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Regular perturbation theory of relativistic corrections: II. Algebraic approximation
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A four-component equivalent of the Schro¨dinger equation, describing both the nonrelativistic electron and
the nonrelativistic positron, is introduced. The difference between this equation and the Dirac equation is
treated as a perturbation. The relevant perturbation equations and formulas for corrections to the energy are
derived. Owing to the semibounded character of the Schro¨dinger Hamiltonian of the unperturbed equation the
variational perturbation method is formulated. The Hylleraas functionals become then either upper or lower
bounds to the respective exact corrections to the energy. In order to demonstrate the usefulness of this approach
to the problem of the variational optimization of nonlinear parameters, the perturbation corrections to wave
functions for the of hydrogenlike atoms have been approximated in terms of exponential basis functions. The
Dirac equation in this algebraic approximation is solved iteratively starting with the solution of the Schro¨dinger
equation.
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I. INTRODUCTION

In nonrelativistic quantum mechanics, the perturbat
methods are recognized as a powerful technique for the
proximation of energies and eigenfunctions. The essen
idea of this approach consists of the partition of the Ham
tonian into an unperturbated Hamiltonian and a perturbat
Since the Schro¨dinger and Dirac Hamiltonians act in differ
ent Hilbert spaces, the usual perturbation methods canno
trivially extended to the study of relativistic corrections
solutions of the Schro¨dinger equation. In traditional ap
proaches one first derives some effective Hamiltonian wh
acts on two-component spinors and then expands it in p
ers of the coupling parameterc22 (c5137.035 989 5@1# is
the speed of light!. Unfortunately this procedure introduce
spurious singularities into resulting operators and of
causes unsurmountable problems in higher orders@2,3#. Re-
cently Kutzelnigget al. @4# have assessed the arguments
favor of the fully four-component direct perturbation theo
~DPT! @3,5,6#. This approach isolates from the relativist
equation a four-component equivalent of the Schro¨dinger
equation which is considered a zeroth-order problem for
perturbation expansion. The remaining~relativistic! terms
are accounted for perturbationally without explicit recou
to the elimination of the small component. One of the ai
of the present paper is to expose another possibility of
partition of the Dirac equation into the Schro¨dinger-type
equation and relativistic perturbation, which enables one
avoid some of the serious difficulties arising from diverge
contributions of the traditional methods.

In the previous paper@7# ~hereafter referred to as I! a
perturbation approach to the Dirac equation, starting from
pair of the Galilei-invariant four-component Levy-Leblon
type equations@8# for a nonrelativistic electron or positro
with spin, was formulated. The perturbation expansion w
obtained by the contour integration of matrix elements of
Dirac resolvent expanded in terms of nonrelativistic res
vents. It has been observed that the expressions for the
1050-2947/2000/63~1!/012508~13!/$15.00 63 0125
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order energy corrections coincide with the well-known fo
mulas for the Rayleigh-Schro¨dinger coefficients. However
they involve contributions from both the nonrelativistic ele
tron and nonrelativistic positron states. Owing to the form
the zeroth-order reference, the method differs significan
from other perturbation schemes, which expand the Di
resolvent about its purely electronic nonrelativistic limit@9#
~i.e., which use the Schro¨dinger or Pauli resolvent combine
with the projection onto the upper component! or, in equiva-
lent formulation, are based on the Levy-Leblond equation
nonrelativistic electron as the zeroth-order approximat
@3,6#.

In I, our regular perturbation theory~RPT! was applied to
the case of a quasifree particle. It has been observed tha
convergence of RPT is much better than the convergenc
the c22n expansion. The aim of the present paper is to
velop an equivalent perturbation formalism without the
rect reference to the expansion of the Dirac resolvent. Su
form of the theory is needed for constructing the Hyllera
@10# type functionals in variational perturbation method
This approach has been motivated by the fact that for m
physical problems of current interest the perturbation eq
tions cannot be solved exactly in the analytic form and
quire some further approximations. Finite-difference me
ods, which can be successfully used for atoms,
inappropriate in the case of molecules because the symm
lowering prevents the factorization into radial and angu
components. Thus the algebraic approximation appears t
the most promising method of obtaining the approximate
lutions. In the basis set expansion approaches to the solu
of the Dirac equation particular attention must be paid to
coupling between the large and small components. U
now, computationaly most appealing seems to be the a
braic approximation@11# based on the so-called ‘‘kinetically
balanced’’ basis set@12,13# ~some set$F% for the large com-
ponent and the set$s•pF% for the small component!. In the
present work we present an alternative algebraic approxi
tion which is used in the context of RPT.
©2000 The American Physical Society08-1
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II. PARTITION OF THE DIRAC EQUATION

The time-independent Dirac equation in atomic units fo
single electron in the potentialV is

~ca•p1c2b1V2E!C50, ~1!

where the symbols have their usual meaning. In the spiri
the regular perturbation theory of relativistic corrections d
scribed in I we rewrite Eq.~1! in the form

@H1A1S11A2S22E~b1S11b2S2!1A1S21A2S1

2E~b1S21b2S1!#C50, ~2!

where

H5ca•p12c2b, ~3!

A65~V7c2!b6. ~4!

The two projectorsb6 on the upper and on the lower com
ponents of the four-component spinor are defined as

b65~16b!/2. ~5!

Two other projectorsS6, defined in I as projectors on th
‘‘positive’’ electronic and on the ‘‘negative’’ positronic non
relativistic states, respectively, may be written in the expl
form

S15T 21S 2c2 cs•p

cs•p
1

2
p2 D , ~6!

S25T 21S 1

2
p2 2cs•p

2cs•p 2c2
D , ~7!

where

T5
1

2
p212c2. ~8!

Let us note that in the presence of the external magnetic
the momentum operator should be replaced byp5p1A,
whereA is the vector potential of the magnetic field. Accor
ing to their definition the operatorsS6 are idempotent, Her-
mitian ~orthogonal projection!, and have the following prop
erties:

S11S251, S6S750, S6b6S752S6b7S7, ~9!

b6HS750, b6HS656Tb6S6. ~10!

Let us now consider the equation

@H1A1S11A2S22E(0)~b1S11b2S2!#C (0)50.
~11!

In order to understand the physical meaning of this equa
it is useful to expressC (0) as a sum of two mutually or
01250
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thogonal functions belonging to the two subspaces of
Hilbert space of the four-component spinors:

C (0)5S1C (0)1S2C (0)5w (0)1x (0). ~12!

By substituting this partition into Eq.~11! and taking into
account the second of Eqs.~9!, one obtains the separation o
Eq. ~11! into two independent equations:

~H1A12E(0)b1!w (0)50, ~13!

~H1A22E(0)b2!x (0)50. ~14!

