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Regular perturbation theory of relativistic corrections: II. Algebraic approximation
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A four-component equivalent of the Schiinger equation, describing both the nonrelativistic electron and
the nonrelativistic positron, is introduced. The difference between this equation and the Dirac equation is
treated as a perturbation. The relevant perturbation equations and formulas for corrections to the energy are
derived. Owing to the semibounded character of the &tthger Hamiltonian of the unperturbed equation the
variational perturbation method is formulated. The Hylleraas functionals become then either upper or lower
bounds to the respective exact corrections to the energy. In order to demonstrate the usefulness of this approach
to the problem of the variational optimization of nonlinear parameters, the perturbation corrections to wave
functions for the of hydrogenlike atoms have been approximated in terms of exponential basis functions. The
Dirac equation in this algebraic approximation is solved iteratively starting with the solution of thed®gjen
equation.
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[. INTRODUCTION order energy corrections coincide with the well-known for-
In nonrelativistic quantum mechanics, the perturbatio mula_s for the Raylelgh-SCMmger coefficients. _H_ovyever,

: ro rlthey involve contributions from both the nonrelativistic elec-
methods are recognized as a powerful technique for the aps,, and nonrelativistic positron states. Owing to the form of
proximation of energies and eigenfunctions. The essentighe ,eroth-order reference, the method differs significantly
idea of this approach consists of the partition of the Hamil-go 1y other perturbation schemes, which expand the Dirac
tonian into an"unperturbated Hamiltonian and a perturbationesolvent about its purely electronic nonrelativistic life
Since the Schidinger and Dirac Hamiltonians act in differ- (i.e., which use the Schdinger or Pauli resolvent combined
ent Hilbert spaces, the usual perturbation methods cannot ligith the projection onto the upper componkeat, in equiva-
trivially extended to the study of relativistic corrections to |ent formulation, are based on the Levy-Leblond equation for
solutions of the Schudinger equation. In traditional ap- nonrelativistic electron as the zeroth-order approximation
proaches one first derives some effective Hamiltonian whicl3,6].
acts on two-component spinors and then expands it in pow- In |, our regular perturbation theofRPT) was applied to
ers of the coupling parameter 2 (c=137.03598951] is  the case of a quasifree particle. It has been observed that the
the speed of light Unfortunately this procedure introduces convergence of RPT is much better than the convergence of
spurious singularities into resulting operators and ofterthe ¢~ 2" expansion. The aim of the present paper is to de-
causes unsurmountable problems in higher orfi2@. Re-  velop an equivalent perturbation formalism without the di-
cently Kutzelnigget al. [4] have assessed the arguments inrect reference to the expansion of the Dirac resolvent. Such a
favor of the fully four-component direct perturbation theory form of the theory is needed for constructing the Hylleraas
(DPT) [3,5,6. This approach isolates from the relativistic [10] type functionals in variational perturbation methods.
equation a four-component equivalent of the Sdimger  This approach has been motivated by the fact that for most
equation which is considered a zeroth-order problem for thghysical problems of current interest the perturbation equa-
perturbation expansion. The remainirigelativistic terms  tions cannot be solved exactly in the analytic form and re-
are accounted for perturbationally without explicit recoursequire some further approximations. Finite-difference meth-
to the elimination of the small component. One of the aimsods, which can be successfully used for atoms, are
of the present paper is to expose another possibility of théappropriate in the case of molecules because the symmetry
partition of the Dirac equation into the Schiinger-type lowering prevents the factorization into radial and angular
equation and relativistic perturbation, which enables one t@omponents. Thus the algebraic approximation appears to be
avoid some of the serious difficulties arising from divergentthe most promising method of obtaining the approximate so-
contributions of the traditional methods. lutions. In the basis set expansion approaches to the solution

In the previous papef7] (hereafter referred to a9 b  of the Dirac equation particular attention must be paid to the
perturbation approach to the Dirac equation, starting from @&oupling between the large and small components. Until
pair of the Galilei-invariant four-component Levy-Leblond- now, computationaly most appealing seems to be the alge-
type equationg8] for a nonrelativistic electron or positron braic approximatioril1] based on the so-called “kinetically
with spin, was formulated. The perturbation expansion wadalanced” basis s¢tl2,13 (some se{®} for the large com-
obtained by the contour integration of matrix elements of thgponent and the séio- pd} for the small componeitin the
Dirac resolvent expanded in terms of nonrelativistic resolpresent work we present an alternative algebraic approxima-
vents. It has been observed that the expressions for the lowion which is used in the context of RPT.
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Il. PARTITION OF THE DIRAC EQUATION thogonal functions belonging to the two subspaces of the
The time-independent Dirac equation in atomic units for aH"bert space of the four-component spinors:
single electron in the potentid is VO =gt g0 50 = ;04 (0, (12)
(ca-p+c?B+V-E)¥=0, (1) By substituting this partition into Eq(11) and taking into

ccount the second of Eq®), one obtains the separation of

where the symbols have their usual meaning. In the spirit o q. (1) into two independent equations:

the regular perturbation theory of relativistic corrections de-

scribed in | we rewrite Eq(1) in the form (H+A*—E©@g%) o0 =0, (13
+ ot - +ct - +c- -t
_ +a— -t —
E(B"S +5 S)]V=0, @ Both these Levy-Leblond-type equations are Galilei-
where invariant wave equations for a nonrelativistic particle with
spin[8]: the first of them refers to the nonrelativistic electron
H=ca-p+2c28, (3) whereas the second one describes the nonrelativistic posi-
tron. Each of these equations is completely equivalent to the
A*=(VFc?)B~. (4) appropriate Schidinger equation; after substitutig” from

) . Eq. (4) into Egs.(13) and(14) and taking into account Egs.
The two projectorg3™ on the upper and on the lower com- (8) and(10), we obtain
ponents of the four-component spinor are defined as

