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The dynamical-algebraic structure underlying all the schemes for quantum information stabilization is ar-
gued to be fully contained in the reducibility of the operator algebra describing the interaction with the
environment of the coding quantum system. This property amounts to the existence of a nontrivial group of
symmetries for the global dynamics. We provide a unified framework that allows us to build systematically
additional classes of error correcting codes and noiseless subsystems. It is shown that by using symmetrization
strategies one can artificially produce noiseless subsystems supporting universal quantum computation.
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Defending the quantum coherence of a processing devicevant interaction algebra is the one generatetibynd the
against environmental interactions is a vital goal for anyLindblad operatord , . In the latter cased is generated by
foreseeable practical application of quantum information andhe “error” operatorse; .
guantum computation theorjl]. So far essentially three In general A is a reducible T-closed subalgebra of the
kinds of strategy have been devised in order to satisfy such algebra Endf?) of all the linear operators ovét. This im-
crucial requirement(a) error correcting code¢ECC’s) [2],  plies thatA can be written as a direct sum dfxd; (com-
which, in analogy with classical information theory, actively PleX) matrix algebras each one of which appears with a mul-
stabilize quantum information by using redundant encodingiplicity n; [8],
and measurement) error avoiding(EA) codeg 3], which
pursue a passive stabilization by exploiting symmetry prop-
erties of the environment-induced noise for suitable redun- . . - . . .
dant encoding(c) noise suppression schenddd, in which, where 7 is a suitable finite set labeling the irreducible com-

with no redundant encoding, the decoherence-inducing inter?é);desms of A. The associated state-space decomposition

actions are averaged away by properly tailored external

“pulses” frequently iterated. In this paper we shall show HE@JEJCnJ@CdJ_ ®)

how all these schemes derive conceptually from a common

dynamical-algebraic framework. The key notion to shed lightThese decompositions encode all information about the pos-

on this underlying structure is that of theiseless subsystem sible quantum stabilization strategies.

(NS) introduced by Knillet al. in Ref. [5]. In this paper we In Ref.[5] the authors observed that in view of relation

shall discuss how one can analyze in a unified fashion iri1) each factoiC™ in Eq. (2) corresponds to a sort of effec-

terms of purely algebraic data all the possible strategies foiive subsystem ofS coupled to the environment in a state

guantum information stabilization. As a by-product a family independent way. Such subsystems are then referred to as

of generalized ECC'’s will be introduced. We shall provide noiseless. In particular, one gets a noiseless code, i.e., a

abstract characterization of quantum evolutions that suppodecoherence-free subspace H when in Eq.(2) there ap-

NS’s, and show how to obtain them by symmetrization pro-pear one-dimensional irreducible representationeps J,

cedureq6]. Application to a realistic model of decoherence with multiplicity greater than one time&=C",® C [3]. The

is given as well. physical idea is very simple: one wants to identify a sub-
Let S be an open quantum system, wittfinite- space of states that corresponds to a multipartite system in

dimensiongl state spaceH, and self-HamiltonianHg, which one of the subsystems is coupled with the environ-

coupled to its environment through the Hamiltoni&h ment in such a way that quantum information cannot be ex-

=3,S,®B,, where theS,’s (B,’'s) are systemenviron- tracted from it.

men) operators. The unital associative algelraclosed un- We define the commutantl’ in End(H) of A by A’

der Hermitian conjugatio®—S', generated by th8,’s [7] :={X|[X,A]=0}. From Eq.(1) it is clear that the existence

and Hg will be referred to as thénteraction algebra.(We  of a NS is equivalent toA’z@JEJM(nJ,{?)®]dJ¢(?11

shall sometime identifyd5 with one of theS,’s and discard :={N 1|\ e C}. For a NS to be relevant for quantum encod-

the closed caskl;=0.) The algebraic approach used in this jng it must be at least two-dimensional, i.e., may=2.

paper is not restricted to a Hamiltonian description of thethis amounts to having BEoncommutatived’. An interac-

dynamics. Alternatively, the dynamics 8fcan be described  tion algebra satisfying the above condition will be called NS

by (i)a Markovian master equation, i.eg=—i[Hs,p]  supporting. Of course when ditY =3;n?=1 one is in the

+(1/2)EM)\M{[LMp,LL]+[L,L,p LL]}, for the density ma- irreducible cas¢|7|=n;=1] in which no NS’s exist.

trix p; or (ii)a finite time trace-preservingCP map In order to understand in what sense the NS’s can be

p—E(p)=2ieipel(Zefe=1). In the first case the rel- regarded as subsystems let us consider the projeQgrs