Both these Levy-Leblond-type equations are Galil
invariant wave equations for a nonrelativistic particle w
spin@8#: the first of them refers to the nonrelativistic electro
whereas the second one describes the nonrelativistic p
tron. Each of these equations is completely equivalent to
appropriate Schro¨dinger equation; after substitutingA6 from
Eq. ~4! into Eqs.~13! and ~14! and taking into account Eqs
~8! and ~10!, we obtain

S 1

2
p21VDw1

(0)5~E(0)2c2!w1
(0) , ~15!

S 2
1

2
p21VDx2

(0)5~E(0)1c2!x2
(0) , ~16!

wherew1
(0) andx2

(0) correspond to the upper and lower com
ponents ofw (0) and x (0), respectively. The complementar
lower and upper components are given by

w2
(0)5

1

2c
s•pw1

(0) , x1
(0)52

1

2c
s•px2

(0) . ~17!

In Eq. ~15! 1
2 p21V represents the Schro¨dinger Hamiltonian

for one electron. Thus, Eq.~15! is equivalent to the Schro¨-
dinger equation withE2c2 being the nonrelativistic energy
Similarly, upon multiplying Eq.~16! by 21, one finds that
Eq. ~16! is the Schro¨dinger equation for a nonrelativisti
electron with negative energy and charge opposite to
used inV ~provided thatV is charge dependent!, i.e., this is
the ordinary Schro¨dinger equation for a positron. Therefor
Eq. ~11! may be regarded as a four-component generaliza
of the Schro¨dinger equation which simultaneously describ
the nonrelativistic electron and nonrelativistic positron.

On comparing the Dirac equation@Eq. ~2!# with Eq. ~11!,
one finds that they differ by

B5A1S21A2S12E~b1S21b2S1!. ~18!

The idea of this work relies on the assumption that, in
certain sense, the termB is ‘‘small,’’ and that reliable ap-
proximate solutions of the Dirac equation can be obtained
starting with the solution of the Schro¨dinger equation and
using a perturbation treatment.

III. PERTURBATION FORMALISM

The perturbation methods assume the partition of the t
Hamiltonian into some unperturbed part and a perturbat
8-2
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However, our approach involves also a partition of the m
ric. Therefore, for applying the perturbation theory, the m
compact form of Eq.~2! with a formal parameterl is

@H (0)2ES(0)1l~H (1)2ES(1)!#C50, ~19!

where

H (0)5H1A1S11A2S2, S(0)5b1S11b2S2,
~20!

H (1)5A1S21A2S1, S(1)5b1S21b2S1. ~21!

Let us consider some eigenstate of the perturbed prob
@Eq. ~19!# which originates (l50) from a nondegenerat
nonrelativistic state withx (0)5S2C (0)50. We assume tha
both C andE are analytic inl:

C5w (0)1(
i 51

`

l iC ( i ), ~22!

E5 (
n50

`

l2nE(2n), ~23!

where w (0)5S1C (0). Moreover, according to I, only the
even-order energy corrections are different from zero. T
zeroth-order equation is

~H (0)2E(0)S(0)!w (0)50 ~24!

and in the first order

~H (0)2E(0)S(0)!C (1)1H (1)w (0)50. ~25!

Similarly to the partition ofC (0) @Eq. ~12!# every functionC
may be partitioned into two componentsw andx. In particu-
lar,

C (1)5S1C (1)1S2C (1)5w (1)1x (1). ~26!

InsertingC (1) given by Eq.~26! and usingH (0), S(0), and
H (1) as given by Eqs.~20! and ~21!, into Eq. ~25! and then
taking into account Eqs.~4!, ~10!, and~11! results in

b1~H (0)2E(0)S(0)!w (1)1b2~H (0)2E(0)S(0)!x (1)1A2w (0)

50. ~27!

According to the properties of operators involved in Eq.~27!
the lower component of (H (0)2E(0)S(0))S1 disappears and

~H (0)2E(0)S(0)!w (1)50. ~28!

As consequence of the nondegenerate character ofw (0) we
obtainw (1);w (0) and according to the general methodolo
of the perturbation theory,w (1) can be chosen as

w (1)[0. ~29!

In a similar way we obtain

x (2)[0. ~30!
01250
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These results can be simply extended by induction to hig
even~odd! orders to give

C5 (
n50

`

ln~w (2n)1lx (2n11)!. ~31!

The 2nth and (2n11)th order equations are

~H (0)2E(0)S(0)!w (2n)2~H (1)2E(0)S(1)!x (2n21)

2E(2n)S(0)w (0)2 (
i 51

n21

E(2i )~S(0)w (2n22i )

1S(1)x (2n22i 21)!50, ~32!

~H (0)2E(0)S(0)!x (2n11)2~H (1)2E(0)S(1)!w (2n)

2(
i 51

n

E(2i )~S(0)x (2n22i 11)1S(1)w (2n22i )!50.

~33!

By rewriting the above equations in the block form one c
see that each of them has only one nonzero row@Eq. ~32!,
upper and Eq.~33!, lower#. This leads to the equivalent set o
the two-component equations

~T1V1c22E(0)!w1
(2n)1~V2c22E(0)!x1

(2n21)2E(2n)w1
(0)

2 (
i 51

n21

E(2i )~w1
(2n22i )1x1

(2n22i 21)!50, ~34!

~2T1V2c22E(0)!x2
(2n11)1~V1c22E(0)!w2

(2n)

2(
i 51

n

E(2i )~w2
(2n22i )1x2

(2n22i 11)!50, ~35!

whereT is the nonrelativistic kinetic energy operator. Let
choose the normalization of the zeroth-order wave funct
C (0) as follows:

^C (0),b1C (0)&5^w1
(0) ,w1

(0)&51. ~36!

Expressions for relativistic corrections to the energy can
obtained by taking the scalar product of Eq.~34! with w1

(0) .
Since T1V is Hermitian andw1

(0) satisfies Eq.~15!, The
term ^w1

(0) ,(T1V1c22E(0))w1
(2n)& vanishes. Thus,

E(2n)5^w1
(0) ,~V2c22E(0)!x1

(2n21)&

2 (
i 51

n21

E2i^w1
(0) ,x1

(2n22i 21)&. ~37!

In deriving Eq.~37! we have assumed that

^w1
(0) ,w1

(2i )&5d0i . ~38!

According to Eq.~37! the calculation of the 2nth-order cor-
rection, E(2n), requires knowledge of all correctionsE(2i )

through the (2n22)th order and all correctionsx (2i 21)
8-3
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through the (2n21)th order. Similarly to methods used i
the Rayleigh-Schro¨dinger perturbation theory~see, for ex-
ample,@14#!, additional relations can be obtained for highe
order corrections to the energy by taking the scalar prod
01250
-
ts

of Eqs.~34! and~35! with several functionsw1
( i ) , w2

( i ) , x1
( i ) ,

x2
( i ) and by performing a sequence of algebraic manipu

tions, as explained in Appendix A. The most important
these relations are
he

lution of
aas
E(2n)5^x1
(n21) ,~V2c22E(0)!~w1

(n)1x1
(n21)!&2 (

i 51

n/221

E(n22i )^x1
(2i 21) ,~w1

(n)1x1
(n21)!&

2 (
i , j 50

n/221

E(2n22i 22 j 22)~^w1
(2i ) ,w1

(2 j 12)&1^w2
(2i ) ,w2

(2 j )&1^x2
(2i 11) ,x2

(2 j 11)&1^x1
(2i 11) ,x1

(2 j 21)&!, n52,4,6, . . . ,

~39!

