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Discrete Moyal-type representations for a spin
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In Moyal’s formulation of quantum mechanics, a quantum spins is described in terms ofcontinuous
symbols, i.e., by smooth functions on a two-dimensional sphere. Such prescriptions to associate operators with
Wigner functions,P or Q symbols, are conveniently expressed in terms of operator kernels satisfying the
Stratonovich-Weyl postulates. In analogy to this approach, adiscreteMoyal formalism is defined on the basis
of a modified set of postulates. It is shown that appropriately modified postulates single out a well-defined set
of kernels that give rise todiscrete symbols. Now operators are represented by functions taking values on
(2s11)2 points of the sphere. The discrete symbols contain no redundant information, contrary to the con-
tinuous ones. The properties of the resulting discrete Moyal formalism for a quantum spin are worked out in
detail and compared to the continuous formalism.
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I. INTRODUCTION

The idea of representing quantum mechanics of a par
in phase spaceG goes back to Wigner@1#. He established a
one-to-one correspondence between a quantum stateuc& in
the particle Hilbert spaceH and a real function

Wc~p,q!5
2

hEG
dxc* ~q1x!c~q2x!exp@2ipx/\#. ~1!

Its properties suggest an interpretation as a quasiprobab
in phase space, the only drawback being the negative va
it may take. A more general framework for phase-space r
resentations@2# of quantum states as well as operatorsÂ is
given by the relation

WA~q,p!5Tr @D̂~q,p!Â#, ~2!

with an operator kernel@3,4#

D̂~q,p!52D̂~q,p!P̂D̂†~q,p!, ~q,p!PG. ~3!

Here P̂:(q̂,p̂)→(2q̂,2 p̂) is the unitary, involutive parity
operator, whileD̂(q,p) describes translations in phase spa
@5#. If the operatorÂ is chosen as the density matrix of
pure state,Â5 r̂c5uc&^cu, Eq. ~2! reduces to Eq.~1!. The
kernelD̂(q,p) can be derived from a set of conditions tha
phase-space representation is required to satisfy~see below!.
It is intimately related to the behavior of a functionWA(q,p)
under translationsmapping the phase spaceG onto itself.
The map~2! from operators to functions (Â→WA) has an
important feature: its inverse, mapping functions to opera
(WA→Â) are mediated by thesamekernel —in other words,
the kernelD̂(q,p) is self-dual.

For a quantum spin, the symbol associated with an op
tor is a continuous function defined on a sphereS 2, which is
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the phase space of classical spin. Now, instead of translat
in planar phase space, it is the groupSU(2) of rotations that
plays a dominant role when the Moyal formalism is set u
As for a particle, the set of Stratonovich-Weyl postulates@6#
characterizes the symbols in an elegant way. For clarity,
postulates are now displayed in their familiar form for t
continuous symbols:

~S0! linearity: Â°WA is a linear one to one map,

~S1! reality: WA†~n!5WA* ~n!,

~S2! standardization:
2s11

4p E
S 2

WA~n!dn5Tr @Â#,

~S3! traciality:
2s11

4p E
S 2

WA~n!WB~n!dn5Tr@ÂB̂#,

~S4! covariance: Wg•A5WA
g , gPSU~2!.

It is natural to have a linear relation between operators
symbols (S0), while (S1) implies that Hermitean operator
are represented by real functions. The third condition (S2)
maps the identity operator to the constant function on ph
space, and traciality (S3) expresses statistical averages
terms of symbols. The covariant transformation of the sy
bols (S4) with respect to rotationsgPSU(2) effectively in-
troduces phase-space points as arguments of the sym
The continuous Moyal representation for a spin@7,8# com-
patible with these conditions can be based on a self-d
kernel D̂(n) ~see Sec. 2! in analogy to Eq.~2!.

In order to have a consistent and full-fledged classi
formalism it is necessary to introduce a product betwe
symbols that keeps track of the noncommutativity of the u
derlying operators. This Moyal product@2#, or twisted prod-
uct, for two operatorsÂ and B̂ expresses theWAB of the
operator productÂB̂ in terms of the symbolsWA andWB ,
©2000 The American Physical Society05-1
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WAB~n!5WA~n!!WB~n!

5E
S 2
E

S 2
L~n,m,k!WA~m!WB~k!dmdk, ~4!

with a functionL(n,m,k) of three arguments given explic
itly in @7#, for example. The! product is known to be asso
ciative.

Other continuous representations for a spin do exist, s
as the Berezin symbols of spin operators@9# that are the
analog of theP andQ symbols@5# for a particle. Instead of a
single self-dual kernel, the Berezin symbols require, ho
ever, apair of two different kernels,dual to each other: One
of the kernels maps operators to functions while its dua
needed for the inverse procedure. It will become clear la
on that the self-dual and the dual approaches correspon
defining orthogonal and nonorthogonal bases, respectiv
in the vector spaceAs of operators acting on the Hilber
space of a spins. When slightly modifying the postulates o
Stratonovich, they are also compatible with kernels that
not self-dual.

A common feature of these representations is theredun-
dancy of the continuous symbols. When represented b
(2s11)3(2s11) matrix, a Hermitean operator is fixed b
the values of (2s11)2 real parameters. Consequently, t
values of the symbols being continuous functions on
sphere, cannot all be independent—in other words, the in
mation contained in a symbol is redundant. Thediscretever-
sion ofP andQ symbols for a spins, introduced in@10,11# as
a means to reconstruct the quantum state of a spin, all
one to characterize a spin operatorÂ by using only themini-
mal number of parameters. In fact, a discrete symbol can
considered as living on a ‘‘discretized sphere,’’ that is, a
function taking~real! values on a finite set of points on th
sphere only. Such a formalism will be called a discre
Moyal-type formalism.