1
BE=(1=p)/2. (5) (5p2+v 0= (EO—c?)e?, (15
Two other projectorsS™, defined in | as projectors on the 1
“positive” electronic and on the “negative™ positronic non- — Ep2+\/ ¥ O=(E@+¢2) 5, (16)
relativistic states, respectively, may be written in the explicit

form
whereqo(f) andX(_o) correspond to the upper and lower com-
2¢2  co-p ponents ofe(® and x(©), respectively. The complementary
Sr—g-1 1, |, ©) lower and upper components are given by
cop 3P 1 1
O — .09 O _ — . nv(0)
(2 ZCO- p()D+ ’ X+ ZCO. pX— . (17)
1 2 —
—_ 1| 3P co-p In Eq. (15)  p?+V represents the Schitimger Hamiltonian
S =T , (7) : ) )
B 2c2 for one electron. Thus, Eq15) is equivalent to the Schro
co-p ¢ dinger equation witfE — ¢? being the nonrelativistic energy.
where Similarly, upon multiplying Eq.(16) by —1, one finds that

Eq. (16) is the Schrdinger equation for a nonrelativistic
1 electron with negative energy and charge opposite to that
1= §p2+ 2¢?, (8)  used inV (provided thatV is charge dependenti.e., this is
the ordinary Schidinger equation for a positron. Therefore,
Let us note that in the presence of the external magnetic fielfd: (11) may be regarded as a four-component generalization
the momentum operator should be replaced#yp+A,  Of the Schrdinger equation which simultaneously describes
whereA is the vector potential of the magnetic field. Accord- the nonrelativistic electron and nonrelativistic positron.
ing to their definition the operatoS™ are idempotent, Her- ~ On comparing the Dirac equatigiq. (2)] with Eq. (11),
mitian (orthogonal projectiony and have the following prop- ©ne finds that they differ by
erties: B=A"S +A S —E(8'S +8°S'). (18
+ —_ Q¥ _ Nt QT _ _ QrpFar
S+S =1 $5=0, SES S°ETST, 9 The idea of this work relies on the assumption that, in a
certain sense, the ter is “small,” and that reliable ap-
proximate solutions of the Dirac equation can be obtained by
Let us now consider the equation starting with the solution of the Schiimger equation and
using a perturbation treatment.

BTHST=0, B*HS*=+7B*S*. (10)

[H+A'S"+A S —EO(g*S*+575)]w@=0.
(11 lIl. PERTURBATION FORMALISM

In order to understand the physical meaning of this equation The perturbation methods assume the partition of the total
it is useful to expressV(® as a sum of two mutually or- Hamiltonian into some unperturbed part and a perturbation.
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However, our approach involves also a partition of the metThese results can be simply extended by induction to higher
ric. Therefore, for applying the perturbation theory, the mosteven(odd) orders to give

compact form of Eq(2) with a formal parametex is

[

[HO-ESO+\(HO-ESV)]¥=0, (19 V=2 NP0y D), (31)
n=0
where The 2nth and (h+ 1)th order equations are
HO=H+A*S"+A"S", SO=p*S"+p7s7, _
B B 20 (HO— E()5(0)) (20 _ ({(1) _ EO)g(D), (2n-1)
n—-1
HO=A"S +A"S", s=pg*s +B87S". (21 —E@g0),0) - S E@) (50 (2n-20)
=1
Let us consider some eigenstate of the perturbed problem (1) (2n—2i—1)
[Eqg. (19)] which originates x=0) from a nondegenerate +S5x )=0, (32
nonrelativistic state with((®=S"¥(®=0. We assume that 0 (0O (omi1 D o1 (2
both ¥ andE are analytic in\: (HO—E@O80) 1) — (HM - EO8M) o2
n
. _ (2i)( q(0) (2n—2i+1) (1) ,(2n—2i)y _
U=+ S \ip), 22) ;E (S%x +SVe )=0.
=1
(33
E=> A2E@M, (23) By rewriting the above equations in the block form one can
n=0

see that each of them has only one nonzero [Bg. (32),
upper and Eq(33), lower]. This leads to the equivalent set of

(0)= g+t (0) i .
where ¢ S™v). Moreover, according to I, only the éhe two-component equations

even-order energy corrections are different from zero. Th

zeroth-order equation is

(HO—EO50),0)=q (24
and in the first order
(HO)—EO80)yp @) 4 41 ,(0)=Q, (25

Similarly to the partition of? (%) [Eq. (12)] every function¥
may be partitioned into two componengsandy. In particu-
lar,

YO=5"yD+ 5 D= @04 1), (26)

Inserting¥ () given by Eq.(26) and usingH®, S© and
H®) as given by Eqs(20) and(21), into Eq.(25) and then
taking into account Eqg4), (10), and(11) results in

B (HO—E@50) (1) 4 g=(HO) — E©)50)) (1) 4 A~ ()
(27)

According to the properties of operators involved in E2y)

=0.

the lower component ofH(®—E(S()S* disappears and

(HO— EO50) (1=, (28)

As consequence of the nondegenerate charactef®fwe

obtain ¢~ ¢(® and according to the general methodology

of the perturbation theoryy*) can be chosen as

oM=o0. (29
In a similar way we obtain
x?=0. (30)

(T+V+c2—E@) @+ (V—c2—E®) @1 - gm0

n—1

_ le E(Zi)((p(Jrzn*Zi)_FX(Jan*Zi*l)):O, (34)
(—T+V—c2—E@) @D (V42— E©) 2N
n
_zl E(ZI)(QD(_zn_ZI)+X(_2n_2|+1)):O, (35)
i=

whereT is the nonrelativistic kinetic energy operator. Let us
choose the normalization of the zeroth-order wave function
¥ as follows:

