thermal bath and are the source of Dicke
often written asSy(k, w). Two common models used to de- narrowing. The rater is given by v=[A(V'—v)dv’. The
scribe S¢(k, w) over the entire range of density, are the softrelaxation termsy,, and W(ba—dc) represent the colli-

[3] and the hard4] collision model.[In the spectral line- sjonal loss from and return to a component of the optical
shape community, these names are associated with a convesherence and are the source of line mixing. All of the vari-
lution of Sy(k,w) with a Lorentzian profile describing the ous rates are, in general, functions of the speed of the active
broadening and shifting of a lineTo go beyond such simple molecule. It is usual to think of the components of the co-
models for the translational motion, one must return to théherence as discrete in the internal degrees of freedom, but a
fundamental relaxation transport equation that describes thdistribution function in the classical variables of position and
evolution of the appropriate distribution function. In this pa- velocity of the center of mass of the active molecule. The
per we first summarize the fundamental equation and @rime onp’ means the component is a function of the ve-
method for its solution. Then we solve for the translationallocity v'. The quantitiesh,, w(v), and u,, are the popula-
motion for the particular case of interacting rigid spheres oftion per unit volume in state, the normalized, equilibrium,
arbitrary mass ratio. The results are presented graphicallylaxwellian velocity distribution function, and matrix ele-
and compared with both the soft and the hard collision modment of the transition dipole between stateandb. Equa-

els. There have been several papers concerned with calculaien (1) is a scalar version of the generalized Waldmann-
ing S¢(k,w) for rigid sphere§5—8]. What sets ours apart is Snider equatioi10—13, where by scalar we mean that the
the method of solution and its connection to line mixing andtensorial nature of the interactions between the active mol-
other areas of physics. ecule with both the probe and the perturbers is neglected.
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Equation(1) and the approximations leading to it have beenfiner details and an application of the equation to the case
discussed i9]. An earlier, heuristic treatment, for the case where the collision kernel is that for a rigid sphere.

of an isolated line, can be found i4]. The set of equations

can be used to derive all of the well-known spectral line

shapes, including line mixing. Omitted from E@l) are lil. RIGID SPHERE

terms in which both _change_s_in the component of the coher- For a rigid spherdor any spherically symmetric interac-
ence and changes in velocities occur, i.e., terms associatgn) the discretized collision kernel is intrinsically three di-
with the statistical correlation between the relaxation of thémensional. Invoking cylindrical symmetry about theaxis
internal and translational degrees of freedom. we could integrate Eq(2) over the polar angler (before

_ The problem of determining a spectral profile thus con-giscretization, thus reducing the problem to two dimensions.
sists of two main parts. First, from the interaction betwee”Suppose we divide these into 100 divisions in each ahd
the active and bath molecules, one needs to determine the for 3 total of 1¢ cells. We must then evaluate the rigid-
speed dependence of the relaxation rajgg and W(ba  gphere kernel, fotimes and we must solve a problem in-
«dc), and of the transport ratesandA(v-—v'). Then one  y|ying 10* coupled linear equations. It may just be possible
must solve the equation fqu,,(v). The final step is to con- {4 o this with a large computer, but it is hardly enlightening.
struct the complex linear susceptibilityx from  \yith a PC our only option is to use a one-dimensional ap-
Tr{Poa(V) map] by integrating over the velocityOne ob-  proximation to Eq.(2) by replacing the three-dimensional
serves all the active molecules, not simply those of a singlggig-sphere collision kernel in Eq(2) by the one-
speed clasp.The absorption coefficient is then simply pro- gimensional formA(v,|v.), and v by [A(v.|v,)dv.. We

portional to the imaginary part of. , , need then only discretize the equation in one dimension, a
For an isolated line, the sum involving the off-diagonal ;nsiderable simplification.
elements of the relaxation matfi(ba«—dc) may be omit- Essentially, we assume that our functipmay be written

ted. This decouples the different equations for the compoy, the form w(v,)p(v,), wherew(v,) is the equilibrium

nents .Of the optical coherence. In general, the remaining,q_gimensional Maxwellian in the transverse velocity (
relaxation/transport rates are a function of the speed of the »