AE@JEJHH\J@M(dJ!C)! (1)
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=l ®1g, e ANA’; they correspond to conserved observ-cases they belong to the algeba I,n-—«® M(2%,C). The
ables that constrain the accessible state space to be one of th# factor corresponds in the usual stabilizer construction to

summands in Eq(2), i.e., QyH. The identification of a bi-

the encoding of the error syndrome, i.e., it will be a bit string

partite structure stems from the fact that on the “superseleceontaining the eigenvalues of the stabilizer. The errors cor-

tion sector” QK the full operator algebra is isomorphic to
AA'=A® A’ [9]. The dualityA—A’, which will be used

respond to operations on this factor.
An example of this construction is given by considering

repeatedly later, is in this sense the algebraic ground for thany noiseless code. In this case sintle= 1no® M(1,C) one

notion of a subsystem.
An important special case is whg§,} is a commuting
set of Hermitian operators. The#is an Abelian algebra and

Eq. (2) (with d;=1) is the decomposition of the state space

according to the joint eigenspaces of tBgs. The pointer

basis[10] discussed in relation to so-called environment-
induced superselection is nothing but an orthonormal basi

associated with the resolutiof2). The NS'’s provide the

natural noncommutative generalization of the pointer basi

One might conjecture that, for any initial preparatipna
relation like lim_. &(p)e A’ A=& ;M (ny,C)@M(d;,C)
holds at least approximately{&} denotes the dynamical
semigroup: The quantum coherence between the diffeent
blocks is destroyed.

The decompositiorfl) leads to a straightforward gener-
alization of the notion of a stabilizer ECJ@1] and allows us
to build a general setting in whichonadditive quantum
codes [12] can arise. Let|/I u)(J e JA=1,...n;5;u

S.

finds cig"l= CiCj, since this matrix is not full rank. A noise-
less code is a degenerate ECIZ].

It is well known that group-theoretical notions play a key
role in the analysis of all the schemes so far devised for
guantum noise control. This is true for the study of general
NS-supporting dynamics as well. Indeed the conditién
2 (1 implies the existence of a nontrivial group of symme-
triesGC UA'. Conversely, given a groug of unitary op-
erators overH its commutant is a reducible subalgebra of
End(H) closed under Hermitian conjugation. Loosely speak-
ing, the more symmetric a dynamics, the more likely it is NS
supporting.

Therefore one is naturally led to consider the action, via a
representatiop, of a finite ordern(or compact groupg on a
quantum state spack¥. The irrep decomposition fop has
the form of Eq.(2) where now the7 labels a set ofj irreps
py (dim p;=d;). Extendingp by linearity to the group alge-

=1,...d,) be an orthonormal basis associated with the debra CG=&4.¢Clg), one gets a decomposition like that in

composition(1). Let ), :=sparf|IAu) [N=1, ... nj}, and
let H{ be defined analogously. Now we consideC B map
description of the dynamicksee point(ii) in the Introduc-
tion], the interaction algebral being generated by error op-

erators. The next proposition shows that to any NS corre-

Eq. (). Itis now easy to provide a sufficient condition for an
interaction algebra to be NS supporting.

Proposition 2 If AC p(C@G) then the dynamics supports
(at least)|J] NS’s with dimensionén;(p)};. -
Wheng is a compact group Proposition 2 holds by replac-

sponds a family of ECC'for a related proposition, see iNg p(CG) with the associative algebra generateddgy),

theorem 6 in Ref[5]).

Proposition 1 The Hi’s are ECC’s for any subset of
errors in A.

Proof. If e;,e;e A thenefe; e A. From Eq.(1) and the
general results on ECC'§2] the following computation
now suffices: (IN'ulefe|INw)=(IN ull ® Xij|INw)
=\\CJ -

This kind of ECC will be referred to asl codes The
above result extends to any error $etsuch thatVe; ,e;

e E:>eiTeJ- e B, whereB is an operator algebra for which Eqg.
(1) holds. The proof above should make clear thar}tzf'ﬂeare
A’ codes. One recovers the usual picture by considering
N-partite qubit system, and an Abelian subgrauipf the
Pauli groupP:={1, oy ,0y,0,}% N. Let us consider the state-
space decompositiofR) associated withg. If G hask<N
generators thefg| =2, whereas from commutativity it fol-
lows that d;=1 and |J|=|g|. Moreover, one findsn,
=2N"k: each of the ? joint eigenspaces of (stabilizer
code encodesN—k logical qubits. Therefore one h&g=
02 (" e 0= 2" e (2 Now it is known [13] that
correctable errorgbelonging to the Pauli grougorrespond
to elements; ,g; such thate;rej either belongs t@; or anti-
commuteswith (at least one elemen. In particular, the

latter operators induce a nontrivial mixing of different ei-

. .o . k
genspaces, i.e., a nontrivial action on ttfe factor. In both

an

where. denotes the Lie algebra Gfandp its representation
associated witlp. An important instance of this case is given
by collective decoherence, which will be discussed later in a
more detailed manner. It should be stressed that the condi-
tion of belonging to a group algebra is always satisfied: it is
sufficient to consider any group acting irreducibly oy

e.g., the Pauli group iMN-partite qubit systems. The non-
trivial assumption is the reducibility gb. When this is not
given one has, in order to achieve it, to resort to physical
procedures for modifying the system dynamics.