(WO, U =(o, o) =1. (36)
Expressions for relativistic corrections to the energy can be
obtained by taking the scalar product of Eg4) with ().
Since T+V is Hermitian ande'?) satisfies Eq.(15), The
term (o' (T+V+c?—E®) M) vanishes. Thus,

g@n) = (cp(f) (V— c2— E(O))X(fn—l)>

n—-1
_ 2 E2|<QD(+O) ,X(Jr2n72ifl)>. (37)
=1

In deriving Eq.(37) we have assumed that
(@)= 5.
According to Eq.(37) the calculation of the @th-order cor-

rection, E@", requires knowledge of all correctiors®)
through the (2—2)th order and all correctiong(® %

(39)
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through the (2—1)th order. Similarly to methods used in of Eqs.(34) and(35) with several functions), ¢, x©,

the Rayleigh-Schidinger perturbation theorysee, for ex- ) and by performing a sequence of algebraic manipula-
ample,[14]), additional relations can be obtained for higher-tions, as explained in Appendix A. The most important of
order corrections to the energy by taking the scalar productthese relations are

n/2—1
ECY= (0D (V=c?=EO) (e +x T )) = 2, ECTEGET, (o4 x17))

i=
n/2—-1

- iJZ:O ECGn=272i=2)(( o) | pQ@IF2)y 1 (o) G0y 4 (W @HD) @Dy 4 (@) @Iy n=2,46...,

(39
(n=3)12

ECY=(o" 1) (V+c?—E@) (oD M)y — izo EM=2- Do) 4 x Iy Wy g (o) =1y 1 (o171 [ (20y]

(n—3)/2

_ ijE:o [E(zn—zi—zj—Z)(<¢@i),¢@j)>+<xgi+1),X£21+1)>)+E(zn—2i—2]—4)(<x(+2i+1),X(Jrzj+1)>

(o772, 2))], n=135.... (40
Equations39) and(40) demonstrate that the perturbed energy through tite @rder can be obtained from knowledge of the

wave-function perturbed through théh order. It is well known that the same is true for the Rayleigh-Sdihger perturbation
theory.

IV. VARIATIONAL PERTURBATION METHOD

In this section we explore the connection between the perturbation theory and variational principles. The direct solution of
the perturbation equations is usually not available for more complicated cases. However, as it was first noted by Hfl]eraas
we can regard thath-order perturbation equation as the stationary value condition of the suitable functibnédr the
function (™. In our case we have two families of functionals: the first family for functighi (n odd) and the second one
for functions<p(+”) (n even. The appropriate functiona®™ can be written as

2O = SO + KO @y
with
IVGM) =G, (V+2—E@) oM Dy + (oD, (V42— E@) Y™y — (3™ (T—V+ 2+ E@)x ™)

(n—1)12
= 2 EO(GW e Ay 4 (R x0Ty (o0 2D 3Oy 4 (072 D)), n=1.35...

(42

or
IO (M) =36V (M) + K™ (43)
with

I (@) = (@0, (V=cP=EON )+ (0D (V== E) D) + (o (T+V+c?-E@)el)
(n—2)/2
- Z,l E@((e, 02+ x P27 ) + (o072 4 027D o)) —EM((o, o) + (0, 01)),

n=246;- - (44)
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where we use the tilde to represent a trial function. It is evident that a stationary value condition leads in a straightforward way
to the proper perturbation equation. The presence oKfieterm, which is independent of™ (M), leads to the correct
value of the functional ag™ = x or (V=" , namelyJ™=EC" if

(n—3)/2
K=ol (V2= E@)el D)= 3 EO7270((p), o)+ (o070, 620))

(n—3)/2
_ iJ-Z:O [E(zn—zi—zj—z)(<¢@i),¢g2j)>+<X£2i+1),X£21+1)>)+E(zn—2i72174)(<x(+2i+1),X(Jr21+1)>
D, )], n=135... “

or

n/2—1 n/2—1
K= (V= a2 EO) ) = 3 B2 ETD 070 - X EEETETA(E, o) (18, 12)

1= =

() p2N) 4 (24 @Dy (2D LRIy 246 (49

We shall prove that for odd the functionald™ is a lower MG )<E@, n=135 (49)
bound to the exact correctidB®" to energy. To this end, - ' T

the difference)(™ — E(" may be set, according to Eqg0)

and(35), in the form IMNG)=E®, n=246.... (50)

IJM—gCY = — M (T4 2+ E@) (W — xMy),
Accordingly the Hylleraas functionals are lower or upper
n=135.... (47) bounds to the respective exact corrections to the energy. The
Provided thatc2+E©@=0 (the nonrelativistic energf(® variational perturbation method can be extended to excited

—c2is larger than— 2c?) the stated result is then an imme- States, by assuming that trial functign . is exactly repre-

diate consequence of the positively definite character of théented in the subspace spanned by all lower energy eigen-

Schralinger HamiltonianT—V with repulsive potential  functions of the Schidinger Hamiltonian(see[15]). .

