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Nature of the repulsive Coulomb barrier in multiply charged negative ions
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The repulsive Coulomb barrier~RCB! for electron emission is a general property of multiply charged anions.
When an electron is emitted from a multiply charged anion, the electron experiences short-range attraction by
the nuclei and long-range repulsion from the remaining negatively charged system, giving rise to the RCB.
Although the RCB is dominated by the electrostatic forces present, it is argued that the exact potential the
electron experiences is nonlocal and energy dependent. The theory of the RCB is outlined and related to the
theory of Green’s functions. Since it is complicated to compute a nonlocal and energy-dependent potential,
approximation schemes are introduced that allow convenient calculation of local energy-independent RCB
potentials. Three approximation schemes of complementary nature are proposed. The physical meaning of
these schemes, the underlying approximations, and their possible weaknesses are discussed in detail. The local
approximation schemes are used to calculate the RCB of atomic dianions F22 and O22 and of the linear carbon
cluster dianions Cn

22 (n52,4,6,8). The atomic dianions serve as convenient objects to study the basis-set
dependence of the local approximation schemes. The computed local potentials of the carbon dianions are used
to calculate their lifetimes in the framework of Wentzel-Kramer-Brillouin theory. We found that the lifetime of
the linear carbon dianions grows markedly when going from C2

22 to C8
22, and that the latter should be the

only species observable in a mass spectrometer. This agrees with the available experimental findings.
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I. INTRODUCTION

When an electron is detached from a neutral atom or m
ecule a positively charged ion is formed, and thus the in
action between the outgoing electron and the residual ca
is attractive due to their strong Coulomb attraction. Deta
ment of a singly charged anion results in an electron an
residual neutral system, whose long-range interactions
usually weak but also mainly attractive in nature. The sit
tion is different for detachment of multiply charged anion
When an electron is detached from a multiply charged an
the residual system is still negatively charged and, theref
the long-range interaction between the outgoing electron
this system is dominated by electrostatic repulsion. Comb
ing this long-range electrostatic repulsion with the sho
range binding energy of the electron, a repulsive Coulo
barrier~RCB! emerges which has to be passed by the out
ing electron during its detachment process.

The existence of a repulsive barrier can also be ratio
ized from the different point of view of electron scatterin
from a negatively charged target, a point of view that w
play a role in the present work. Being spatially far away fro
the target, the projectile electron experiences only the t
charge of the target, which is negative. Since the long-ra
interaction is mainly electrostatic repulsion, the potential
ergy increases as the electron approaches the target. Fr
certain distance on, the electrostatic attraction between
nuclei of the target and the scattered electron overcomes
repulsion, and the potential energy of the system decrea
Combining the long-range repulsion and short-range att
tion, the scattering potential that the electron experiences
repulsive Coulomb barrier.

Repulsive Coulomb barriers play a role in other proces
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as well, for instance, ina decay of nuclei~see, for example,
@1#!. An a particle that departs from a radioactive nucle
experiences a potential barrier analogous to that descr
above, although the energy scales and lengths are ent
different. The short-range binding of thea particle is due to
the strong interaction and at large distances the electros
repulsion between the residual nucleus and thea particle
dominates.

Multiply charged anions are well known in solids an
solutions. The question whether small multiply charged
ions exist as free entities, i.e., in the gas phase, and w
electronic and structural properties they may exhibit has
tracted attention for a long time. New experimental tec
niques and theoretical considerations have made the dis
ery of various kinds of free multiply charged anions possi
and created an attractive and active field of research@2–11#

In the context of multiply charged anions, the RCB a
peared in the literature for the first time when Compton a
others examined multiply charged fullerene anio
@12,13,3,14,15#. Although the theoretically predicted value
for the electron affinity of C60

2 have negative values@14–
17#, i.e., C60

2 cannot bind a second electron, C60
22 has been

found to be a long-lived gas-phase dianion with a lifetim
longer than 1023 s @18–20#. This inconsistency between ex
periment and theory could be qualitatively explained by
existence of the repulsive Coulomb barrier, which the out
ing electron has to pass during its emission. In the case o
fullerene dianion the energy of the electron lies above
threshold for detachment but far below the top of the RC
thus detachment of this electron embodies an unlikely t
neling process. The fullerene C60

22 is therefore a metastabl
long-lived dianion.

Recently, very important and fundamental progress in
experimental examination of multiply charged anions w
made by Wang, Ding, and Wang, who managed to meas
the first photoelectron spectra~PES! of multiply charged an-
©2000 The American Physical Society01-1
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ions. They used the electrospray ionization technique to g
erate the free anions, and after mass selection the neg
ions were intercepted by a laser beam, and the kinetic en
of the photodetached electron was measured with
magnetic-bottle photoelectron analyzer@21#. Using this new
technique, they investigated, for example, dicarboxylate
anions 2OOC—~CH2!nuCOO2 (n52 – 6) @22–24#,
ML6

22 dianions~M5Re, Os, Ir, Pt;L5Cl, Br! @25#, and the
tetra-anion of copper pthalocyanine tetrasulfonate@26,27#.
When examining the PES of the copper pthalocyanine te
sulfonate tetra-anion, Wanget al. observed a negative bind
ing energy of the excess electrons, i.e., they measured
todetached electrons with higher kinetic energy than
energy of the laser beam. This observation is a direct exp
mental proof of the existence of the RCB, since the exc
electrons of the tetra-anion are unbound but metastable
respect to emission. Their emission is hindered by the re
sive Coulomb barrier. A similar observation of a negati
binding energy may of course also be possible when the
of the above described fullerene dianion is measured.

From a theoretical point of view, the appearance of
RCB is clearly dominated by the electrostatic interaction
tween the outgoing electron and the residual anion. Ne
theless, the exact RCB is, in analogy to scattering potent
a nonlocal energy-dependent potential, and, for this rea
neither straightforward to compute nor depictable in natu
The aim of this work is to illuminate the nature of the repu
sive Coulomb barrier of multiply charged anions, to discu
its general appearance, and to introduceab initio calculation
schemes, which allow computation of local approximatio
of the exact RCB.

This paper is organized as follows. In Sec. II we outli
the theory of the RCB, where we first consider the inter
tion energy between a point charge and a charged m
sphere to illustrate the qualitative arguments made above
the existence of the RCB. Then we present an exact the
for the RCB, which is based on the Green’s-function form
ism. In the subsequent subsections we introduce local
proximation schemes with the help of which one c
straightforwardly compute energy-independent local R
potentials. A theoretical analysis of these potentials is gi
in terms of multichannel scattering of distinguishable p
ticles. These local approximation schemes are used in
III to calculate the repulsive Coulomb barrier of atomic a
molecular dianions. We focus here on the atomic dianion
fluorine and oxygen as well as on the molecular dianions
the linear carbon clusters Cn

22 (n52,4,6,8). Furthermore
we make use of the computedab initio RCB potentials to
estimate the lifetimes of the metastable species.