. L =v2+v2). When inserted into Eq2) the result is a one-
active molecule. However, we are primarily concerned Onlydimensi)é)nal equation ip(v,) in which the one-dimensional
with the problem of a realistic treatment of the translational llision k ? thp'vtz | " of the th
motion. Consequently, we will take,, as a constant and as cOllSIon Kernels are the integral ovey orv, , ot the three-

speed independent. It may be considered as the natural lindimensional keels weighted by a two-dimensional Max-
width. Thus our basic starting equation is wellian. Below, we show that this is an excellent approxima-

tion.
The one-dimensional rigid-sphere collision kernel has
_ L . o been given if16-18. It may be written in terms of reduced
(0o=wtkuz =iy 'V)p+IJA(V|V )P’ dvi=naw(v)p, velocity componentsy =v,/vy,v’ =v,/vy, as

2

14
where we have writtel\(v—V’) asA(v|v’), replacedwy, Avlv")= ?O{l— a(v—v'erflav+a v’)
by wq (the more common formsand otherwise dropped the
now unnecessary subscripa. Since we are interested in the +[1+o(v—v')erfla_v+a,v /)]ev’z—vz},
problem of an active molecule of massinteracting with a
perturber of massn,, the collision frequencyv and the ©)

collision kernelA(v|v') are to be taken as proportional to the
number densityn, of the perturbers.(The connection wherevy is the most probable speed, KZI/m)¥?, of the
betweenn, and the densityp, in Amagat units, isn,  active molecule, erfis the error function, amdequals+1 or
=nop, Where ny, is Loschmidt's number, 2.6910° —1 according to {—v') being positive or negativgs(0)
molecules/cri) =0]. The factorsa, anda_ are given by (¥ 8)/28Y? and
A major point made if9] and[15] was that this integral (1— B)/2B8Y2, respectively. The rate constani, equals
equation may be reduced to a set of coupled linear equatiorbsdznva(,BJr 1)/28 and is related to the thermally averaged
if velocity space is discretized. The integral term containingcollision frequency(v) by (v)=4vo[ B/7(1+ B)]Y2 Here,
the collision kernel is then replaced BA(v|v')p’, where  dis the sum of the radii of the rigid spheres gfds my/m,
p’ is the number of molecules with a coherence that lies in dhe mass ratio. We repeat thatv|v’) and the related quan-
box in velocity space, centered\dt The velocity relaxation tities vq and(v) are proportional to the number density of
matrix A(v|v"), the analog oWV in line mixing, describes the the bath, whereas in the present calculationis taken as
rate of transfer from a cell centered\dtto a cell centered at density and speed independent. Some general properties of
v. A cell is thus labeled by three coordinates, say the speed the one-dimensional rigid-sphere collision kernel are given
and the polar coordinatesand ¢ relative to the wave vector in Appendix A.
or z direction. When v is discretized into an odd number of cellg
This completes the introduction of the basic relaxation/centered about =0, our problem is reduced to solvirg
transport equation for an isolated line. We now turn to somecoupled linear equations that may be written as
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[x+vi—ir—iv<vi>]pi+ik21A(vilvk>pk=w<vi>, (4)

A 4
30py

wherex=(wqy— w)/Kv+ is a dimensionless frequency com- !
monly used in the neutron transport literatu@nd else-
wherg and I'=y/kv is the natural linewidth in units of
kvt. On the right-hand side of E¢4) we have, for conve-
nience, seh,up, equal to 1, since we are not interested in
the absolute line intensity. There is one equation for each of
the N cells, i.e., for eactp;=p(v;). As shown in[15] this
may be put in matrix form and solved using an eigenvalue 1
and matrix inversion technique developed for line mixing
[9,19,20. An important outcome is that the spectrum can
always be written in terms dfl doubly complex Lorentzian
components. By this we mean that the spectrum may be writ-

on (arb. units)
5

orpti
5

Abs

st

ten as % 0.1 0.2 03 054 05 06 07 1
Frequency (x)
N . .
I FIG. 1. A sample spectrum illustrating the analogy between
Ss(k,@)=1m k§=:1 X—iT+A, ©) Dicke narrowing and line mixing, computed with=0.01 andg

=1 (N=25U=2.5). Curve 1y=0; curve 2y=0.16; and curve 3,
y=16. For clarity curve 2 has been expanded vertically by a factor
of 7 and only 4-1/2 of the 25 discrete components are shown for the
lowest density.

