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Discrete Moyal-type representations for a spin
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In Moyal’s formulation of quantum mechanics, a quantum spiis described in terms ofontinuous
symbolsi.e., by smooth functions on a two-dimensional sphere. Such prescriptions to associate operators with
Wigner functions,P or Q symbols, are conveniently expressed in terms of operator kernels satisfying the
Stratonovich-Weyl postulates. In analogy to this approadafisereteMoyal formalism is defined on the basis
of a modified set of postulates. It is shown that appropriately modified postulates single out a well-defined set
of kernels that give rise tdiscrete symbolsNow operators are represented by functions taking values on
(2s+1)? points of the sphere. The discrete symbols contain no redundant information, contrary to the con-
tinuous ones. The properties of the resulting discrete Moyal formalism for a quantum spin are worked out in
detail and compared to the continuous formalism.
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[. INTRODUCTION the phase space of classical spin. Now, instead of translations
in planar phase space, it is the grasp)(2) of rotations that
The idea of representing quantum mechanics of a particlplays a dominant role when the Moyal formalism is set up.
in phase spacE goes back to Wigndrl]. He established a As for a particle, the set of Stratonovich-Weyl postuld&ls
one-to-one correspondence between a quantum [siaten  characterizes the symbols in an elegant way. For clarity, the
the particle Hilbert spac{ and a real function postulates are now displayed in their familiar form for the
continuous symbols:

2 .
Wy(p.@)= & | s (@ +0ua-xexd2ipxial. () o
r (S0) linearity: A—W, is alinear one to one map,

Its properties suggest an interpretation as a quasiprobability )
in phase space, the only drawback being the negative values (S1) reality:  Wat(n)=Wx(n),
it may take. A more general framework for phase-space rep-

resentation$2] of quantum states as well as operatArss o 2s+1
given by the relation (S2) standardization: —,—

J Wa(n)dn=Tr[A],
52

Wa(a,p)=Tr[A(q,p)A], (2)

o 2s+1 .
with an operator kerndl3,4] (S3) traciality: ?JSZWA(n)WB(n)dn:Tr[AB],

N A P
A(q,p)=2D(q,p)IID(q,p), (g.p)el’. (3 (S4) covariance: Wy a=Wi, geSU(2).
Here I1:(q,p) —(—q,—p) is the unitary, involutive parity . '

operator, whiled(q,p) describes translations in phase space't is natural to have a linear relation between operators and

Al . . symbols §0), while (S1) implies that Hermitean operators
[5]. If the operatorA is chosen as the density matrix of a are represented by real functions. The third conditiSa)(

pure stateA=p,=[4)(¢|, Eq. (2) reduces to Eq(1). The  maps the identity operator to the constant function on phase
kernelA(q,p) can be derived from a set of conditions that aspace, and tracialityS3) expresses statistical averages in
phase-space representation is required to saBsfy below.  terms of symbols. The covariant transformation of the sym-
It is intimately related to the behavior of a functigvi,(q,p) bols (S4) with respect to rotationge SU(2) effectively in-
under translationsmapping the phase spadé onto itself.  troduces phase-space points as arguments of the symbols.
The map(2) from operators to functionsA—W,) has an The continuous Moyal representation for a spmg] com-
important feature: its inverse, mapping functions to operatorpatible with these conditions can be based on a self-dual

(W,—A) are mediated by theamekernel —in other words, kernelA(n) (see Sec. Rin analogy to Eq(2).
the kernelA (q,p) is self-dual In order to have a consistent and full-fledged classical

For a quantum spin, the symbol associated with an Opem{prmalism it is necessary to introduce a prqd.uct between
tor is a continuous function defined on a sph&fe which is symbols that keeps track of the noncommutativity of the un-
derlying operators. This Moyal produf@], or twisted prod-

uct, for two operatordA and B expresses th&V,g of the
*Email address: stefan.weigert@unine.ch operator producAB in terms of the symbol§V, andWg,
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Wag() = Wa(m)+Wa(n) (C3) traciality: —2:;1denTr[A(n)A(m)]A(n)

- [ [ nmioumws(dmak, @
52J)s2 —A(m)
with a functionL(n,m,k) of three arguments given explic-
itly in [7], for example. Thex product is known to be asso-  (C4) covariance: A(g-n)=U,A(mU{, geSU(2),
ciative.
Other continuous representations for a spin do exist, SuCtyhere the matriceggg are a unitary (8+1)-dimensional
as the Berezin symbols of spin operat(ﬁﬁ that are the jrreducible representation of the groGi(2).
analog of theP andQ symbolg[5] for a particle. Instead of a The existence of a kerndi(n) satisfying C1-C4) has

single self-dual kernel, the Berezin symbols require, hOW’been proven if6] by explicit construction. The derivation in

ever, apair of wo different kernelsdual t_o each 9‘“?“ One _J7] starts by expanding the kernel in a basis associated with
of the kernels maps operators to functions while its dual i . A
}he eigenstates of the operas®n,,

needed for the inverse procedure. It will become clear late

on that the self-dual and the dual approaches correspond to s
defining orthogonal and nonorthogonal bases, respectively, A(n)= 2 Zonwr (MMM’ 1) (5)
in the vector spacedg of operators acting on the Hilbert mm’ =—s mm T v

space of a spiis. When slightly modifying the postulates of
Stratonovich, they are also compatible with kernels that ar&ith unknown coefficients Z,,y(n). It follows from
not self-dual. (C1-C4) that one must have

