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Stabilizing quantum information
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The dynamical-algebraic structure underlying all the schemes for quantum information stabilization is ar-
gued to be fully contained in the reducibility of the operator algebra describing the interaction with the
environment of the coding quantum system. This property amounts to the existence of a nontrivial group of
symmetries for the global dynamics. We provide a unified framework that allows us to build systematically
additional classes of error correcting codes and noiseless subsystems. It is shown that by using symmetrization
strategies one can artificially produce noiseless subsystems supporting universal quantum computation.
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Defending the quantum coherence of a processing de
against environmental interactions is a vital goal for a
foreseeable practical application of quantum information a
quantum computation theory@1#. So far essentially three
kinds of strategy have been devised in order to satisfy su
crucial requirement:~a! error correcting codes~ECC’s! @2#,
which, in analogy with classical information theory, active
stabilize quantum information by using redundant encod
and measurements;~b! error avoiding~EA! codes@3#, which
pursue a passive stabilization by exploiting symmetry pr
erties of the environment-induced noise for suitable red
dant encoding;~c! noise suppression schemes@4#, in which,
with no redundant encoding, the decoherence-inducing in
actions are averaged away by properly tailored exte
‘‘pulses’’ frequently iterated. In this paper we shall sho
how all these schemes derive conceptually from a comm
dynamical-algebraic framework. The key notion to shed lig
on this underlying structure is that of thenoiseless subsystem
~NS! introduced by Knillet al. in Ref. @5#. In this paper we
shall discuss how one can analyze in a unified fashion
terms of purely algebraic data all the possible strategies
quantum information stabilization. As a by-product a fam
of generalized ECC’s will be introduced. We shall provi
abstract characterization of quantum evolutions that sup
NS’s, and show how to obtain them by symmetrization p
cedures@6#. Application to a realistic model of decoheren
is given as well.

Let S be an open quantum system, with~finite-
dimensional! state spaceH, and self-HamiltonianHS ,
coupled to its environment through the HamiltonianHI
5(aSa ^ Ba , where theSa’s (Ba’s! are system~environ-
ment! operators. The unital associative algebraA, closed un-
der Hermitian conjugationS°S†, generated by theSa’s @7#
and HS will be referred to as theinteraction algebra.~We
shall sometime identifyHS with one of theSa’s and discard
the closed caseHI50.! The algebraic approach used in th
paper is not restricted to a Hamiltonian description of
dynamics. Alternatively, the dynamics ofScan be described
by ~i!a Markovian master equation, i.e.,ṙ52 i @HS ,r#
1(1/2)(mlm$@Lmr,Lm

† #1@Lm ,r Lm
† #%, for the density ma-

trix r; or ~ii !a finite time trace-preservingCP map
r°Et(r)ª( ieir ei

†(( iei
†ei51). In the first case the rel
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evant interaction algebra is the one generated byHS and the
Lindblad operatorsLm . In the latter caseA is generated by
the ‘‘error’’ operatorsei .

In generalA is a reducible †-closed subalgebra of th
algebra End(H) of all the linear operators overH. This im-
plies thatA can be written as a direct sum ofdJ3dJ ~com-
plex! matrix algebras each one of which appears with a m
tiplicity nJ @8#,

A> % JPJ 1nJ
^ M ~dJ ,C!, ~1!

whereJ is a suitable finite set labeling the irreducible com
ponents of A. The associated state-space decomposi
reads

H> % JPJ CnJ^ CdJ. ~2!

These decompositions encode all information about the p
sible quantum stabilization strategies.

In Ref. @5# the authors observed that in view of relatio
~1! each factorCnJ in Eq. ~2! corresponds to a sort of effec
tive subsystem ofS coupled to the environment in a sta
independent way. Such subsystems are then referred t
noiseless. In particular, one gets a noiseless code, i.e
decoherence-free subspaceC,H when in Eq.~2! there ap-
pear one-dimensional irreducible representations~irreps! J0
with multiplicity greater than one timesC>CnJ0^ C @3#. The
physical idea is very simple: one wants to identify a su
space of states that corresponds to a multipartite system
which one of the subsystems is coupled with the envir
ment in such a way that quantum information cannot be
tracted from it.

