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Dynamics of barrier penetration in a thermal medium:
Exact result for the inverted harmonic oscillator
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The time evolution of quantum tunneling is studied when the tunneling system is immersed in a thermal
medium. We analyze in detail the behavior of the system after integrating out the environment. An exact result
for the inverted harmonic oscillator of the tunneling potential is derived and the barrier penetration factor is
explicitly worked out as a function of time. The quantum mechanical formula for the case without environment
is modified both by the potential renormalization effect and by a dynamical factor which may differ apprecia-
bly from the one previously obtained in the time range d@tdivature at the top of potential barnier
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I. INTRODUCTION imaginary part of the free energy, which may be interpreted
as the decay rate. However, since the equilibrium value of
Tunneling phenomena in thermal media are of both theothe free energy of the entire system is necessarily real, one
retical and practical interest in many areas of physics. Fomust extract the imaginary part by projecting to the initial
instance, in cosmology there are a variety of tunneling phemetastable state. In some discussions in the literature it is not
nomena that may have occurred during the evolution of oufl€ar how this projection is performed on rigorous grounds,
universe. If the phase transition related to electroweak gau%‘thoug_h some of its physical consequences are reasonable.
symmetry is of first order as assumed in the electroweall N€ré is indeed some criticism of this type of approach
scenario of baryogenedis], then the tunneling from a meta- L1213 It seems that a more fundamental microscopic ap-
stable state to the true ground state of the electroweak theoﬁfoaCh to deal with the tunneling in a dissipative medium is
must occur through either a quantum effect or thermally ac- eeded.

tivated barrier crossing. Another possible first order phase W't.h this bgckground_ in mind, our aim m_the_ present
work is to clarify dynamical aspects of tunneling in a me-

transition in cosm_ology IS the quark-hadron phase tranSItlondium: how the barrier penetration basic to quantum tunneling
We should not fail to mention also the classic example of E[;

i h h K | i th : oceeds in real time. The key idea is separation of a small
tunneling phenomenon that takes place in the central core @ giem from a larger environment, and we would like to

stars: a thermonuclear reactify. _ determine the reduced density matrix for the small system by
A common circumstance for all these is the presence of afhtegrating out environment variabld44]. This makes it
environment: the tunneling we are interested in does not tak@asy to compute the penetrating flux factor for an energy
place for the system in isolation. Thus we are very interestedjgenstate of the small subsystem. Our approach does not use
in how substantially the quantum mechanical formula for thethe Euclidean technique, which in our opinion obscures the
tunneling rate is modified by dissipative interaction with thedynamics of time evolution. Neither do we assume that the
surrounding medium. Despite this obvious interest, manytunneling system is in thermal equilibrium with the environ-
past works in cosmology and astrophysics have relied oment, although we can discuss this case using our fundamen-
simple methods to deal with the tunneling problem, eithertal formula. Moreover, we are able to deal with both the
using the bounce solution in the Euclidean apprd@et6] or  quantum and the thermally activated regions in a unified
exploiting some variant of the classical van't Hoff— way.
Arrhenius law[7,8]. The model we use to extract exact results for the barrier
On the other hand, since the pioneering wi@kon quan-  penetration is the inverted harmonic oscillaf®fHO). Since
tum dissipation to tunneling phenomena at zero temperatur¢he form of the potential we use for exact results is very
there have appeared many extended works in condenseagecialized, we cannot discuss the tunneling for general
matter and statistical physic¢a partial list of these works is cases with full confidence. Nevertheless, we believe that the
given in[10-12). The intensive theoretical activity in this method employed in the present work, especially the integral
field is presumably related to the experimental possibility oftransform of the Wigner function, should be useful in deriv-
observing macroscopic quantum tunneling in various areasg approximate yet valuable results for the general potential
of condensed matter physics. The problem is not simplein the semiclassical approach. We hope to return to a general
however, and only a limited class of problems has been adunneling potential in our subsequent work.
dressed. Thus even in idealized models one often assumesWe take for the environment infinitely many harmonic
that the entire system is in thermal equilibrium and attempt®scillators of arbitrary spectrum. This is a standard case stud-
to derive quantities of limited value such as the decay rate ofed by many people in the field. The system of a normal
the metastable state by an extension of bounce ang#;§ls  harmonic oscillator coupled to this environment is analyti-
In some of these work$10,11], the key quantity is the cally solvable, as discussed [ib5—17. Our barrier penetra-
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tion model corresponds to the case of imaginary frequencypq(t)/qe(0), Eg. (77). The Ohmic or local approximation
In the present work we shall employ and extend some techithe inherently nonlocal term of the environment interaction
niques we developed in the case of the normal oscillator. in the full Langevin equation being replaced by a few expan-
The main result of the present work is summarized by &ion termg is shown to lead to some anomalous behavior of
formula for barrier penetration: the dynamical factor. In Sec. IV some applications to a
mixed initial state are discussed using the exact result for the
1d inverted harmonic oscillator. Our understanding of the result
. alnlqo(t)l. (1)  of Ref.[9] is also shown in terms of the diagonalized curva-
B ture parameterwg. Three appendixes explain technical
. . . . points somewhat off the main stream of arguments in the
This formula is applied to an eigenstate of enegfaken for o4 “Appendix A gives the interesting form of the integral
the initial IVHO subsystem. The well known quantum me- yanstorm of the Wigner function, while Appendix B gives
chanical penetration formula is modified by the environmente gifterential form of the Fokker-Planck equation, both de-
effect in two ways; first, via a change of the original curva- e for the harmonic model of the environment. Appendix
ture o (bare parametgito the renormalized, pole curvature ¢ eypjains parameters necessary for our numerical computa-
ws, tion of the dynamical function.