where both the amplitudig, and the eigenvalud , are com-
plex numbergand a function of the densityConsequently,
when the imaginary part is taken, the spectrumiasrent-

zian components an associated dispersion curves. This isdensity regime ¥>1)] For y=0 we see the individual

a well-known result for line mixing. It is also well known in coarse-grained componerigsach of widthl’) with a Gauss-

line mixing that alll, except one approach zero as the denyap gistribution of amplitudes. At a=0.16 the discrete

sity is increased and that one becomes a real number. Thufneg» coalesce, but the overall distribution is still roughly

the spectrum collapses to a single Lorentzian, the width 0, sgjan. At 3= 16 the spectrum has collapsed to a smooth
which decreases with increasing density. For the translgs qfie | orentzian in shape with a width that decreases fur-
tional motion, this single component is termed the hydroo_ly-ther with increasing collision frequendgensity. Thus, as

namic mode and its width is the Dicke width. We note injqicated above, the key signature of Dicke narrowing is
passing that there have been many comments in the I'ter?dentical to the key signature of line mixing.

ture, connecting Dicke narrowing and line mixing. However,  ag ingicated in the Introduction, one expects on general
the only other quantitative connectigbesides[9,15]) of _grounds a translational width at high density given dy
which we are aware was made by Alekseev and Malyugi L k2D =k2D,/p, to which must be added the natural width

[21]. (see for exampld9]). Thus we anticipate that the width

In Appendix B we give the details of the discretization of HWHM in rad/sed. at hiah densitv. will satisfy the equation
the collision kernel and an alternative method of solving Eq.( ¢ g 4 v g

(4) for the line shape, using projection operators. The nu- Aw=Kk?Dy/p+ . (6)
merical solution of Eq(4) is sufficiently simple that it may
be handled on a desk top computer, providédioes not However, we do not know at this stage if the valueDobr
greatly exceed 100. We now proceed to examine the resuli, extracted from a fit of the calculated width to K@) will
of the calculations for different mass ratios and to compareorrespond to the diffusion constant for a rigid sphere. The
them with those predicted by both the soft and the hard coldoubt arises because we have used a one-dimensional colli-
lision models. sion kernel in the calculation. It is known that the first-order
Chapman-Enskog calculation of the self-diffusion constant
V. GENERAL RESULTS (D') involves the Ion.gitudir)al curre@] and is equivalent
to the use of a one-dimensional collision kernel if calculated
As with all numerical solutions the results must be pre-directly. Note, we calculate neithéd nor D’ directly but
sented graphically. We first illustrate the analogy betweemather we calculate spectra over a range of high densities and
Dicke narrowing and line mixing15] by choosing a coarse extract a numerical value of the diffusion constabt,] by
division of v=v,/vt and a small value of the “natural” fitting the widths to Eq(6). We now digress from the main
linewidth. Figure 1 shows the computed spectrum at severahrust of this paper and examine the question of how serious
densities, or rather reduced collision frequencigs is the use of a one-dimensional collisional kernel in the hy-
=(v)/kvy. [The parametey introduced here is the same drodynamic regime. The test is to determbg and to com-
dimensionless collision frequency used in nonequilibriumpare it withD’ or D.
statistical mechanics to separate the free streaming or low- We begin by marshalling a number of facts. First, the
density regime y<<1) from the hydrodynamic or high- lowest-order Chapman-Enskog calculation gives an excellent
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0z : : : ' : : ered,U, was 2.5 2.5 =<v,<2.5%w7), B was set equal
018k ] to 1, and the number of cells used was 101. Here we have
chosen density units such that the Dicke width would ke 1/

if D were given by Eq(7), and we have useti=y/kvT
=0.01. The value oD derived from fitting the expression
Ax=Dgy/p'+T to the curve of Fig. 2 i©y=0.99. By ex-
tending the rang®) and the numbeN we attain a converged
value of 1.01. Fos=1/4 we find 1.001, fod=16 we find
1.051, and forB3=64 we find 1.057. Thus, with some effort,
we do achieve convergence, but what is more important, by
comparing our results with the exact results of Lindenfeld
[8], we succeed in establishing that the use of a one-
004 1 dimensional kernel yields a better result for the diffusion
constant (Dicke width) than the lowest-order Chapman-
Enskog calculation, EqY7).