E(2n)5^w2
(n21) ,~V1c22E(0)!~w2

(n21)1x2
(n)!&2 (

i 50

(n23)/2

E(n22i 21)@^~w2
(2i )1x2

(2i 11)!,x2
(n)&1^w2

(2i ) ,w2
(n21)&1^w2

(n21) ,w2
(2i )&#

2 (
i , j 50

(n23)/2

@E(2n22i 22 j 22)~^w2
(2i ) ,w2

(2 j )&1^x2
(2i 11) ,x2

(2 j 11)&!1E(2n22i 22 j 24)~^x1
(2i 11) ,x1

(2 j 11)&

1^w1
(2i 12 ,w1

(2 j 12)&!#, n51,3,5, . . . . ~40!

Equations~39! and~40! demonstrate that the perturbed energy through the 2nth order can be obtained from knowledge of t
wave-function perturbed through thenth order. It is well known that the same is true for the Rayleigh-Schro¨dinger perturbation
theory.

IV. VARIATIONAL PERTURBATION METHOD

In this section we explore the connection between the perturbation theory and variational principles. The direct so
the perturbation equations is usually not available for more complicated cases. However, as it was first noted by Hyller@10#,
we can regard thenth-order perturbation equation as the stationary value condition of the suitable functionalJ(n) for the
functionC (n). In our case we have two families of functionals: the first family for functionsx2

(n) (n odd! and the second one
for functionsw1

(n) (n even!. The appropriate functionalsJ(n) can be written as

J(n)~ x̃2
(n)!5J0

(n)~ x̃2
(n)!1K (n) ~41!

with

J0
(n)~ x̃2

(n)!5^x̃2
(n) ,~V1c22E(0)!w2

(n21)&1^w2
(n21),~V1c22E(0)!x̃2

(n)&2^x̃2
(n) ,~T2V1c21E(0)!x̃2

(n)&

2 (
i 51

(n21)/2

E(2i )~^x̃2
(n) ,w2

(n22i 21)&1^x̃2
(n) ,x2

(n22i )&1^w2
(n22i 21) ,x̃2

(n)&1^x2
(n22i ) ,x̃2

(n)&!, n51,3,5, . . .

~42!

or

J(n)~ w̃1
(n)!5J0

(n)~ w̃1
(n)!1K (n) ~43!

with

J0
(n)~ w̃1

(n)!5^w̃1
(n) ,~V2c22E(0)!x1

(n21)&1^x1
(n21) ,~V2c22E(0)!w̃1

(n)&1^w̃1
(n) ,~T1V1c22E(0)!w̃1

(n)&

2 (
i 51

(n22)/2

E(2i )~^w̃1
(n) ,w1

(n22i )1x1
(n22i 21)&1^w1

(n22i )1x1
(n22i 21) ,w̃1

(n)&!2E(n)~^w̃1
(n) ,w1

(0)&1^w1
(0) ,w̃1

(n)&!,

n52,4,6,•••, ~44!
8-4



ard way
t

REGULAR PERTURBATION THEORY . . . : II. . . . PHYSICAL REVIEW A63 012508
where we use the tilde to represent a trial function. It is evident that a stationary value condition leads in a straightforw
to the proper perturbation equation. The presence of theK (n) term, which is independent ofx̃2

(n) (w̃1
(n)), leads to the correc

value of the functional atx̃2
(n)5x2

(n) or w̃1
(n)5w1

(n) , namelyJ(n)5E(2n) if

K (n)5^w2
(n21) ,~V1c22E(0)!w2

(n21)&2 (
i 50

(n23)/2

E(n22i 21)~^w2
(2i ) ,w2

(n21)&1^w2
(n21) ,w2

(2i )&!

2 (
i , j 50

(n23)/2

@E(2n22i 22 j 22)~^w2
(2i ) ,w2

(2 j )&1^x2
(2i 11) ,x2

(2 j 11)&!1E(2n22i 22 j 24)~^x1
(2i 11) ,x1

(2 j 11)&

1^w1
(2i 12) ,w1

(2 j 12)&!#, n51,3,5, . . . ~45!

or

K (n)5^x1
(n21) ,~V2c22E(0)!x1

(n21)&2 (
i 51

n/221

E(n22i )^x1
(2i 21) ,x1

(n21)&2 (
i , j 50

n/221

E(2n22i 22 j 22)@^w1
(2i ) ,w1

(2 j 12)&~12dn,2j 12!

1^w2
(2i ) ,w2

(2 j )&1^x2
(2i 11) ,x2

(2 j 11)&1^x1
(2i 21) ,x1

(2 j 21)&#, n52,4,6, . . . . ~46!
,
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We shall prove that for oddn the functionalJ(n) is a lower
bound to the exact correctionE(2n) to energy. To this end
the differenceJ(n)2E(2n) may be set, according to Eqs.~40!
and ~35!, in the form

J(n)2E(2n)52^x̃2
(n)2x2

(n) ,~T2V1c21E(0)!~ x̃2
(n)2x2

(n)!&,

n51,3,5, . . . . ~47!

Provided thatc21E(0)>0 ~the nonrelativistic energyE(0)

2c2 is larger than22c2) the stated result is then an imm
diate consequence of the positively definite character of
Schrödinger HamiltonianT2V with repulsive potential
2V. Similarly, using Eqs.~39! and ~34!, we obtain

J(n)2E(2n)5^w̃1
(n)2w1

(n),~T1V1c22E(0)!

3~ w̃1
(n)2w1

(n)!&,

n52,4,6, . . . . ~48!

Owing to the semibounded character of the Schro¨dinger
Hamiltonian the right-hand side of the above equation
non-negative for the ground-state energyE(0).

These considerations show that also in the relativistic c
we can use the variational formulation, and obtain appro
mations to the ground-state solutions of Dirac equation fr
the following variational principles:
01250
e

s

se
i-

J(n)~ x̃2!<E(2n), n51,3,5, . . . , ~49!

J(n)~ w̃1!>E(2n), n52,4,6, . . . . ~50!

Accordingly the Hylleraas functionals are lower or upp
bounds to the respective exact corrections to the energy.
variational perturbation method can be extended to exc
states, by assuming that trial functionw̃k1 is exactly repre-
sented in the subspace spanned by all lower energy ei
functions of the Schro¨dinger Hamiltonian~see@15#!.