—V. Similarly, using Egs(39) and (34), we obtain In order to get an insight into this problem, let us consider
the expansion

IM—gCY= (oM — oM (T4+V+c?—EO)

X (30— o)), o= Me® n=24,... (51
k
n=246.... (48)

Owing to the semibounded character of the Sdhrger  where the subscrigtspecifies the state under consideration.
Hamiltonian the right-hand side of the above equation isThe corresponding expression for the expansion coefficients
non-negative for the ground-state eneffy). can be obtained in much the same way as for the standard
These considerations show that also in the relativistic casRayleigh-Schrdinger perturbation theory, namely, by sub-
we can use the variational formulation, and obtain approxistituting Eq.(51) into Eq.(34) and taking the scalar product
mations to the ground-state solutions of Dirac equation fronof the resulting equation witkp,(?r). This leads to the follow-

the following variational principles: ing result(for m#1):
n—1
(@2 (V= c2= BT 3 ER ) (ol {1720
(n — _
Cm EO_E® (52
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The coefficientc{™ cannot be determined from E@52).
However, owing to the orthogonality conditidieq. (38)],

there is no loss of generality in taking™=0. Settinge”
in the form
-1
A=, e, 9

PHYSICAL REVIEW A63 012508

upper bound t&*" (n=2,4,...). Inorder to obtain a com-

pact form of the Hylleraas functional, the trial functipf”
can be written as

-1 -1
FO=EO- 3 o6l D+ T, el (559

i=1

where<p|(”) is now an arbitrary function of the electron-type
(SteM="oM). By substitutingp™ for ¢ in Eq. (44) the
desired form of the variational perturbation functional is ob-
tained:

where the coefficients{" are given by Eq(52),
s*p{"=p{", (54)

and p(" is orthogonal to the first—1 eigenstates of the
Schralinger Hamiltonian, one can conclude that the right-
hand side of Eq(48) is non-negative and therefodd” is an  with

IO (D)= (D) + K™ (56)

-1
JQV&TFJQNEWl—E;REHN¢@X¢ﬁ%%TXﬂ”—E@%HEﬂ%%?X%?KV—@—E95ﬂ$*5

(n—2)/2 -1
ol oMU (V=P B e E<2')j§l (@ 6D A7)
2D 00l FHD)) 57
and
-1 -1

K(m= K<n>+j§1 |c(M2(E- E.“’>)+j§0 [eP(x{T D, (V=c?—E) (D) +c{V*(o{D (V=2 —E?)x(1™D)]

(n-2)12 -1

= 3 B [l et N DA D)) )

Finally, it should be noted that in the derivation of in- chooset(?)=E(® and cast the exact Dirac solution into the
equalities(49) and (50), we assume that all the lower-order form

corrections are known exactly. If only approximations to the
lower-order corrections are available, the variational method
based on Eq949) or (50) may still be used but will not, in
general, give lower or upper boundsE&".

V=0 +p+y, (59)

whereS* p=¢, S x=y, and(¢®,8" ¢)=0.
The following steps, beginning with=1 through self-
consistency are carried out iteratively:

V. NONPERTURBATIVE ITERATIVE SOLUTION —S_B_(T—V+CZ+5(i_l))X(i)
Within the framework of the perturbation formalism de- o . .
scribed earlier in this paper, the approximate solution of the +S g (V- )el"h=0,  (60)
Dirac equation can, in principle, be obtained through any
order of interest. Unfortunately, tedious algebraic manipula-
tions need to be carried out to get the working equations for ., . 2 i i - 2 DN (i)
the calculation of relativistic corrections through arbitrary STAT(T+V+c? =)W+ T (V—c2-£W)x=0.
order. Furthermore in order to calculate thetl?-order en- (62
ergy we must know all the wave-function corrections .
through thenth order. Following the idea developed by Kut- TO Solve Eqgs.(60)—(62) we expande!” in an appropriate
zelnigg for DPT[3] and recently tested numerically by basis of the electron-type functiofd; S*® =® "},
Franke[16] we propose an iterative solution of the Dirac and x() in a basis of the positron-type functiod®; ;
equation starting with the nonrelativistic wave function. WeSffI)szIDJ-’}}“:l. The approximate solutions are

EN=£O+ (), gH(V-c?=£0-D),0)  (61)
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o oom set of secular equations which can be considered as a coun-
eW=2 ¢, yO=3 c)"®, (63 terpart of the Ritz variational procedure. The two methods
=1 =1 become identical in the cadey=Gy. Choosing the basis

- AN i
where the coeﬁicientsf" are determined from the matrix Set{¢l}J:1 of the coordinate subspace as

representation of Eq$60) and (62): {‘bf}?:lu{q’j—}jm:l’
—— i—L)p——yR)— - i—1)pn— i—1)+ _
(D™ ="M )™+ (D7 -l DM™ "D =0, the projective basis in the form
: . ) . I+
(D++_5(|)M++)C(|)++(D+7_5(|)M+7)C(|)7=0, [ 0 J O] q)j__]. )
(65) =1 =1

and substituting foD the Dirac Hamiltonian, we obtain from
Eq. (72) the set of secular equatiopgg. (70)] with the ma-
D%fz(d) * ,(tT+Vtc2)<I>ki+), (66) trices given by Eqs(66)—(69).

J = - The diagonal blocks

whereD andM are matrices with the elements

. 1 o T +4+_ +Hy ot — -—_ -\, —
Dji =2—C<<I>j—t,(+V+C2)a'-p<DkI>, (67) (D EM™")c"=0, (D" —EM ")c =0 (74
are the standard Ritz matrix representations of the Schro
M =(P D), (68  dinger equation for the nonrelativistic electron and positron,

respectively. Treating the rest of the secular equation as a
B - perturbation we can solve E¢Z0) for c and E iteratively or
M= +2_C<‘I’j_: 0 pPys). (69 py a perturbation approach. Alternatively, the nonsymmetric
eigenvalue problem can be solved directly by the diagonal-
Let us note that the recursion proced[igs.(61), (64), and ization using, for example, the QR proced{ite].
(65] can be regarded as the iterative solution of the If the relativity couples states of different nonrelativistic

N-dimensional N=n+m) eigenvalue problem: symmetry(for examples— 7, w— &, ... molecular orbitals
the diagonal block®*"*, M** orD~~, M~ ~ have a qua-
(D—EM)c=0. (70 sidiagonal form with diagonal subblocks of different nonrel-

ativistic symmetries. Similarly, functionald{” [Egs. (42)
and (44)] are decoupled in such a case to the sum of inde-
pendent terms with trial functions of different nonrelativistic
ymmetries.