A common feature of these representations isrddun- <
dancy of the continuous symbols. When represented by &y (N)
(2s+1)X(2s+1) matrix, a Hermitean operator is fixed by 2s
the values of (8+1)? real parameters. Consequently, the _ 4 2 eV20+1 S l
values of the symbols being continuous functions on the 2s+1 5" m m-m
sphere, cannot all be independent—in other words, the infor- ®)
mation contained in a symbol is redundant. Tiscretever-
sion of P andQ symbols for a spirs, introduced if 10,11] as

S
m Yl,m’fm(n)a

, whereeg=1 ande;=*1]=1, ...,2, and the definition of
a means to recqnstruct.the quantum S'Fate of a sp|r_1, _a”OV\‘[ﬁe Clebsch-Gordan coefficient given[if] is used. Conse-
one to characterize a spin operafoby using only themini-  quently, there are % different kernels that define a

mal number of parameters. In fact, a discrete symbol can b&tratonovich-Weyl correspondence rule.
considered as living on a “discretized sphere,” that is, as @ A new and simple derivation of the kern(n) indepen-

function taking(real) values on a fini_te set of points on the dent of the argument given ifY], is presented now. It has

sphere only. Such a formalism will be called a discreteyq jmportant advantages: On the one hand, it will provide a

Moyal-type formalism. . . form of the kernel similar to that one of a partidl®, which
The purpose of the present paper is to develop the discrejg jyieresting from a conceptual point of view. On the other

Moyal formalism in analogy to the continuous one. In par-panq it will be possible to transfer this approach to a large
ticular, the kernel and its dual defining the discrete symbolg,yiant to the case of the discrete Moyal formalism.
will be derived from a set of appropriate Stratonovich-type

postulates. Subsequently, the properties of these symbols are Expand the kernel in the eigenbasis of the operator

studied in detail. s
A(n)= Ay ()| M,nY(m’ N, 7
Il. CONTINUOUS REPRESENTATIONS (m m,mrE:,S ma ()|, M @
A. Continuous self-dual kernel: Wigner symbols where the expansion coefficients,,, are unknown so far.

The Stratonovich-Weyl correspondence for a spiis a  According to the reality conditionGl1) they must satisfy
rule associating with each operabe A, on a Hilbert space  Amm (M) =A%, (n). In a first step, the numbets,,,(n) are
H a functionW, on the sphere&?, called its(Wignen sym-  shownnot to depend on the label. Consider the transfor-
bol. Let us define it in the spirit of Eq2) by means of a mation of A(n) under a rotatiory. According to C4) one
universal operator kerndl(n), which can also be thought of must have
as a field of operators on the sphere. Then, the first require-
ment (S0) is already satisfied, and the postulat&i ) to

($4) turn into conditions on the kernel: > Amm(g-m)|m,g-n)(m’,g-n|

(C1) reality: Af(n)=A(n), . °
=UAMU{= X Apw(n)|mRgn)(m’,Rynl,

mm’'=—s

c2 dardi '-ZSHJdA =i
(C2) standardization: yp I nA(n)=lI, (8)
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whereU4|m,n)=|m,Ryn)=|m,g-n) with a rotation matrix e 2 2+1]s 1]|s
Rye SO(3) representingge SU(2) in R%. Consequently, [{m,n m’",n)| :;O 5sr1\m 0lm
one must have for ang that
s || s
Amm’(g'n)zAmm’(n)y (9) ><< ml 0 | m/> P|(C030)’ (16)
which is only possible ifA,,,y does not depend om. Con- leading to
sider next a rotatiorg(n) about the aximn by an anglee
€[0,2m), represented by the unitary g,y =exp(n-se).  Tr[A(n,)A(n)]
The left-hand-side of ©4) is invariant under this transfor- 9 . )
mation while the right-hand-side transforms: _2 2 A(m) s I|s 21+1 b )
X . "2 | 2 A o mf | 2ser T1(e0sd):
A(Rymn)=A(n)
g(n) (17)
S
= X Apwexdi(m—m’)e]mnym’n|, Compare now the coefficients of the Legendre polynomials
mm’=—s P,(cos#) with those in Eq(15). This leads to (8+1) con-
(10) ditions
which is possible only if S s I]s
P y > A(m) e, e=+1, 1=0,...,%
m=-s 0|m
Amm/:A(m)émmr . (11) (18)

Therefore, covariance of the kernel under elemenBldf2) ~ These equations can be solved fh(m) by means of an
requires it to be diagonal in the basis associated with th@rthogonality relation for Clebsch-Gordan coefficiefis],

directionn, 2s s
> : (19

2l1+1 /s |
m

) s Am=2 57\ m o
A(n)=m;S A(m)|m,n){m,n|. (12

Thus, the self-dual kernel for the continuous Moyal formal-

Next, the condition of traciality will be exploited. Upon re- ism is given by

writing (C3) in the form . S 2 541/s 1]s
) ) A(n)=m;S ;o 8|m<m 0 | m>|m,n>(m,n|,
jszdnﬁs(m,n)A(n)=A(m), (13 (20

o Out of these 25" distinct solutions, only 2 are compatible
the functiondg(m,n)=(2s+1)TH A(m)A(n)]/(4) is seen  with the condition of standardizatiorCQ) that has not been
to be thereproducing kernelfor a certain subset of @ used until now. This condition imposes
+1)? functions on the spherg12,7. In other words,
ds(m,n) acts in this space as a delta function with respect to