In order to get an insight into this problem, let us consid
the expansion

w l
(n)5(

k
ck

(n)wk
(0) , n52,4, . . . , ~51!

where the subscriptl specifies the state under consideratio
The corresponding expression for the expansion coefficie
can be obtained in much the same way as for the stan
Rayleigh-Schro¨dinger perturbation theory, namely, by su
stituting Eq.~51! into Eq. ~34! and taking the scalar produc
of the resulting equation withw l 1

(0) . This leads to the follow-
ing result~for mÞ l ):
cm
(n)5

^wm1
(0) ,~V2c22El

(0)!x l 1
(n21)&2 (

i 51

n21

El
(2i )^wm1

(0) ,~w l 1
(n22i )1x l 1

(n22i 21)!&

El
(0)2Em

(0)
. ~52!
8-5
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The coefficientcl
(n) cannot be determined from Eq.~52!.

However, owing to the orthogonality condition@Eq. ~38!#,
there is no loss of generality in takingcl

(n)50. Settingw̃ l 1
(n)

in the form

w̃ l 1
(n)5(

i 51

l 21

ci
(n)w i

(n)1 r̃ l
(n) , ~53!

where the coefficientsci
(n) are given by Eq.~52!,

S1r̃ l
(n)5 r̃ l

(n) , ~54!

and r̃ l 1
(n) is orthogonal to the firstl 21 eigenstates of the

Schrödinger Hamiltonian, one can conclude that the rig
hand side of Eq.~48! is non-negative and thereforeJ(n) is an
-
r

he
o
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upper bound toEl
(2n) (n52,4, . . . ). Inorder to obtain a com-

pact form of the Hylleraas functional, the trial functionr̃ l
(n)

can be written as

r̃ l
(n)5w̃ l

(n)2(
i 51

l 21

w i
(0)^w i 1

(0) ,w̃ l 1
(n)&1(

i 51

l 21

ci
(n)w i

(0) , ~55!

wherew̃ l
(n) is now an arbitrary function of the electron-typ

(S1w̃ l
(n)5w̃ l

(n)). By substitutingr̃ (n) for w̃ (n) in Eq. ~44! the
desired form of the variational perturbation functional is o
tained:

Jl
(n)~ w̃ l 1

(n)!5J0l
(n)~ w̃ l 1

(n)!1Kl
(n) ~56!

with
J0l
(n)~ w̃ l 1

(n)!5J0
(n)~ w̃ l 1

(n)!2(
j 51

l 21

@^w̃ l 1
(n) ,w j 1

(0)&^w j 1
(0) ,w̃ l 1

(n)&~Ej
(0)2El

(0)!1^w̃ l 1
(n) ,w j 1

(0)&^w j 1
(0) ,~V2c22El

(0)!x l 1
(n21)&

1^w j 1
(0) ,w̃ l 1

(n)&^x l 1
(n21) ,~V2c22El

(0)!w j 1
(0)&#2 (

i 51

(n22)/2

E(2i )(
j 51

l 21

^w̃ l 1
(n) ,w j 1

(0)&~^w j 1
(0) ,x l 1

(n22i 21)&

1^x l 1
(n22i 21) ,w j 1

(0)&^w j 1
(0) ,w̃ l 1

(n)&! ~57!

and

Kl
(n)5K (n)1(

j 51

l 21

uci
(n)u2~Ej

(0)2El
(0)!1(

j 50

l 21

@cj
(n)^x l 1

(n21) ,~V2c22El
(0)!w j 1

(0)&1cj
(n)* ^w j 1

(0) ,~V2c22El
(0)!x l 1

(n21)&#

2 (
i 51

(n22)/2

E(2i )(
j 51

l 21

@cj
(n)^w j 1

(0) ,~w l 1
(n22i )1x l 1

(n22i 21)!&1cj
(n)* ^~w l 1

(n22i )1x l 1
(n22i 21)!,w j 1

(0)&#. ~58!
e
Finally, it should be noted that in the derivation of in
equalities~49! and ~50!, we assume that all the lower-orde
corrections are known exactly. If only approximations to t
lower-order corrections are available, the variational meth
based on Eqs.~49! or ~50! may still be used but will not, in
general, give lower or upper bounds toE(2n).

V. NONPERTURBATIVE ITERATIVE SOLUTION

Within the framework of the perturbation formalism d
scribed earlier in this paper, the approximate solution of
Dirac equation can, in principle, be obtained through a
order of interest. Unfortunately, tedious algebraic manipu
tions need to be carried out to get the working equations
the calculation of relativistic corrections through arbitra
order. Furthermore in order to calculate the 2nth-order en-
ergy we must know all the wave-function correctio
through thenth order. Following the idea developed by Ku
zelnigg for DPT @3# and recently tested numerically b
Franke @16# we propose an iterative solution of the Dira
equation starting with the nonrelativistic wave function. W
d

e
y
-
r

chooseE (0)5E(0) and cast the exact Dirac solution into th
form

C5w (0)1w1x, ~59!

whereS1w5w, S2x5x, and^w (0),b1w&50.
The following steps, beginning withi 51 through self-

consistency are carried out iteratively:

2S2b2~T2V1c21E ( i 21)!x ( i )

1S2b2~V1c22E ( i 21)!w ( i 21)50, ~60!

E ( i )5E (0)1^w (0),b1~V2c22E ( i 21)!x ( i )&, ~61!

S1b1~T1V1c22E ( i )!w ( i )1S1b1~V2c22E ( i )!x ( i )50.

~62!

To solve Eqs.~60!–~62! we expandw ( i ) in an appropriate
basis of the electron-type functions$F j

1 ; S1F j
15F j

1% j 51
n

and x ( i ) in a basis of the positron-type functions$F j
2 ;

S2F j
25F j

2% j 51
m . The approximate solutions are
8-6
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w ( i )5(
j 51

n

cj
( i )1F j

1 , x ( i )5(
j 51

m

cj
( i )2F j

2 , ~63!

where the coefficientscj
( i ) are determined from the matri

representation of Eqs.~60! and ~62!:

~D222E ( i 21)M22!c( i )21~D212E ( i 21)M21!c( i 21)150,

~64!

~D112E ( i )M11!c( i )11~D122E ( i )M12!c( i )250,
~65!

whereD andM are matrices with the elements

D jk
665^F j 6

6 ,~6T1V6c2!Fk6
6 &, ~66!

D jk
675

1

2c
^F j 6

6 ,~7V1c2!s•pFk7
7 &, ~67!

M jk
665^F j 6

6 ,Fk6
6 &, ~68!

M jk
6757

1

2c
^F j 6

6 ,s•pFk7
7 &. ~69!

Let us note that the recursion procedure@Eqs.~61!, ~64!, and
~65!# can be regarded as the iterative solution of
N-dimensional (N5n1m) eigenvalue problem:

~D2EM !c50. ~70!

We shall show that Eq.~70! can be identified with the
Galerkin-Petrov~GP! approximation@17# to the Dirac equa-
tion.

