PHYSICAL REVIEW A, VOLUME 63, 012107
Magnetoelectric birefringences of the quantum vacuum
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We calculate the optical properties of a vacuum when a static magnetidBfjedohd electric fieldg, are
applied perpendicular to the direction of light propagation. Apart from the known Cotton-Mouton and Kerr
effects, with crossed fields we find magnetoelectric linear birefringence with optical axes parallel to the
external fields. With parallel fields we find magnetoelectric Jones birefringence with optical axes under 45°
with the external fields. Both birefringences are lineaEyB,, and have the same magnitude.
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I. INTRODUCTION where ¢é=e*/45mm*c’=2.67x10 %G 2. This leads to
the following constitutive relations:
Nonlinear optical phenomena in vacuum have been pre-

dicted since 193%1] in the framework of quantum electro- D=E+Dn.,
dynamics[2,3]. In particular, the existence in vacuum of a
linear birefringence induced by a transverse static magnetic DNL:‘ﬂ-NL = ¢[2(E?—B?)E+7(E-B)B],

field (the Cotton-Mouton effe¢t or by a transverse static JE

electric field(the Kerr effect, was predicted4]. Due to their

smallness, an experimental verification of these phenomena H=B+Hy.,

is still lacking. Most of the attention concentrated on the

Cotton-Mouton effect(see, e.g., Ref[5], and references

therein for practical reasons; the linear birefringence in-

duced by a transverse magnetic fiefdloG (10 4 T) equals ] ] )

the one induced by an electric field of 1 statvolt/cm (3 The fields have optical and static componeBts B,,+ By

X 10*V/m). Magnets providing fields of 810°G (30 )  andE=E,+E,, with B,<B, andE,<E,. To simplify the

over centimeter lengths are available, but the correspondinglgebra, we redefine the static fields Bg= \¢E, and By

electric fields of 3< 10 statvolt/icm(9 GV/m) are not easily = V¢Bq. The static fields are now dimensionless, and much

accessible. smaller than unity for all practical cases. The components of
In this paper we will calculate the optical properties of aDy. andHy, at w are

vacuum when a static magnetic fiddg and an electric field

E, are applied perpendicular to the direction of light propa-

L
Hy="— %=§[2<EZ—BZ>B—7<E- B)E]

Dnio=4(E,-Eq—B,-Bo)Eq+2(E2—BJ)E,,

gation. Under these conditions, magnetoelectric linear bire- +7I(E. -ButEn-B )Ba+t (E~-B)B

fringence [6—8] and magnetoelectric Jones birefringence {(Ey-BotEo-B,)Bot (Eo-Bo)B},

[10,1] were recently observed in molecular quuiﬁ&lZ]._ _ Hylo=4(E, Eo—B,- BO)BO+2(E§—B§)Bw

Here, we will demonstrate that these effects also exist in

vacuum, and that both are lineartgB,. We will also com- —7{(E,-Bo+Ep-B,)Eg+ (Eq-Bo)E,}

ment on the relevance of these results for the experimental ) o )

observation of vacuum birefringence. We can write the constitutive relations as
D,=€(Eq,Bo)-E,+Wpe(Eg,Bo)-B,, (2)

Il. MAGNETOELECTRO-OPTICS OF VACUUM _
. . L . Ho=wn" "(Eo,Bo)-B,+Whe(Eo,Bo) - E, . 2
The starting point of the calculation is the Heisenberg-
Euler Lagrangiari1], which in Heaviside-Lorentz units, un- We use Maxwell's equations in the classical limit

der neglect of the second-order fine-structure correction,

ends V.D=0, V-B=0, &)
VXE 1B « 10D 4
- EII _EW- ( )

1 1
L= (E*=B?)+ 5 {(E?~B)?+7(E-B)?]=Lo+Ly.,
To solve this problem, we assume that plane wave eigen-
modes with refractive index n exist: E,(r,t)

*Corresponding author. FAXt 33 4 76 85 56 10. Email address: =E_qe'“l(MOk "=t With this ansatz, Eqg1) and(2) give,
rikken@polycnrs-gre.fr together with Eq(4), the wave equation
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{ﬂ2(1>~M_1-<1>+ N(Wpg ®+®- W)+ e} -E =0, but no clear magnetoelect[ic birefringence was reported. In
(5)  our calculation, we choosk=2, Bo=By&, and Eq=Eyj.
For the tensors in the constitutive relations, we find

where ®-A=kxA. If we assumek=2, the operator®

takes the form 1+5B3+2E3 0 0
1 -1 0 e= 0 1+6E5— 2B} 0 ,
1 0 0l 0 0 1-2B3+2E3
0 0 0 1-6B2+2E2 0 0