S
integration overS?, and for spins, it reads explicitly mzz—s A(m)=1, (22)

2s | 2s . - . .
. 2 being satisfied if and only i£q=+1.
5s(m-n):|220 m;| Ylm(m)Y|m(”):|20 2, Pi(m-n). The set of solutiong20) coincides indeed with those
(14) found in[7]. The easiest way to see this is to calculate the
matrix elements of the kerndl(n) in Eq. (20) with respect

Here the addition theorem for spherical harmor¥gg(n),| to the standard basjs,n,). One reproduces the coefficients
=0,.. .' .5, —l<m=I| has been useq to express the sumof the expansiori6): (m,n,|A(n)|m’,n,)=Z(n).
overmin terms of Legendre polynomiaf(x), —1=x=1. The expansiori20) is interesting from a conceptual point
Upon choosingn=n;, and withn,-n=cosé, the condition of view. It allows one to interpret physically the kerne{n)
(C3) becomes in analogy with the kernel for a particle given in E®) by
26 writing
T A(n)A(n)]=>, ari, (cos6) (15) . N
: h2s+1 ' A(m=U,A(ny)0], (22)

Use now the expansiofi2) of the kernel on the left-hand- whereU,, represents a rotation that maps the vectoon n.
side as well as the identity Imagine now to contrac{12] the group SU(2) to the
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Heisenberg-Weyl group. It is known that this procedure turnsThe kernel and its dual are both real in analogy @ij.
rotationsUy into translationd(q,p). As shown in[14], the ~ Explicitly, the symbols and their duals are given by

operatorA(n,) contracts in the following way: R R

A,=TrAA,], A"=Tr[AA"]. (26)

A(n,)—2IL, (23 Furthermore, one is free to normalize one of the kerrfh,ts,

say, in analogy to €2), and one requires it to transform

if &,=+1)1=0,...,2. Therefore, the operatdx(n,) plays covariantly C4).

the role of parity for a Spin as is by no means immediate|y Itis possible as before to derive the explicit form of the

obvious when looking at it. kernels by a reasoning in analogy to above. The general an-
Finally, we would like to point out that the integral kernel satz for botrﬁn andA"™ in the basis referring to the axisas

L, defining thex product of symbolg4), has a simple ex- in (7) is again reduced to diagonal form by exploiting their

pression in terms of Wigner kernels: behavior under rotations:
2 R S . S
L(n,m,k)=(%) TTAMMAMAK)]. (29 An=m;SAmlm,n><m,nl, A”=m;SAmlm,n><m,nl,
(27)
B. Continuous dual kernels: Berezin symbols with two sets of numberd ,, andA™, which do not depend

nn. It is necessary that the trace of these two operators with

abelsm=n, andn, say, equals the reproducing kernel with
respect to integration over the sphere, that is, instead of Eq.
(15) one needs to have

Wigner symbols of spin operators are calculated by mean
of a kernel that is its own dual. Other phase-space represe
tations are known that do not exhibit this “symmetry” be-
tween an operator and its symb@.and Q symbols for a

particle are familiar examples that have their analog in the 2% 541
Berezin” symbols for a spin. It will be shown now that THA, AM=3 P,(cos6), (28)
these symbolic representations also have a simple description z =0 2s+1

3

m=—s m 0

in terms of kernels satisfying a modified set of Stratonovich-
Weyl postulates. The condition€£( —C4) must be relaxed where co$=n,-n. This leads to the conditions
slightly in order to allow for a pair of dual kernels.

The required generalization is easily understood in terms ° s ||s s
of linear algebra. The ensemble of all operators in the self- > Am< m 0 | m> m> } =1,

. . m=-—s

dual kernel is nothing but &vercompletg set of vectors (29)
spanning the linear spacd, of operators on the Hilbert
space of the spirs. As the traciality C3) indicates, this yyith | =0, ...,2. The ensemble of solutions is parameter-
family of vectors is “orthogonal” with respect to lntegratlon ized by (Z+1) finite nonzero real numberg :
over the sphere as a scalar product. Each opefatan be
written as a linear combination of the elements of the kernel _° s || s s s I]s\]t?
with its Wigner symbol as expansion coefficients. More pre- e Am< m> :LE . Am< m 0 m” =",

m O

cisely, the expansion coefficient®,(n) with respect to the

4 . . (30)
basisA(n) are given by the “scalar product” oA with the
samebasis vector as shown, for example, in E8). The  Solving for the expansion coefficients, one obtains
essential point now is, that there are alsonorthogonal
bases of the same space. Given a nonorthogonal basis, de- % o141/s I]s
noted byA ;ne &?, its dual basisA™ is uniquely determined Am:.; Y2s11\m 0| m/’ (31)
through the scalar product. Furthermore, the dual basis also
spans the original space, which implies that now there will 2s s+1ls 1ls
be two different expansions of one operatér defining a A= 7|_1—< | > (32)
symbol A, and its dualA", respectively. Consequently, both =0 2s+1\m 0

kernels and symbols come in pairs. The familRrand Q
symbols—or Berezin symbo[§]—will be seen to be related As in the self-dual case, the standardization implies that

in this way. vo=+1. This class of solutions for kernels that are not their
Nonorthogonal bases are allowed in the present frameown dual has been obtained 8] by an entirely different
work if, first of all, traciality (C3) is relaxed to approach. Self-dual kernels are a small subset; they require