Now we address the issue of the relation between NS-
supporting dynamics and the quantum noise suppression
schemes that have recently emerged as a third possible way
to defeat decoherence in quantum compufdis In Refs.

[15] and [6] ways to devisephysical procedures were dis-
cussed, involving iterated external pulses or measurements,
whereby a quantum dynamics generated4gan be modi-
fied to a dynamics generated hy,(.A). Here the “symme-
trizing” projector m, is given by [6] X—m,(X)
=[Gl S 4 gpgXpi e p(CG)'. If we are willing to retain the
system self-dynamicgenerated byl s) and to get rid just of
the unwanted interaction with the environmditie S,’s),
then we have to look for a grougC U (), such that(i)
Hse CG’, and (ii) the interaction operatorS, transform
according to nontrivial irreps under tliadjoint action ofgG.
In this case, sincerg projects on thej-invariant, i.e., trivial
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irrep, sector of Endk{), it can be shown thatry(S,)=0:the ~ Which noise acts independently on each subsyktéf‘e
decoherence-inducing interactions have been averaged awa&pall show that it provides a setting for NS’s as well. Here
and the effective dynamics is unitary. the (minimal) symmetry group is the symmetric grouy

To make a connection between noise suppressiofxchanging different subsystems. It follows that theaxi-
schemes and NS'’s it is crucial to notice that Proposition 2mal) interaction algebra that one can consider is given by the
holds even on replacing the group algebra with its commuspace of totally symmetric operators. In the following we
tant and theny’s with the d;’s. Indeed, since th€ symme-  shall specialize to many-qubit systems. All the results
trization belongs tp(CG)’, one has the following proposi- Straightforwardly extend to genereilevel systems coupled

tion. to their environment bgl(d) interactions.
Proposition 3 The G symmetrization of4 supports (at Let us consider arN-qubit system?y:=(C)®". Over
least) | 7| NS's with dimension$d;(p)};. /- ‘Hy acts the group SU(2) via thie-fold (tensoy power of

The simplest instance of this result is given®peing an  the defining irrep, i.eU—U®N. The associated representa-
N-level system and a finite group that acts irreducibly over tion of the Lie algebra su(2) Spal’{%}i:; is given, with
'H, e.g., an error generating groip6]. Any G-symmetrized obvious notation, bypy :a'al—>Sa:=EiN:10'g). The associa-
interaction algebra is then proportional to the identity: thetive algebra generated Ipyg(su(2)) will be denoted byAy.
whole space is a NS. This situation corresponds to the dei/e recall that[21] (1) Ay coincides with the algebra of
coupling scheme analyzed [@7]. completely symmetric operators ovéfy; (2) the commu-

The next proposition straightforwardly generalizes a retant. Ay is the group algebra(CSy), wherev is the natural
sult of Ref.[18]. The key mathematical observations &éje  representation of the symmetric grow over Hy: v(m)
the Lie algebra spanned by generic couple of Hermitian ®}“:1|j)=®}\':1|7r(j)>(77 e Sy). The following proposition
operatorsH, ,H, is the full u(x); (ii) the unitary group derives from su(2) representation the$di].

UA' of the commutant restricted to one of the summands in Proposition 5 Ay supports NS’s with dimensions; n
Eq. (2) provides the full unitary group over the associated=[(2J+1)N!]/[(N/2+J+1)!(N/2—J)!] where J runs
NS. From (i) it follows that, if one is physically able to from0 (1/2) for N even(odd).

switchH; andH, on and off, any unitary transformation can  If in Proposition 5.4y is replaced by its commutant, the
be generated with arbitrary accurdd®]. More specifically, above result holds with;=2 J+ 1. Moreover, from Propo-
in view of (ii), if one starts from Hamiltonians iMl’ any  sition 1 it is clear that collective decoherence allows
unitary transformation over the NS can bepproximately  codes as well. For example, let us consider 3 qubits. One
obtained. Finally, if such Hamiltonians are not available tohas ((?)® ®= C ® C*+(2® (2. The last term can be written
the experimenter from the outset, they can, in principle, beas spafiy§)}2,_; where|y1)=2"%]010~]100), |y3)
obtained from a generic, i.e., not invariant, pair of Hamilto- =2-2|011)—|101)) and |3)=2/\/6[1/2(/010) +|100))
n_ians by a symmetrization procediiie8]. The formal propo- _ 100D)], |42)=2/\/6[|110 — 1/2(|011)+|101))]. One can
sition follows. check, for example, thaty) and|5) (|15) and|y3)) span

HPQOpOS'tK:E 4 th|ven a ger;egc tﬁg of Har?!lto?|ans a two-dimensionald; code (4 ; code. Taking the trace with
{Hi}i=1 on the state space of S, SYmmetnzations ospect to the indexe (8) one gets thed) (As) NS's.