o L = P v = = o We have just shown that we can obtain a reliable spec-
Density (p') trum in the hydrodynamic region when using a one-
dimensional kernel. It is clear, in the low-density or free-
streaming limit #<<1), that any collision kernel will suffice
since the kernel vanishes at=0. Being reliable(but not
exac} in the low- and high-density limits we can anticipate
that the calculated spectra at intermediate densities will be
close to the spectra one would calculate with a full collision
kernel. We proceed on that assumption. Rather than compare
complete spectral profiles over a range of densities and a
range of mass ratios, we will, as above, restrict the presen-
tation to that of comparing only half widths for different

0.16F

0.14F

0.12f

HWHM (Ax)
o

0.08-

0.06

0.02f

FIG. 2. Half width at half maximum4x) as a function of the
density (for units of density, see textThe circles are from fits to
spectra computed witlh'=0.01 andB=1 (N=101U=2.5). The
solid curve is a fit to an equation of the fortk=a/p’ +b.

approximation to the self-diffusion constant. It can be
worked out from8,18,27. The result for rigid spheres is the
same as the first-order solution to the mutual-diffusion con
stant[23] and can be written as

3 178 D mass ratios. However, there is a minor problem we must first
= T ] -0 (7) ~ overcome.
16\/;(12”,) B P For a meaningful comparison of spectra in the hydrody-

namic regime, we are obliged to introduce a density scaling
It turns out that Eq(7) is exact forB small, i.e.,.D—D’ as that is different from that used in defining the variapléve
B—0. Second, it is known that the Boltzmann equation recan see the need by examining Ed). If all we did were to
duces to the linearized Navier-Stokes equations in the hydrdet B go to zero by lettingm, go to zero, therD’ would
dynamic limit [24]. For our case this is the diffusion equa- become infinite, as would the Dicke width calculated from
tion. It then follows from statistical mechanics that the Eq. (6). This apparent nonsense arises because the velocity
results quoted earlier are exact, i.e., that the spectrum isf the active molecule becomes unperturbed as the mass of
Lorentzian in this limit with a width given byk?D+y  the perturber goes to zer@Recall that the diffusion constant
[9,25]. Consequently the value @ extracted from our nu- is related to the decay of the velocity correlation function.
merical treatment would be exact if we had used a full col-Thus one escapes the hydrodynamic regime on loweging
lision kernel. Furthermore, we know the exact results, sincavhile keeping the density constant. Let us digress, for the
Lindenfeld[8] (following the standard method of evaluating moment, to discuss what is meant by the hydrodynamic re-
D) has given a table ob/D’ as a function ofB. It varies  gime, both in general and for the case at hand.

from 1.018 forB=1 to about 1.13 foB large. For8=0 the In general, by “hydrodynamic regime” one means the
ratio is 1, a number that supports the claim made above thabw-frequency and low-wave-vect@iong-wavelengthlimit.
Eq. (7) becomes exact g8 approaches 0. The questions are, what#” and what “k” are small with

Based on these facts, we make two observations. Our reespect to what? In the present case, the characteristic fre-
sults for B8 approaching zero should be exact. Any errors inquency of the collisionless system is the mean Doppler shift
the results must be due to the numerical treatment, i.e., wkvt, and the characteristic frequency for the collisions is
may not have extended the rangevgfand the value oNto (). Thus the parametey=(v)/kvt is an appropriate pa-
large enough values to achieve convergence. For |&rgé  rameter to quantify the low-frequency constraint in order for
D,/D’ falls between 1 and 1.13, then the use of a onea system to be in the hydrodynamic regime. Under the con-
dimensional kernel is better than the first-order Chapmanstraint 8 approaching zero for a fixed density, the collision
Enskog approximation, itself regarded as an excellent estirequency(v) approaches infinity simply because the speed
mate ofD. of the perturbers also approaches infinity. Thus at any finite