An=A"™ which is ;=17 * or y;==*1 in agreement with
o 2s+1 T S Eq. (20). Each set of numberg, defines a consistent phase-
’ . n — . . |
(C'3) wacialty: A denTr[AmA 18n=Am. space representation of a quantum-mechanical spin.
(25 Consider the particular cagg,,= é,,s resulting from
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TABLE I. Expansion coefficients of the dual kerné{%, Am, and the self-dual kerné{(m) in terms of

the dual pair&n and A",

Tl Ay TH-Am)

A~ At S | 2

An @_Eml<rn 0 > Ylm(n:m) 5s(n-m)

An snm) s 1| s\72

<(N,m m mUth
Zmi m 0lm Y m(n,m)

" s 1] s s I ]s\7?t

A(n) Em|<m 0 ‘ m>Y|m(n,m) 2I'1’1| m O0lm Ylm(nvm)
s |]s Finally, it is interesting to calculate th@ andP symbols of
"“\s ols/ (33 the self-dual kernel (n) as well as the pair of dual kernels

The associated kernels read

An=|s,n>(s,n|z|n)(n|, (39
. 2 2141 /s 1]s|?
a :m_zs|_025+l<s 0 S>
s || s
“{m olm [m,ny(m,n|. (35

A and An using the shorthand
Yim(n,m) =Y () Yim(m), (40)

so that the reproducing kernel is given by

5S(n,m)=% Ym(n,m). (41)

This choice has the advantage that one of the two symbol-gable | shows the expansion coefficients of the kernels in-

reduces to the expectation value of an operAtar coherent

states]5]. It turns out to be just th€ symbol of A, Qa(n)

=(n|A|n), that is, its expectation in a spin-coherent state. A
the same time, one falls back on a familiar expression for th
dual symbol, namely thé symbol for A, defined by an

expansion in terms of a linear combination of operators pro-

jecting on coherent states,

. (2s+1)
A= yp LZPA(n)|n)<n|dn. (36)

In the present notation, E¢R26) implies that

Qa(M=A=Tr[AA,], PA(N)=A"=Tr[AA"],

(37)
so that Eq(36) reads
A= (ZSH)f dn Tr[AA"A 38
=] AN TrIAAMA,. (39)
It is obvious now that one hasee Ref[7])
Aal (2s+1)
Tr[AB]= TdenPA(n)QB(n)
—(28+1)J dn A"B 39
- 477 82 n n- ( )

t ~ ~
dual kernelsA, andA™.

troduced so far in terms of other kernels. Note that the entries
of last row, theQ and P symbols of the self-dual kernel

A(n), do simultaneously provide the Wigner symbols of the

Ill. DISCRETE MOYAL-TYPE REPRESENTATIONS

A particular feature of the kernels discussed so far is their
redundancy; the linear space of Hermitean operators for a
spins has dimension (&+ 1)?, while the kernels consist of a
continuously labeled set of basis vectors. In other words,
there are at mosi,=(2s+1)? linearly independent opera-

tors among aII&(n), ne S2. In this sectiordiscretekernels
will be introduced, denoted b¥,, v=1,... Ng. No linear

relations must exist between the operat&q,sthat constitute
the kernel, that is, they are a basisA4fin the strict sense. It
is natural to expect that subsetof preciselyNg operators

A(n,), v=1,... Ng will give rise to a discrete kernel.

Therefore, evaluating a continuous symbol of an operétor
at Ng pointsn, of the sphereS? provides a promising can-
didate for a discrete symbol, i.e., the SAL=A,, v

=1, ... Ns. For brevity,Ng points onS? are called aon-
stellation

As before, one might expect orthogonal and nonorthogo-
nal kernels to exist. It turns out, however, that an appropri-
ately modified set of Stratonovich-Weyl postulates covering
discrete kernels doeasot allow for orthogonal ones. There-
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fore, we start immediately by deriving the discrete non-Therefore, the discrete kerndl, can be thought of as a

orthogonal kernels coming as before in combination with a a . .
dual 9 9 subset ofNg operatorsA(n,), each one associated with a

point n, of the sphere.

Let us mention an important difference between discrete
) ) i and continuous kernels, andA(n), which arises in spite of

By analogy with the continuous representation of the preyheir formal similarity. Once the coefficients,, are fixed, a
ceding section, one modifies the Stratonovich-Weyl postuzgntinuous kernel is determined completely. Discrete ker-
lates in the following waythroughout, the index takes all nels, however, come in a much wider variety since they de-
the values from 1 td\,): pend, in addition, on the selected constellation of points on
the sphere. The discrete kernel does not enjoyShi2)
symmetry in the same way as does the continuous one. The
discrete subgroups &U(2) being limited in type, the con-