It can be easily seen that the solutions of Egs[or, equiva- -1 0 1-2B2-5E3 0 ,

lently, Eq.(5)] automatically fulfill Eq.(3). The problem is

2 2
therefore reduced to finding the solutions of Eg). 0 0 1-2By+2Eq

and
I1l. MAGNETOELECTRIC LINEAR BIREFRINGENCE

. o . o 0 TEoBy O
In crossed electric and magnetic fields, a linear birefrin- 0=o

gence with optical axes parallel and perpendicular to the ex- Wpg=| —4EBy O 0 =-w..
ternal fields is predicteb—8] and observef] in molecular 0 0 0
liquids. For the vacuum, the effect of crossed fields on the
propagation of electromagnetic waves was considgted], Inserting these into Eq5) gives
|
2—n2?+EZ(5n%+2)+B3(2n?+5) + 14nEyB, 0 0
0 2—n?+E5(6—2n%)+B3(6n°—2)+8nEyB, 0
0 0 2—2B2+2E}
X Ew0: EwO .
|
The solutions forE,, are the eigenvectork and § =EyX. For the tensors in the constitutive relations, we find

with eigenvalues p,=2—n?+E3(5n?+2)+B3(2n?+5)  that
+14nEeB, and py,=2-n?+E{(6—2n?)+Bj(6n>—2)
+8nEyB,, which should equal unity. From, ,= 1, we find

2 2
Ne~1+7/2BZ+7/2E5+7EB, and ny~1+2B2+2E2 1+58,+6E, 0 0
+4EoB,. We therefore find a birefringencAn=n,—n, €= 0 1-2B3+ 2E2 0 ,
_ 2/or? 2 - , -
=3/2B;+3/2E5+3EyBy in which we can recognize a 0 0 1- 2B2+ 2E2

Cotton-Mouton  birefringenceAncy=n,—n, =3/2B3, a
Kerr birefringenceAn,=n,—n, = —3/2E3, and a magneto-

electric linear birefringenceAnMEEnB—nE=3EOBO. The 1_553_633 0 0
Cotton-Mouton and Kerr results agree with literature reports_1 ) )
[4]. In a magnetic field of 3%10°G (30 T) and an electric 4 "= 0 1-2B3+2E; 0 ,
field of 3x10°statvolt/cm (9<10°V/m) this results in 0 0 1-2B2+ 2E2
Ancy=3.5X10"%Y, Ang=-3.4x10"%5 and Anye=7.2
x10 %,

and

IV. MAGNETOELECTRIC JONES BIREFRINGENCE

. g : o 10E,Bq 0 0
In parallel electric and magnetic fields, a linear birefrin-
gence with optical axes that bissect the axes defined by the ~ Wps= 0 7EoBo 0 =—Whe.
fields is predicted 10,11 and observed12] in molecular 0 0 7E,B,

liquids. To our knowledge, the existence of this so-called
Jones birefringence has never been considered before in
vacuum. In our calculation, we chood® =B,k and E,  Equation(5) gives
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—n?(1—2B3+2E2)+2+5B3+ 6E2 —3nEyB, 0
—3nEyBy —n?(1-6B§—5E]) +2—2B3+ 2E] 0 E.o=E.o-
0 0 2—2B3+2EZ
[
The solutions foE,,q are transverse eigenvect@sande_,  andB=cos/g2+g2z. This matrix describes the transforma-

with the corresponding eigenvalups andp_, which can tion of the electric field vector of the light upon propagation.
be found by standard matrix manipulation techniques. Thets eigenvectors are

values forn follow from the condition thap..=1. The ex-

pressions foe. andp.. are very large andbnot very instruc- (90— \/(g§+ 93)

tive. We therefore approximate them by neglecting all terms 9-= 95

higher than quadratic or bilinear in the external fields, keep-
ing in mind thatn~1+0(BZ). In practice we will have and
Eo<By, SO we neglecE] with respect taB3. This leads to

go+ V(g5+95)

9+= .
—BS ES 95
e.~| EgBy| and e ~| EqBy |. These eigenvectors represent electric-field vectors that
0 0 propagate unchanged. Therefore, the eigenmodes of the

Maxwell equationsg, ande_, and the eigenvectors of the
) ) _ JonesM matrix, g, andg_, are parallel. From this it easily
This result describes two orthogonal eigenvectors that argy(jows thatg;= —29o(Eq/Bg).
rotated arounck over E;/B,, as compared to thg andy We can determinay, by considering only the Cotton-
axes. This is due to a combination of magnetoelectric Joneslouton effect, i.e., by putting;=0 in the Jones formalism.
and Cotton-Mouton birefringences. We can disentangle thesg,,o \1 matrix reduces tv :(e'%z 0. ). The eigenvec-
two birefringences by applying the Jones formali§ia]: T M ez O et