The purpose of the present paper is to develop the disc
Moyal formalism in analogy to the continuous one. In pa
ticular, the kernel and its dual defining the discrete symb
will be derived from a set of appropriate Stratonovich-ty
postulates. Subsequently, the properties of these symbol
studied in detail.

II. CONTINUOUS REPRESENTATIONS

A. Continuous self-dual kernel: Wigner symbols

The Stratonovich-Weyl correspondence for a spins is a
rule associating with each operatorÂPAs on a Hilbert space
Hs a functionWA on the sphereS 2, called its~Wigner! sym-
bol. Let us define it in the spirit of Eq.~2! by means of a
universal operator kernelD̂(n), which can also be thought o
as a field of operators on the sphere. Then, the first requ
ment (S0) is already satisfied, and the postulates (S1) to
(S4) turn into conditions on the kernel:

~C1! reality: D̂†~n!5D̂~n!,

~C2! standardization:
2s11

4p E
S 2

dnD̂~n!5 Î ,
01210
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~C3! traciality:
2s11

4p E
S 2

dnTr@D̂~n!D̂~m!#D̂~n!

5D̂~m!,

~C4! covariance: D̂~g•n!5ÛgD̂~n!Ûg
† , gPSU~2!,

where the matricesÛg are a unitary (2s11)-dimensional
irreducible representation of the groupSU(2).

The existence of a kernelD̂(n) satisfying (C1 –C4) has
been proven in@6# by explicit construction. The derivation in
@7# starts by expanding the kernel in a basis associated
the eigenstates of the operatorŝ•nz ,

D̂~n!5 (
m,m852s

s

Zmm8~n!um,nz&^m8,nzu, ~5!

with unknown coefficients Zmm8(n). It follows from
(C1 –C4) that one must have

Zmm8
s

~n!

5
A4p

2s11 (
l 50

2s

« lA2l 11K s l s

m m82m m8
L Yl ,m82m~n!,

~6!

where«051 and« l561,l 51, . . . ,2s, and the definition of
the Clebsch-Gordan coefficient given in@7# is used. Conse-
quently, there are 22s different kernels that define a
Stratonovich-Weyl correspondence rule.

A new and simple derivation of the kernelD̂(n), indepen-
dent of the argument given in@7#, is presented now. It ha
two important advantages: On the one hand, it will provid
form of the kernel similar to that one of a particle~3!, which
is interesting from a conceptual point of view. On the oth
hand, it will be possible to transfer this approach to a la
extent to the case of the discrete Moyal formalism.

Expand the kernel in the eigenbasis of the operatorŝ•n,

D̂~n!5 (
m,m852s

s

Dmm8~n!um,n&^m8,nu, ~7!

where the expansion coefficientsDmm8 are unknown so far.
According to the reality condition (C1) they must satisfy
Dmm8(n)5Dm8m

* (n). In a first step, the numbersDmm8(n) are
shownnot to depend on the labeln. Consider the transfor-
mation of D̂(n) under a rotationg. According to (C4) one
must have

(
m,m852s

s

Dmm8~g•n!um,g•n&^m8,g•nu

5ÛgD̂~n!Ûg
†5 (

m,m852s

s

Dmm8~n!um,Rgn&^m8,Rgnu,

~8!
5-2
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whereÛgum,n&5um,Rgn&5um,g•n& with a rotation matrix
RgPSO(3) representinggPSU(2) in R3. Consequently,
one must have for anyg that

Dmm8~g•n!5Dmm8~n!, ~9!

which is only possible ifDmm8 does not depend onn. Con-
sider next a rotationg(n) about the axisn by an anglew

P@0,2p), represented by the unitaryÛg(n)5exp(in• ŝw).
The left-hand-side of (C4) is invariant under this transfor
mation while the right-hand-side transforms:

D̂~Rg(n)n!5D̂~n!

5 (
m,m852s

s

Dmm8exp@ i ~m2m8!w#um,n&^m8,nu,

~10!

which is possible only if

Dmm85D~m!dmm8 . ~11!

Therefore, covariance of the kernel under elements ofSU(2)
requires it to be diagonal in the basis associated with
directionn,

D̂~n!5 (
m52s

s

D~m!um,n&^m,nu. ~12!

Next, the condition of traciality will be exploited. Upon re
writing (C3) in the form

E
S 2

dnds~m,n!D̂~n!5D̂~m!, ~13!

the functionds(m,n)[(2s11)Tr@D̂(m)D̂(n)#/(4p) is seen
to be the reproducing kernelfor a certain subset of (2s
11)2 functions on the sphere@12,7#. In other words,
ds(m,n) acts in this space as a delta function with respec
integration overS 2, and for spins, it reads explicitly

ds~m,n!5(
l 50

2s

(
m52 l

l

Ylm~m!Ylm* ~n!5(
l 50

2s
2l 11

4p
Pl~m•n!.

~14!

Here the addition theorem for spherical harmonicsYlm(n),l
50, . . . ,2s,2 l<m< l has been used to express the s
over m in terms of Legendre polynomialsPl(x),21<x<1.
Upon choosingm[nz and with nz•n5cosu, the condition
(C3) becomes

Tr@D̂~nz!D̂~n!#5(
l 50

2s
2l 11

2s11
Pl~cosu!. ~15!

Use now the expansion~12! of the kernel on the left-hand
side as well as the identity
01210
e

o

u^m,nzum8,n&u25(
l 50

2s
2l 11

2s11 K s l s

m 0 mL
3K s l s

m8 0 m8
L Pl~cosu!, ~16!

leading to

Tr @D̂~nz!D̂~n!#

5(
l 50

2s S (
m52s

s

D~m!K s l s

m 0 mL D 2
2l 11

2s11
Pl~cosu!.