A. Discrete dual kernels

(DO) linearity: AHAV is a linear map,

(D1) reality: Al=A,, tinuous symmetry will usually not turn into a discrete one.
\ Note, further, that the elements of the dual kernel depend, in
(D2) standardization: 1 Es Av=i general, on all the points of the constellation:A”
2s+1 /=1 ' =A*(n; ... ny). This is easily seen from E¢42) since the
Ng variation of a single&,, will have an effect on aII{A”} in
(D3) traciality: A,= > TA,AA order to mgi.ntain duality. ' 3 .
2s+1 =1 The additional freedom of selecting specific constellations
. A is connected to a subtle point: actually, not all constellations
(D4) covariance: Aq.,=UgA, 0!, gesSUQ2). of N4 points give rise to a basis in the spadg. This remark

is easily understood by consideriit} as an example of a
Let us briefly comment on these conditions. Linearity is au-linear space. Thécontinuous collection of all unit vectors
tomatically satisfied if discrete symbols are defined via kerin three space clearly spans it while not every subset of three
nels, that is, AV=Tr[AA,,]. The second condition— Vectors is a basis—they might lie in a plane. By analogy, one
reality—is obvious, and ifD2) the kernelA” dualto A, is ~ Must ensure that the operatays,»=1, ... N;, associated
standardized. The duality betwedn, andA* is made pre- with a specific constellation, do indeed form a basis4gf

. o S : The operators are linearly independent if the determinant of
glﬁ: rl]:)(;/sthe condition of traciality sincéd3) only holds if their symmetric Gram matri [15] satisfies

1 .. ..
ooy MAAK]=6), vu=1...Ns, (42 detG>0, G,, =TiA,A,], (44)

which, upon considering the trace as a scalar product, coin-
cides with the condition defining the dual of a given basis.a condition that will be studied later in more detail.

As a matter of fact, iffA,}, »=1,... Ng, is a basis, its Suppose now that thies operatorsd , in Eq. (43) do form
unique dual is guaranteed to exist. Finally, covariance unde basis. Then, the kernel dual to it, that is the set of operators
rotationsg e SU(2) must be reinterpreted carefully. Under a Av, is determined by the conditiof?2) instead of Eq(28).
transformatiorg, a constellation associated with points on  Therefore, one cannot proceed as before to derive the condi-
the sphere will, in general, be mapped tditierentconstel-  tions (29). In particular, it is no longer true that the elements
lation. In other words, the imagk,.,=A(g-n,) is typically ~ Of the dual kermnel have an expansion analogous to(4&3).
notone of the operator&,,. Nevertheless, conditiofD4) is This follows immediately fro[n the impossibility of satisfy-
not empty; For appropriately chosen rotatiang, one can ing Eq.(29) by an ansatz fon” of the form(43): Eq. (43)
indeed map an operator definedngtto another one associ- represents\s conditions but its dual would depend only on
ated with the poinh,,, say. In this case, the consequences(2s+ 1) free parametera™. Nevertheless, a dual kernat

for the coefficients of the operatots, andA , are identical ~does exist and it is determined unambiguously—it simply
to those obtained in the continuous case. Similarly, invaricannot be written as if43). Consequently, one expands any
ance of the operatak , under rotations about the axis has  (self-adjoin} operatorA either in terms of a given kernel,

the same impact as before. Thus the general ansatz for the
discrete kerne[obtained from(7) by settingn—n,] is re-

N
iti - - 1 S . o a
duced by exploiting the postulaté®1-4) to the form A o > AR AY=THAAY, (45
v=1

S
A,=A(n)= 3 Agmn)mn,|, v=1,... N
m=-—s

(43 or, equivalently, in terms of the dual kernel,
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This is obviously the nonredundant counterpart of E4),

N
J R = 2
A= oot 21 AAY A=TIIAA, ] (46)  implying that a self-adjoint operatok is determined by a
" symbol that consists dflg pure-state expectation values, the
The collectionA=(Aq, ... ,ANS) of real coefficients in Eq. discreteQ symbol,
(46) is defined as thaliscrete phase-space symbafl the A,=TAQ,]1=(n,JAn,). (54)

operatorA, andA%'2=(Al ... ANs) is the dual symbol.

The relation between the discrete symbol and its dual aket us point out that the introduction of discrete symbols has
well as between the pair of kernels is linear. It is easilyactually been triggered by the search for a simple method to
implemented by means of the Gram mat@and its inverse reconstruct the density matrix of a spin through expectation
G 1, values[10]. In fact, this problem is solved by E¢4) in the

most economic way. IA is chosen to be the density matrix

, 1 aa p of a spins, then thevth component of th€ symbol equals
-1 — vy VAV ’
(G7),,,=G" = (25+ 1)2Tr[A A" ]. 47D the probability of measuring the eigenvalsim the direction
n,,
The matrixG thus plays the role of a metric, -

P pe(n,)=[(n,|p[n,)]- (55

NS apeys
A”=(25+ HS GrrA (48) Knowledge of theNg measurable probabilitiegg(n,) thus

f=1 - amounts to knowing the density matix

If the Q symbol(54) determines an operaté, the values

and the dual symbol is determined according to of the continuousQ symbol of A at points different from

Nq those of the constellation must be functions of the numbers
A'=(2s+1) > G"A, . (49) (Ag, ... Ay). For a coherent stat@g) #|n,), nota mem-
v'=1 ber of the constellation, this dependence reads explicitly
A A~ N
The trace of two operatord and B is easily found to be A S, 5
expressible as a combination of a discrete symbol and a dual (no|A[ng) = 2s+1 Zl A"[(nln, )" (56)
one,

