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Universal quantum computation with two-level trapped ions
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Although the initial proposal for ion trap quantum computation made use of an auxiliary internal level to
perform logic between ions, this resource is not necessary in principle. Instead, one may perform such opera-
tions directly using sideband laser pulses, operating with an arbitrary~sufficiently small! Lamb-Dicke param-
eter. We explore the potential of this technique, showing how to perform logical operations between the
internal state of an ion and the collective motional state and giving explicit constructions for a controlled-NOT

gate between ions.
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I. INTRODUCTION

Ion trap quantum computation, first introduced by Cir
and Zoller @1#, is a potentially powerful technique for th
storage and manipulation of quantum information@1–4#. In
this scheme, information is stored in the spin states of
array of trapped ions and manipulated using laser pul
Reasonably long coherence times can be achieved, comp
to achievable switching rates@5#, and individual qubits can
be addressed through spatial separation of the ions. Ex
mental implementations of this scheme have succeede
performing simple two-qubit logic gates@6,7# and preparing
entangled states@8,9#.

An ion trap quantum computer may be modeled as a
lection of N particles with spin1

2 in a one-dimensional har
monic potential. Laser pulses incident on the ions can
tuned to simultaneously cause internal spin transitions
vibrational~phonon! excitations, thus allowing local interna
states to be mapped into shared phonon states. In this m
ner, quantum information can be communicated between
pair of ions and logic gates can be performed.

In this paper, we consider an interesting question t
arises in this scenario: what is the simplest internal spin s
structure required by each ion? In the original Cirac-Zol
formulation, ions with three levels are required. However,
the Cirac-Zoller method is generalized to other physical s
tems, such as neutral trapped atoms@10# or quantum dots in
an electromagnetic cavity@11#, it has become highly desir
able to determine whether justtwo internal levels are suffi-
cient for performing universal quantum computation.

Previously, Monroeet al. have shown how a controlled
NOT can be performed between an ion and a phonon s
using only two-level ions@12#. Their method depends o
fine-tuning of the Lamb-Dicke parameter, which relates
laser frequency to the scale of the ions’ wave functions
cancel unwanted side effects. Furthermore, they do not a
the Lamb-Dicke parameter to be arbitrarily small; the low
value quoted in@12# is 0.316.

More recently, there have been two proposals for qu
tum computation with hot trapped ions~not necessarily
cooled to their motional ground state! that use only two in-
ternal levels@13,14#. Unfortunately, the proposal in@13# can-
not be easily scaled above three ions. The technique
posed in@14# is more general, but it requires extra physic
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resources~bichromatic light! and is based on second-ord
perturbation theory. Thus, it remains desirable to augm
the toolbox of ion trap quantum computing with a simp
algebraic method for performing logic using only two leve

Here, we present a general and accessible technique
performing universal logic between ions with only two inte
nal levels using only monochromatic light. This scheme o
erates with any sufficiently small value of the Lamb-Dic
parameter, and also introduces new ways to utilize~or avoid!
particular phonon states while performing quantum lo
gates. We begin in Sec. II by presenting the allowed ope
tions using the usual Jaynes-Cummings model for sp
boson interactions. We then describe a multiple-pulse c
struction for the controlled-NOT gate in Sec. III and give
further constructions in Sec. IV before concluding with
discussion of the motivation of this work.

II. THEORETICAL ION TRAP MODEL

The energy-level diagram of one ion, including the m
tional state, is shown in Fig. 1. For the sake of definitene
we may think of the motional levels as corresponding to
center-of-mass degree of freedom. However, they could

FIG. 1. Energy-level diagram for a single ion’s nuclear sp
state along with the motional mode, showing only the lowest th
motional states. We denote the state of a particular ion using the
upq&, wherepP$0,1% is the nuclear spin state andqP$0,1,2, . . . %
is the motional state. Transitions at the on-resonance frequencv0

are shown with solid lines. The first blue (v01vz) and red (v0

2vz) sideband transitions are shown using dashed and dotted l
respectively. Higher-order transitions are suppressed for clarity
©2000 The American Physical Society06-1
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as well correspond to another mode of oscillation, such
the ‘‘breathing’’ mode of a pair of ions. In practice, on
might wish to choose a mode other than the center of mas
achieve reduced susceptibility to decoherence@15#.