~17!

Compare now the coefficients of the Legendre polynom
Pl(cosu) with those in Eq.~15!. This leads to (2s11) con-
ditions

(
m52s

s

D~m!K s l s

m 0 mL 5« l , « l561, l 50, . . . ,2s.

~18!

These equations can be solved forD(m) by means of an
orthogonality relation for Clebsch-Gordan coefficients@13#,

D~m!5(
l 50

2s

« l

2l 11

2s11 K s l s

m 0 mL . ~19!

Thus, the self-dual kernel for the continuous Moyal form
ism is given by

D̂~n!5 (
m52s

s

(
l 50

2s

« l

2l 11

2s11 K s l s

m 0 mL um,n&^m,nu,

~20!

Out of these 22s11 distinct solutions, only 22s are compatible
with the condition of standardization (C2) that has not been
used until now. This condition imposes

(
m52s

s

D~m!51, ~21!

being satisfied if and only if«0511.
The set of solutions~20! coincides indeed with those

found in @7#. The easiest way to see this is to calculate
matrix elements of the kernelD̂(n) in Eq. ~20! with respect
to the standard basisum,nz&. One reproduces the coefficien
of the expansion~6!: ^m,nzuD̂(n)um8,nz&5Zmm8(n).

The expansion~20! is interesting from a conceptual poin

of view. It allows one to interpret physically the kernelD̂(n)
in analogy with the kernel for a particle given in Eq.~3! by
writing

D̂~n!5ÛnD̂~nz!Ûn
† , ~22!

whereÛn represents a rotation that maps the vectornz on n.
Imagine now to contract@12# the group SU(2) to the
5-3
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STEPHAN HEISS AND STEFAN WEIGERT PHYSICAL REVIEW A63 012105
Heisenberg-Weyl group. It is known that this procedure tu
rotationsÛg into translationsD̂(q,p). As shown in@14#, the
operatorD̂(nz) contracts in the following way:

D̂~nz!→2P̂, ~23!

if « l511,l 50, . . . ,2s. Therefore, the operatorD̂(nz) plays
the role of parity for a spin as is by no means immediat
obvious when looking at it.

Finally, we would like to point out that the integral kern
L, defining the! product of symbols~4!, has a simple ex-
pression in terms of Wigner kernels:

L~n,m,k!5S 2s11

4p D 2

Tr@D̂~n!D̂~m!D̂~k!#. ~24!

B. Continuous dual kernels: Berezin symbols

Wigner symbols of spin operators are calculated by me
of a kernel that is its own dual. Other phase-space repre
tations are known that do not exhibit this ‘‘symmetry’’ be
tween an operator and its symbol.P and Q symbols for a
particle are familiar examples that have their analog in
‘‘Berezin’’ symbols for a spin. It will be shown now tha
these symbolic representations also have a simple descri
in terms of kernels satisfying a modified set of Stratonovi
Weyl postulates. The conditions (C1 –C4) must be relaxed
slightly in order to allow for a pair of dual kernels.

The required generalization is easily understood in te
of linear algebra. The ensemble of all operators in the s
dual kernel is nothing but a~overcomplete! set of vectors
spanning the linear spaceAs of operators on the Hilber
space of the spins. As the traciality (C3) indicates, this
family of vectors is ‘‘orthogonal’’ with respect to integratio
over the sphere as a scalar product. Each operatorÂ can be
written as a linear combination of the elements of the ker
with its Wigner symbol as expansion coefficients. More p
cisely, the expansion coefficientsWA(n) with respect to the
basisD̂(n) are given by the ‘‘scalar product’’ ofÂ with the
samebasis vector as shown, for example, in Eq.~2!. The
essential point now is, that there are alsononorthogonal
bases of the same space. Given a nonorthogonal basis
noted byD̂nnPS2, its dual basisD̂n is uniquely determined
through the scalar product. Furthermore, the dual basis
spans the original space, which implies that now there w
be two different expansions of one operatorÂ defining a
symbolAn and its dualAn, respectively. Consequently, bot
kernels and symbols come in pairs. The familiarP and Q
symbols—or Berezin symbols@9#—will be seen to be related
in this way.

Nonorthogonal bases are allowed in the present fra
work if, first of all, traciality (C3) is relaxed to

~C83! traciality:
2s11

4p E
S 2

dn Tr@D̂mD̂n#D̂n5D̂m .

~25!
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The kernel and its dual are both real in analogy to (C1).
Explicitly, the symbols and their duals are given by

An5Tr@ÂD̂n#, An5Tr@ÂD̂n#. ~26!

Furthermore, one is free to normalize one of the kernels,D̂n ,
say, in analogy to (C2), and one requires it to transform
covariantly (C4).

It is possible as before to derive the explicit form of th
kernels by a reasoning in analogy to above. The general

satz for bothD̂n andD̂n in the basis referring to the axisn as
in ~7! is again reduced to diagonal form by exploiting the
behavior under rotations:

D̂n5 (
m52s

s

Dmum,n&^m,nu, D̂n5 (
m52s

s

Dmum,n&^m,nu,

~27!

with two sets of numbersDm andDm, which do not depend
on n. It is necessary that the trace of these two operators w
labelsm[nz andn, say, equals the reproducing kernel wi
respect to integration over the sphere, that is, instead of
~15! one needs to have

Tr@D̂nz
D̂n#5(

l 50

2s
2l 11

2s11
Pl~cosu!, ~28!

where cosu[nz•n. This leads to the conditions

F (
m52s

s

DmK s l s

m 0 mL GF (
m52s

s

DmK s l s

m 0 mL G51,

~29!

with l 50, . . . ,2s. The ensemble of solutions is paramete
ized by (2s11) finite nonzero real numbersg l :

(
m52s

s

DmK s l s

m 0 mL 5F (
m52s

s

DmK s l s

m 0 mL G21

5g l ,

~30!