II. THEORY OF THE REPULSIVE COULOMB BARRIER
POTENTIAL

A. Preliminary considerations

In the Introduction we rationalized the existence of t
RCB by considering the electrostatic forces that an elec
experiences when it is emitted from a multiply charged an
or, equivalently, scattered from an anion. These forces
long-range repulsion and short-range attraction, combin
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to the repulsive Coulomb barrier. To corroborate the
simple qualitative arguments and to get an idea of the hei
width, and shape of the RCB we first examine the interact
energy between a negative point charge and anN-fold nega-
tively charged sphere, the center of which isZ-fold posi-
tively charged (N.Z). This primitive model system roughly
reflects the electrostatic characteristics of the electron-an
system described above, especially when the target anio
atomic.

The interaction potential between a negative point cha
and this model sphere is given by

V~r !52
Z

r
1E r~r 8!

ur 2r 8u
d3r 8, ~1!

where the first term describes the electrostatic attraction
tween the point charge and theZ-fold positively charged
nucleus of the sphere, while the second is the interac
energy between the point charge and the exact charge d
bution of theN negative charges of the sphere. Obvious
V(r ) depends on the choice of the charge distribution, a
there are several possibilities to model a distribution,
here we concentrate on the following two.

The first model is a ‘‘hard’’ sphere in which theN nega-
tive charges are homogeneously distributed over the volu
of a sphere with radiusR. Its charge distributionrh(r ) reads

rh~r !5
3N

4pR3 Q~R2r !, ~2a!

whereQ(R2r ) is the well-known step function.
A second and more realistic model for the charge dis

bution is a ‘‘soft’’ sphere, where the charge distribution d
creases exponentially. This charge distributionrs(r ) is given
by

rs~r !5
N

8pa3 expS 2
r

a D . ~2b!

Here, a represents a strength parameter of the exponen
decrease of the charge. Substituting these two equations~2a!
and~2b! into Eq. ~1! and solving the integration, one readi
obtains the potentials experienced by the point charge in b
model cases. They are

Vh~r !5H N2Z

r
, r>R

2
Z

r
2

N

2R S r

RD 2

1
3N

2R
, r<R

~3a!

for the hard-sphere case and

Vs~r !5
N2Z

r
2N expS 2

r

a D H 1

r
1

1

2aJ ~3b!

for the soft-sphere case.
To plot these analytical potentials we have chosenZ58

andN59, which are the nuclear charge and electron num
of an oxygen anion. The potentials that we obtain are th
1-2
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NATURE OF THE REPULSIVE COULOMB BARRIER IN . . . PHYSICAL REVIEW A63 012501
approximate pictures of the RCB for detaching an elect
from an atomic oxygen dianion. Furthermore, we have ta
R as the experimental value of the radius of O22, which is
known from crystallography to be 140 pm, i.e., 2.65 a
~atomic units!. Introducing this radiusR into the hard-sphere
model and adjusting the strength parameter of the soft-sp
model,a, such that the maxima of both potentials are at
same position, one obtains the potentials shown in Fig
The model potentialsVh(r ) and Vs(r ) are plotted togethe
with the local staticab initio RCB of O22, which will be
introduced later and discussed in detail in Secs. II C a
III A.

While the positions of the maxima of the model potenti
and of theab initio static potential are in good agreemen
the barrier heights are markedly different. It is clear that
barrier of the hard-sphere model must be higher than
barrier of the soft-sphere model, since the negative cha
are strongly localized around the nucleus in the case of
hard sphere. Thus, the attraction of the nucleus is shie
more strongly by the negative charges of the hard sph
than by the soft sphere. The barrier height of the staticab
initio potential is even smaller than that of the soft-sph
model due to the great diffuseness of the charge distribu
of the oxygen anion.

Summarizing our short preliminary considerations,
have obtained analytical expressions for the interaction
ergy of a negative point charge with a charged sphere. Th
potentials are only simple approximations of the RCB
multiply charged anions, but give us an idea of the hei
and width that we have to expect when we investigate
RCB usingab initio approaches.

B. The exact potential

Green’s functions~GF’s! provide powerful tools to inves
tigate properties of many- and several-body systems@28–

FIG. 1. Analytical RCB potentials of the hard- and soft-sphe
models for O22 are shown together with theab initio local static
RCB potential of O22 ~obtained with the local static approach at t
level of the coupled-cluster singles plus doubles method; see
III !. The zero point of the energy scale corresponds to the energ
the free monoanion O2.
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30#. Numerous successful applications have been perform
for solids@31,32#, nuclei @33,34#, and atoms, molecules, an
clusters@35–39#. In connection with scattering theory, a pa
ticularly useful result has been obtained for the one-part
Green’s function, which is the simplest in the hierarchy
the Green’s functions. The kernel of this function~see be-
low! is an exactone-particle potential for a scattering ele
tron @40#. As we have argued in the Introduction, the RC
can also be seen as the potential that an electron experie
when it is scattered from a negatively charged target. For
reason, we can use the one-particle Green’s function
evaluate the RCB.

The Green’s functions are defined as theN-electron
ground-state expectation values of a time-ordered produc
creation and annihilation operators. The one-particle GF
describes an elastic scattering process reads

Gab~ t,t8![2 i ^C0
NuT$ba~ t !bb

†~ t8!%uC0
N&, ~4!

whereC0
N is the exactN-electron ground state of the targe

ba(t) andbb
†(t8) denote annihilation and creation operato

for projectiles in projectile stateswa and wb , respectively,
andT represents Wick’s time-ordering operator@28,29#. This
one-particle GF is subject to the well-known Dyson equ
tion, which after Fourier transformation from time into e
ergy space reads in matrix notation

G~E!5G~0!~E!1G~0!~E!S~E!G~E!. ~5!

Here, G(0)(E) is the GF calculated with the unperturbe
Hamiltonian, i.e., the Hamiltonian without particle-target i
teraction. E is the energy of the scattering system. T
Dyson equation~5! relates the GF’s for inelastic scatterin
G(E) to the free GF’s via its kernelS(E), which is called
the self-energy. The Dyson equation can be formally solv
exactly by inversion, giving

G~E!5@E12e2S~E!#21. ~6!

The unit matrix1, the diagonal matrix of projectile energie
e, andS(E) are matrices in projectile space.

The self-energy represents an effective, in general co
plex, energy-dependent one-particle potential caused by
relation effects@40#. If we neglect these correlation effect
the self-energy reduces to the well-known static-excha
potential @41# evaluated with respect to the Hartree-Fo
~HF! potential. The self-energy consists of a static partS~`!
not depending onE and a dynamic part depending onE @38#:

S~E!5S~`!1M ~E!. ~7!