We shall show that Eq(70) can be identified with the
Galerkin-PetroGP) approximation17] to the Dirac equa-
tion.

The idea of the GP method as applied to the operato?

equation VI. NUMERICAL EXAMPLE AND DISCUSSION

(D-B)¥=0 (72) To illustrate the methods described in this paper we con-

sider the ground and the first excited states of hydrogen-like
i@tom. If we choose for our upperp() and lower (¢_)
peomponents the radial basis of the exponential-type functions
of the formr" exp(— ¢;r), then we are constrained to choose
the remaining lower and upper components of the radial ba-
8is according to the prescription

can be formulated as follows. Lefy and Gy be two
N-dimensional subspaces of the Hilbert space under cons
eration, which are called the coordinate and projective su
spaces, respectively. LBtandQ be the projection operators
ontoFy andGy, respectively. The approximatich to V¥ is
assumed to be an element of the coordinate subspace, i.
P®=® and is determinated by the requirement

1
QD-E)®=0 (72 el (™ = girMexp(— i)

Let us choose the basis sétg}\, and{¢}\, in Fyand ©'

Gy, respectively. The approximate eigenfunction can be 1
written 7¢ (N—r)r" "t =irMexp(— &ir),
N
o= 2 C b (73 wherec is the angular quantum number. This guarantees that
= e the basis functions are of the “positive” electron form or of

the “negative” positron form. The possible values of the
where the coefficients; are determined from the matrix rep- parameten depend on the value of the quantum numker
resentation of Eq(72) [Eq. (70)], whereD andM are ma- For the considered statee=—1 and the most suitable
trices with the element®,;=(7n,D¢;), Mi={(nc,¢i), electron-type basis should contain the basis functions with
andc represents a column matrix of the coefficienfscor- n=1. If we use the sams for the positron-type basis, then
responding to the eigenvallg Equation(70) represents a the upper component behaves near the originrGsnd
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divergent integrals appear in the first term of E46). The  approximationsy!™ and ™ . Afterwards theE?" may be
same divergent term appears in E83). Since all the other calculated from Eq(40) or from the alternative form of Eq.
terms in EQs.(39)—(46) contain only finite integrals, the (39), obtained by eliminating \(_CZ_E(O))(X(f*l)JrQDQ)
variational perturbation method may still be used to obtainwith the aid of Eq.(34):

n/2—1
= — (0D, (T4262)¢) + DD, o0+ 3, B (o204 020

n/2—1 n/2—1

3 IR (0 B B2 (D) 4 (g0 g0y (2 )
+ (XD B,

N=246.... (75)

In the present paper this version of the perturbationquence of quotients:..2.7, 3.2, 4.5. The accuracy of the
method is used and both{" and " are expanded in the relativistic corrections to energy essentially depends on the
radial basis set witm=1,2,3. We would like to emphasize correct behavior of the wave function near the origin. One
the fact that the matrix representation of the Dirac equatiorran see from Table | that an 11-figure accuracyE®? is

with matrix elements given by Eq&66)—(69) remains regu- obtained in a basis set of 14 optimal functions. In order to
lar in this basis.

To exaggerate the relativistic effects, #h has been in-
vestigated. To obtain an approximation&&” it is necessary
to consider two contribution&™® andJ§". The first one is
easy to deal with, since it depends solely on the nonrelativ
istic wave function® (©):

TABLE |. Calculated relativistic lower bounds to the second-
order energies for the ground state of the hydrogenlike iof°Fm
obtained by maximizing the functionall. E®® is the second-
order correction to energy calculated from Egjr) with the optimal

trial function y(). N gives the number of basis functions.

KO=(o®, (v+c2-E®)¢) N I I E@)
1 0 — o 4 747030 ~590.9390 ~590.9390
=zc2(ex o p(V+e —EP)a-pel’).  (76) 6 74705356 500936669  —590.936658

8 74.7053659
This is exactly the formula for the first-order relativistic cor- 10 74.705369174

—590.9366587
—590.936655438

—590.9366522
—590.936655400

rection resulting from DPT and is equivaldd®9] to the stan- 12
dard sum of three terms: the relativistic mass correction, the4
Darwin correction and the spin-orbit interaction. If the ap-322

proximation Y™™ to y) is assumed to be a linear combina- 44°
tion of a finite number of linearly independent basis func-
tions, then both the linear and nonlinear parameters can be
determined by maximizing the functiona{®. The problem 4
of the maximization of the Hylleraas functional with respect6
to linear parameters is completely equivalent to the probleng
of solving a system of linear equations. In order to follow the

N convergence of our solutions we have performed calculaig
tions on the ground state using basis functions withl.

The results foN=4,6,. . .,14 are collected in Table I. The 12
values of the second-order correction to energy calculated
from Eq.(37) are given as well. Due to the singularity of the 1,
exact relativistic wave function at the origin, the optimal
values of exponents display a more rapid increase than the
geometric progression. It is interesting that in all cases pre-

74.7053692023 —590.9366554102 —590.9366554129
74.7053692048 —590.9366554077 —590.9366554057
74.7053692051 —590.9366554075 —590.9366554072
74.7053692052 —590.9366554073 —590.9366554073

optimal «

100.804 144.520
94.8135 154.467
94.6014 154.467
18513.8 81865.3
99.1876 124.114
3237.67 8211.32
98.2003 134.305
1753.24 3687.82
98.7025 129.887
1461.40 2889.40
245988 1122208

513.574 2226.27
421.133 1057.31
411.792 943.204

171.729 358.592
24912.1 109872
193.986 283.571
8386.01 21314.8
183.432 286.294
5965.92 12975.6

3204.15 14131.2
2290.75 6025.34

687.335 1429.67

472.122 884.976
64792.2 286414
431.105 771.258
30311.0 78886.0

sented in Table I, the quotients of the last few exponents ar&Even-tempered basis.
=1.3131794.

much the same and amount to about2.6, 3.1, 4.5. Such a

Optimal

parameters=74.77283,

behavior of the exponents is also typical for the third-orderEven-tempered basis augmented by 12 “steep” functions with pa-

positron-type basis. The optimization df®) gives a se-
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TABLE II. Optimization of exponents in the “positive” elec-
tronic basis for the ground state of the hydrogenlike ion®¥m
obtained by minimizing the functiondgz). E® is the fourth-order
correction to energy calculated from E@5) with the optimal trial

function '@ . The functiony® is expanded in the longest basis exact relativistic energy accurate througlic~2'). Energies are in
atomic units with all signs reversed.

set, defined in Table I.