Figure 2 shows, as a function of density, a plot of the halfdensity, the hydrodynamic limit, in frequency spage>(1),
width Ax (HWHM in units of kvt). The widths were deter- can be reached simply by lowering
mined by fitting a Lorentzian profile to the numerically cal- In order to discuss the spatial hydrodynamic limit, we
culated spectrum. For the calculation, the range ptov-  need to capture the scaling with distance or, alternatively,
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with the wave vector. An appropriate scaling procedure, one '
used in statistical mechanics, involves the introduction of the
Peclet parameterz. It is defined as the product of some
collision-free characteristic speed and characteristic lengtt -
divided by the diffusion constant, a parameter characteristic *[
of collisions. For the characteristic speed we chaogé and
for the characteristic length we chodse!. The wave vector
characterizes the spatial variation in the optical coherence, i g |
being driven by the optical field. Thus we defindoy the =
equation,z=v+/2kD. If we multiply top and bottom by the 2 .|
wave numberk we see that is a measure of the Doppler
width, kvt divided by the full Dicke width 2D. Clearly we 0af
are in the hydrodynamic or diffusion-limited Dicke regime
whenzis greater than 1. The inverse dependence afi D o3}
means thar scales linearly with density. With defined this
way |fc is identical to the narrowing parameter used in the soft 02; T . - L = L = .
collision model by the spectral line-shape community and it Narrowing parameter ()
is the same as the parametéintroduced by Lindenfeld8].
In gas flow dynamics, a Rkt parameter can be used to
define the Knudsen regime. There the condition is that the
mean-free path must be large with respect to the diameter 0 4|
the tube.
To expand on the physics of the narrowing parameter we o7}
note that the diffusion constant may be defined in terms of _
the velocity correlation functiod. If it is assumed that the  3°%[
& decays as exp{&), even at short timefthe assumption
made to reach Ed7) and an assumption that becomes valid
as (v) approaches infinity then the Einstein relationship
D’=v-2r/2§ follows [24]. Based on its use in the velocity-
correlation function® may be thought of as a collision fre-
quency for velocity-changing collisions. Defining a mean- |
free path byA =v1/¢, the condition for Dicke narrowing,
kA<1 becomesz>1. It is the mean-free path that “ex-  oot}g
plodes” if B is made to approach zero while keeping the
density fixed and why one escapes the hydrodynamic regior
under these conditions. Clearly the narrowing parameter is & Narrowing parameter (z)
suitable dimensionless quantity to define the wave-vector FIG. 3. (a) Half width at half maximum &x) from fits to spec-

limit of the hydrodynamic regime. Since the narrowing pa-y., caiculated wit" =0.01 (N=401U=5). From top to bottom,
rameter may be written ko, it too is a dimensionless  g_1/75 1/5 1, 5, 25. The arrow indicates the calculated Voigt
collision frequency or relaxation rate and is proportional toygth for the same Doppler width and the same valuéforizontal
density. We compare results for varying mass ratio not afxis, narrowing parameter (see text for definition (b) Plot of 8,

[4X:] 4 -

0.09

Deviation in HWHM (&)
&

equal densities but at equal narrowing parameters. deviation in HWHM from value for soft collision model. From
bottom up,B8=1/25, 1/5, 1, 5, 25. The topmost curve was calcu-
V. HWHM Ax(8) VERSUSZ' lated for the hard collision model with the same diffusion constant

as for the soft collision modeld=0).
In order to plot half widthgin units ofx) as a function of

z, for different values ofB3, we need to know the diffusion behavior anticipated at high density. At low dengi®p]| the
constant. However, as we pointed out above, there is no exurves approach the value calculated for a Voigt prdfike
plicit diffusion constant in the master equation. Fortunately,arrow in Fig. 3a)]. While the calculated widths are the same
as Fig. 2 showed, we can calculdreasonably well using at the two density extremes, at intermediate values of the
Eq. (7). We then define @’ in terms of the calculated value narrowing parameter there is a clear progression towards
of D’ and plot the widths measured from the computed prolower half widths with higher values of the mass rafio