The static part has a simple interpretation. In spatial rep
sentation it can be written as

S~r ,r 8,`!5W1d~r 2r 8!E r~rW,rW !

ur 2rWu
drW2

r~r ,r 8!

ur 2r 8u
, ~8!

wherer is the exact one-particle density of the ground st
of the target~here, of the anion! and W is the interaction
potential of the projectile with the nuclei. The static part c
thus be seen as the static-exchange interaction of the inc

c.
of
1-3
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A. DREUW AND L. S. CEDERBAUM PHYSICAL REVIEW A63 012501
ing electron with thecorrelated target. An analysis of the
physical origin of the dynamic part of the self-energy h
been given in Ref.@42#. The self-energyS(E) represents the
exact potential experienced by a projectile, e.g., an elect
when it is elastically scattered from a target, e.g., an an
All inelastic scattering channels are contained in the ela
S(E) by losses of the elastic scattering cross section@43#. In
the case of anionic targets we can obviously identify
self-energy with the repulsive Coulomb barrier. Applicatio
of the self-energy to scattering of electrons by neutral m
ecules can be found in Refs.@44–46#.

In conclusion, there exists an exact theory for the R
based on the one-particle Green’s functions. Unfortunat
the exact self-energy, i.e., an exact RCB, is not straight
ward to compute. Furthermore,S(E) is energy dependent
nonlocal, and probably complex, and, for these reasons,
easily depictable. Calculations ofS(E) are, of course, desir
able, but out of range at the moment. Since we want to ill
trate here the nature of the RCB and make systematicab
initio calculations, we have to introduce some approxim
tions to circumvent the energy dependence and the nonl
character of the RCB.

C. Local approximations of the RCB potentials

In this section we discuss three local approximat
schemes with the help of which one can easily compute
proximateab initio RCB potentials. Two of these schem
have been introduced very recently and applied to comp
the RCB of the dianion BeC4

22 @47#. See also an applicatio
of the second scheme to the metastable PtCl4

22 dianion in
@11#. All three schemes possess the great advantage of y
ing local potentials that are depictable. These local poten
will help us to get a better understanding of the nature of
repulsive Coulomb barrier.

In the first approach, the RCB is calculated directly
using the Hartree-Fock ground-state wave function of
dianion. Let the dianion haveN11 electrons. We use th
molecular orbitals of the dianion and take out one elect
from the highest occupied orbital, the orbital from which t
electron is emitted. Then we calculate the electrostatic po
tial by summing up the nucleus-electron attraction a
electron-electron repulsion via

VDFOSA~r !52 (
a51

K
Za

ur 2Rau
1(

i 51

N E f i* f i

ur 2r i u
dt. ~9!

In this equation the first term of the right-hand side descri
the electrostatic attraction betweenK nuclei and the outgoing
electron while the second term corresponds to the elec
static repulsion between the outgoing electron and theN re-
maining electrons in the molecular orbitals of the dianio
Using this approach, we make several approximations.
circumvent the energy dependence of the exact RCB by
mally setting the energy of the outgoing electron to the ne
tive of the electron detachment energy. Furthermore, we
glect the exchange interaction between the outgoing elec
and those of the residual anion. Since we use the molec
orbitals of the dianion, which do not interfer with the emitte
01250
s

n,
n.
ic

e

l-

y,
r-

ot

-

-
al

p-

te

ld-
ls
e

e

n

n-
d

s

o-

.
e
r-
-

e-
on
lar

electron, we call this method of calculating the RCB t
dianion-frozen-orbital static approach~DFOSA!. This ap-
proach is closely related to the static approximation with
exchange and polarization, which is widely used in scatter
theory. Strictly speaking, if we used in Eq.~9! the optimized
orbitals of the monoanion instead of those of the dianion,
would exactly make such a static calculation for the scat
ing of an electron from the corresponding monoanion.

A second possibility for calculating the RCB in a straigh
forward and natural way is to compute the total energy of
monoanion in the presence of a negative point charge, wh
may represent the outgoing electron. If the negative po
charge is placed at varying distancesr from the monoanion,
one readily obtains a complete potential-energy surfa
which reflects the repulsive Coulomb barrier. The RCB
then given by the simple equation

VPCM~r !5E0~r !2E0 . ~10!

Here,E0(r ) corresponds to the total energy of the monoa
ion in the presence of the negative point charge at the
tancer, while E0 is the total energy of the free monoanio
i.e., in the absence of the negative point charge. Using
approach to calculate the RCB, one takes account of elec
relaxation and can easily applyab initio methods beyond
Hartree-Fock. It is, for example, possible to use the coupl
cluster singles plus doubles~CCSD! method, which makes
correlation between theN electrons of the monoanion acce
sible. Furthermore, the exchange energy between thesN
electrons is also taken into account. On these grounds,
clear that theN-electron system is described correctly by t
point-charge model~PCM! at large distances between th
point charge and the monoanion. The PCM reveals the
rect shape of the RCB far away from the monoanion.
short distances this method, of course, possesses weakn
~see also Sec. III A!. For example, the monoanion is allowe
to polarize statically when the electron approaches. If thi
appropriate at all, it is only when the detaching electr
moves very fast, which may not necessarily be correct. Th
the quality of the RCB obtained can be poor at shorter d
tances.

Comparing the DFOSA method and the PCM, the lat
reveals the correct shape of the RCB at large distances
tween the residual anion and the outgoing electron, beca
the anion is described correctly for this situation. T
DFOSA yields a more reliable RCB in the inner regio
when the detaching electron is close to the anion, since
orbitals of the dianion are used within the DFOSA approa
The two methods seem to complement one another to gi
complete picture of the repulsive Coulomb barrier.

The third approach to the RCB consists of computing
local contribution of the static self-energy directly. Neglec
ing in Eqs.~7! and~8! the dynamic part and the exchange
the electron with the target anion, one obtains thelocal static
potential

VLSA~r !52 (
a51

K
Za

ur 2Rau
1E r~rW,rW !

ur 2rWu
drW. ~11!
1-4
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NATURE OF THE REPULSIVE COULOMB BARRIER IN . . . PHYSICAL REVIEW A63 012501
The one-particle densityr of the anion can be computed wit
any ab initio method~see also Sec. II D 2!. The response o
the target’s density to the projectile electron included in
PCM is, of course, absent inVLSA(r ). However, it will be
shown below that the latter potential has advantages in th
does not suffer from some basic weaknesses of the o
schemes.

Finally, we would like to mention that in all three loca
approaches discussed above the exchange interaction
tween the electron and the anion can, in principle, be ta
into account by using local approximations like those used
density-functional theories. To be specific we have refrain
from applying these approximations in the present work.