The idea of the GP method as applied to the opera
equation

~D2E!C50 ~71!

can be formulated as follows. LetFN and GN be two
N-dimensional subspaces of the Hilbert space under con
eration, which are called the coordinate and projective s
spaces, respectively. LetP andQ be the projection operator
ontoFN andGN , respectively. The approximationF to C is
assumed to be an element of the coordinate subspace
PF5F and is determinated by the requirement

Q~D2E!F50. ~72!

Let us choose the basis sets$h i% i 51
N and $f i% i 51

N in FN and
GN , respectively. The approximate eigenfunction can
written

F5(
i 51

N

cif i , ~73!

where the coefficientsci are determined from the matrix rep
resentation of Eq.~72! @Eq. ~70!#, whereD and M are ma-
trices with the elementsDki5^hk ,Df i&, Mki5^hk ,w i&,
andc represents a column matrix of the coefficientsci cor-
responding to the eigenvalueE. Equation~70! represents a
01250
e

r

id-
b-

.e.,

e

set of secular equations which can be considered as a c
terpart of the Ritz variational procedure. The two metho
become identical in the caseFN5GN . Choosing the basis
set$f j% j 51

N of the coordinate subspace as

$F j
1% j 51

n ø$F j
2% j 51

m ,

the projective basis in the form

H F j 1
1

0 J
j 51

n

øH 0

F j 2
2 J

j 51

m

,

and substituting forD the Dirac Hamiltonian, we obtain from
Eq. ~72! the set of secular equations@Eq. ~70!# with the ma-
trices given by Eqs.~66!–~69!.

The diagonal blocks

~D112EM11!c150, ~D222EM22!c250 ~74!

are the standard Ritz matrix representations of the Sc¨-
dinger equation for the nonrelativistic electron and positr
respectively. Treating the rest of the secular equation a
perturbation we can solve Eq.~70! for c and E iteratively or
by a perturbation approach. Alternatively, the nonsymme
eigenvalue problem can be solved directly by the diagon
ization using, for example, the QR procedure@18#.

If the relativity couples states of different nonrelativist
symmetry~for examples2p, p2d, . . . molecular orbitals!
the diagonal blocksD11, M11 or D22, M22 have a qua-
sidiagonal form with diagonal subblocks of different nonre
ativistic symmetries. Similarly, functionalsJ0

(n) @Eqs. ~42!
and ~44!# are decoupled in such a case to the sum of in
pendent terms with trial functions of different nonrelativist
symmetries.

VI. NUMERICAL EXAMPLE AND DISCUSSION

To illustrate the methods described in this paper we c
sider the ground and the first excited states of hydrogen-
atom. If we choose for our upper (w1) and lower (x2)
components the radial basis of the exponential-type functi
of the formr n exp(2z i r ), then we are constrained to choo
the remaining lower and upper components of the radial
sis according to the prescription

1

2c
@~n1k!r n212z i r

n#exp~2z i r !

or

1

2c
@~n2k!r n212z i r

n#exp~2z i r !,

wherek is the angular quantum number. This guarantees
the basis functions are of the ‘‘positive’’ electron form or
the ‘‘negative’’ positron form. The possible values of th
parametern depend on the value of the quantum numberk.
For the considered statesk521 and the most suitable
electron-type basis should contain the basis functions w
n51. If we use the samen for the positron-type basis, the
the upper component behaves near the origin asr 0 and
8-7



ai

.

A. RUTKOWSKI, R. KOZŁOWSKI, AND D. RUTKOWSKA PHYSICAL REVIEW A63 012508
divergent integrals appear in the first term of Eq.~46!. The
same divergent term appears in Eq.~33!. Since all the other
terms in Eqs.~39!–~46! contain only finite integrals, the
variational perturbation method may still be used to obt
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n

approximationsx̃2
(n) and w̃2

(n) . Afterwards theE(2n) may be
calculated from Eq.~40! or from the alternative form of Eq
~39!, obtained by eliminating (V2c22E(0))(x1

(n21)1w1
n )

with the aid of Eq.~34!:
E(2n)52^x1
(n21) ,~T12c2!w1

(n)&1E(n)^x1
(n21) ,w1

(0)&1 (
i 51

n/221

E(2i )^x1
(n21) ,~w1

(n22i )1x1
(n22i 21)!&

2 (
i 51

n/221

E(n22i )^x1
(2i 21) ,~w1

(n)1x1
(n21)!&2 (

i , j 50

n/221

E(2n22i 22 j 22)~^w1
(2i ) ,w1

(2 j 12)&1^w2
(2i ) ,w2

(2 j )&1^x2
(2i 11) ,x2

(2 j 11)&

1^x1
(2i 11) ,x1

(2 j 21)&!, n52,4,6 . . . . ~75!
e
the
ne

to

d-

.2
4

7

6
4
8

.0

pa-
In the present paper this version of the perturbat
method is used and bothw1

( i ) and x2
( i ) are expanded in the

radial basis set withn51,2,3. We would like to emphasiz
the fact that the matrix representation of the Dirac equa
with matrix elements given by Eqs.~66!–~69! remains regu-
lar in this basis.

To exaggerate the relativistic effects, Fm991 has been in-
vestigated. To obtain an approximation toE(2) it is necessary
to consider two contributionsK (1) andJ0

(1) . The first one is
easy to deal with, since it depends solely on the nonrela
istic wave functionC (0):

K (1)5^w2
(0) ,~V1c22E(0)!w2

(0)&

5
1

4c2 ^w1
(0) ,s•p~V1c22E(0)!s•pw1

(0)&. ~76!

This is exactly the formula for the first-order relativistic co
rection resulting from DPT and is equivalent@19# to the stan-
dard sum of three terms: the relativistic mass correction,
Darwin correction and the spin-orbit interaction. If the a
proximationx̃2

(1) to x2
(1) is assumed to be a linear combin

tion of a finite number of linearly independent basis fun
tions, then both the linear and nonlinear parameters can
determined by maximizing the functionalJ0

(1) . The problem
of the maximization of the Hylleraas functional with respe
to linear parameters is completely equivalent to the prob
of solving a system of linear equations. In order to follow t
N convergence of our solutions we have performed calc
tions on the ground state using basis functions withn51.
The results forN54,6,. . . ,14 are collected in Table I. Th
values of the second-order correction to energy calcula
from Eq.~37! are given as well. Due to the singularity of th
exact relativistic wave function at the origin, the optim
values of exponents display a more rapid increase than
geometric progression. It is interesting that in all cases p
sented in Table I, the quotients of the last few exponents
much the same and amount to about. . . 2.6, 3.1, 4.5. Such a
behavior of the exponents is also typical for the third-ord
positron-type basis. The optimization ofJ(3) gives a se-
n

n

v-

e
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quence of quotients:. . . 2.7, 3.2, 4.5. The accuracy of th
relativistic corrections to energy essentially depends on
correct behavior of the wave function near the origin. O
can see from Table I that an 11-figure accuracy ofE(2) is
obtained in a basis set of 14 optimal functions. In order

TABLE I. Calculated relativistic lower bounds to the secon
order energies for the ground state of the hydrogenlike ion Fm991

obtained by maximizing the functionalJ0
(1) . E(2) is the second-

order correction to energy calculated from Eq.~37! with the optimal

trial function x̃ (1). N gives the number of basis functions.