Here, theP symbolA of Ais required, calculated easily from

. ! its Q symbol by means of Eq49) once the matrix

TI[AB]= 21 A'B,= V}i A,B’, (50)
G=G,, =TQ,Q, 1=[(n,In,)[% (57)

which is the discretized version of E(B9). . 4 .
In order to have a discrete Moyal product, we seek tohas been inverted. Furthermore, knowledg&of provides

reproduce the multiplication of operators on the level ofimmediately the dual kerndd” via Eq. (48) but no explicit
symbols. Using the definition of the symbols, it is straight-general expression such as E§) is known. _
forward to see that It will be shown now how to directly determine the matrix
elements of the dual kernel without using the inverséof
Ng The orthogonality of the kernel and its dual, E42) can be
AB), =A. xB.=—— uv written as
(AB)\=A,xB, (254 1) w2t LY"A,B,, (5D

with the trilinear kernel 5, = 5st 1TF[QVQV ]
v__ AUAVA 1 S R .,
LS TIARATAL, (52 - S (O, Imyml&* m), (58
2s+1 = _s

in close analogy to Eq4). _ . _
using the completeness relation for theigenstate$m,n,).

Introduce an NgXNg) matrix Q with elementsQ,

_ _ _ _ =(m|Q,|m’), where the indexr,m’) of the columns runs
A particularly interesting set of symbols emerges if, for throughNj values according to

given allowed constellation, only one of the coefficients in

the expansion43) is different from zero,A = 6,5, Say. {(2s,25),(2s,25—1), ... (25,0),(25—1,%), ... ,(0,0}.

Then, the kernel consists &fg operators projecting on co- (59

herent states,

B. Discrete P and Q symbols

As is obvious from Eq(58), the matrix elements of the dual
Q,=[n,)(n,|. (53)  kernel,Q. =(m|Q"/m’) can be read off once the inverse
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of the matrixQ has been found. The expansion coefficients

of a coherent statp) in the standard basjsn,n,) are given

by
1/2
( ) o

where the complex numberis the stereographic image in
the complex plane of the poimt on the sphere. Therefore,
one can writeQ as a product of three matrices, two of which
are diagonalQ=D;ND,. The diagonal matrices

2s
s—m

1

0

(60)

D,=diad (1+(z,|*)~*°], (61)
25 \12/ 95 |12
D2=dia% 2s—m (Zs—m’) } 62
with »=1,... Ng, and mm’'=0,...,2%, have inverses

PHYSICAL REVIEW &3 012105

FIG. 1. Examples of nested
cones, free cones, and a spiral
constellation for spin quantum
number s=1. Each set of nine
points defines an allowed constel-
lation.

\ /
\
e A\

o)

68)
g* (uvh) (

1
a(puv\)= i—In

Therefore, the phase has a geometrical interpretatif8i: It
is given by the surface of the geodesic triangle given by the
pointsn, ,n,,n, .

IV. CONSTELLATIONS

In this section, examples of specific constellations are pre-
sented for which it is possible to prove that the Gram matrix
has a determinant different from zero. Furthermore, in some
cases, relatively simple expressions for the dual kernel or,
equivalently, for the inverse of the Gram mat@ are ob-
tained. The kernel is supposed throughout to considtl of
projection operator€), on coherent states as given in Eq.
(593). In other words, the focus is on discré&@esymbols and
the P symbols related to them. Note that, once a constellation

since all diagonal entries are different from zero. The harchas been shown to give rise to a basisdiy the inversion of

part of the inversion is due to the matiik with elements

_ 525—m

*
v,mm Zv

N (z8)2s~™ (63

its Gram matrix isalwayspossible but lengthyalready for a
spin 1/2: Express the matrix elements 6f ! in terms of the
cofactors ofG. Four different types of constellations will be
discussed involving randomly chosen points, points on

similar to but not identical to the structure of a Vandermondenested cones, on free cones, and on spisEs Fig. L
matrix. As discussed in the following section, particular con-

stellations give rise to matriced with inversion formulas
simpler than the general one. Onldehas been inverted, the
matrix elements of the dual kernel are given by the rows o
the (NgX Ng) matrix

Q '=D,!N"'D;*t. (64)

For discreteQ symbols, the kerneL in Eq. (52), which
implements the discrete product, has the form

L,uV)\:Tr[Q,uQVQ)\]:<n)\|n,u><n;4|nv><nv|n)\>’ (65)

which, by using results from Ref8], can be written as

L

1
— H 2
W)\—425(1+ n,-n,+n,-n+n,-n,+in,-n,0n,)*

(66)
(67)

wheregg(n,-n,)=(1+n,-n,)/2, and, definingg(uv\) as
the term in parentheses of E@6), one has

=go(N,-N,)°go(N,- M) Go(Ny - Nn,,) %>+,

01210

A. Random constellations

¢ As shown in Ref.[16], almost any distribution oN;
points on the spher&? gives rise to an allowed constellation.
A random selection of directions leads with probability 1 to
an invertible Gram matrix. This result shows that in an in-
finitesimal neighborhood of any forbidden constellation, one
can find an allowed one.