2 : .
{mp(Hi)}i-, allow for universal quantum computation over Moreover, the first term corresponds to a trivial four-

gach of the NS's. dimensional4 ; code. Notice that any permutation error can

This result about universal quantum computation over i?)e written as the product of transpositions that in turn, in this

NS is just existential ngyertheless, itis remarkaple in that epresentation, corresponds to the so-called exchange errors
shows how only a specific class of gates is required for gen[zz] '

erating arbitary computations completely within th_e NS. For A weaker kind of collective decoherence is obtained when
practical purposes it is also important that the desired opereH1 t breaks dowsu—TIIR .S (SR
tions can be efficiently enacted in terms of physical interac- € symmetry group reaks 9W '_NH c=1 ”c( c=1Mc ]
tions, i.e., one- and two-body couplings. These requirements N). The maximalNS-supporting interaction algebra is
must be checked case by case in that they do not follow frorthen isomorphic to the tensor produefl_; A, , for which
Proposition 4. Constructive results for the case of collectivahe obvious extension of Proposition 5 holds: NS’s exist,
decoherence were recently found in R&0], in which itis  given by all possible tensor products of the cluster NS's.
shown how to achieve universal computations by resorting t&hysically this situation corresponds Rouncorrelated clus-
exchange Hamiltonians only. More generally, it is likely that ters of subsystems such that within each cluster the condition
the schemes with fast switching on and off of Hamiltoniansof collective decoherence is fulfille®3]. As limiting cases
discussed in Ref.17] for control of decoupled systems will one obtain collective decoherence and independent ones in
turn out to be useful for achieving universal and efficientwhich no NS'’s exist
guantum computation over a NS. We finally comment on possible infinite-dimensional ex-
We now discuss the case of collective decoherence whetensions of the ideas and results presented in this paper. They
a multipartite quantum system, whose degrees of freedorwould be relevant for quantum computation with continuous
are used for information encoding/processing, is coupledariables24]. The crucial observation in this respect is that,
symmetrically with a common environment. This is the para-adding a suitable closure assumption on the interaction alge-
digmatic case for EA strategi¢8] [as opposed to ECC in bra, a generalized form of the basic decompositi@sand
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(1) holds[ [8], p. 9]. It is then likely that at least some of the interactions with the environment and the self-Hamiltonian
constructions of this paper can be properly reformulated irof the information processing system provides the general
the continuous case. This important issue will be addresseebnceptual framework. The notion of a noiseless subsystem
elsewhere; here we limit ourselves to a very simple exampl€5] has been shown to be the key tool for unveiling the com-
that represents the continuous analog of the collective decdnon structure at the root of all thguantum error correc-
herence case previously discussed. Let us condidepies tion, error avoiding, and error suppression schemes discov-
of a continuous quantum system described by conjugate varfred so far: the reducibility oft provides sectors of the state

ablesx; ,py([x;,pi]1=i &) coupled with a common environ- space f(om whjch informgtion cannot be extracted by un-
ment only through the collective coordinatés=>" ,x; ,P wanted interactions. Additional families of ECC’s have been
N X,

=N b This assumption imolies that the ]':nteract'on presented. We have described general symmetrizing strate-
=2j=1b; - ! umption impil : ! gies designed to synthesize quantum evolutions with the de-

Hamiltonian can be written @8, =2,f,(X,P)® B,, where o4 capanility of supporting noiseless subsystems. The gen-
the f, are operator-valued functions generating the relevanf | ideas have been exemplified by the collective

interaction algebrad.. and theB,'s are environment opera- yecoherence case. In our opinion, the overall emerging pic-
tors. We define creation and annihilation operatorsally  1yre is conceptually quite satisfactory in that, on the one hand

=1/2NZ (L, exi(2m/N)kj](x+ipy)(k=0, ... N—1). it allows us to clarify the strict mutual relations between
Then one has End()= @A, where.A, denotes the alge- apparently different technigues; on the other hand, in view of
bra generated bya, }. One can check thatl..C 1,-,®Ay. its generality, it is likely to open different ways to practical

It follows that the factor ofH{ corresponding to nonzero realization of noiseless quantum information processing.
modes realizes an infinite-dimensional NS.

In this paper we faced the problem of stabilizing quantum | thank M. Rasetti for useful discussions and critical read-
information against decoherence in a dynamical-algebraiing of the manuscript, and Elsdg Finmeccanica compahy
fashion. The analysis of the operator algeldrgenerated by for financial support.
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