N J0
(1) J(1) E(2)

4 74.7030 2590.9390 2590.9390
6 74.705356 2590.936669 2590.936658
8 74.7053659 2590.9366587 2590.9366522
10 74.705369174 2590.936655438 2590.936655400
12 74.7053692023 2590.9366554102 2590.9366554129
14 74.7053692048 2590.9366554077 2590.9366554057
32a 74.7053692051 2590.9366554075 2590.9366554072
44b 74.7053692052 2590.9366554073 2590.9366554073

optimal a

4 100.804 144.520 513.574 2226.27
6 94.8135 154.467 421.133 1057.31 3204.15 14131
8 94.6014 154.467 411.792 943.204 2290.75 6025.3

18513.8 81865.3
10 99.1876 124.114 171.729 358.592 687.335 1429.6

3237.67 8211.32 24912.1 109872
12 98.2003 134.305 193.986 283.571 472.122 884.97

1753.24 3687.82 8386.01 21314.8 64792.2 28641
14 98.7025 129.887 183.432 286.294 431.105 771.25

1461.40 2889.40 5965.92 12975.6 30311.0 78886
245988 1122208

aEven-tempered basis. Optimal parameters:a574.77283, b
51.3131794.
bEven-tempered basis augmented by 12 ‘‘steep’’ functions with
rametersb:1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.2,2.4,2.6,3.2,4.6.
8-8
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obtain a similar accuracy using the even-tempered basis
need a set of 32 functions. We expect that upon adding
this basis appropriate orbitals with rapidly increasing ex
nents~so-called ‘‘steep’’ functions@20#!, which are neces-
sary to describe approximately the singularities at the orig
a similar accuracy will be achieved also for the higher-or
corrections to energy.

To explore the optimal character of the basis set for
electron-type functions, the exponents have been optim
in the framework of the variational perturbation method
minimizing the functionalJ0

(2)(w̃1
(2)). The results for various

dimensions of the basis set are presented in Table II. One
see that the structure of exponents is the same as that fo
positron-type functions presented in Table I. In order
avoid the linear dependence of the system of linear equat
following from the Hylleraas functional, in the case of th
even-tempered basis, the zeroth-order function for
ground state

w11
(0)52Z3/2r exp~2Zr ! ~77!

was omitted in the even-tempered basis and only the par
eter b has been optimized. It can be seen that the effec

TABLE II. Optimization of exponents in the ‘‘positive’’ elec-
tronic basis for the ground state of the hydrogenlike ion Fm991

obtained by minimizing the functionalJ0
(2) . E(4) is the fourth-order

correction to energy calculated from Eq.~75! with the optimal trial

function w̃1
(2) . The functionx (1) is expanded in the longest bas

set, defined in Table I.

N J0
(2) E(4)

4 2186.62752 2207.8448
6 2186.627938 2207.8840
8 2186.62794171 2207.88569

10 2186.627941920 2207.885886
12 2186.6279419295 2207.8859099
14 2186.6279419304 2207.88591101
31a 2186.6279419293 2207.885900
43b 2186.6279419309 2207.88591126

optimal a

4 128.952 214.897 783.188 3142.22
6 124.435 190.524 490.589 1203.70 3508.49 14061.8
8 122.144 176.906 295.435 648.831 1435.76 3541.65

10302.0 41232.5
10 121.894 172.552 244.179 495.710 933.386 1901.98

4214.95 10405.7 30269.1 121108
12 120.885 152.107 194.665 363.134 686.663 1368.29

2902.49 6577.63 16008.2 42469.7 128870 524825
14 122.042 173.340 235.028 384.483 640.958 1159.27

2133.75 4056.79 8021.90 16800.7 38137.4 96991.9
292469 1211424

aEven-tempered basis. Optimalb51.2975185, 4 exponents smalle
and 27 exponents greater thanZ5100.
bEven-tempered basis augmented by 12 ‘‘steep’’ functions with
rametersb: 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.3, 2.6, 3.0, 4.
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including the ‘‘steep’’ functions is now more pronounce
than for E(2). According to our numerical experiments th
efficiency of ‘‘steep’’ functions increases in higher orders

To gain insight into the convergence characteristics of
perturbative and iterative approaches we show in Table
the pertinent values of the total relativistic energy~without
the rest energy of the electron! calculated at different levels
of approximation. For comparison, we display the expans
of the exact relativistic energy

E5c2@~12Z2/c2!1/221#, ~78!

with respect toc22 ~DPT expansion!. The E RPT
( i ) and E DPT

( i )

values are found to exhibit the systematic relations

E DPT
( i ) ,E RPT

( i ) ,E DPT
( i 21) , i 51,2, . . . . ~79!

The convergence rate is approximately 0.5 implying that o
needs between three and four steps to get one decimal p
of the relativistic energy. For the iterative approach the c
vergence is a little slower. Nevertheless we recommend

-

TABLE III. Ground-state energy of the hydrogenlike ion Fm991

calculated in the basis sets of 44 and 43 functions defined in Ta
I and II. E RPT

( i ) denotes the energy of the regular perturbation
proach,E ( i ) is the energy of the iteration stepi and E DPT

( i ) is the
exact relativistic energy accurate throughO(c22i). Energies are in
atomic units with all signs reversed.

i E RPT
( i ) E ( i ) E DPT

( i )

0 5000 5000 5000
1 5590.936655 5590.936655 5665.642025
2 5798.822567 5774.675783 5842.873747
3 5880.506956 5858.554730 5901.860188
4 5914.171376 5898.250145 5923.847946
5 5928.364264 5918.029356 5932.629532
6 5934.442604 5928.114713 5936.303778
7 5937.081397 5933.344149 5937.893505
8 5938.242299 5936.086046 5938.598964
9 5938.759937 5937.535277 5938.918280

10 5938.993888 5938.305815 5939.065134
11 5939.101036 5938.717348 5939.133560
12 5939.150731 5938.937910 5939.165793
13 5939.174049 5939.056449 5939.181119
14 5939.185106 5939.120298 5939.188464
15 5939.190397 5939.154753 5939.192008
16 5939.192950 5939.173374 5939.193729
17 5939.194190 5939.183450 5939.194570
18 5939.194795 5939.188908 5939.194982
19 5939.195093 5939.191868 5939.195185
20 5939.195240 5939.193474 5939.195285
21 5939.195312 5939.194346 5939.195335
22 5939.195348 5939.194819 5939.195360
23 5939.195366 5939.195077 5939.195372
24 5939.195375 5939.195217 5939.195379
25 5939.195380 5939.195293 5939.195381
` 5939.195384346 5939.1953844 5939.19538436
8-9
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method due to its simplicity in the numerical implemen
tion. At the bottom of Table III we present the infinite ord
results~for the given basis set and machine accuracy! ob-
tained after 38 steps. The next steps do not change the
sented values. One can see that an 11-figure accuracy o
relativistic energy is obtained. Therefore, we can conclu
that all ten decimals given for all the lower order valu
displayed in Table III are correct.