Po(t)

f(H)|TE)% f(H)= walo(D

1 Il. MODEL OF THE ENVIRONMENT AND INFLUENCE
2 FUNCTIONAL METHOD

2_
|T(E)| o 1+ eZqT|E\/w0 - 1+ eZ’JTlEl/wB !
We expect that the behavior of a small system immersed
with E the energy measured from the top of the potentialin a thermal environment is insensitive to detailed modeling
barrier. This effect is essentially similar to, but numerically of the environment and the form of its interaction with the
different from, the curvature renormalization effect muchsystem. Only global quantities such as the environment tem-
emphasized by Caldeira and Leggi@t. In their work two  perature, the friction, and the threshold of the environment
cases with and without the friction term, but both including spectrum are expected to be important. Since the pioneering
the curvature renormalization given layg (which is larger  work of Feynman-Vernofhl4] and Caldeira-Leggef®], the
thanwg), are compared. The result of Caldeira and Leggetstandard model uses an infinite set of harmonic oscillators
is understood when one writesg in terms of wg. [its coordinate variable denoted I§y(w)] for the environ-
The second environment effect is the time dependent faoment and a bilinear interaction with the small systée-

tor f(t) which is the ratio of the momentumy(t) =qo(t) to  noted byq),

the rescaled coordinate trajectayy(t). This trajectory func- 1 e

tion qg(t) obeys the homogeneo_us Langevm.equatlon, Eq. LQ:EJ dw[QX(w)— w2Q¥(w)],

(43) below, under a thermal environment, being character- ¢

ized by an initial energy corresponding to the top of the "

potential barrier. When the dynamical functid(t)=1, the Lin= _qf dwc(w)Q(w). ®)
IVHO subsystem has the energy of the barrier top, and its ¢

deviation from unity is a measure of energy flow from the
environment. Whenf(t)>1, namely, |po(t)|> wg|qo(t)],
the IVHO system is excited by an energy inflow from the
environment. On the other hand, whigit) <1, the system is potential of theq systemV/(q).

deexcited by an energy outflow. The factb(t) deviates : . : : .
i o ; It is now appropriate to explain the influence functional
from unity within a time range of order &k, and both for method [14]. The influence functional denoted by

;.<d1/.’"$ anii' fort>1/w? the effﬁc:] |fh.smdall:f(t)'~ll.f Wet' Fa(7),q'(7)] results after integration of the environment
Ind interesting examples in whic IS dynamical func .'OnvariabIeQ(w) when one computes the density matrix of the
exceeds unity, thu_s implying enhanced penetration, albeit foéntire system. Since the density matrix is a product of the
a s_lfjr(])rt rpertloc: tohfi time ofr(?rderr d)/%i.z d as follows. In S ”transition amplitude and its conjugate, the path integral for-