B. Nested cones

Historically, this family of constellations provided the
first example of allowed constellations for both integer and
half-integer spind17]. For an integer value o consider
(2s+1) cones about one axis in spa@, say, all with
different opening angles. Distribute §2 1) directions over
each of these nested cones in such a way that the ensemble of
directions on each cone is invariant under a rotation about
by an angle Zr/(2s+1). For specific opening angles of the
cones, the inversion of the matikin Eq. (63) reduces after
a Fourier transformation to the inversion ofs21) Vander-
monde matrices of size €2-1)X(2s+1). For a half-
integer spin, the same construction is possible except that the

5-8



DISCRETE MOYAL-TYPE REPRESENTATIONS FOR A SPIN PHYSICAL REVIEW @8 012105

directions on different cones must also lie on different me-Consequently, the Gram matri is invertible if and only if
ridians. There is, in fact, a slight generalization of this result:.dety#0. The matrix(71) can accommodate at most 4
the same calculation with €+ 1) arbitrary different open- 4 1) directions on one cone, corresponding to one value of
ing angles leads to @+1) generalizedvandermonde ma- & with respect to some fixed axis. The subsequent multiplici-

trices with a nonzero determinant. ties (4s—1),(4s—3), ..., are due tapplying the same ar-
Constellations on nested cones are useful also for numergument to the remaining subspaces with dimensions 2(
cal calculations because they allow one to distribbte —1)+1,2(1—-2)+1,....

points in a homogeneous fashion on the surface of the In physical terms, the determinant of E1) is easily
sphere. If two points of a constellation approach each otheinterpreted as a Slater determinant of a quantum system: it
the determinant of the matriG typically becomes very equals thetotally antisymmetrig ground-state wavefunction

large, with a disastrous effect on numerical precision. of N noninteracting fermions restricted to move on a sphere.
The node lines of this wave function correspond to forbidden
C. Free cones constellations in which the corresponding operator kernel is

Here is another family of constellations involving g2 degenerate, i.e., doewt give rise (o a basis itd;.

+1) cones with directions located on them. However, now

the cones may be oriented arbitrarilyo nesting, and the D. Spirals

number of directions may vary from cone to cone. For ex- A particularly convenient constellation is defined in the
ample, the number of points on a cone can be chosen tg|iowing way: Let theN; directions be defined by com-

equal the mu|t|p||C|t|eS of the Spherlcal harmonhéﬁﬂ with p|ex numbers pomtg Constructed from a s|ng|e ponzb
|=2s. It is claimed that allowed constellations can be iden- (ne|ther of modulus one nor pure|y ré;'a|
tified by taking into account the following propertiégsted

numerically for values up te=6): z,=z5"', v=1,...Ns. (72)
(1) The determinant ofs is zero if there are more than
(4s+1) directions on a single cone. The points are thus located orspiral in the complex plane.

(2) If there are (4+ 1) points on one cone, then another  The matrixN defined in Eq.(63) then turns into anNs
cone will contain at most (¢ 1) points, allowing for no  XNg) Vandermonde matrix, that is,
more than (4—3) directions on the third cone, etc.

(3) It is necessary to have directions located on at least szx’j’l, v,u=1,... Ng. (73
(2s+1) different cones.

For a spin 1/2, these properties will be shown to hold inits inverse is known explicitly given, for example, i8],
Sec. V. The first of these observations can be proved fowith elements
arbitrary spins by using a particular decomposition of the

matrix G, (= N
+ Vv,u = Sst V({X)\}}\il_xlu,)l (74)
G= g9 (69) )\I;IM (X}\_X,u)

exploiting the fact that a positive definite matrix can always
be written as the “square” of its “root.” A lengthy calcula- whereSy ,V({xx})\ 1~ X,) is the symmetrical function con-
tion involving properties of rotation matrices, Legendrestructed out of thél — » numbersx, with v+ \. One has, for
polynomials, and spherical harmonics leads to a factorizagxample,S,(X;,X»,X3) = X1 X2+ X1 X3+ XoX3.

tion, g=dy, the first matrix being diagonal and havings(2
+1) different entries,

2w (2s)!

Y= szt

V. DISCRETE MOYAL REPRESENTATION
FOR A SPIN 1/2

[=0,...,%, (70 In this section, the discrete Moyal representation will be
worked out in detail for a spin with quantum numbgr
=1/2, allowing for explicit results throughout. For clarity, it

each value occurring (2-1) times. The second matrix has js assumed from the outset that the kernel consistoaf

columns given by thé\s lowest spherical harmonics evalu- projection operators

ated at one of th& points of the constellation,

Q,=In,)Xn,|, »=1,...N. (75)
Yoon)  Yodnz) ... YoolNny
Y n Y n o YNy It is easy to generalize the results derived below to the case
| 1) Yamalng) T of four linear combinations df+n,)(+n,| compatible with
S oo Eq.(12. o
Yoes(N1)  Yoeos(Ny) stzs(”NS) Let us start with the determination of the dual kernel that

can be found by the intermediate step of inverting the (4
(71 X 4) Gram matrix with elements

012105-9
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1 1+ e
Gp=[(nun)P=5(1+n,n,). (76) G, l=Gr'=2 . (@Y
(1+n,-#)(1+n,- )

This matrix is easily factorizeds=g7g/2, where In general, the element®” of the dual kernel will thus be

1 1 1 1 linear combinations of all four projection operatdps .
It is interesting to express the kernel and its dual in terms
Nix  Npx  Nax Ny : f _ .
g= ) (77) of the Pauli matricesr=(oy,0y,0,):
Ny Npy Ngy Ny
.1 - I+ o
Niz Npz N3z Ngg QV=§(|+HV~0'), QV=2—1 P ) (85
+f”-n,

The absolute value of the determinantgois proportional to
the volume of the tetrahedron defined by the four pomfs  ajiowing one to show easily that they satisfy the required
on the surface of the sphere implyidetG|=18Vieira-  duality.