) ! 4 . : tors areXx with eigenvaluee'?o?, and § with eigenvalue
The JonedN matrices for isotropic refraction, standard linear g2 ) ] )
birefringence, and Jones birefringence are given Ny f °. ;I;}hgreszltlng_phase glffer_en(z:e UF;O” prgpagé}lflr?n be-
=7(07). Nia=0olo 1), and N,=g,(7 ). respectively r\(,avferzgtivee)i(ngigesy vevgerrl]g\]/z ?osulnsd a%rgv??gr ?ﬁi Coetton-
where 5, g9, andg; are real numbers. From this we calcu-

late the Joned! matrix to be Mouton birefringence arelx=1+7/283 and n,= 1A+'282,
which lead to a phase difference betweentrendy eigen-
 [B+geA Ag, modes of
M=g'7* ,
Ag;  B—goA

where

R

Sin +05Z
Aei 9o 395
9o+ 9;

a) forth b) back
n=1+3ER, n=1-3ER,

FIG. 1. Schematic view of the properties of the magnetoelectric
linear birefringence in multipass cavities. The magnetoelectric ef-
fects on the refractive index on forth and back passages are shown FIG. 2. Proposed geometry to increase the effective optical path
to be opposite. A similar conclusion holds for magnetoelectriclength for a determination of the magnetoelectric Jones birefrin-
Jones birefringence. We have omitted the Cotton-Mouton and Kergence.M1 andM2 should be highly reflecting, slightly transmit-
contributions for clarity. ting mirrors, and3 andM4 should be 100% reflecting mirrors.
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3/ZBSkz. The two phase differences have to be identical, andnd back paths inside an optical cavity, but to a cancellation
therefore go=23/4B3k, which leads tog;=—3/2E,Bok. (see Fig. 1. One therefore has to use a ring cavity to increase
From this it follows [14] that n.s—n_,e=2g,/k the effective path length of the ligliéee Fig. 2 The modu-

— —3E,B,. lation frequency in R_e1[15] was Ilmlteq to less than 0.1 Hz.

In an upgraded version of this experimé¢ft, a modulation
frequency of a few Hz is envisaged. Modulation of a strong
magnetic field at an even higher frequency is not practical,

Our calculations clearly show that both the magnetoelec@lthough it is very desirable, as it would allow one to reach
tric linear birefringence and the magnetoelectric Jones birethe shot noise limit in the detection of the signal. In the
fringence, predicted and observed for molecular liquids, alsghagnetoelectric case, one could use a very strong static mag-

V. DISCUSSION

exist in vacuum, and are re'ative'y Strong: netic field (3>< 105 Gis aVaiIable and a Comparatively small
electric field 3% 10° statvolt/cm) alternated at relatively
Anye An; high frequency(=1 kHz). One gains a factor of 4 in signal
= = =n;=2. strength for the magnetoelectric case as compared
Ve VANngAngy| | VANnKANgy 7 ) J o

to the Cotton-Mouton case by reversing the field

The molecular predictions also givenyz=An;. Sym- directions, aSAnME(EO):_AnME(_EO) and Anyge(Bo) .
metry arguments suggest that such a relation always holds _A_n'V'E(__ Bo). With these flgures, for t_he same total In-
true for weak fields in media that are isotropic in the absencé‘agrat'o.n tlme one could obtaml a ;hot-n0|s§-l|mlted sensitiv-
of external field48]. Calculations for atomic hydrogen give ity that is higher than the sensitivity found in Rg8].

7we~0.016[8], whereas recent experiments on molecular, " conclusion, we have presented calculations of the op-
liquids show thaty,<3.6x 103 [9,12]. From this point of tical properties of a vacuum under transverse electric and

view it would be advantageous to search for the magnetor_nagnetic fields. In addition to the known effects, we find

electric birefringences of the vacuum, instead of the Cottonmagnetqele_ctric lingar bir_efringence and magnetoelectric
ones birefringence, both linear iEyB,. These effects may

Mouton effect, as unwanted contributions from residual ga% ; .
e more favorable to the experimental observation of

molecules, windows, mirrors, etc. are relatively much birefri than the Cotton-Mout ftoct
weaker for the magnetoelectric case. vacuum Direiringence than the Lotton-Mouton etiect.

The most sensitive experiments on the propagation of
light in vacuum in the presence of a transverse magnetic field
[15] were realized by using a multipass optical cavity and by We gratefully acknowledge B. A. van Tiggelen and P.
modulating the magnetic field. In contrast to the Cotton-Wyder for helpful discussions. The Grenoble High Magnetic
Mouton effect, magnetoelectric birefringences do not giveField Laboratory is a “laboratoire conventionaex univer-
rise to an accumulation of the phase differences on the fortkites UJF et INP de Grenoble.”
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