€ Ie_s r? N paped Ist(r)\ ganized as c; 0 dS.'t . tec. mula resulting from the environment integration has a func-
We explain how we modetl tné environment and Its nteracs;, o) dependence on both the system pgth) and its con-
tion with a quantum system, and introduce the mfluenceugate path (7). We thus define, when the initial
functional. The quantum Langevin equation is also b”eﬂylenvironment is in a mixed state given by a density matrix
touched upon. In Sec. Ill we work out exact consequences (Q,.Q’). the influence functional

i1 Ni /o

for the inverted harmonic oscillator, and give the barrier pen—‘oi
etration factor, taking an energy eigenstate for the initial
state. This section is somewhat long, but we explain mathf[Q(T),Q'(T)]Ef DQ(T)I DQ'(T)I inj dQy
ematical details to the extent that the paper is clearly pre-

We assume the existence of a thresheld>0. The coupling
strength to the environment is specified byw). In the
present section we do not assume any special form for the

sented and self-contained. Our general result includes an in- , ,

tegral transform of the Wigner function from the initial to the XJ def dQr 8(Qs =~ Q1K(q(7),Q(7))
final one, as explained in Appendix A. The fundamental for-

mula (1) is derived along with an explicit form of XK*(q'(7),Q"(m)pi(Qi,Q/), 4
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K(q(7), —exp(iS iS.[a,Q]), 5
(A(7).Q(7)=exp(iSg[Q1+iSp[a. Q). (5) p<R>(qf,q;):qu(T>Jqum

t
SlQ1+Sn(a.Q1= | dr(LolQI+Lala.QD.  © <[ aa [ aqur )

X Fq(7),q' (1) ]Sl Sala Ty q;).

pi(Qi, Q) =2 Woihs Q) n(Q)), v
n (13)

wherew,, is the probability of finding a pure statein the  HereSy[q] is the action for theg system. This density ma-

initial environment. The fact that there is & function  trix p(R may be used to compute the physical quantities

8(Q¢—Qy) for the environment variable at the final time of one’s interest.

indicates that one does not observe the environment part at It is sometimes convenient to introduce the Wigner func-

Throughout this discussion we consider a definite time intertion by

val 0< 7<t.
For the thermal ensemble of @ harmonic oscillator of » d¢ ¢ g\
frequencyw (B=1/T being the inverse temperatiirehe ff,s)(x,p)=f — | x+ E’X_ 5) e PE (19
density matrix is —eN2m
12 o We shall later mention the master equationff@f . Here we
pp(Q,Q")= m) exp{ — Tﬁ) quote for comparison a master equation for the Wigner func-
. Bo Bo tion when the entire system is in a pure quantum state:
X[(Q2+Q’2)COSKBw)—2QQ’]}, 8 afw Ifw 1 ih o it o
—=—p—+ | V| X+ 5 —| V| x— 5 —| fw.
at ax ik 2 dp 2 dp
and one can explicitly perform th@(w) path integration in (15
Eq. (4), since th integration is Gaussian. The result is o . . )
aqncgn)local actioenQ(w) d It takes the form of an infinite dimensional differential equa-

tion.
The master equation is simplified in the semiclassical

f-[q(r),q’(r)]=ex;( - fOthJOTds[g(T)aR(T—S)g(S) limit of #—0 to

Ifw Ifw oV afy
+i§(7)a|(T—S)X(S)]>, (9) Tt P T ap (16)

A great virtue of the Wigner function is that this semiclassi-
cal equation coincides with the Liouville equation for the
distribution function of a classical statistical system in the
phase spacex(p). It is thus easy to write down the semi-

classical solution in the form of an integral transform,

with

&rn=q(n-aq'(7), X(nN=q(n)+q'(r), (10

1 (= - i
— + - d —Iw’r, 11
a(r)=ar(7)+ia|(7) ZWJ%O wa(w)e 11 fu(X,p)= foc dxifoc dpifW(Xi ,Pi)

~ o 2qi ~ ~
—i r A2 ’ _ X _ _
w(w)=i f%dw w )<w2—w’2+i — - S -Xe()P—Pa(t), (17
where the classical deterministic flow;(p;)— (X¢,Pg) iS
X 8(w'?— wz)) ) (12)  defined by the classical mapping satisfying