PHYSICAL REVIEW A3 012508

TABLE Ill. Ground-state energy of the hydrogenlike ion ¥

calculated in the basis sets of 44 and 43 functions defined in Tables
I and II. EE)PT denotes the energy of the regular perturbation ap-

proach,€ ) is the energy of the iteration stépand &% is the

N 3 £ i by £v Qb
4 —186.62752 —207.8448 0 5000 5000 5000

6 —186.627938 ~207.8840 1 5590.936655 5590.936655 5665.642025
8 —186.62794171 —207.88569 2 5798.822567 5774.675783 5842.873747
10 —186.627941920 —207.885886 3 5880.506956 5858.554730 5901.860188
12 —186.6279419295 —207.8859099 4  5914.171376 5898.250145 5923.847946
14 —186.6279419304 —207.88591101 5  5928.364264 5918.029356 5932.629532
312 —186.6279419293 —207.885900 6  5934.442604 5928.114713 5936.303778
4 —186.6279419309 —207.88591126 7  5937.081397 5933.344149 5937.893505
: 8  5938.242299 5936.086046 5938.598964
optimal o 9  5938.759937 5937.535277  5938.918280
4 128.952 214.897 783.188 3142.22 10 5938.993888 5938.305815 5939.065134
6  124.435190.524 490.589  1203.70 3508.49 14061.8 11 ~ 5939.101036 5938.717348 5939.133560
8  122.144 176.906 295.435  648.831 1435.76 3541.65 12 ~ 5939.150731 5938.937910 5939.165793
10302.0 41232.5 13 5939.174049 5939.056449 5939.181119
10 121.894 172.552 244.179  495.710 933.386 1901.98 14  5939.185106 5939.120298 5939.188464
4214.95 10405.7 30269.1 121108 15  5939.190397 5939.154753 5939.192008
12 120.885 152.107 194.665  363.134 686.663 1368.29 16 ~ 5939.192950 5939.173374 5939.193729
2902.49 6577.63 16008.2  42469.7 128870 524825 17~ 5939.194190 5939.183450 5939.194570
14 122.042 173.340 235.028  384.483 640.958 1159.27 18  5939.194795 5939.188908 5939.194982
2133.75 4056.79 8021.90  16800.7 38137.4 96991.9 19  5939.195093 5939.191868 5939.195185
202469 1211424 20 5939.195240 5939.193474 5939.195285
21  5939.195312 5939.194346 5939.195335
dEven-tempered basis. Optimak 1.2975185, 4 exponents smaller 22 5939.195348 5939.194819 5939.195360
and 27 exponents greater thar- 100. 23 5939.195366 5939.195077  5939.195372

bEven-tempered basis augmented by 12 “steep” functions with pa- 24

5939.195375

5939.195217

5939.195379

rametersg: 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.3, 2.6, 3.0, 4.2. ¢ 5939 195380

5939.195384346

5939.195293
5939.1953844

5939.195381

. - . . 0 5939.195384364
obtain a similar accuracy using the even-tempered basis we

need a set of 32 functions. We expect that upon adding to

this basis appropriate orbitals with rapidly increasing expoincluding the “steep” functions is now more pronounced
nents(so-called “steep” functiond20]), which are neces- than for E(2). According to our numerical experiments the
sary to describe approximately the singularities at the originefficiency of “steep” functions increases in higher orders.
a similar accuracy will be achieved also for the higher-order  T¢ gain insight into the convergence characteristics of the
corrections to energy. ) perturbative and iterative approaches we show in Table I
To explore the optimal character of the basis set for thene pertinent values of the total relativistic energyithout
electron-type functions, the exponents have been optimizeghe rest energy of the electronalculated at different levels
in the framework of the variational perturbation method byof approximation_ For Comparison, we d|Sp|ay the expansion
minimizing the functional{?’(¢?). The results for various of the exact relativistic energy
dimensions of the basis set are presented in Table Il. One can
see that the structure of exponents is the same as that for the
positron-type functions presented in Table I. In order to _ _
avoid the linear dependence of the system of linear equationsith respect toc 2 (DPT expansion The €45 and £4%;
following from the Hylleraas functional, in the case of the values are found to exhibit the systematic relations
even-tempered basis, the zeroth-order function for the
ground state

E=c?[(1-2%/c?)Y>-1], (78)

ECbr<ERpr<€fp?. i=12,.... (79

(,0(10+) =275%2 exp(—Zr) (77 The convergence rate is approximately 0.5 implying that one
needs between three and four steps to get one decimal place
was omitted in the even-tempered basis and only the paranof the relativistic energy. For the iterative approach the con-
eter 8 has been optimized. It can be seen that the effect ofergence is a little slower. Nevertheless we recommend this

012508-9
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TABLE IV. Optimization of the “positive” electronic basis for
the state 8;, of the hydrogenlike ion FAY" by minimizing the

lated from Eq.(75) with the optimal trial functio
tion y*) is expanded in the even-tempered basis sets of the typandé&

(0,6,28) (@=10.11702, 82.08871; B=1.457 109 4, 1.394 676)

52)

np37 . The func-

augmented by 12 “steep” functions defined in Table I.