files as a function of’. In these units we expect the width What Fig. 3a) illustrates is that there is no universal expres-
(HWHM) to follow closely the universal relationshipx  sion for S(k,w) at intermediate densities. This has impor-
=1/2z' +T at values oz’ much greater than 1. Figurde3  tant consequences for experimentalists. It should be clear
shows plots of the half width as a function of the narrowingthat extracting collisional widths from experimental profiles
parameter, for a selection of mass ratios. The widths wereneasured over the range spanned by most of Faj, ®ith-
measured directly from the computed profiles. As antici-out allowance for the relative mass of the perturber and the
pated, on the scale of Fig(a3, all curves show the universal active molecule will lead to biased values for broadening
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coefficients. The hard and soft collision model for the transscribing the translational motion of a molecule in a bath of
lational motion are generally wrong in that they are univer-perturbers. The ratio of the two masses was allowed to vary.
sal, i.e., they require only a single input parameter, the dif-This represents an important first step in calculating the spec-
fusion constant, to characterize collisions. In Figh)3we  trum of an isolated line with speed-dependent broadening
examine departures from these simple models for the case ahd shifting where the same numerical procedure may be
rigid spheres. applied. By introducing a density scaling rule based on the
In Fig. 3(b), we show, on an expanded vertical scale, thenarrowing parameter, we have illustrated the universal be-
difference in width,6=AXx,,— AX, as a function oz’. The  havior of the translational contribution to line shapes at very
reference profile used was that for the soft collision modelow densitiegfree streaming regimend very high densities
with D=D'(8—0). We see thab vanishes as the mass of (hydrodynamic regime The lack of universal behavior, i.e.,
the perturber is reduced relative to the mass of the activehowing a dependence on the mass rgtiat intermediate
molecule. Since the soft collision model is a solution of thedensities was quantified and led to the conclusion, generally
Fokker-Planck equation, this is numerical proof that thespeaking, that neither the soft nor the hard collision model is
Boltzmann equation approaches the Fokker-Planck equatican appropriate model for the translational motion.
[27] as B goes to zero. This question was previously ad- The use of a rigid-sphere interaction is not a serious draw-
dressed by LindenfelB] using in effect the full rigid-sphere back. First, it is generally accepted that rigid spheres provide
collision kernel. It has also been reexamined recently byan excellent statistical description of the translational motion
Rautian[28]. of atoms and molecules. Second, the formal connection be-
Also shown in Fig. 8) is a plot of § for the hard colli- tween a cross section and the corresponding collision kernel
sion model, with the same value Dfas for the soft collision is well known and may be used to generate numerical values
model. We see that as the mass of the perturber is increaséa many collision kernels. This is precisely the form re-
the rigid-sphere results approach those for the hard collisioquired in the calculations. Consequently the way is open to
model. However, they are not the same in the Lorentz gageneratingSy(k,w) for a variety of potentials.
limit (B=«). Analytical solutions for the hard collision In order to establish a connection to line mixing we have
model are knowr{4,9,29 and they differ from the known discretized the velocity distribution. This amounts to choos-
analytical solutions for the Lorentz gas of rigid spheresing a set of “top hat” distributions as a set of basis func-
[9,30,31. Even for a mass ratio of 25, the results for a rigid- tions. For reasons of convergence and accuracy it is likely
sphere interaction are measurably different from those prethat a different set of basis functions will prove more useful.
dicted by the hard collision model. This illustrates the errorlt is common practice in statistical mechanics to use the So-
in the common perception that the hard collision model is amine polynomials and some device, such as the Gross-
appropriate model for heavy perturbers. Very recently, Raudackson procedul@], to keep the dimension of the problem
tian [32] has discussed the role of the mass ratio in the softto a manageable level. A process similar to this has been
the hard and the Lorentz collision models. used by Podivilov and co-workers to treat the case of Dicke
Initially we shared with other$17,33 some reservation narrowing in a dense plasnja6].
about the use of a one-dimensional collision kernel. Above,
we have arguedfor the treatment of the translational mo- ACKNOWLEDGMENTS

tion) that the use of a one-dimensional kernel is a good ap- ] ] .
proximation in the low density and in the hydrodynamic re- W€ wish to acknowledge the assistance of a NATO, “Ex-