D. Analysis of the point-charge potential

In the following subsections, we analyze in detail t
PCM discussed in the preceding subsection and outline
relation to multichannel Green’s-function theory to obta
insight into the physical meaning of this attractive approa
Contact will be made with the local static potential. It will b
shown how the latter can be computed withab initio or other
methods that do not provide the one-particle densityr.

1. The point-charge matrix and point-charge potential

Within a local theory it is assumed that when an elect
is emitted by a multiply charged anion, say a dianion,
Hamilton operator for the outgoing electron reads

H5h~r !1V~r !, ~12!

whereh(r ) represents the kinetic energy of the electron, a
V(r ) is the potential that the electron experiences, wh
corresponds to the repulsive Coulomb barrier. In the po
charge model the RCB is calculated via the equation

VPCM~r !5E0~r !2E0

~see Sec. II C!, where E0(r ) denotes the energy of th
monoanion in the presence of the point charge, whileE0
corresponds to the energy of the free monoanion. Multip
ing by the ground-state wave functionuC0 ;r & of the
monoanion in the presence of the point charge atr from the
right gives

VPCM~r !uC0 ;r &5@E0~r !2E0#uC0 ;r &. ~13!
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SinceuC0 ;r & obeys the Schro¨dinger equation

@HT1vele~r !1vK~r !#uC0 ;r &5E0~r !uC0 ;r &, ~14!

whereHT is the Hamiltonian of the target anion, one can u
this equation to eliminateE0(r ) in Eq. ~13!, which now takes
on the following appearance:

VPCM~r !uC0 ;r &5@HT1vele~r !1vK~r !2E0#uC0 ;r &.
~15!

Here,vele(r ) and vK(r ) are the electrostatic interaction en
ergies between the point charge at positionr and theN elec-
trons andK nuclei of the monoanion, respectively. They re

vele~r !5(
i 51

N
1

ur i2r u
, vK~r !52 (

a51

K
Za

uRa2r u
. ~16!

ExpandinguC0 ;r & in the states$F j% of the free monoanion,
i.e., in the eigenstates ofHT ,

uC0 ;r &5(
j

cj 0uF j&, ~17!

and inserting into Eq.~15!, we get

VPCM~r !(
j

cj 0uF j&

5@HT1uele~r !1vK~r !2E0#(
j

cj 0uF j&.

~18!

By multiplying by ^F i u from the left and integrating over th
target electrons, we obtain the matrix eigenvalue equatio

~P2VPCM1!c50 ~19!

for the eigenvaluesVPCM(r ). Obviously, there is a point-
charge potential associated with each of the target electr
states. In Eq.~19! 1 represents the unit matrix,c is the matrix
of expansion coefficients, and the matrix elements ofP are
defined by

Pi j ~r !5^F i uHT1vele~r !1vK~r !2E0uF j&. ~20!

The matrixP, which we refer to as the point-charge matrix
the following, takes on the following appearance:
P5S A00 A01 A02 ¯ A0M ¯

A10 A111~E12E0! A12

A20 A21 A221~E22E0!

] �

AM0 AMM1~EM2E0!

] �

D . ~21!
1-5
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The point-charge matrixP can be split into two matrices,

P5A1E. ~22!

E is a diagonal matrix with the elementsEi2E0 along the
diagonal, whereEi is the i th energy of the free anion. Th
matrix elementsAi j (r ) of the matrixA are defined as

Ai j ~r !5^F i uvele~r !1vK~r !uF j&. ~23!

The diagonal elementsAii (r ) are the so-called local stati
potentials. Aii (r ) is the interaction energy between a po
charge and the exact charge density of the monoanion in
state F i . In particular, A00(r ) is identical with the local
static potential introduced in the preceding subsection@see
also Eq. ~8!#: VLSA(r )5A00(r ). These potentials corre
spond to the exact static potentials for scattering an elec
from the monoanion, including the exchange and correla
of all electrons of the monoanion but without the exchan
between the scattered electron and the target electrons.

When diagonalizing the point-charge matrixP, we obtain
the eigenvaluesVPCM(r ), which are the result of the point
charge model calculation, one RCB for each state of
monoanion. These potentials take account of the respons
the monoanion on the presence of the point charge, i.e.
monoanion is allowed to polarize. The matrixP connects the
static potentials to the point-charge model potentials.

2. The point-charge matrix and static potential

Evaluation of the static potentials is straightforward wh
the one-particle density of the target anion is known. Ho
ever, this density is not explicitly available in some compu
codes forab initio methods beyond Hartree-Fock. One c
easily circumvent this difficulty by a tricky modification o
the point-charge model. When we do not use a full po
charge in the PCM calculation but an infinitesimal po
chargeh, no response of the monoanion is expected. T
interaction potentialVh(r ) between the infinitesimal poin
charge and the monoanion then reads

Vh~r !5hF(
i 51

N
1

ur i2r u
2 (

a51

K
Za

uRa2r uG . ~24!

Thus, the point-charge matrixP takes on the following ap-
pearance@see Eq.~20!#:

Ph5S hA00 hA01 hA02 ¯

sA10 hA111~E12E0! hA12

hA20 hA21 hA221~E22E0!

] �

D .

~25!

Its eigenvalues can be evaluated using perturbation the
and the first eigenvalue, for example, is given by

VPCM
h ~r !5hA00~r !1h2(

n

M
A0n~r !An0~r !

~En2E0!
1O~h3!.

~26!
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Dividing by h, the equation reads in the limit ofh→0

lim
h→0

1

h
VPCM

h ~r !5A00~r !. ~27!

The local static potentialA00(r ), which describes the inter
action between a full point charge at positionr and the free
monoanion in its ground state, can be calculated by perfo
ing a PCM calculation using an infinitesimal point charg
For brevity, we call this tricky modification of the poin
charge model the local static approach~LSA! in the follow-
ing. This approach is of general applicability, since eve
electronic state of the target can be used in the calculatio
generate the local static potential for the corresponding st
The infinitesimal point charge can be negative as well
positive, and everyab initio method that yields a total energ
can be applied.

3. Relation to multichannel scattering Green’s-function theory

In Sec. II B the one-particle Green’s function for elas
scattering was introduced and an exact theory for the re
sive Coulomb barrier outlined. Since we use a point cha
in the PCM to approximate the outgoing or, equivalently, t
scattered electron, this ‘‘electron’’ is distinguishable fro
the electrons of the target. To analyze the PCM in terms
Green’s functions, we have to compare the point-cha
model with the Green’s-function theory for scattering
nonelectronic particles from electronic targets@43#, i.e., the
scattered particle is distinguishable from the electrons of
target.