PHYSICAL REVIEW A63 012508

TABLE V. The 2s-state energy of the hydrogenlike ion Bh

calculated in the basis sets of 46 and 43 functions defined in Table
functionaIngz). E® is the fourth-order correction to energy calcu- IV. SS)PT denotes the energy obtained in the framework of the regu-

lar perturbation approact,( is the energy of the iteration stép

is the exact relativistic energy accurate thro@jc~2").

Energies are in atomic units with all signs reversed.

i Ekbr g E8br
i 2 4

N Basis 3 E 0 1250 1250 1250
4 0,1,3 —102.9296 —65.999 1 1430.701795 1424.526724 1458.013133
4 1,12 —102.9319 —66.033 2 1496.782704 1483.959459 1516.167291
6 0,1,5 —102.933309 —66.0766 3 1525.384909 1517.514125 1535936966.
6 1,23 —102.933323 —66.0775 4 1538.247533 1532.275408 1543.394031
8 2,2,9 —102.9333549 —66.080606 5 1544.049536 1539.568887 1546.394835
12 2,4,6 —102.933356636 —66.0809013 6 1546.643422 1543.556133 1547.656967
312 (2,5,29 —102.933356657 —66.08090884 7 1547.787776 1545.782309 1548.205150
43 2,5, 36 —102.933356657 —66.08090933 8 1548.285434 1547.028685 1548.449128
: 9 1548.498949 1547.730560 1548.559818
optimal 10 1548.589553 1548.128201  1548.610820
4 51.4751 67.5369 141.062 764.762 11 1548.627746 1548.354406 1548.634621
4 51.8613 85.8784 193.038 1014.40 12 1548.643843 1548.483434 1548.645848
6  50.563158.0132 105.060 210.798  829.629 3328.71 13 1548.650687 1548.557176 1548.651191
6  50.9334 74.4359 169.429 212.355  919.897 3709.75 14 1548.653652 1548.599387 1548.653755
8  51.0092 59.9192 86.7604 138.844  410.250 1055.32 15 1548.654973 1548.623576 1548.654993
3102.10 12456.7 16 1548.655584 1548.637451 1548.655594
12  50.8883 60.3937 76.5928 104.729  260.574 403.251 17 1548.655877 1548.645415 1548.655889
495.956 1207.89 2672.63 6580.23  19117.7 76457.9 18 1548.656021 1548.659990 1548.656033
19 1548.656095 1548.652618 1548.656104
8 ven-tempered basis. Optimal parameters36.54693, 68.0996, 20 1548.656132 1548.654129 1548.656139
e o et 5 e s oo L 1SOSEIS2  istmom  Isasesee
] 22 1548.656162 1548.655497 1548.656165
in Table 11, 23 1548.656167 1548.655785  1548.656169
method due to its simplicity in the numerical implementa- 24 1548.656170 1548.655950 1548.656172
5 1548.656171 1548.656046 1548.656173

tion. At the bottom of Table 11l we present the infinite order

results(for the given basis set and machine accuyaaly-

tained after 38 steps. The next steps do not change the pre-

0]

1548.6561725

1548.6561749

1548.6561739

sented values. One can see that an 11-figure accuracy of the B
relativistic energy is obtained. Therefore, we can conclude Because of the orthogonalization of the trial functig}?)

that all ten decimals given for all the lower order valuestg (% and (%) some attention must be paid to the proper

displayed in Table Il are correct. choice of the electron-type basis. The exploratory computa-
In order to demonstrate the applicability of the method tojons were performed using basis functions wita1, 2, and

excited states we have performed perturbation calculation The results for different dimensions of the basis set are
for the 2s,,, state, starting from the nonrelativistic wave presented in Table IV. The symbah4, n,, n,) is used to
function denote a basis set comprisimg functions withn=3, n,
functions withn=2, andn; functions withn=1. For N

=4 and 6 the numerical results are presented for two types
of basis sets. One can see from the second part of Table IV
o o . _ ~that nonrelativistic functions{®) and ¢°) [Egs. (77) and

The initial approximation tcE(® is obtained by expanding (80)] are almost linearly dependent with the basis set
the trial functiony™ in the basis set”exp(~£ir) with n (0,1,5). Such a type of basis set should be discarded because
=1,2. The nonlinear parametefs have been optimized in  of the loss of accuracy. To avoid this problem the basis func-
the same manner as for ground state by maximizing the fungions with n=3 andn=2 have been used in the regian
tional J§". The most extensive basis set of six even-=50 anda=100, respectively. The optimal exponents of the
tempered functions witm=2 and 28 even-tempered func- 1s-type orbitals calculated for the excited,2 state behave
tions withn=1 augmented by 12 “steep” functions gives in a similar way as for the ground state. A similar influence
J{H=27.311 337 641E(? = —180.701 795 05) correctto all of the dimension of the basis set on the accuracy of the
11 decimal figures. results is also observed. The convergence characteristics of

(312)

(0) — (E (80)

P2+ 2

Zr
r(2—Zr)ex;{ - ?>
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perturbative and iterative approaches is illustrated in Tabléon in external field. In the case of the spherical symmetry it

V. It can be seen that relatiortg9) are also fulfilled in this is enough to construct an appropriate four-component spheri-

case, and that the accuracy of the results is only a little lowegal spinor basis set. In the case of the static and uniform

than that for the ground state. electric field the method for constructing the radial basis set
We have shown in this paper that accurate relativistic enis the same as for a single electron in a spherically symmetric

ergies for one-electron systems can be obtained in the framgotential(see the beginning of this sectjotowever, owing

work of the regular perturbation theory of relativistic correc- to the mixing of angu|ar momenta the Spinors with different

tions. The main advantage of our perturbation approach igirac quantum numbet should be included in the basis set.

that, irrespective of the type of the basis set used, the Hyla |ittle more complicated situation is found for a static and

leraas variational functionals are, by turns, lower or uppefniform magnetic fieldsee Appendix B

bounds to the exact-order correction to the energy. There-

fore optimal nonlinear parameters may safely be obtained by

using the variational method. Although the present calcula- ACKNOWLEDGMENTS

tions have been performed for the hydrogenlike ion it should

be noted that the present approach can be applied for any We are grateful to A. J. Sadlej for a critical reading of the

potential. manuscript. We acknowledge financial support by the Polish

We hope that our method can be applied to problems oState Committee for Scientific Resear@roject No. 2P03B
practical interest, e.g., to the description of the hydrogenliked98 14.