In order to demonstrate the applicability of the method
excited states we have performed perturbation calculat
for the 2s1/2 state, starting from the nonrelativistic wav
function

w21
(0)5S Z

2D (3/2)

r ~22Zr !expS 2
Zr

2 D . ~80!

The initial approximation toE(2) is obtained by expanding
the trial functionx2

(1) in the basis setr n exp(2z i r ) with n
51,2. The nonlinear parametersz i have been optimized in
the same manner as for ground state by maximizing the fu
tional J0

(1) . The most extensive basis set of six eve
tempered functions withn52 and 28 even-tempered func
tions with n51 augmented by 12 ‘‘steep’’ functions give
J0

(1)527.311 337 641 (E(2)52180.701 795 05) correct to a
11 decimal figures.

TABLE IV. Optimization of the ‘‘positive’’ electronic basis for
the state 2s1/2 of the hydrogenlike ion Fm991 by minimizing the
functionalJ02

(2) . E(4) is the fourth-order correction to energy calc

lated from Eq.~75! with the optimal trial functionr̃21
(2) . The func-

tion x (1) is expanded in the even-tempered basis sets of the
(0,6,28) (a510.117 02, 82.088 71; b51.457 109 4, 1.394 676)
augmented by 12 ‘‘steep’’ functions defined in Table I.

N Basis J0
(2) E(4)

4 ~0, 1, 3! 2102.9296 265.999
4 ~1, 1, 2! 2102.9319 266.033
6 ~0, 1, 5! 2102.933309 266.0766
6 ~1, 2, 3! 2102.933323 266.0775
8 ~2, 2, 4! 2102.9333549 266.080606

12 ~2, 4, 6! 2102.933356636 266.0809013
31a ~2, 5, 24! 2102.933356657 266.08090884
43b ~2, 5, 36! 2102.933356657 266.08090933

optimal a

4 51.4751 67.5369 141.062 764.762
4 51.8613 85.8784 193.038 1014.40
6 50.5631 58.0132 105.060 210.798 829.629 3328.7
6 50.9334 74.4359 169.429 212.355 919.897 3709.7
8 51.0092 59.9192 86.7604 138.844 410.250 1055.3

3102.10 12456.7
12 50.8883 60.3937 76.5928 104.729 260.574 403.25

495.956 1207.89 2672.63 6580.23 19117.7 76457

aEven-tempered basis. Optimal parametersa536.54693, 68.0996
310.5406;b51.3833992, 1.3826883, 1.3278534.
bEven-tempered basis augmented by 12 ‘‘steep’’ functions defi
in Table II.
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Because of the orthogonalization of the trial functionw̃21
(2)

to w11
(0) and w21

(0) some attention must be paid to the prop
choice of the electron-type basis. The exploratory compu
tions were performed using basis functions withn51, 2, and
3. The results for different dimensions of the basis set
presented in Table IV. The symbol (n3 , n2 , n1) is used to
denote a basis set comprisingn3 functions with n53, n2
functions with n52, and n1 functions with n51. For N
54 and 6 the numerical results are presented for two ty
of basis sets. One can see from the second part of Tabl
that nonrelativistic functionsw11

(0) and w21
(0) @Eqs. ~77! and

~80!# are almost linearly dependent with the basis
(0,1,5). Such a type of basis set should be discarded bec
of the loss of accuracy. To avoid this problem the basis fu
tions with n53 andn52 have been used in the regiona
550 anda5100, respectively. The optimal exponents of t
1s-type orbitals calculated for the excited 2s1/2 state behave
in a similar way as for the ground state. A similar influen
of the dimension of the basis set on the accuracy of
results is also observed. The convergence characteristic

pe

d

TABLE V. The 2s-state energy of the hydrogenlike ion Fm991

calculated in the basis sets of 46 and 43 functions defined in T
IV. E RPT

( i ) denotes the energy obtained in the framework of the re
lar perturbation approach,E ( i ) is the energy of the iteration stepi
andE DPT

( i ) is the exact relativistic energy accurate throughO(c22i).
Energies are in atomic units with all signs reversed.

i E RPT
( i ) E ( i ) E DPT

( i )

0 1250 1250 1250
1 1430.701795 1424.526724 1458.013133
2 1496.782704 1483.959459 1516.167291
3 1525.384909 1517.514125 1535936966.
4 1538.247533 1532.275408 1543.394031
5 1544.049536 1539.568887 1546.394835
6 1546.643422 1543.556133 1547.656967
7 1547.787776 1545.782309 1548.205150
8 1548.285434 1547.028685 1548.449128
9 1548.498949 1547.730560 1548.559818

10 1548.589553 1548.128201 1548.610820
11 1548.627746 1548.354406 1548.634621
12 1548.643843 1548.483434 1548.645848
13 1548.650687 1548.557176 1548.651191
14 1548.653652 1548.599387 1548.653755
15 1548.654973 1548.623576 1548.654993
16 1548.655584 1548.637451 1548.655594
17 1548.655877 1548.645415 1548.655889
18 1548.656021 1548.659990 1548.656033
19 1548.656095 1548.652618 1548.656104
20 1548.656132 1548.654129 1548.656139
21 1548.656152 1548.655998 1548.656156
22 1548.656162 1548.655497 1548.656165
23 1548.656167 1548.655785 1548.656169
24 1548.656170 1548.655950 1548.656172
25 1548.656171 1548.656046 1548.656173
` 1548.6561725 1548.6561749 1548.6561739
8-10



b

w

en
m
c-
h

y
pe
e-

b
la

ul
a

o
lik

y it
eri-
rm
set
tric

nt
t.
d

he
lish

REGULAR PERTURBATION THEORY . . . : II. . . . PHYSICAL REVIEW A63 012508
perturbative and iterative approaches is illustrated in Ta
V. It can be seen that relations~79! are also fulfilled in this
case, and that the accuracy of the results is only a little lo
than that for the ground state.

We have shown in this paper that accurate relativistic
ergies for one-electron systems can be obtained in the fra
work of the regular perturbation theory of relativistic corre
tions. The main advantage of our perturbation approac
that, irrespective of the type of the basis set used, the H
leraas variational functionals are, by turns, lower or up
bounds to the exactn-order correction to the energy. Ther
fore optimal nonlinear parameters may safely be obtained
using the variational method. Although the present calcu
tions have been performed for the hydrogenlike ion it sho
be noted that the present approach can be applied for
potential.