As usual, the total Hamiltonian for a scattering proce
reads

H5HT1h1HTP , ~28!

whereHT is the target~free monoanion! Hamiltonian,h rep-
resents the projectile Hamiltonian, and the interaction
tween projectile and target electrons is

HTP5vele~r !1vK~r ! ~29!

@see Eq.~16!#. Using this total Hamiltonian and the inelast
one-particle GF, it has been shown in Ref.@43# that a gen-
eralized Dyson equation can be obtained, which reads in
trix notation

G~E!5G~0!~E!1G~0!~E!AG~E!. ~30!

This generalized Dyson equation relates the inelastic G
G(E) to the free GF’sG(0)(E) via a supermatrixA, which is
given by

Ai j ~r !5^F i u2 (
a51

K
Za

uRa2r u
1(

i 51

N
1

ur i2r u
uF j&. ~31!

The scattering amplitudesf jk(r ), which fully describe the
inelastic scattering processFk→F j , are given by the fol-
lowing set of equations:
1-6
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(
j

$@E2h2~Ei2E0!#d i j 2Ai j % f jk~r !50, ~32!

whereE is the total energy of the projectile-plus-target sy
tem. In analogy to Eq.~19!, this set of equations can b
written as a matrix vector multiplication and takes on t
following appearance:

~R21E!F50, ~33!

where1 is the unit matrix,F is the matrix of scattering am
plitudes, and the elements of the matrixR are defined as

Ri j ~r !5Ai j ~r !1@h1~Ei2E0!#d i j . ~34!

Equation~33! is an exact equation, i.e., its solutions are ex
scattering amplitudes, which give exact elastic and inela
scattering cross sections. Comparing the matrixR with the
point-charge matrixP of Eq. ~19!, we easily see that thes
matrices are identical apart fromh, which appears only in
R. h represents the Hamiltonian of the projectile partic
and, loosely speaking, corresponds to its kinetic energy.
ting h fomally equal to 0, i.e., neglecting the kinetic ener
of the scattered electron, the matrixR is equal to the point-
charge matrixP. We have thus shown that the PCM repr
sents the adiabatic approximation of the exact theory
scattering a distinguishable particle from an electronic tar
In reverse, the PCM can be used to calculate the eigenva
and eigenstates of the exact multichannel matrix in the a
batic approximation. Subsequently, the Hamiltonianh of the
free particle can be added and a multichannel scattering
culation beyond the adiabatic approximation can be p
formed.

III. CALCULATION OF THE REPULSIVE COULOMB
BARRIER POTENTIALS

In this section we present our results obtained fromab
initio calculations on the repulsive Coulomb barrier of m
tiply charged anions. Here, we want to make first estima
of the barrier potentials in the framework of the local a
proximations introduced in the previous sections, althou
we know that the exact barrier potentials are nonlocal
energy dependent. As we have shown above, the exac
tentials can be obtained with Green’s-function methods,
these are, unfortunately, so far not straightforward to co
pute. For this reason, we use the DFOSA, the PCM, and
LSA introduced in Sec. II C and analyzed in Sec. II D
calculate the RCB’s of various dianions.

Results on the atomic dianions F22 and O22 and on the
linear series of the carbon cluster dianions Cn

22 (n
52,4,6,8) are shown. In Sec. III A we study the atomic
anions, discuss the basis-set dependence of the local app
mation schemes, and outline their possible weaknesses.
tion III B deals with the examination of the molecular Cn

22

dianions. There, we use the local RCB potentials to calcu
detachment lifetimes for the carbon dianions in the fram
work of WKB theory.
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A. Atomic dianions and the induced electron detachment
by the point charge

As a first step we have studied the RCB of the atom
dianions F22 and O22 with special emphasis on the basis-s
dependence of the local approximation schemes. We h
chosen atomic dianions merely as practical objects. The
culation times are short, and highly diffuse basis sets
easily employed.

We have computed the repulsive Coulomb barrier of
F22 and O22 dianions with the help of the DFOSA method
the level of restricted open-shell Hartree-Fock~ROHF! and
restricted Hartree-Fock~RHF! approximations, respectively
The PCM and LSA calculations were performed using
coupled-cluster singles plus doubles method@48#. The basis-
set dependence of the RCB of the dianions was checke
starting with the standard double-zeta plus polarizat
~DZP! basis set comprising Dunning’s@49# contractions of
Huzinaga’s primitive sets@50#, which were gradually aug-
mented with one (DZP1sp), two (DZP12s2p) and three
(DZP13s3p) sets of diffuses- and p-type functions. The
initial exponents for the diffuses- and p-type functions for
fluorine were 0.085 and 0.074, respectively, and 0.068
0.045 for oxygen. The second and third sets of diffuse fu
tions where added in accord with the even scaling rule@51#.
The use of basis sets of triple-zeta quality is not necess
since their effect on the RCB is negligible.

The local static RCB potentials obtained using the lo
static approach as described in Sec. II C are displayed in
2. To plot the actually three-dimensional spherically sy
metric potentials in one dimension, one has to respect
angular momentum of the outgoing electron. Since the o
going electron from the O22 dianion is ap electron, one has
to add the angular momentum barrier to the RCB potentia
obtain the correct one-dimensional RCB plot. For the flu
rine dianion there exists no angular momentum barrier,

FIG. 2. Basis-set study of the local static RCB potentials of F22

~upper part! and O22 ~lower part! obtained with the LSA. Both
RCB potentials are essentially converged as a function of basis
when the DZP1sp basis set is used. The energy of the fr
monoanion is set to zero. Note that the angular momentum ba
has been added to the O22 potentials~see text!.
1-7
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A. DREUW AND L. S. CEDERBAUM PHYSICAL REVIEW A63 012501
the outgoing electron is ans electron.
One can see in Fig. 2 that the static potentials for F22 and

O22 have already essentially converged as a function of b
set when the DZP1sp basis set is used. From a theoretic
point of view, the local static RCB potential has to be bas
set independent once the target anion is properly descri
because the static RCB depends only on the charge dist
tion of the target anion@see Eq.~11! in Sec. II C!. Obviously,
this is already the case for these atomic dianions when
DZP1sp basis set is used.

In Fig. 3 the RCB potentials for F22 and O22 are dis-
played as calculated with the point-charge model. T
RCB’s of both atomic dianions decrease with increasing
fuseness of the basis sets and seem to disappear in the
of an infinite basis set. In the PCM a negative point charg
brought up to the target anion, and for this reason the he
and width of the RCB are determined by the ability of t
system to react to the presence of the point charge. Whe
electron approaches an anion, the target anion polarizes a
weakly bound anion may also be ionized. Due to the stro
electrostatic repulsion between the point charge and the e
electron of the anionic target, electron detachment of
anionic target electron isalwaysinduced within a PCM cal-
culation below some positionr of the point charge. This is
of course, physically not correct and is the major weakn
of the point-charge model.