Solving for the expansion coefficients, one obtains

Dm5(
l 50

2s

g l

2l 11

2s11 K s l s

m 0 mL , ~31!

Dm5(
l 50

2s

g l
21 2l 11

2s11 K s l s

m 0 mL . ~32!

As in the self-dual case, the standardization implies t
g0511. This class of solutions for kernels that are not th
own dual has been obtained in@8# by an entirely different
approach. Self-dual kernels are a small subset; they req
Dm[Dm, which is g l5g l

21 or g l561 in agreement with
Eq. ~20!. Each set of numbersg l defines a consistent phas
space representation of a quantum-mechanical spin.

Consider the particular caseDm5dms resulting from
5-4
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TABLE I. Expansion coefficients of the dual kernelsD̂m , D̂m, and the self-dual kernelD̂(m) in terms of

the dual pairD̂n and D̂n.

Tr@•D̂m# Tr@•D̂m#

D̂n
4p

2s11
(mlK s l s

m 0 mL2

Ylm~n,m! ds~n,m!

D̂n ds~n,m! (mlK s l s

m 0 mL 22

Ylm~n,m!

D̂(n) (mlK s l s

m 0 mLYlm~n,m! (mlK s l s

m 0 mL 21

Ylm~n,m!
bo

A
th

ro

s

in-
ries
l

he

eir
r a

ds,
-

.
r
-

go-
ri-

ing
-

g l5K s l s

s 0 sL . ~33!

The associated kernels read

D̂n5us,n&^s,nu[un&^nu, ~34!

D̂n5 (
m52s

s

(
l 50

2s
2l 11

2s11 K s l s

s 0 sL
21

3K s l s

m 0 mL um,n&^m,nu. ~35!

This choice has the advantage that one of the two sym
reduces to the expectation value of an operatorÂ in coherent
states@5#. It turns out to be just theQ symbol of Â, QA(n)
5^nuÂun&, that is, its expectation in a spin-coherent state.
the same time, one falls back on a familiar expression for
dual symbol, namely theP symbol for Â, defined by an
expansion in terms of a linear combination of operators p
jecting on coherent states,

Â5
~2s11!

4p E
S 2

PA~n!un&^nudn. ~36!

In the present notation, Eq.~26! implies that

QA~n![An5Tr @ÂD̂n#, PA~n![An5Tr @ÂD̂n#,
~37!

so that Eq.~36! reads

Â5
~2s11!

4p E
S 2

dn Tr @ÂD̂n#D̂n . ~38!

It is obvious now that one has~see Ref.@7#!

Tr @ÂB̂#5
~2s11!

4p E
S 2

dnPA~n!QB~n!

5
~2s11!

4p E
S 2

dn AnBn . ~39!
01210
ls

t
e

-

Finally, it is interesting to calculate theQ andP symbols of

the self-dual kernelD̂(n) as well as the pair of dual kernel

D̂n and D̂n using the shorthand

Ylm~n,m!5Ylm* ~n!Ylm~m!, ~40!

so that the reproducing kernel is given by

ds~n,m!5(
ml

Ylm~n,m!. ~41!

Table I shows the expansion coefficients of the kernels
troduced so far in terms of other kernels. Note that the ent
of last row, theQ and P symbols of the self-dual kerne

D̂(n), do simultaneously provide the Wigner symbols of t

dual kernelsD̂m and D̂m.

III. DISCRETE MOYAL-TYPE REPRESENTATIONS

A particular feature of the kernels discussed so far is th
redundancy; the linear space of Hermitean operators fo
spins has dimension (2s11)2, while the kernels consist of a
continuously labeled set of basis vectors. In other wor
there are at mostNs5(2s11)2 linearly independent opera

tors among allD̂(n), nPS 2. In this sectiondiscretekernels

will be introduced, denoted byD̂n , n51, . . . ,Ns . No linear

relations must exist between the operatorsD̂n that constitute
the kernel, that is, they are a basis ofAs in the strict sense. It
is natural to expect that asubsetof preciselyNs operators

D̂(nn), n51, . . . ,Ns will give rise to a discrete kernel
Therefore, evaluating a continuous symbol of an operatoÂ
at Ns pointsnn of the sphereS 2 provides a promising can
didate for a discrete symbol, i.e., the setAn[Ann

, n

51, . . . ,Ns . For brevity,Ns points onS 2 are called acon-
stellation.

As before, one might expect orthogonal and nonortho
nal kernels to exist. It turns out, however, that an approp
ately modified set of Stratonovich-Weyl postulates cover
discrete kernels doesnot allow for orthogonal ones. There
5-5
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fore, we start immediately by deriving the discrete no
orthogonal kernels coming as before in combination with
dual.

A. Discrete dual kernels

By analogy with the continuous representation of the p
ceding section, one modifies the Stratonovich-Weyl pos
lates in the following way~throughout, the indexn takes all
the values from 1 toNs):

~D0! linearity: Â°An is a linear map,

~D1! reality: D̂n
†5D̂n ,

~D2! standardization:
1

2s11 (
n51

Ns

D̂n5 Î ,

~D3! traciality: D̂n5
1

2s11 (
m51

Ns

Tr@D̂nD̂m#D̂m ,

~D4! covariance: D̂g•n5ÛgD̂nÛg
† , gPSU~2!.