Since a “flat” tetrahedron has no volume, the entire set of For reference, we give th® and P symbols of the spin
forbidden constellations has a simple geometric descriptiongperator

detG=0<the four pointsn, are located on a circle afi?. 1 2V
78 = v S
(78) $,=3N,, S T (86)
Consequently, allowed constellations are characterized by
three vectors on a corfany three points on a sphere define aand of the identity
circle), plus any fourth vector not on this cone. This agrees
with the earlier statements about free-cones constellations. , 4
Here is a simple way to invert the matrix and subse- L=1, 1 T1ifn
quentlyG. Consider a matrix Y

(87)

and the symbols of arbitrary operators for a spin 1/2 follow

16ty &g from linear combinations.
N A A
f= , 79
18R (79 VI. DISCUSSION
1 4 4 4 Operator kernels have been used for a systematic study of

phase-space representations of a quantumssgihe kernels

defined in terms of four vecto;fg:(f;,f;,f;) not required  have been derived from appropriate Stratonovich-Weyl pos-

to have length one. The matrix elements of the of product tulates taking slightly different forms for continuous and dis-
andg are given by crete representations, respectively. Emphasis is ordite

crete Moyal formalism that allows one to describe
(fg)=1+f*.n,. (80 Hermitean operators, including density matrices, byiai-
mal number of probabilities easily measured by a Stern-
This is adiagonalmatrix if the scalar productB*-n, equal  Gerlach apparatus. As a useful byproduct, a natural and most
to —1 wheneve # v. Geometrically, such four vectors are economic method otate reconstructioremerges when a
constructed easily: the vectdt points to the unique inter- quantum spin is described in terms of discrete symbols. Fur-
section of the three planes tangent to the sphere at the poiniser, Schrdinger’s equation for a spis turns into a set of

—ny, —nz and —n,. Analytically, this vector reads coupled linear differential equations for§2 1)? probabili-
ties[19].
1:n2Dn3+n3Dn4+n4Dn2 (81) In addition, a new form of the kernel defining continuous
(nz0n3)-ny ’ Wigner functions for a spin has been given in E2): It has

o ) been expressed as an ensemble of operators obtained from all
and the three remaining vectors follow from cyclic permuta-possible rotations of one fixed operator. This is entirely

tion of the numbers 1 to 4. With this choice the inverse of thena10gous to the elegant expression of the kernel for particle-
matrix g can be written as Wigner functions as an ensemble of all possitiase-space
g l=d 1, 82) translations of the parity_ operator. There_fore, contir_1uous
phase-space representations for both spin and particle sys-
tems now are seen to derive from structurally equivalent op-
erator kernels.
The discrete symbolic calculus is an interesting “hybrid”
between the classical and quantal descriptions of a spin. On

whered is the diagonal matrix i1t80): d,,=1+f"-n,. Con-
sequently, the inverse of the Gram matfixfor a general
allowed constellation is given by

G l=2d ffd 1, (83 the one hand, this representation is equivalent to standard
quantum mechanics of a spin. On the other, the independent
having matrix elements variables carry phase-space coordinates as ldEgjs. (45)
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and (46)]. However, only a finite subset of points in phase TABLE Il. Synopsis of continuous and discrefen square
space(corresponding to an allowed constellatioare in-  bracket§ phase-space representations for both particle and spin sys-
volved reflecting thus the discretization characteristic oftéms.

guantum mechanics.

The Ng projection operators associated with a constella- Self-dual kernel Dual pairs
tion of points define a nonorthogonal basis for Hermitean Wigner functions P, Q symbols
; ; ; 0Qartlcle
operators acting on the Hilbert space of the spin. Each pr [unknowr] [unknowr]
jection is a positive operator, and, altogether, they give rise : - -
to a resolution of unity. One might suspect that they define apin Stratonovich/Varilly Berezin symbols
[impossiblg [P”, Q, symbolg

positive operator-valued measyi20]. However, this isnot

the case since the closure relation does not involve just the

bare projections but they are multiplied with factors—some ) )

of which necessarily takaegativevalues. Such an obstruc- dual kernels, one of which would consist of a countable set

tion through “negative probabilities” is not surprising; other Of projection operators on coherent states. This set is re-

phase-space representations are based on quantum mech&led to be a basis in the linear spacetwfundedy opera-

cal “quasi-probabilities,” known to have this property, too. tors on the particle Hilbert space. It is not obvious in how the
Let us close with a synopsis of the fundamental Moya|_associated discrete symbol would reflect the subtleties of

type representations for particle and spin systems known s continuous counterpart which may be singular. Similarly,

far. Table Il provides both a summary and points at opeﬁhe existence of a self-dual discrete kernel for a quantum

questions. The individual entries give the names of the faParticle is an open question.

miliar continuousphase-space representatigsse[21] for a

survey_, while 'ghe corresponding quantities for ttjtscrete ACKNOWLEDGMENT
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