To make this induced electron detachment by the po
charge clearer, we consider the PCM calculation for O2 as
the target. O2 possesses a bound2P3/2 ground state tha
has an electron detachment energy~EDE! of 1.461 eV@52#.
When a point charge approaches the O2 ground state, the
state becomes unbound due to the electrostatic repulsion
tween the excess electron of the anionic target and the p
charge. This happens when the Coulomb repulsion is la
than the binding energy of the electron. For the oxygen an
this is the case when the distance between anion and p
charge is smaller than about 10 Å, according tor

FIG. 3. Basis-set study of the RCB potentials of F22 ~upper part!
and O22 ~lower part! obtained with the PCM. The RCB graduall
decreases with increasing diffuseness of the basis set within
PCM calculations, i.e., the PCM is strongly basis-set dependen
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<14.395/~EDE!, where r is given in Å and EDE in eV.
Clearly, we detach the excess electron of O2 by approaching
it with the point charge. The detachment of O2 can be ‘‘ob-
served’’ during a PCM calculation at the Hartree-Fock lev
in the orbital energy of the anionic electron. When the po
charge is farther away than 10 Å, the orbital energy is ne
tive, i.e., the electron is bound, and when the distance
comes shorter, the orbital energy becomes positive, i.e.,
electron is unbound. This induced electron detachment is
major weakness of the point-charge model, because, in
pendently of how strongly the anionic electron is bound, i
what kind of system we examine, the detachment of the
ionic electron is always induced when the point charge
spatially close enough to the anionic target. Then the anio
point-charge system represents an unbound resonance
Returning to the basis-set dependence of this model,
now clear that the height of the barrier decreases as the b
set describes this unbound resonance state in more d
i.e., as the basis set becomes more diffuse.

Finally, we have examined the basis-set dependenc
the DFOSA method, and the DFOSA potentials that w
obtained for F22 and O22 are displayed in Fig. 4. The RCB
of F22 decreases markedly when the first set of diffuse fu
tions is added, but increases again with the addition of
second and third sets. This behavior of the RCB can be
derstood when one analyzes the DFOSA method and the22

dianion. In a DFOSA calculation like that described in Se
II C, we use the Hartree-Fock orbitals of the dianion to su
up the electron-electron repulsion and the nucleus-elec
attraction. The Hartree-Fock orbitals are generated in
framework of the ROHF method, because F22 is an open-
shell system. When the unbound F22 dianion is calculated
with the bound-state ROHF method and the basis set
ployed is getting more and more diffuse, the method tend
describe a bound F2 anion and an unbound electron. Hyp
thetically, using an infinite basis set, we would get the ex
HF orbitals of F2 and an unbound electron with zero kinet

he

FIG. 4. Basis-set study of the DFOSA potentials of F22 ~upper
part! and O22 ~lower part!. While the F22 potentials converge to the
local static RCB with increasing diffuseness of the basis set,
RCB of O22 vanishes.
1-8
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NATURE OF THE REPULSIVE COULOMB BARRIER IN . . . PHYSICAL REVIEW A63 012501
energy. Using these orbitals of the monoanion, i.e., its c
rect one-particle density at the Hartree-Fock level in
DFOSA calculation, we would, of course, obtain the loc
static RCB at the theoretical level of HF. That means that
RCB of an open-shell multiply charged anion calculated w
the DFOSA method converges toward the local static R
with increasing diffuseness of the basis set.

In contrast to that of the open-shell F22 dianion, the RCB
of the closed-shell O22 dianion vanishes~Fig. 4! in the
framework of the DFOSA, when more and more diffuse b
sis sets are used. Again, we describe an unbound reson
state with the bound-state RHF method. Because the R
method treats electrons witha and b spins equally, i.e., all
orbitals are doubly occupied, the bound-state calculation
converge only to solutions in which electron pairs are
tained. Therefore, the solution of the RHF calculation
O22 using an infinite basis set can only be a neutral O at
and two unbound electrons with zero kinetic energy. Con
quently, the RCB disappears when we use these orbita
the DFOSA calculation.

Summarizing the basis-set dependence of the local
proximations, only the LSA is basis-set independent, o
the basis set is sufficiently large to appropriately describe
anionic target. The PCM and the DFOSA methods
strongly basis-set dependent, since within these scheme
bound states are calculated with bound-state methods
these grounds, the use of the PCM and the DFOSA meth
makes sense only when not too diffuse basis sets are
ployed. A good choice of the basis set is of general imp
tance in any quantum-chemical calculation, and thus one
to define a basis-set selection criterion for the approxima
schemes. The only reasonable criterion is the basis-set i
pendence of the local static approach. For this reason,
first basis set for which the local static approach is conver
should be the basis set in all further RCB calculations. He
it was the DZP1sp basis set, since this is the smallest ba
set for which the local static RCB’s of F22 and O22 con-
verged~see Fig. 2!.

To apply the local approximation schemes successf
one has to reflect the underlying approximations and the
tems that are to be examined with these methods. Bec
we neglect exchange between the extra electron and the
get ~monoanion! in all three schemes and exchange is imp
tant for spatially small atomic systems, we may not exp
quantitative accuracy in our calculations on atomic dianio
But nonetheless atoms are reasonable objects for stud
the weaknesses and the limits of applicability of the lo
approximation schemes. Furthermore, we may suggest
use of density-functional theory~DFT! within the models,
because exchange is approximately contained in the D
method.

In view of the above findings concerning the PCM a
DFOSA, one may ask whether these physically appea
methods make any sense at all. As discussed above, the
tem can be viewed as in an unbound resonance state
several techniques are available to compute such resona
@53–55#. By analytic continuation into the complex energ
plane, the energy of the resonance becomesEres5Er
2 iG/2, whereEr is the real part of the resonance energy a
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G the decay width~t5\/G is the lifetime of the resonance!
@53,54#. In the present context the appropriate technique w
lead to complex DFOSA and PCM potentials to take acco
of the possible losses due to the induced ionization by
point charge. Another possibility is to view the resonance
a discrete state embedded in the continuum. This disc
state can be computed using stabilization techniques emp
ing compact basis sets@55#. In the present context the
scheme for choosing an appropriate compact basis se
DFOSA and PCM calculations is in line with the stabiliz
tion technique.