Let us briefly comment on these conditions. Linearity is a
tomatically satisfied if discrete symbols are defined via k

nels, that is, An5Tr@ÂD̂n#. The second condition—

reality—is obvious, and in~D2! the kernelD̂n dual to D̂n is

standardized. The duality betweenD̂n and D̂n is made pre-
cise by the condition of traciality since~D3! only holds if
one has

1

2s11
Tr@D̂nD̂m#5dn

m , n,m51, . . . ,Ns , ~42!

which, upon considering the trace as a scalar product, c
cides with the condition defining the dual of a given bas

As a matter of fact, if$D̂n%, n51, . . . ,Ns , is a basis, its
unique dual is guaranteed to exist. Finally, covariance un
rotationsgPSU(2) must be reinterpreted carefully. Under
transformationg, a constellation associated withNs points on
the sphere will, in general, be mapped to adifferentconstel-

lation. In other words, the imageD̂g•n5D̂(g•nn) is typically

not one of the operatorsD̂n . Nevertheless, condition~D4! is
not empty; For appropriately chosen rotationsgnm one can
indeed map an operator defined atnn to another one assoc
ated with the pointnm , say. In this case, the consequenc

for the coefficients of the operatorsD̂n and D̂m are identical
to those obtained in the continuous case. Similarly, inv

ance of the operatorD̂n under rotations about the axisnn has
the same impact as before. Thus the general ansatz fo
discrete kernel@obtained from~7! by settingn→nn] is re-
duced by exploiting the postulates~D1-4! to the form

D̂n[D̂~nn!5 (
m52s

s

Dmum,nn&^m,nnu, n51, . . . ,Ns .

~43!
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Therefore, the discrete kernelD̂n can be thought of as a

subset ofNs operatorsD̂(nn), each one associated with
point nn of the sphere.

Let us mention an important difference between discr

and continuous kernelsD̂n andD̂(n), which arises in spite of
their formal similarity. Once the coefficientsDm are fixed, a
continuous kernel is determined completely. Discrete k
nels, however, come in a much wider variety since they
pend, in addition, on the selected constellation of points
the sphere. The discrete kernel does not enjoy theSU(2)
symmetry in the same way as does the continuous one.
discrete subgroups ofSU(2) being limited in type, the con-
tinuous symmetry will usually not turn into a discrete on
Note, further, that the elements of the dual kernel depend

general, on all the points of the constellation:D̂n

5D̂n(n1 . . . ,nNs
). This is easily seen from Eq.~42! since the

variation of a singleD̂n will have an effect on all$D̂n% in
order to maintain duality.

The additional freedom of selecting specific constellatio
is connected to a subtle point: actually, not all constellatio
of Ns points give rise to a basis in the spaceAs . This remark
is easily understood by consideringR3 as an example of a
linear space. The~continuous! collection of all unit vectors
in three space clearly spans it while not every subset of th
vectors is a basis—they might lie in a plane. By analogy, o

must ensure that the operatorsD̂n ,n51, . . . ,Ns , associated
with a specific constellation, do indeed form a basis ofAs .
The operators are linearly independent if the determinan
their symmetric Gram matrixG @15# satisfies

detG.0, Gnn85Tr@D̂nD̂n8#, ~44!

a condition that will be studied later in more detail.

Suppose now that theNs operatorsD̂n in Eq. ~43! do form
a basis. Then, the kernel dual to it, that is the set of opera

D̂n, is determined by the condition~42! instead of Eq.~28!.
Therefore, one cannot proceed as before to derive the co
tions ~29!. In particular, it is no longer true that the elemen
of the dual kernel have an expansion analogous to Eq.~43!.
This follows immediately from the impossibility of satisfy

ing Eq. ~29! by an ansatz forD̂n of the form ~43!: Eq. ~43!
representsNs conditions but its dual would depend only o

(2s11) free parametersDm. Nevertheless, a dual kernelD̂n

does exist and it is determined unambiguously—it sim
cannot be written as in~43!. Consequently, one expands an
~self-adjoint! operatorÂ either in terms of a given kernel,

Â5
1

2s11 (
n51

Ns

AnD̂n , An5Tr@ÂD̂n#, ~45!

or, equivalently, in terms of the dual kernel,
5-6
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Â5
1

2s11 (
n51

Ns

AnD̂n, An5Tr@ÂD̂n#. ~46!

The collectionA[(A1 , . . . ,ANs
) of real coefficients in Eq.

~46! is defined as thediscrete phase-space symbolof the
operatorÂ, andAdual[(A1, . . . ,ANs) is the dual symbol.

The relation between the discrete symbol and its dua
well as between the pair of kernels is linear. It is eas
implemented by means of the Gram matrixG and its inverse
G21,

~G21!nn8[Gnn85
1

~2s11!2
Tr@D̂nD̂n8#. ~47!

The matrixG thus plays the role of a metric,

D̂n5~2s11! (
m51

Ns

GmnD̂m, ~48!

and the dual symbol is determined according to

An5~2s11! (
n851

Ns

Gnn8An8 . ~49!

The trace of two operatorsÂ and B̂ is easily found to be
expressible as a combination of a discrete symbol and a
one,

Tr@ÂB̂#5 (
n51

Ns

AnBn5 (
n51

Ns

AnBn, ~50!

which is the discretized version of Eq.~39!.
In order to have a discrete Moyal product, we seek

reproduce the multiplication of operators on the level
symbols. Using the definition of the symbols, it is straig
forward to see that

~ÂB̂!l5Al!Bl5
1

~2s11!2 (
m,n51

Ns

Ll
mnAmBn , ~51!

with the trilinear kernel

Ll
mn5Tr@D̂mD̂nD̂l#, ~52!

in close analogy to Eq.~4!.

B. DiscreteP and Q symbols

A particularly interesting set of symbols emerges if, fo
given allowed constellation, only one of the coefficients
the expansion~43! is different from zero,Dm5dms, say.
Then, the kernel consists ofNs operators projecting on co
herent states,

Q̂n5unn&^nnu. ~53!
01210
s

al

o
f
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This is obviously the nonredundant counterpart of Eq.~34!,
implying that a self-adjoint operatorÂ is determined by a
symbol that consists ofNs pure-state expectation values, th
discreteQ symbol,

An5Tr@ÂQ̂n#5^nnuÂunn&. ~54!