gime. We now use Fig. (B) to discuss the problem at pert Vi_sit” grant, of the NaturaI.Sciences qnd Enginegring
intermediate densities. Note fg@=1 that our results fall Council of Canada, by the Russian Foundation for Basic Re-
about 1/3 of the way between the exact solution to the soff€@rch(Grant No. 00-02-17973 We also acknowledge a
and hard collision model. This approximation has been note§Umber of fruitful discussions with our colleagues, R. Ber-
experimentally by Ref[34] and by Ref[35] and it has been Man, R. Kapral, S..G. Rautian, and A. .M. S_halagm. One of
justified by the the calculations of Reff5] and [6] using ~ YS (D.A.S) would like to thank the University of Toronto
essentially the full collision kernel for a variety of interaction @nd Professor J. R. Drummond.
potentials, including that for rigid spheres. Our results based
on a one-dimensional kernel are thus at least semiquantita®PPENDIX A: THE ONE-DIMENSIONAL RIGID-SPHERE
tively correct. However, as we discussed above, if we were COLLISION KERNEL
to consic_ier the case (.)f an isolated line with speed-dspendent The one-dimensional collision kernel has been given in
bI‘.OB.anlng _and sh|ft|ng,_rather than the constant natura.[he main text as Eq3). It is an asymmetric function of its
width conS|de_red h(_ere, it will be necessary to extend thetwo variables, and it satisfies the detailed balance relation
kernel to two dimensions, sayandv,. The question of the
accuracy of calculations with a one-dimensional collision Na-v'?_ ’ -2 /
kernel tr)llen becomes academic. Alvfv")e =A(v’lv)e _\/;K(vh) - (A
Figure 4 shows a plot oA(v|v')/ v, for light, medium, and
VI. SUMMARY AND CONCLUSIONS heavy perturbers. It has a cusp that is especially sharp when
the perturbers have a small mass relative to the mass of the
In this paper we have presented, for rigid spheres, a nuactive molecule. For heavier bath particles the cusp is more
merical procedure for calculatin§s(k,®), a function de- blunt. For heavy perturbers the surface also has a triangular
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dimensional Maxwelliaw(v) for all values ofv’ and looks
similar to thev’ =0 plot in Fig. 4c). In general, a derivation
of the soft collision model relies upon the collision kernel
having a sharp cusp, such as that exhibited for rigid spheres
with light perturbers[See Fig. 4a).]

We now consider some mathematical properties of the
one-dimensional kernel. The auxiliary functi&t{v|v’) has
the symmetry properties:

Kwlv)=K('[v), K(—v|-v")=K(vlv').

The second property follows directly from E). The av-
erage collision frequencyv) is given by

( >—ifx (v)e**d
V—\/;_wvv U

ot

. P e || I 1 (e (o
AT G g’}:“ SOy na-v'? ’

= : —

Socsosssasitiil - = A(vlv')e dv dv

(b) Sl N4 I

: 5 iy -
......... 5 \

EJ J K(v|v")dv dv’.

The result is

4By, _
(v)= ——==nd’nyu, (A2)

Var(l+B)

where the mean relative velocity is given by u=2v(1

4 :8) 1/2/,81/2\/;.

The velocity relaxation rate, may be calculated from

SZZIOO 020e(v) Fo(v)dv, (A3)

where the transport frequency,(v), is given by

o[

For rigid spheres, the result is

v’
l—v)A(v|v')dv'.

Q

0,0.09:%
R N
OO R 32

..‘0‘:.:’::" '):t\\ (N . 16B Yo

CRXXXXKD RS == 32"
KRB 3Jm(1+p)
(X)

O
(A4)

The Einstein relationshi[D’:u%/2§ connectsé to the
first-order diffusion constanD’. Consequently, for rigid

FIG. 4. One-dimensional kernel for rigid spheres as a functionsPheres the first-order diffusion coefficient is given by
of velocitiesv,v’ at(a) B=1/16,(b) 1, (c) 16. \
3\/;( 1 3/20_%_ 3UT L 1 1/2
. . . = — + — B — + —
plateau. This is a result of averaging over the transverse 327 B v 16\/;d2np Bl
components of the velocity vector. The kernel, as a function (A5)
of the velocity difference, becomes wider for heavier bath
particles. It is not a symmetric function of the velocity in agreement with the first-order three-dimensional self dif-
change (—v’), except for the particular case of =0. fusion coefficient of Chapman and Cowlifig3]. The speed-
Note, for the hard collision modelA(v|v') is the one- dependent collision rate(v) is given by

!
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molecules in units of +. N is the number of velocity classes
ar andw;=Cy exp(—v?) is the discrete one-dimensional Max-
—_ A wellian distribution. The constar@y, which may be found
K by the summing up over all classes, is not important since we
11 K are interested only in the line profile and not its absolute
g .l 7«77 ] strength. The collision operatdr in this representation is
3 e given by the matrix
£ e
g e N
@ s
3095 e . Lij:h(E Aki‘Sij_Aij)a (B2)
o e+ k=1
0.9':_'4_——+ : g
where the elementd;; = A(v;|v;) are given by Eq(3). Here
08 1 h=2U/(N—1) is the size of the cell in units;. Numerical
O I , . , , . , , ) integration is carried out over the regiechU<uv,/vt<U.
) 0.1 02