We define the commutantA 8 in End(H) of A by A 8
ª$X u @X,A#50%. From Eq.~1! it is clear that the existence
of a NS is equivalent toA 8> % JPJ M (nJ ,C) ^ 1dJ

ÞC1
ª$l 1 u l P C%. For a NS to be relevant for quantum enco
ing it must be at least two-dimensional, i.e., maxJ$nJ%>2.
This amounts to having anoncommutativeA 8. An interac-
tion algebra satisfying the above condition will be called N
supporting. Of course when dimA 85(JnJ

251 one is in the
irreducible case@ uJ u5nJ51# in which no NS’s exist.

In order to understand in what sense the NS’s can
regarded as subsystems let us consider the projectorsQJ
©2001 The American Physical Society01-1
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ª1nJ
^ 1dJ

PAùA 8; they correspond to conserved obse

ables that constrain the accessible state space to be one
summands in Eq.~2!, i.e., QJH. The identification of a bi-
partite structure stems from the fact that on the ‘‘superse
tion sector’’ QJH the full operator algebra is isomorphic t
AA 8>A^ A 8 @9#. The dualityA°A 8, which will be used
repeatedly later, is in this sense the algebraic ground for
notion of a subsystem.

An important special case is when$Sa% is a commuting
set of Hermitian operators. ThenA is an Abelian algebra and
Eq. ~2! ~with dJ51) is the decomposition of the state spa
according to the joint eigenspaces of theSa’s. The pointer
basis @10# discussed in relation to so-called environme
induced superselection is nothing but an orthonormal b
associated with the resolution~2!. The NS’s provide the
natural noncommutative generalization of the pointer ba
One might conjecture that, for any initial preparationr, a
relation like limt→` Et(r)PA 8A> % JM (nJ ,C) ^ M (dJ ,C)
holds at least approximately ($Et% denotes the dynamica
semigroup!: The quantum coherence between the differenJ
blocks is destroyed.

The decomposition~1! leads to a straightforward gene
alization of the notion of a stabilizer ECC@11# and allows us
to build a general setting in whichnonadditive quantum
codes @12# can arise. Let uJlm& (J PJ,l51, . . . ,nJ ;m
51, . . . ,dJ) be an orthonormal basis associated with the
composition~1!. Let H m

J
ªspan$uJlm& u l51, . . . ,nJ%, and

let H l
J be defined analogously. Now we consider aCP map

description of the dynamics@see point~ii ! in the Introduc-
tion#, the interaction algebraA being generated by error op
erators. The next proposition shows that to any NS co
sponds a family of ECC’s~for a related proposition, se
theorem 6 in Ref.@5#!.

Proposition 1. The H m
J ’s are ECC’s for any subset o

errors in A.
Proof. If ei ,ejPA then ei

†ejPA. From Eq.~1! and the
general results on ECC’s@2# the following computation
now suffices: ^Jl8muei

†ej uJlm&5^Jl8mu1 ^ Xi j uJlm&
5dl,l8cJ,m

i j .
This kind of ECC will be referred to asA codes. The

above result extends to any error setE such that;ei ,ej

PE⇒ei
†ejPB, whereB is an operator algebra for which Eq

~1! holds. The proof above should make clear that theH l
J are

A 8 codes. One recovers the usual picture by considering
N-partite qubit system, and an Abelian subgroupG of the
Pauli groupPª$1, sx ,sy ,sz%

^ N. Let us consider the state
space decomposition~2! associated withG. If G has k,N
generators thenuGu52k, whereas from commutativity it fol-
lows that dJ51 and uJ u5uGu. Moreover, one findsnJ
52N2k: each of the 2k joint eigenspaces ofG ~stabilizer
code! encodesN2k logical qubits. Therefore one hasH5

% J51
2k

C2N2k
^ C > C2N2k

^ C2k
. Now it is known @13# that

correctable errors~belonging to the Pauli group! correspond
to elementsei ,ej such thatei

†ej either belongs toG or anti-
commuteswith ~at least! one elementG. In particular, the
latter operators induce a nontrivial mixing of different e
genspaces, i.e., a nontrivial action on theC2k

factor. In both
01230
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cases they belong to the algebraB512N2k^ M (2k,C). The

C2k
factor corresponds in the usual stabilizer construction

the encoding of the error syndrome, i.e., it will be a bit stri
containing the eigenvalues of the stabilizer. The errors c
respond to operations on this factor.