Let us point out that the introduction of discrete symbols h
actually been triggered by the search for a simple metho
reconstruct the density matrix of a spin through expectat
values@10#. In fact, this problem is solved by Eq.~54! in the
most economic way. IfÂ is chosen to be the density matr
r̂ of a spins, then thenth component of theQ symbol equals
the probability of measuring the eigenvalues in the direction
nn ,

ps~nn!5u^nnur̂unn&u. ~55!

Knowledge of theNs measurable probabilitiesps(nn) thus
amounts to knowing the density matrixr̂.

If the Q symbol~54! determines an operatorÂ, the values
of the continuousQ symbol of Â at points different from
those of the constellation must be functions of the numb
(A1 , . . . ,ANs

). For a coherent stateun0&Þunn&, not a mem-
ber of the constellation, this dependence reads explicitly

^n0uÂun0&5
1

2s11 (
n51

Ns

Anu^n0unn&u2. ~56!

Here, theP symbolA of Â is required, calculated easily from
its Q symbol by means of Eq.~49! once the matrix

G[Gnn85Tr@Q̂nQ̂n8#5u^nnunn8&u
2, ~57!

has been inverted. Furthermore, knowledge ofG21 provides
immediately the dual kernelQ̂n via Eq. ~48! but no explicit
general expression such as Eq.~35! is known.

It will be shown now how to directly determine the matr
elements of the dual kernel without using the inverse ofG.
The orthogonality of the kernel and its dual, Eq.~42! can be
written as

dn
n85

1

2s11
Tr@Q̂nQ̂n8#

5
1

2s11 (
m,m852s

s

^m8uQ̂num&^muQ̂n8um8&, ~58!

using the completeness relation for thez eigenstatesum,nz&.
Introduce an (Ns3Ns) matrix Q with elementsQn,mm8
5^muQ̂num8&, where the index (m,m8) of the columns runs
throughNs values according to

$~2s,2s!,~2s,2s21!, . . . ,~2s,0!,~2s21,2s!, . . . ,~0,0!%.
~59!

As is obvious from Eq.~58!, the matrix elements of the dua
kernel,Qmm8

n
5^muQ̂num8& can be read off once the invers
5-7
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FIG. 1. Examples of nested
cones, free cones, and a spir
constellation for spin quantum
number s51. Each set of nine
points defines an allowed conste
lation.
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of the matrixQ has been found. The expansion coefficie
of a coherent stateun& in the standard basisum,nz& are given
by

^m,nzun&5
1

~11uzu2!s S 2s

s2mD 1/2

zs2m, ~60!

where the complex numberz is the stereographic image i
the complex plane of the pointn on the sphere. Therefore
one can writeQ as a product of three matrices, two of whic
are diagonal:Q5D1ND2. The diagonal matrices

D15diag@~11uznu2!22s#, ~61!

D25diagF S 2s

2s2mD 1/2S 2s

2s2m8
D 1/2G , ~62!

with n51, . . . ,Ns , and m,m850, . . . ,2s, have inverses
since all diagonal entries are different from zero. The h
part of the inversion is due to the matrixN with elements

Nn,mm85zn
2s2m~zn* !2s2m8, ~63!

similar to but not identical to the structure of a Vandermon
matrix. As discussed in the following section, particular co
stellations give rise to matricesN with inversion formulas
simpler than the general one. OnceN has been inverted, th
matrix elements of the dual kernel are given by the rows
the (Ns3Ns) matrix

Q215D2
21N21D1

21 . ~64!

For discreteQ symbols, the kernelL in Eq. ~52!, which
implements the discrete! product, has the form

Lmnl5Tr@Q̂mQ̂nQ̂l#5^nlunm&^nmunn&^nnunl&, ~65!

which, by using results from Ref.@8#, can be written as

Lmnl5
1

42s
~11nm•nn1nn•nl1nl•nm1 inm•nn∧nl!2s

~66!

5g0~nm•nn!sg0~nn•nl!sg0~nl•nm!seisa(mnl), ~67!

whereg0(nm•nn)5(11nm•nn)/2, and, definingg(mnl) as
the term in parentheses of Eq.~66!, one has
01210
s

d

e
-

f

a~mnl!5
1

i
lnS g~mnl!

g* ~mnl!
D . ~68!

Therefore, the phasea has a geometrical interpretation@8#: It
is given by the surface of the geodesic triangle given by
pointsnm ,nn ,nl .

IV. CONSTELLATIONS

In this section, examples of specific constellations are p
sented for which it is possible to prove that the Gram ma
has a determinant different from zero. Furthermore, in so
cases, relatively simple expressions for the dual kernel
equivalently, for the inverse of the Gram matrixG are ob-
tained. The kernel is supposed throughout to consist ofNs

projection operatorsQ̂n on coherent states as given in E
~53!. In other words, the focus is on discreteQ symbols and
theP symbols related to them. Note that, once a constella
has been shown to give rise to a basis inAs , the inversion of
its Gram matrix isalwayspossible but lengthy~already for a
spin 1/2!: Express the matrix elements ofG21 in terms of the
cofactors ofG. Four different types of constellations will b
discussed involving randomly chosen points, points
nested cones, on free cones, and on spirals~see Fig. 1!.

A. Random constellations

As shown in Ref.@16#, almost any distribution ofNs
points on the sphereS2 gives rise to an allowed constellation
A random selection of directions leads with probability 1
an invertible Gram matrix. This result shows that in an
finitesimal neighborhood of any forbidden constellation, o
can find an allowed one.