B. Molecular dianions: Cn
2À

„nÄ2,4,6,8…

In the previous subsection we saw that exchange is
portant for spatially small atomic systems and, since
change is neglected in the local approximation schemes,
RCB’s obtained provide only crude estimates of the ‘‘true
RCB’s. In this subsection we turn to the examination of m
lecular dianions. These systems are more extended and
change plays a minor role, and we expect that the use of
local approximation schemes will yield reliable RCB’s her

We have examined the repulsive Coulomb barrier of
linear carbon dianions Cn

22 (n52,4,6,8), of which C8
22

was observed experimentally in 1990 by Schaueret al. @56#.
We chose these dianions for two reasons. On the one h
they are experimentally and theoretically well studied a
ample data are available in the literature@57,39,58,59#. On
the other hand, there is still a puzzle concerning C8

22. Al-
though the peak of C8

22 is one of the most abundant in th
mass spectrum of the carbon dianions, it has been foun
be adiabatically unstable with respect to electron emission
about 0.1 eV@57#. In contrast, C7

22, which is the smallest
observed carbon dianion, possesses aD3h starlike structure
and is electronically stable@58,59#, but its peak in the mass
spectrum is less intense than that of C8

22.
The RCB potentials of the linear carbon dianions ha

been calculated using all three methods discussed in
II C. The PCM and LSA were employed at the CCSD lev
and DFOSA at the level of restricted Hartree-Fock. All g
ometries of the carbon dianions examined were optimize
the CCSD level using the DZP1sp basis set and were hel
fixed in the RCB calculations. In analogy to the case
atomic dianions~Sec. III A!, we checked the basis-set depe
dence of the RCB of the molecular dianions. As an exam
we computed the RCB of C4

22 using all three local approxi-
mation schemes starting with the DZP basis set. The basi
was then gradually augmented with one (DZP1sp) and two
(DZP12s2p) sets of diffuses- and p-type functions, the
exponents of which were 0.040 893 and 0.027 188, resp
tively.

As for the atomic dianions, the local static approach
already converged when the DZP1sp basis set is used, i.e
the monoanion is appropriately described by this basis
The DZP1sp basis is therefore chosen to be the stand
basis set for calculations of the RCB’s of all carbon dianio
examined. As expected, the RCB of the closed-shell C4

22

gradually decreases when the DFOSA method and the po
charge model are applied and more and more diffuse b
1-9
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A. DREUW AND L. S. CEDERBAUM PHYSICAL REVIEW A63 012501
sets are used. It is worth noting that the basis-set depend
of these local approximation schemes is much less sig
cant for the molecular C4

22 than for the atoms. While the
RCB of O22 decreased by about 5 and 3.5 eV in the DFO
and PCM calculations, respectively, when going from
DZP to the DZP1sp basis set, the decrease is only 0.55 a
0.3 eV for C4

22. This makes us confident of obtaining re
able potentials for extended systems like molecular diani
with the help of local calculation schemes.

The RCB potentials are, of course, three dimensional,
rotationally symmetric for the linear Cn

22 dianions. For il-
lustration, a two-dimensional picture of the RCB of C6

22

obtained using the DFOSA method is shown in Fig. 5. T
RCB is highly anisotropic. The maxima of the potential a
at the ends of the C6

22 molecule, where the excess charg
are located. The minima are placed along the horizontal m
ror plane of the molecule. These minima correspond to
minimum-energy path for electron emission from the C6

22

dianion. The RCB’s of all linear even-numbered carbon
anions possess this typical shape, but the shorter the c
length the higher is the RCB in all directions, due to t
increased electrostatic repulsion between the excess cha
A comparison of the RCB potentials of the linear carb
cluster dianions along the minimum-energy path for elect
emission is shown in Fig. 6. These potentials have been
culated with the DFOSA method using the DZP1sp basis
set. As expected, the height of the RCB decreases syste
cally with the size of the system. We find a decrease
about 2.5 eV from C2

22 to C8
22.

We have used the RCB potentials of the carbon diani
to calculate the tunneling probability and the lifetime
these systems in the framework of semiclassical W
theory. The tunneling probability is given by the formula

FIG. 5. Two-dimensional picture of the RCB of C6
22 calculated

in the framework of the DFOSA. The potential is strongly anis
tropic, and as one can easily see the minimum-energy path
electron emission from the dianion is along the horizontal mir
plane of theD`h symmetric dianion. Contour lines are projected
the xy plane for several heights of the barrier~see legend!. The
energy is given in eV, and the lengths are given in angstro˚ms.
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\ E
r 1

r 2A2m@E2V~r !#dr D ,

whereE is the energy of the electron,V(r ) the RCB, andr 1
and r 2 define the width of the barrier at energyE. The life-
time of the dianion can finally be calculated using the fo
mula

t5
2p

Pv
,

where v is the frequency with which the electron hits th
RCB. This frequency can be obtained by solving the eq
tion of motion for the electron with the assumption that t
potential in the inner region is dominated by the electrosta
attraction between the nucleus and the outgoing electron,
the potential has the shape ofr 21. The use of this semiclas
sical approach is limited to one-dimensional potentials a
actually the RCB is, as already mentioned, three dim
sional. We solve this conceptual problem by assuming t
the electron leaves the dianion via the minimum-energy p
outlined above. A three-dimensional calculation of the lif
time would be desirable to improve the reliability of th
numbers, but this is beyond the scope of this work. Here,
are interested only in estimating the lifetimes and investig
ing their dependence on the chain size. A tedious thr
dimensional calculation would certainly be justified wh
using a more accurate potential like the one discussed in
II B.

To study the influence of the potential on the lifetime, i.
how the lifetime depends on the approximation schem

-
or
r

FIG. 6. Comparison of the RCB potentials of the linear carb
dianions Cn

22 (n52,4,6,8) along the minimum-energy path fo
electron emission calculated with the DFOSA method using
DZP1sp basis set. The vertical electron detachment energies o
dianions computed at the level of CCSD/(DZP1sp) are indicated
by horizontal bars, on which the corresponding calculated lifetim
for vertical electron detachment of the respective dianions are gi
in seconds. The lifetimes have been calculated in the framewor
semiclassical WKB theory~see text!. The zero point of the energy
scale corresponds to the energy of the respective monoanions
1-10
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used to compute the potential, we have calculated the
time of C8

22 for energies between 0.1 and 2.0 eV using
LSA, DFOSA, and PCM potentials. The calculated lifetim
are displayed together with the corresponding potentials
Fig. 7. The investigation shows that the lifetime depen
much more strongly on the energy of the outgoing elect
than on the potential. Although the shapes of all three po
tials are quite different, the results for the lifetime at a giv
energy are quite similar and vary at most by a factor of 2
seems that the errors embodied in the different approxi
tion schemes are canceling each other when calculating
lifetime. This encourages us to assume that the lifetimes
tained are more reliable than the potentials themselves.
thermore, one can see that for electron energies below
eV, which corresponds to an electron detachment energ
20.35 eV, the dianion lifetime is markedly longer tha
1025 s, which is the limit for experimental observation in
mass spectrometer.