An example of this construction is given by consideri
any noiseless code. In this case sinceAuC> 1n0

^ M (1,C) one

finds c0,1
i j 5cicj , since this matrix is not full rank. A noise

less code is a degenerate ECC@14#.
It is well known that group-theoretical notions play a ke

role in the analysis of all the schemes so far devised
quantum noise control. This is true for the study of gene
NS-supporting dynamics as well. Indeed the conditionA 8
Þ C 1 implies the existence of a nontrivial group of symm
tries G, UA 8. Conversely, given a groupG of unitary op-
erators overH its commutant is a reducible subalgebra
End(H) closed under Hermitian conjugation. Loosely spea
ing, the more symmetric a dynamics, the more likely it is N
supporting.

Therefore one is naturally led to consider the action, vi
representationr, of a finite order~or compact! groupG on a
quantum state spaceH. The irrep decomposition forr has
the form of Eq.~2! where now theJ labels a set ofG irreps
rJ ~dim rJ5dJ). Extendingr by linearity to the group alge-
bra CGª% gPGCug&, one gets a decomposition like that
Eq. ~1!. It is now easy to provide a sufficient condition for a
interaction algebra to be NS supporting.

Proposition 2. If A, r(C G) then the dynamics support
(at least)uJu NS’s with dimensions$nJ(r)%JPJ .

WhenG is a compact group Proposition 2 holds by repla
ing r(C G) with the associative algebra generated byr̃(L),
whereL denotes the Lie algebra ofG andr̃ its representation
associated withr. An important instance of this case is give
by collective decoherence, which will be discussed later i
more detailed manner. It should be stressed that the co
tion of belonging to a group algebra is always satisfied: i
sufficient to consider any group acting irreducibly overH,
e.g., the Pauli group inN-partite qubit systems. The non
trivial assumption is the reducibility ofr. When this is not
given one has, in order to achieve it, to resort to physi
procedures for modifying the system dynamics.

Now we address the issue of the relation between N
supporting dynamics and the quantum noise suppres
schemes that have recently emerged as a third possible
to defeat decoherence in quantum computers@4#. In Refs.
@15# and @6# ways to devisephysical procedures were dis
cussed, involving iterated external pulses or measureme
whereby a quantum dynamics generated byA can be modi-
fied to a dynamics generated bypr(A). Here the ‘‘symme-
trizing’’ projector pr is given by @6# X→pr(X)
ªuGu21(gPGrgXrg

†P r(CG)8. If we are willing to retain the
system self-dynamics~generated byHS) and to get rid just of
the unwanted interaction with the environment~the Sa’s!,
then we have to look for a groupG,U(H), such that~i!
HSP CG 8, and ~ii ! the interaction operatorsSa transform
according to nontrivial irreps under the~adjoint! action ofG.
In this case, sincepG projects on theG-invariant, i.e., trivial
1-2



w

io
n

u

-

r

he
d

re

s i
ed

n

to
b
o

r

r
t
e
o

er
ac
n

ro
iv

g
a
n
ll
n

h
o
le
ra

re

the
e
lts

a-

f

e

r-
n

his
rrors

en

s

ist,
’s.

ition

s in

x-
hey

us
at,
lge-

STABILIZING QUANTUM INFORMATION PHYSICAL REVIEW A 63 012301
irrep, sector of End(H), it can be shown thatpG(Sa)50: the
decoherence-inducing interactions have been averaged a
and the effective dynamics is unitary.

To make a connection between noise suppress
schemes and NS’s it is crucial to notice that Propositio
holds even on replacing the group algebra with its comm
tant and thenJ’s with the dJ’s. Indeed, since theG symme-
trization belongs tor(CG)8, one has the following proposi
tion.