APPENDIX A: GENERAL RELATIONS FOR HIGH-ORDER CORRECTIONS TO ENERGY

Let us consider the matrix elements of the operaterc?— E(®) with functions of orders appropriate for calculatiBf™
with evenn. Using Egs.(34) and(35) we obtain

(XD (V=2 = E@) (oM Y2 1))
m-1

=T (V=P BN (T ET) - 3 BEMA( o)+ (o, o175

k-1
+<X(+2k+l)’X(fj_s)>+<x(‘2k+1)’X(‘zj_l)>)+izo E(2k—2i)(<¢(_2i)'QD(_Zm—2)>+<X(_2i+l)'QD(_2m—2)>

+ (D I 4 () M) 4 (ETY EM) 4 (ET K D)) (A1)
with
k+m=n. (A2)
Treating Eq.(Al) as a difference equation
F(m)=F(m—1)+S(m—1)—S(m), (A3)

we can solve it foiIS(m) to obtain the following invariant:

k—2
F(m)+8(m):<x(+2kfl),(V_Cz_E(O))((P&Zm)+xgr2m*l))>_20 E(Zkfzi*2)<X(+2i+l),(¢&2m)+X&2m*l))>
i=

k=1 m
=33 B2 () ) () ) (D 4B (D 7)) =0

(A4)

The last equality follows from the comparison B{0)+ S(0) with Eq. (37). Letting nowk=m=n/2 and evaluatingz(?"
from Eq. (A4) gives EQq.(39). Similar considerations starting from
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<(,D(_2k) (V42— E©@)(pm=2) 4\ (2m= l))>
k
=2 (V42— EO@) (oM Dy y(2m=3)yy 4 .20 B 242 (o) (pEMm™2) 4 ) (2m=3)))

m—2

(22, (2 ) () I (A (IS n (), )

(K12 1) 4 (R D) (B 1) (a5)

lead to the following invariant:
k—1
<¢@k) ,(V_'_CZ_E(O))((P(72m72)+x(72m71))>_ 2‘6 E(zk—2|)<¢@|) ’X(72m71)>+ E(O)<¢Gk) ,gogzm—z))
=

[N

m

k -
-2 go [ECN 272720 o) @) 4 g2 2D (o) @)+ (71 (D) 4 (171 4B D) ) 1=,

(A6)
which after settindk=(n—1)/2, m=(n+1)/2, gives Eq(40).
|
APPENDIX B: HYDROGENIC ION IN A STATIC Rewriting the term
UNIFORM MAGNETIC FIELD
In the magnetic field Eqg6) and(7) should be general- Ca.A:( 0 CU'A), (B7)
ized to co-A 0
in polar coordinates, 9, ¢ (see, e.g.[21])
2¢? co
+ _ 71 1 z 1 H
S =T com %o_ o (B1) o-A=5Bo-(2X1)=5Bo,sin?, (B8)
1 we obtain the results of the action of the operatar A on
-o-mo-m —COm the four-component spind@?2]
S =712 : (B2)
—com 2¢? A( P) crB| 4kp Q) K—m—l(Q>
Ca: = -—
where Q/, 2 [4*-1\P] ~ 2c=1 1P|/
1 k+m+1[Q
T= >0 wo-w+2¢%,  m=p+A. (B3) + 2k+1 | p L ' (B9)
The vector potential\ can take the fornrA=3BXr where  where
B=Bz. The projectorsS* andS— divide the Hilbert space
of the four-component spinors into two subspaces P [ PMxeulr
=C,|. , (B10)
o Q/, QM) Xl
Stdt=dpt=| 1 , (B4) m 1
2c7 ¢ C= I («l+@*? m=|ul-5,  (®1D
g=-m 2
! d is the t t spherical spinor i I
o B — —0- Y andy, , is the two-component spherical spinor in polar co-
SP =0 = 2¢ ' (BS) ordinatgs.
X Therefore, the basis functiorB= [Egs. (B4) and (B5)],
corresponding to projecto®" and the Dirac quantum num-
ST =S dT=0. (B6)  berk, can be written as
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P
o=l 1/ 4 DBt +I’B k—m—1/(0 +K+m+1 0 812
O Wl I o To R 4c| 2xk-1 \p 2k+1 | P ’ (B12)
2c\dr r  gK2-1 —Kk+1 —k—1
1/d « 2Bkur
o — z(a_F_4kzﬂl Q rBl k—m—1 Q k+m+1 Q B13
K B ac| 2«x—-1 |0 2k+1 |0 ' (B13
Q —k+1 —xk—1

In this basis set we can calculate all necessary matrix elesents of the basis functionB, [Eq. (B13)]. Therefore, the
ments. Let us consider, for example, the elemenfTy)  radial integrals involved are exactly of the same type as for
=(x, 1o wo- )= %(m wx,o- wy). According to Eq. the spherically symmetric potential. A similar situation oc-
(B5) we have to deal with scalar products of upper compo-<urs for other matrix elements.
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