Watts and Bartlett@57# found that the C8
22 dianion is

vertically stable with respect to electron emission but ad
batically unstable by about 0.1 eV. Assuming 0.1 eV to
the energy of the outgoing electron, we obtain a tunnel
lifetime of about 231011s for the C8

22 system; thus no sig
nificant electronic decay should be observed in the exp
ment. Since the linear isomers of the carbon dianions
thermodynamically more stable than the branched isom
like, e.g., C7

22, it is now clear that the abundance of th
peaks of C7

22 and C8
22 in the mass spectrum is determine

by the thermodynamically determined generation rate
not by the electronic stability of these dianions.

FIG. 7. In the upper part the computed lifetimes of the C8
22

dianion are displayed as a function of the energy of the emi
electron. For the calculation of the lifetime we have used the L
~full line!, DFOSA ~dotted line!, and PCM~dashed line! potentials.
These potentials are displayed in the lower part. Although the
tentials are quite different, the computed lifetimes are quite sim
and vary at most by a factor of 2. For electron energies below 0
eV ~indicated by the horizontal line in the lower part! the lifetime of
the C8

22 dianion was found to be longer than 1025 s for all three
potentials. A lifetime of about 1025 s is typically needed to observ
a system in a mass spectrometer experiment.
01250
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For completeness, we have calculated the tunneling l
times for C2

22, C4
22, and C6

22. Since the specific local ap
proximation scheme used plays only a minor role in det
mining the lifetime, we have used the DFOSA potential~Fig.
6!. In contrast, the quality of the calculation of the energy
the outgoing electron is of great importance; thus we h
used the vertical electron detachment energy calculated a
level of CCSD (DZP1sp) by subtracting the computed tota
energy of the dianion from that of the monoanion. The
vertical detachment energies of C2

22, C4
22, and C6

22 are
23.81,22.12, and20.77 eV, respectively. The correspon
ing vertical energy of C8

22 has been calculated to be 0.33 e
at the CCSD level of theory, i.e., C8

22 is stable with respec
to vertical electron emission and has an infinite lifetime~in
contrast to the case of adiabatic electron emission,
above!. The lifetimes obtained for the linear carbon dianio
for vertical electron emission are 9310215, 1.5310213, and
1.731029 s for C2

22, C4
22, and C6

22, respectively. From
that point of view, all three dianions are too short lived to
observable in a mass spectrometer, which is in agreem
with the experiments.

IV. SUMMARY AND CONCLUSIONS

In this paper we have examined the repulsive Coulo
barrier for electron emission from multiply charged anion
The RCB is a general phenomenon in multiply charged
ions: it arises due to the combination of long-range repuls
between the emitted electron and the residual anion
short-range attraction of the nucleus. Although the RCB
dominated by the electrostatic forces present, it is a nonlo
energy-dependent potential, which is neither easy to comp
nor depictable in nature. Since the RCB is closely related
scattering potentials, there exists an exact theory for the R
that is founded on the Green’s-function formalism for sc
tering processes. We have shown that the RCB can be re
to the self-energyS(E). The self-energy is an optical poten
tial connecting the Green’s function for scattering with t
free Green’s function according to the well-known Dys
equation.

SinceS(E) is so far not straightforward to compute, w
have introduced local approximation schemes. These are
dianion-frozen-orbital static approximation, the point-char
model, and the local static approach. In a DFOSA calcu
tion, the nucleus-electron attraction and the electron-elec
repulsion are summed up using the frozen orbitals of
dianion. In the PCM calculation a full point charge
brought up to the anion, and the total energies of the anio
point-charge system and the free anion are subtracted to
tain the RCB. In contrast, the local static potential is o
tained as the interaction of a point charge with the correla
electron density of the anion. Technically, this potential c
be obtained within the derived LSA. In the LSA method
infinitesimal point charge approaches the anion and af
ward the potential obtained is scaled up to a full po
charge.

A thorough theoretical analysis of the PCM and LS
methods has proved their relation to multichannel-scatte
Green’s-function theory. While the PCM represents an ad
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-
r
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batic approximation to the exact theory of scattering a d
tinguishable particle from an electronic target, the LS
method yields the local static potential of the target ani
which corresponds to a diagonal element of the scatte
matrix. These approaches are of general applicability si
every ab initio method can be employed, including tho
methods that do not compute or do not explicitly provide
one-particle density of the monoanion.

We have applied the local approximation schemes to
vestigate atomic and molecular dianions. The atomic F22 and
O22 dianions are reasonable objects to use to study the b
set dependence of the local schemes. While the DFOSA
PCM potentials strongly depend on the basis set emplo
the LSA has been found to be basis-set independent at
ficiently large basis sets. We have used the LSA to defin
criterion for basis-set selection for the other methods. T
smallest basis set for which the LSA converged is chose
be the one used in all other local RCB calculations. T
criterion as well as the behavior of the various potentials a
function of basis-set size are understood and discussed
retically.

The atomic dianions serve merely as study objects. S
exchange between the electron and the target anion is
glected in the local schemes, and this interaction is impor
for the spatially compact atomic systems, the calculated R
potentials for F22 and O22 are only crude estimates of th
exact RCB. To remedy the situation we suggest using a lo
approximation to the exchange, as is common in DFT ca
lations.

Turning to larger systems, the underlying local appro
mations become less severe, since the exchange intera
of the electron with the extended target plays a less sig
nc

es

m

y

.
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cant role. This makes us confident of obtaining local pot
tials that are more reliable estimates of the exact RCB.
amination of the RCB potentials of the linear carb
dianions Cn

22 (n52,4,6,8) has shown that the molecul
DFOSA and PCM potentials are much less basis-set de
dent than those of atomic systems. Not surprisingly, the
pulsive Coulomb barrier decreases the larger the carbon
anion becomes, due to the decreasing electrostatic repu
of the excess charges. This lowering of the barrier is acco
panied, however, by an increase of the electron binding
ergy of the excess electron. Using the calculated RCB po
tials we have estimated the lifetimes of the metastable car
dianions with the help of semiclassical WKB theory. W
have calculated the tunneling lifetime along the minimu
energy path for electron emission, which is along the ho
zontal mirror plane of theD`h symmetric systems. We hav
found that the lifetime for vertical electron emission grow
markedly from 9310215 to 1.5310213 and 1.731029 s
when going from C2

22 to C4
22 and C6

22. The dianion C8
22

is vertically stable, but adiabatically unstable. We have e
mated its lifetime with respect to adiabatic electron emiss
to be very long (231011s), however. On these ground
only C8

22 should be experimentally accessible in a ma
spectrometer, and no relevant electronic decay should be
served. This is in agreement with the experimental findin
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