The Hamiltonian of this system isH05\v0(sz/2)
1\vza

†a, wheresz is a Pauli spin operator for the nucle
spin anda annihilates a phonon. Throughout this paper,
work in the frame of this Hamiltonian. Turning on the ele
tromagnetic field of a laser gives an interaction Hamilton

HI52mW •BW , ~1!

wheremW 5msW /2 is the magnetic moment of the ion andBW

5Bx̂ cos(kz2vt1F) is the magnetic field produced by th
laser. Herez5z0(a1a†), wherez05A\/2Nmvz is a char-
acteristic length scale for the motional wave functions andm
is the mass of an ion.

We consider the regime in whichh[kz0!1. In this re-
gime, we may determine the effect of a laser pulse at a s
cific frequencyv by expanding Eq.~1! in powers ofh and
neglecting rapidly rotating terms. Pulsing on resonancev
5v0) allows one to perform the transformation

R~u,f!5expF i
u

2
~eifs11e2 ifs2!G , ~2!

allowing one to do arbitrary single-qubit operations on
ion’s internal state. Pulsing at thenth blue sideband fre-
quency (v5v01nvz) gives @16#

Rn
1~u,f!5expF i

u

2
~eifs1an1e2 ifs2a†n!G ~3!

and pulsing at thenth red sideband frequency (v5v0
2nvz) gives

Rn
2~u,f!5expF i

u

2
~eifs1a†n1e2 ifs2an!G . ~4!

Here,s65(sx6 isy)/2 act on the internal state of the ion
In each case, the parameteru depends on the strength an
duration of the pulse andf depends on its phase. For a
nth-order transition of durationt, u is given by

u52
mBthn

2\n!
. ~5!

Also,

f5F1~n mod 4!
p

2
. ~6!

III. CONTROLLED- NOT USING THE FIRST MOTIONAL
SIDEBAND

We suppose that the state of the ion trap quantum c
puter begins in the motionalu0& state. We may excite higher
order motional levels usingRn

6 so long as we return to th
motional ground state at the end of the gate. It is simples
01230
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consider cases where only a few higher-order levels are
evant. For a particular ion, we refer to the subspace span
by $u00&,u01&,u10&,u11&% ~using the notation of Fig. 1! as the
computational subspace~CS!.

First, we note that for the special valuesu5 j pA2, where
j is an integer,R1

6 preserve the CS—that is, they map sta
within the CS to other states within the CS. For example

R1
1~pA2,2p/2!5S cos

p

A2
0 0 sin

p

A2

0 21 0 0

0 0 1 0

2sin
p

A2
0 0 cos

p

A2

D .

~7!

Next, note that it is easy to produce another gate that p
serves the CS by conjugation. For example, consider the
G5Gin^ Gout, where Gin has support only on
$u00&,u10&,u11&% andGout acts on the rest of the space. Sin
R1

1 does not connect these subspaces, conjugating this
by R1

1 produces another gate that preserves the CS, assu
the initial motional state to beu0&. In other words,

R1
1~2u,f!GR1

1~u,f! ~8!

preserves the CS. Using this observation, we can easily
agonalize Eq.~7!, giving the gate

P5R1
1~2p/2,0!R1

1~pA2,2p/2!R1
1~p/2,0!

5diag~eip/A2,21,1,e2 ip/A2!. ~9!

This gate uses first-order sideband pulses for a total dura
of (11A2)p, only slightly longer than the 2p duration re-
quired for the equivalent step in the Cirac-Zoller scheme

With this diagonal gate andR1
2 , it is straightforward to

construct a controlled-NOT gate between two ions using
sequence similar to the original Cirac-Zoller constructio
Note thatR1

2(p,2p/2) allows us to interchangeu01& and
u10& ~up to a phase!, performing

S 1 0 0

0 0 1

0 21 0
D ~10!

on the subspace$u00&,u01&,u10&%. Assuming the motional
state is initiallyu0&, this corresponds to a swap between t
state of the ion and the motional state. In fact, we can us
version of this gate with arbitrary phase to do logic betwe
ions. Thus we can perform a controlled-NOT ~CNOT! from ion
j ~the control! to ion k ~the target! using

U jk
CNOT5Zj„2p/~2A2!…R1 j

2 ~p,f!

3HkPkZk„2p/~2A2!…HkR1 j
2 ~p,f! ~11!
6-2
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for any value off, where a subscript denotes which ion
acted on and we have introduced the single-qubit gates

Z~f!5S eif 0

0 e2 ifD , H5
1

A2
S 1 1

1 21D . ~12!