03 Velooc':‘i‘ty (v)"-s 06 o7 08 05 We chooseN odd to provide one velocity group in the center
v,=0. Note that the sum ovécin Eq. (B2) is the replace-
FIG. 5. Collision frequency for rigid spheres in units @f). ment for the collision frequency [Eq. (2)] that determines
Solid line, calculated from Eq(A6) with 8=1/16; dotted curve, the total loss from the velocity class.
calculated from Eq(A6) with 3=16; dashed line, calculated from  The matrix elements of the discrete collision operator

Eqg. (A6) with 8=1; and crosses, calculated from E48). obey two sum rules
2 N N
v(v) e
= B2 erf( f1%) + 2, Lij=0 and 2, Ljjw;=0.
wdznvap \/; =1 =1

o (= Yoen 12 The former is a result of particle number conservation; the
+ € JI Ierf('B )e""dt, (A6) Jatter follows from the principle of detailed balance. At a
B 0 given narrowing parameter’, the collision ratey is calcu-

wherev,=2kgT/m, is the thermal velocity of bath par- lated from the formula

ticles. , a2
The speed dependence is shown in Fig. 5 for three values Yo _ ﬂ( + E)

of B. At v=0, the expression simplifies to kor 32 B
»(0) 1 1 1+3 When the collision rate is not equal to zero, the operator
oy 2 \/1T+ 2 arctang?|. (A7) B is not diagonal. To diagonalize the matrix we first solve

B B the eigenvalue problem

It varies fromr/4 for B>1 to 1 atB<<1. The asymptote for N

v>1 is linear with »(v) varying asBY/\1+ B. We see D (03 —iLpVI=AVD, 1=12,...N, (B3)

that the slope is gentle for light perturberg<€1) and =1

steeply inclined for heavy bath particleg¥$1). For equal
masses the integral is given explicitly by whereA, is thelth eigenvalueV!" is theith component of

Ith eigenvector. All the vectors are normalized, i.e.,
_.2
v(v) \/; e’ \/;
(v) V8

verfv+T+7e”2(l—erf2v)l. N
™ V) My =S \ymxym_ 5
(A8) ( )=2, V(M V(V= o,
APPENDIX B: DISCRETE MODEL A soluti?n can be found by constrL_Jcting_the projectio_n op-
eratorPi(j) onto the subspace of a given eigenvalue This
We solve Eq.(4), the discrete analog of the Boltzmann js, given by
equation. For convenience we write this in the form

" P =v{hv{*. (B4)
_igl Bijpj=wi, (B1) " The projection operator is Hermitian with the following
properties:
whereB;; = (I'+ix+iv;) 6+ L;; are the matrix elements of N N
tbe kinetic operatorB, and vj=U(2i —N—1)/(N—-1), i Z Pi(lL)Pf(Ij):Pi(jl) and 2 pi(j')zaij_ (B5)
=1,2,... N, is thev, component ofith velocity class of k=1 =1
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The former property directly follows from the definition In the free streaming regimev§<<kv) we can neglect
(B4), while the latter allows one to write the inverse matrix the collision operatok. Then the eigenvectors and eigenval-
as a sum over projectors, viz., ues are given byw('=6, ,A,=v,, respectively, and corre-
N 0 spond to selected velocity groups. At a higher collision rate
2 (Be)  the “dressed states” are linear combinations of the unper-
< X+ A —il" i T
turbed bases vectors. In the hydrodynamic lisjt> kv we

The line profile then can be expressed now in terms of proSan, on the contrary, negleet in the operatorB. In this
jectors as limit the Boltzmann distributionw; is an eigenvector with
n zero eigenvalue, sincew=0. Except at these two density
Pi’wj extremes, there are no known analytic expressions for the
[(x)=im > ———. B7) . . : .
ifTe1 Xt A il eigenvalues and eigen functions. We can find the eigenvalues

_ _ N and eigenfunctions numerically at any density. The numeri-
Thus as presented in the t¢see Eq(5)] this decomposition  cal calculation of projectors can be carried out by a method
leads to a line shape as the sumMof‘doubly” complex  well known in mathematical physics, namely, by the integra-
Lorentzian lines. When the numerator is real, their centersgion of the resolvent operator over the closed loop around the

E\re determined byx=—ReA, while their widths are given corresponding eigenvalue in the complex pl4&d|.
Yy I'-Im A|

N
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