B. Nested cones

Historically, this family of constellations provided th
first example of allowed constellations for both integer a
half-integer spins@17#. For an integer value ofs consider
(2s11) cones about one axis in space,ez , say, all with
different opening angles. Distribute (2s11) directions over
each of these nested cones in such a way that the ensemb
directions on each cone is invariant under a rotation abouez
by an angle 2p/(2s11). For specific opening angles of th
cones, the inversion of the matrixN in Eq. ~63! reduces after
a Fourier transformation to the inversion of (2s11) Vander-
monde matrices of size (2s11)3(2s11). For a half-
integer spin, the same construction is possible except tha
5-8
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directions on different cones must also lie on different m
ridians. There is, in fact, a slight generalization of this res
the same calculation with (2s11) arbitrary different open-
ing angles leads to (2s11) generalizedVandermonde ma-
trices with a nonzero determinant.

Constellations on nested cones are useful also for num
cal calculations because they allow one to distributeNs
points in a homogeneous fashion on the surface of
sphere. If two points of a constellation approach each ot
the determinant of the matrixG typically becomes very
large, with a disastrous effect on numerical precision.

C. Free cones

Here is another family of constellations involving (2s
11) cones with directions located on them. However, n
the cones may be oriented arbitrarily~no nesting!, and the
number of directions may vary from cone to cone. For e
ample, the number of points on a cone can be chose
equal the multiplicities of the spherical harmonicsYlm with
l 52s. It is claimed that allowed constellations can be ide
tified by taking into account the following properties~tested
numerically for values up tos56):

~1! The determinant ofG is zero if there are more tha
(4s11) directions on a single cone.

~2! If there are (4s11) points on one cone, then anoth
cone will contain at most (4s21) points, allowing for no
more than (4s23) directions on the third cone, etc.

~3! It is necessary to have directions located on at le
(2s11) different cones.

For a spin 1/2, these properties will be shown to hold
Sec. V. The first of these observations can be proved
arbitrary spins by using a particular decomposition of th
matrix G,

G5g†g, ~69!

exploiting the fact that a positive definite matrix can alwa
be written as the ‘‘square’’ of its ‘‘root.’’ A lengthy calcula
tion involving properties of rotation matrices, Legend
polynomials, and spherical harmonics leads to a factor
tion, g5dy, the first matrix being diagonal and having (2s
11) different entries,

d( l )5
2Ap~2s!!

A~2s111 l !! ~2s2 l !!
, l 50, . . . ,2s, ~70!

each value occurring (2l 11) times. The second matrix ha
columns given by theNs lowest spherical harmonics evalu
ated at one of theNs points of the constellation,

y5S Y00~n1! Y00~n2! . . . Y00~nNs
!

Y121~n1! Y121~n2! . . . Y121~nNs
!

A A � A

Y2s2s~n1! Y2s2s~n2! . . . Y2s2s~nNs
!
D .

~71!
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Consequently, the Gram matrixG is invertible if and only if
detyÞ0. The matrix ~71! can accommodate at most (4s
11) directions on one cone, corresponding to one value
q with respect to some fixed axis. The subsequent multipl
ties (4s21),(4s23), . . . , are due toapplying the same ar
gument to the remaining subspaces with dimensionsl
21)11,2(l 22)11, . . . .

In physical terms, the determinant of Eq.~71! is easily
interpreted as a Slater determinant of a quantum system
equals the~totally antisymmetric! ground-state wavefunction
of Ns noninteracting fermions restricted to move on a sphe
The node lines of this wave function correspond to forbidd
constellations in which the corresponding operator kerne
degenerate, i.e., doesnot give rise to a basis inAs .

D. Spirals

A particularly convenient constellation is defined in th
following way: Let theNs directions be defined byNs com-
plex numbers pointszn constructed from a single pointz0
~neither of modulus one nor purely real!,

zn5z0
n21 , n51, . . . ,Ns . ~72!

The points are thus located on aspiral in the complex plane.
The matrixN defined in Eq.~63! then turns into an (Ns

3Ns) Vandermonde matrix, that is,

Vnm5xn
m21 , n,m51, . . . ,Ns . ~73!

Its inverse is known explicitly given, for example, in@18#,
with elements

Vnm
215

~21!n11

)
lÞm

~xl2xm!

SNs2n~$xl%l51
Ns 2xm!, ~74!

whereSNs2n($xl%l51
Ns 2xm) is the symmetrical function con

structed out of theN2n numbersxn with nÞl. One has, for
example,S2(x1 ,x2 ,x3)5x1x21x1x31x2x3.

V. DISCRETE MOYAL REPRESENTATION
FOR A SPIN 1Õ2

In this section, the discrete Moyal representation will
worked out in detail for a spin with quantum numbers
51/2, allowing for explicit results throughout. For clarity,
is assumed from the outset that the kernel consists offour
projection operators

Q̂n5unn&^nnu, n51, . . . ,Ns . ~75!

It is easy to generalize the results derived below to the c
of four linear combinations ofu6nn&^6nnu compatible with
Eq. ~12!.

Let us start with the determination of the dual kernel th
can be found by the intermediate step of inverting the
34) Gram matrix with elements
5-9
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Gmn5u^nmunn&u25
1

2
~11nm•nn!. ~76!

This matrix is easily factorized:G5g†g/2, where

g5S 1 1 1 1

n1x n2x n3x n4x

n1y n2y n3y n4y

n1z n2z n3z n4z

D . ~77!

The absolute value of the determinant ofg is proportional to
the volume of the tetrahedron defined by the four pointsnn

on the surface of the sphere implyingudetGu518Vtetra .
Since a ‘‘flat’’ tetrahedron has no volume, the entire set
forbidden constellations has a simple geometric descript

detG50⇔the four pointsnn are located on a circle onS 2.
~78!