Proposition 3. The G symmetrization ofA supports (at
least) uJ u NS’s with dimensions$dJ(r)%JPJ .

The simplest instance of this result is given bySbeing an
N-level system andG a finite group that acts irreducibly ove
H, e.g., an error generating group@16#. Any G-symmetrized
interaction algebra is then proportional to the identity: t
whole space is a NS. This situation corresponds to the
coupling scheme analyzed in@17#.

The next proposition straightforwardly generalizes a
sult of Ref.@18#. The key mathematical observations are~i!
the Lie algebra spanned by ageneric couple of Hermitian
operatorsH1 ,H2 is the full u(H); ~ii ! the unitary group
UA 8 of the commutant restricted to one of the summand
Eq. ~2! provides the full unitary group over the associat
NS. From ~i! it follows that, if one is physically able to
switchH1 andH2 on and off, any unitary transformation ca
be generated with arbitrary accuracy@19#. More specifically,
in view of ~ii !, if one starts from Hamiltonians inA 8 any
unitary transformation over the NS can be~approximately!
obtained. Finally, if such Hamiltonians are not available
the experimenter from the outset, they can, in principle,
obtained from a generic, i.e., not invariant, pair of Hamilt
nians by a symmetrization procedure@18#. The formal propo-
sition follows.

Proposition 4. Given a generic pair of Hamiltonians
$Hi% i 51

2 on the state space of S, theirG symmetrizations
$pr(Hi)% i 51

2 allow for universal quantum computation ove
each of the NS’s.

This result about universal quantum computation ove
NS is just existential; nevertheless, it is remarkable in tha
shows how only a specific class of gates is required for g
erating arbitary computations completely within the NS. F
practical purposes it is also important that the desired op
tions can be efficiently enacted in terms of physical inter
tions, i.e., one- and two-body couplings. These requireme
must be checked case by case in that they do not follow f
Proposition 4. Constructive results for the case of collect
decoherence were recently found in Ref.@20#, in which it is
shown how to achieve universal computations by resortin
exchange Hamiltonians only. More generally, it is likely th
the schemes with fast switching on and off of Hamiltonia
discussed in Ref.@17# for control of decoupled systems wi
turn out to be useful for achieving universal and efficie
quantum computation over a NS.

We now discuss the case of collective decoherence w
a multipartite quantum system, whose degrees of freed
are used for information encoding/processing, is coup
symmetrically with a common environment. This is the pa
digmatic case for EA strategies@3# @as opposed to ECC in
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which noise acts independently on each subsystem#. We
shall show that it provides a setting for NS’s as well. He
the ~minimal! symmetry group is the symmetric groupSN

exchanging different subsystems. It follows that the~maxi-
mal! interaction algebra that one can consider is given by
space of totally symmetric operators. In the following w
shall specialize to many-qubit systems. All the resu
straightforwardly extend to generald-level systems coupled
to their environment bysl(d) interactions.

Let us consider anN-qubit systemHNª(C2) ^ N. Over
HN acts the group SU(2) via theN-fold ~tensor! power of
the defining irrep, i.e.,U°U ^ N. The associated represent
tion of the Lie algebra su(2)5span$sa%a51

3 is given, with
obvious notation, byrN :sa°Saª( i 51

N sa
( i ) . The associa-

tive algebra generated byrN„su(2)… will be denoted byAN .
We recall that@21# ~1! AN coincides with the algebra o
completely symmetric operators overHN ; ~2! the commu-
tantA N8 is the group algebran(CSN), wheren is the natural
representation of the symmetric groupSN over HN : n(p)
^ j 51

N u j &5 ^ j 51
N up( j )&(p PSN). The following proposition

derives from su(2) representation theory@21#.
Proposition 5. AN supports NS’s with dimensions nJ

5@(2 J11)N! #/@(N/21J11)!(N/22J)! # where J runs
from 0 (1/2) for N even~odd!.