IV. OTHER GATE CONSTRUCTIONS

Although the construction by which we arrived at Eq.~9!
is relatively straightforward, there are other ways to co
struct gates that preserve the CS. In fact, it is possible
perform a generalization of Eq.~9! by considering the form

U~f!5R1
1~2a,p/2!R1

1~2b,g!

3R1
1~2f,d!R1

1~b,g!R1
1~a,p/2!. ~13!

Making the choices

cosa5cosA2a, ~14!

cosb5cosA2b, ~15!

sgn~sina!sgn~sinb!5sgn~sinA2a!sgn~sinA2b!,
~16!

d2g5sin21S cosa

sinb D , ~17!

g5tan21@2cosb tan~d2g!#, ~18!

results in

U~f!5diag~eif,e6 iA2f,1,e2 if!. ~19!

For example, there is such a solution witha'298.2°, b
'149.1°,g'63.87°, andd'131.0°.

The source of the factors ofA2 in gates derived from the
first-order sideband is the matrix element^1uau2&5A2 for
harmonic oscillator states. However, note that

^1ua3u4&52^0ua3u3&52A6. ~20!

The integer ratio of these matrix elements suggests that th
order transitions may be used to create simpler diago
gates. Indeed, we find

R3
2~2p/A6,f8!5diag~1,1,21,1! ~21!

for any value off8. This differs from a controlled-Z gate by
only single-qubit operations, so we can simply use the Cir
Zoller construction to produce aCNOT between ions:

U jk
CNOT5HkZj~p/2!R1 j

2 ~p,f!

3R3k
2 ~2p/A6,f8!Zk~2p/2!R1 j

2 ~p,f!Hk .

~22!
01230
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Here, we require fewer pulses than in Eq.~11!. However,
note that the third-order sideband pulse must be longer b
factor of orderh22 than the first-order sideband pulses f
the same laser intensity.

Most of these results generalize to other choices of
computational subspace. For example, consider us
$u00&,u02&,u10&,u12&%. Analogous to Eq.~11!, we find

U jk
CNOT5Zj„2p/~2A6!…R2 j

2 ~p/A2,f!

3HkR2k
1
„2p/~2A2!,0…

3R2k
1 ~p/A3,2p/2!R2k

1
„p/~2A2!,0…

3Zk„2p/~2A6!…HkR2 j
2 ~p/A2,f!. ~23!

Similarly, analogous to Eq.~22! ~exploiting the integral re-
lationship^2ua7u9&56^0ua7u7&),

U jk
CNOT5HkZj~p/2!R2 j

2 ~p/A2,f!

3R7k
2
„p/~6A35!,f8…Zk~2p/2!R2 j

2 ~p/A2,f!Hk .

~24!

Finally, we wish to point out that it is conceivable to treat t
lowest two motional levels as an additional qubit, rather th
simply an intermediary for logic, if one can perform a tru
swap operation over the entire computational subspace. N
that

R1
2~2lpA2,2p/2!

5S 1 0 0 0

0 cos~ lpA2! sin~ lpA2! 0

0 2sin~ lpA2! cos~ lpA2! 0

0 0 0 1

D .

~25!

We may get arbitrarily close to a swap operation by choos
large enoughl with cos(lpA2)'0. For example, choosing
l 52378 gives a swap operation to a precision of about 1023.
Although this observation may not be useful in practice
shows that universal quantum logic including a motional q
bit is not forbidden in principle.

V. CONCLUSIONS

We have demonstrated the possibility of doing ion tr
quantum computation with two-level ions, allowing any su
ficiently small value of the Lamb-Dicke parameter. While w
believe that a construction similar to Eq.~11! will be most
useful in practice, we have shown that there are many o
ways to realize a controlled-NOT gate between ions withou
using extra levels, some of which might be useful given a
propriate experimental conditions.

Our initial motivation for gates such as Eqs.~9! and ~19!
came from the theory of composite pulses used in the ar
nuclear magnetic resonance, in which errors in pulse len
or frequency are canceled at low order using a sequenc
6-3
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pulses. Thus one may accomplish with a composite pulse
the presence of errors, what a single pulse would have
formed in the absence of errors@17#. In the present case, th
goal is somewhat different: we construct a sequence of g
that takes the system into higher motional levels and b
again to perform some logical operation. Nevertheless,
.
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idea of stringing together several pulses to perform a sim
gate has proved fruitful. We hope that further progress
be made in the experimental implementation of quantum
formation processing devices by considering how exist
tools can be applied to different physical implementation
s.
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