We hope that our method can be applied to problems
practical interest, e.g., to the description of the hydrogen
01250
le

er

-
e-

is
l-
r

y
-

d
ny

f
e

ion in external field. In the case of the spherical symmetr
is enough to construct an appropriate four-component sph
cal spinor basis set. In the case of the static and unifo
electric field the method for constructing the radial basis
is the same as for a single electron in a spherically symme
potential~see the beginning of this section!. However, owing
to the mixing of angular momenta the spinors with differe
Dirac quantum numberk should be included in the basis se
A little more complicated situation is found for a static an
uniform magnetic field~see Appendix B!.
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APPENDIX A: GENERAL RELATIONS FOR HIGH-ORDER CORRECTIONS TO ENERGY

Let us consider the matrix elements of the operatorV2c22E(0) with functions of orders appropriate for calculatingE(2n)

with evenn. Using Eqs.~34! and ~35! we obtain

^x1
(2k21) ,~V2c22E(0)!~w1

(2m)1x1
(2m21)!&

5^x1
(2k11) ,~V2c22E(0)!~w1

(2m22)1x1
(2m23)!&2(

j 50

m-1

E(2m22 j )~^w1
(2k) ,w1

(2 j )!&1^w2
(2k) ,w2

(2 j 22)&

1^x1
(2k11) ,x1

(2 j 23)&1^x2
(2k11) ,x2

(2 j 21)&)1 (
i 50

k21

E(2k22i )~^w2
(2i ) ,w2

(2m22)&1^x2
(2i 11) ,w2

(2m22)&

1^x2
(2i 21) ,x2

(2m21)&1^w1
(2i ) ,w1

(2m)&1^x1
(2i 21) ,w1

(2m)&1^x1
(2i 21) ,x1

(2m21)&! ~A1!

with

k1m5n. ~A2!

Treating Eq.~A1! as a difference equation

F~m!5F~m21!1S~m21!2S~m!, ~A3!

we can solve it forS(m) to obtain the following invariant:

F~m!1S~m!5^x1
(2k21) ,~V2c22E(0)!~w1

(2m)1x1
(2m21)!&2 (

i 50

k22

E(2k22i 22)^x1
(2i 11) ,~w1

(2m)1x1
(2m21)!&

2 (
i 50

k21

(
j 50

m

E(2n22i 22 j )~^w1
(2i ) ,w1

(2 j )&1^w2
(2i ) ,w2

(2 j 22)&1^x1
(2i 11) ,x1

(2 j 23)&1^x2
(2i 11) ,x2

(2 j 21)&!50.

~A4!

The last equality follows from the comparison ofF(0)1S(0) with Eq. ~37!. Letting nowk5m5n/2 and evaluatingE(2n)

from Eq. ~A4! gives Eq.~39!. Similar considerations starting from
8-11
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^w2
(2k) ,~V1c22E(0)!~w2

(2m22)1x2
(2m21)!&

5^w2
(2k12) ,~V1c22E(0)!~w2

(2m24)1x2
(2m23)!&1(

i 50

k

E(2k22i 12)@^w1
(2i ) ,~w1

(2m22)1x1
(2m23)!&

1^w2
(2i 22) ,~w2

(2m22)1x (2m21)!&1^x1
(2i 21) ,x1

(2m23)&1^x2
(2i 21) ,x2

(2m21)&#2 (
j 50

m22

E(2m22 j 22)~^w1
(2k12) ,w1

(2 j )&

1^w2
(2k12) ,w2

(2 j 22)&1^x1
(2k11) ,x1

(2 j 21)&1^x2
(2k11) ,x2

(2 j 11)&! ~A5!

lead to the following invariant:

^w2
(2k) ,~V1c22E(0)!~w2

(2m22)1x2
(2m21)!&2 (

i 50

k21

E(2k22i )^w2
(2i ) ,x2

(2m21)&1E(0)^w2
(2k) ,w2

(2m22)&

2(
i 50

k

(
j 50

m-1

@E(2n22i 22 j 22)^w2
(2i ) ,w2

(2 j )&1E(2n22i 22 j )~^w1
(2i ) ,w1

(2 j )&1^x1
(2i 21) ,x1

(2 j 21)&1^x2
(2i 21) ,x2

(2 j 11)&!#50,

~A6!

which after settingk5(n21)/2, m5(n11)/2, gives Eq.~40!.
-

o-

-

APPENDIX B: HYDROGENIC ION IN A STATIC
UNIFORM MAGNETIC FIELD

In the magnetic field Eqs.~6! and ~7! should be general
ized to

S15T 21S 2c2 cs•p

cs•p
1

2
s•ps•pD , ~B1!

S25T 21S 1

2
s•ps•p 2cs•p

2cs•p 2c2
D , ~B2!

where

T5
1

2
s•ps•p12c2, p5p1A. ~B3!

The vector potentialA can take the formA5 1
2 B3r where

B5Bẑ. The projectorsS1 andS2 divide the Hilbert space
of the four-component spinors into two subspaces

S1F15F15S w

1

2c
s•pwD , ~B4!

S2F25F25S 2
1

2c
s•px

x
D , ~B5!

S1F25S2F150. ~B6!
01250
Rewriting the term

ca•A5S 0 cs•A

cs•A 0 D , ~B7!

in polar coordinatesr ,q,w ~see, e.g.,@21#!

s•A5
1

2
Bs•~ ẑ3r !5

1

2
Bsw sinq, ~B8!

we obtain the results of the action of the operatorca•A on
the four-component spinor@22#

ca•AS P

QD
k

5
crB

2 F 4km

4k221
S Q

P D
k

2
k2m21

2k21 S Q

P D
2k11

1
k1m11

2k11 S Q

P D
2k21

G , ~B9!

where

S P

QD
k

5Ck
21S P~r !xk,m /r

iQ~r !x2k,m /r D , ~B10!

Ck5 )
q52m

m

~ uku1q!1/2, m5umu2
1

2
, ~B11!

andxk,m is the two-component spherical spinor in polar c
ordinates.

Therefore, the basis functionsF6 @Eqs. ~B4! and ~B5!#,
corresponding to projectorsS6 and the Dirac quantum num
ber k, can be written as
8-12
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Fk
15S P

1

2c S d

dr
1

k

r
1

2Bkmr

4k221
D PD

k

1
rB

4c F2
k2m21

2k21 S 0

PD
2k11

1
k1m11

2k11 S 0

PD
2k21

G , ~B12!

Fk
25S 1

2c S d

dr
2

k

r
2

2Bkmr

4k221
D Q

Q
D

k

1
rB

4c Fk2m21

2k21 S Q

0 D
2k11

2
k1m11

2k11 S Q

0 D
2k21

G . ~B13!
el

po

for
c-
In this basis set we can calculate all necessary matrix
ments. Let us consider, for example, the element^x,Tx&
5^x, 1

2 s•ps•px&5 1
2 ^s•px,s•px&. According to Eq.

~B5! we have to deal with scalar products of upper com
e

ys

.

01250
e-

-

nents of the basis functionsFk
2 @Eq. ~B13!#. Therefore, the

radial integrals involved are exactly of the same type as
the spherically symmetric potential. A similar situation o
curs for other matrix elements.
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