If in Proposition 5AN is replaced by its commutant, th
above result holds withnJ52 J11. Moreover, from Propo-
sition 1 it is clear that collective decoherence allows forAN
codes as well. For example, let us considerN53 qubits. One
has (C2) ^ 3> C ^ C41C2

^ C2. The last term can be written
as span$ucb

a&%ab51
2 where uc1

1&5221/2(u010&2u100&), uc2
1&

5221/2(u011&2u101&) and uc1
2&52/A6@1/2(u010&1u100&)

2u001&], uc2
2&52/A6@ u110&21/2(u011&1u101&)]. One can

check, for example, thatucb
1& anducb

2& (uc1
a& anduc2

a&) span
a two-dimensionalA3 code (A 38 code!. Taking the trace with
respect to the indexa (b) one gets theA 38 (A3) NS’s.
Moreover, the first term corresponds to a trivial fou
dimensionalA 38 code. Notice that any permutation error ca
be written as the product of transpositions that in turn, in t
representation, corresponds to the so-called exchange e
@22#.

A weaker kind of collective decoherence is obtained wh
the symmetry group breaks down:SN→)c51

R Snc
((c51

R nc

5N). The maximal NS-supporting interaction algebra i
then isomorphic to the tensor product^ c51

R Anc
, for which

the obvious extension of Proposition 5 holds: NS’s ex
given by all possible tensor products of the cluster NS
Physically this situation corresponds toR uncorrelated clus-
ters of subsystems such that within each cluster the cond
of collective decoherence is fulfilled@23#. As limiting cases
one obtain collective decoherence and independent one
which no NS’s exist

We finally comment on possible infinite-dimensional e
tensions of the ideas and results presented in this paper. T
would be relevant for quantum computation with continuo
variables@24#. The crucial observation in this respect is th
adding a suitable closure assumption on the interaction a
bra, a generalized form of the basic decompositions~2! and
1-3
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PAOLO ZANARDI PHYSICAL REVIEW A 63 012301
~1! holds@ @8#, p. 9#. It is then likely that at least some of th
constructions of this paper can be properly reformulated
the continuous case. This important issue will be addres
elsewhere; here we limit ourselves to a very simple exam
that represents the continuous analog of the collective d
herence case previously discussed. Let us considerN copies
of a continuous quantum system described by conjugate v
ablesxj ,pl(@xj ,pl #5 i d l j ) coupled with a common environ
ment only through the collective coordinatesXª( j 51

N xj ,P
ª( j 51

N pj . This assumption implies that the interactio
Hamiltonian can be written asHI5(a f a(X,P) ^ Ba , where
the f a are operator-valued functions generating the relev
interaction algebraA` and theBa’s are environment opera
tors. We define creation and annihilation operators byak

6

ª1/A2N( j 51
N exp@i(2p/N)kj#(xj6i pj)(k50, . . . ,N21).

Then one has End(H)> ^ kAk , whereAk denotes the alge
bra generated by$ak

6%. One can check thatA`, 1k.0^ A0.
It follows that the factor ofH corresponding to nonzer
modes realizes an infinite-dimensional NS.

In this paper we faced the problem of stabilizing quant
information against decoherence in a dynamical-algeb
fashion. The analysis of the operator algebraA generated by
.
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interactions with the environment and the self-Hamiltoni
of the information processing system provides the gen
conceptual framework. The notion of a noiseless subsys
@5# has been shown to be the key tool for unveiling the co
mon structure at the root of all the~quantum! error correc-
tion, error avoiding, and error suppression schemes disc
ered so far: the reducibility ofA provides sectors of the stat
space from which information cannot be extracted by u
wanted interactions. Additional families of ECC’s have be
presented. We have described general symmetrizing st
gies designed to synthesize quantum evolutions with the
sired capability of supporting noiseless subsystems. The g
eral ideas have been exemplified by the collect
decoherence case. In our opinion, the overall emerging
ture is conceptually quite satisfactory in that, on the one h
it allows us to clarify the strict mutual relations betwee
apparently different techniques; on the other hand, in view
its generality, it is likely to open different ways to practic
realization of noiseless quantum information processing.
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