Consequently, allowed constellations are characterized
three vectors on a cone~any three points on a sphere define
circle!, plus any fourth vector not on this cone. This agre
with the earlier statements about free-cones constellation

Here is a simple way to invert the matrixg and subse-
quentlyG. Consider a matrix

f5S 1 f x
1 f y

1 f z
1

1 f x
2 f y

2 f z
2

1 f x
3 f y

3 f z
3

1 f x
4 f y

4 f z
4

D , ~79!

defined in terms of four vectorsfn5( f x
n , f y

n , f z
n) not required

to have length one. The matrix elements of the of produf
andg are given by

~ fg!n
m511fm

•nn . ~80!

This is adiagonalmatrix if the scalar productsfm
•nm equal

to 21 whenevermÞn. Geometrically, such four vectors ar
constructed easily: the vectorf1 points to the unique inter
section of the three planes tangent to the sphere at the p
2n2 , 2n3 and2n4. Analytically, this vector reads

f15
n2∧n31n3∧n41n4∧n2

~n2∧n3!•n4
, ~81!

and the three remaining vectors follow from cyclic permu
tion of the numbers 1 to 4. With this choice the inverse of
matrix g can be written as

g215d21f, ~82!

whered is the diagonal matrix in~80!: dnn511fn•nn . Con-
sequently, the inverse of the Gram matrixG for a general
allowed constellation is given by

G2152d21ff†d21, ~83!

having matrix elements
01210
f
n:

by

s
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Gmn
21[Gmn52

11fm
•fn

~11nm•fm!~11nn•fn!
. ~84!

In general, the elementsQ̂n of the dual kernel will thus be
linear combinations of all four projection operatorsQ̂n .

It is interesting to express the kernel and its dual in ter
of the Pauli matricess5(sx ,sy ,sz):

Q̂n5
1

2
~ I1nn•s!, Q̂n52

I1fn
•s

11fn
•nn

, ~85!

allowing one to show easily that they satisfy the requir
duality.

For reference, we give theQ and P symbols of the spin
operator

sn5
1

2
nn , sn5

2fn

11fn
•nn

, ~86!

and of the identity

In51, In5
4

11fn
•nn

, ~87!

and the symbols of arbitrary operators for a spin 1/2 follo
from linear combinations.

VI. DISCUSSION

Operator kernels have been used for a systematic stud
phase-space representations of a quantum spins. The kernels
have been derived from appropriate Stratonovich-Weyl p
tulates taking slightly different forms for continuous and d
crete representations, respectively. Emphasis is on thedis-
crete Moyal formalism that allows one to describ
Hermitean operators, including density matrices, by amini-
mal number of probabilities easily measured by a Ste
Gerlach apparatus. As a useful byproduct, a natural and m
economic method ofstate reconstructionemerges when a
quantum spin is described in terms of discrete symbols. F
ther, Schro¨dinger’s equation for a spins turns into a set of
coupled linear differential equations for (2s11)2 probabili-
ties @19#.

In addition, a new form of the kernel defining continuo
Wigner functions for a spin has been given in Eq.~22!: It has
been expressed as an ensemble of operators obtained fro
possible rotations of one fixed operator. This is entirel
analogous to the elegant expression of the kernel for parti
Wigner functions as an ensemble of all possiblephase-space
translations of the parity operator. Therefore, continuou
phase-space representations for both spin and particle
tems now are seen to derive from structurally equivalent
erator kernels.

The discrete symbolic calculus is an interesting ‘‘hybrid
between the classical and quantal descriptions of a spin.
the one hand, this representation is equivalent to stand
quantum mechanics of a spin. On the other, the indepen
variables carry phase-space coordinates as labels@Eqs. ~45!
5-10
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and ~46!#. However, only a finite subset of points in pha
space~corresponding to an allowed constellation! are in-
volved reflecting thus the discretization characteristic
quantum mechanics.

The Ns projection operators associated with a conste
tion of points define a nonorthogonal basis for Hermite
operators acting on the Hilbert space of the spin. Each p
jection is a positive operator, and, altogether, they give
to a resolution of unity. One might suspect that they defin
positive operator-valued measure@20#. However, this isnot
the case since the closure relation does not involve just
bare projections but they are multiplied with factors—som
of which necessarily takenegativevalues. Such an obstruc
tion through ‘‘negative probabilities’’ is not surprising; othe
phase-space representations are based on quantum me
cal ‘‘quasi-probabilities,’’ known to have this property, too

Let us close with a synopsis of the fundamental Moy
type representations for particle and spin systems know
far. Table II provides both a summary and points at op
questions. The individual entries give the names of the
miliar continuousphase-space representations~see@21# for a
survey!, while the corresponding quantities for thediscrete
formalism are in square brackets. Future work will focus
developing a discrete Moyal-type formalism for a quantu
particle. To do this, one must exhibit, for example, a pair
-

a-

p
d-

01210
f
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e
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-
so
n
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n

f

dual kernels, one of which would consist of a countable
of projection operators on coherent states. This set is
quired to be a basis in the linear space of~bounded?! opera-
tors on the particle Hilbert space. It is not obvious in how t
associated discreteP symbol would reflect the subtleties o
its continuous counterpart which may be singular. Similar
the existence of a self-dual discrete kernel for a quant
particle is an open question.
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TABLE II. Synopsis of continuous and discrete@in square
brackets# phase-space representations for both particle and spin
tems.

Self-dual kernel Dual pairs

particle
Wigner functions

@unknown#
P, Q symbols

@unknown#

spin
Stratonovich/Varilly

@impossible#
Berezin symbols

@Pn, Qn symbols#
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