~ dxg dpc,__(av> 18

Both ag and ¢, are real functions. A complex combination Po=gr Tt \ax
of these, the kernel functioa(r) that appears in the expo-
nent of the influence functional, is the real-time thermal
Green’s function for a collection of harmonic oscillators  Although it is not our main tool of analysis, it might be of
Q(w), which makes clear the relation to thermal field theory.some use to recall the quantum Langevin equation for the
The reduced density matrix® for the q system is de- model of Eq.(3) [18]. By eliminating the environment vari-
fined as follows. For simplicity we take for the initial system ableQ(w,t) one derives the operator equation for theari-
a pure quantum state given by a wave functiig(;), able,

cl
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d’q oV _ [t (1. wh
d—tg t5q 72 dSa, (t=s)q(s)=Fq(t), (19 ISeﬁ=IJOdT(§§X+ 7°§X>
Jtd JTd
e P — —
FQ(t)z—f dwc(w)(Q(w,O)cos{wt)Jr (Z’O)sin(wt)>, 097 L E T ar(T IS
° 20 +Hig(n (7= 9X(9)]. (25)
" Bw The linearity in theX(r) variable here gives a triviaX(7)
(FQ(T)Fq(S)Sy'%nv:f dor(w)cosw(r— s)cot)—( _> path integration in the form of @ functional; it determines
o¢ 2 the ¢(7) path as
(21)
d’¢
wherer (w) =c?(0)/(2w) and()qn, is the thermal average 9z wo§(7)+ZJ dsé(s)a(s—7)=0. (26)

over the environment variables. Thus, the kernel function
a,(7) describes a nonlocal action from the environment

while Fq(t) is a random force from the environment. The The final¢ path integration then leads to

local approximation toe,, taking the form of a,(7) t T

= dw?8(7)+ nd' (1), gives - fodeodsaT)aR(T_S)g(s) (27)
d’q oV 2 dq for the exponent factor, plus a surface term resulting after the
F’L %’L dw g+ Tat ~ Fo(t). (22) X(7) partial integration. The functiog(7) here is the solu-

tion of EqQ. (26) and the result of the path integral must be

The parametebw? in this case is the frequency shift due to written with a specified boundary conditigf{0)=¢;, £(t)

the presence of the environment, amds the Ohmic friction. =&

: C : L The standard technique of solving this type of integro-
We call this approximation the Ohmic approximation. Per-
haps more suitably, it might better be called the local apdlfferenual equation fog(7) is the Laplace transforrfL6].

proximation. We shall summarize only the final result. Two fundamental

On the other hand, the real part of the kernel functign solutions to this equation aggt— 7) and its time derivative
describes fluctuation, and it is related to the dissipatiphy ~ 9(t—7) given by
the fluctuation-dissipation theorem; for their Fourier compo- N .
nents g(r)= — sinf‘(wBT)-f-Zf doH(w)sinw7), (28
B [OFS
20" ag(w’)tani Bw'12)

~ 1 (=
a|(w)—;Pchdw 0 w2 (29 N=1—2f dowH(w)<1. (29

where P denotes the principal part of the integration. The important properties are thg(r) is odd andg() is

even withg(0)=0 andg(0)=1, which gives the relation
ll. EXACT RESULTS FOR INVERTED HARMONIC fixing N. In terms of this basic functiog(r) a general solu-
OSCILLATOR tion to the integro-differential equation with the given
A. Formalism boundary conditiorf16,19 is

We specialize the system dynamics of barrier penetration g(t—17) _ g(t
to that of the inverted harmonic oscillator given by the La- &r)=—-+— ) &+l gt—7)— ot

grangian density g(t
1. 1 The weight functionH here is a discontinuity of some
quzqz—vq(q), Vq(q)=— Ewéq{ w3>0. (24  analytic function[F(z) of a complex variable= w] across
the branch-point singularity along the real axis«at w.,

and is given by
There are similarities to the case of a normal oscillator of

w5<0, and we can take over some of the results derived for o) (o)
the unstable |@q|>>w?) [16,17] or the stable (&|wq|? H(w)= Nw)= :

; g(t—7) [&. (30

2 2 2 2’
<®?) harmonic oscillator. [o™+ wp=Tl(w) "+ [T ()] 2w(31)
The Gaussian nature of the system is a great simplifica-
tion, as demonstrated by E@}), and one may write an ef- . 201 (")
fective action for theg system including the environment H(w):pf do'———=, (32)
effect: o w’—w'?
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where the integral foll stands for its principal part. The
value wg in Eq. (28) is determined as a solution for the
isolated pole on the real axis af=—w3<0:

o 20r(w
—w§+wg+f do 2( izo. (33
23S wgt w
In general, one has
wé>wé. (34)

Since many workers in this field use a renormalized po-

tential according to Ref9], we also introduce these:

Vgt Vao=V§™a@) + Vg (a.Q), (35
1
V*a)=V-q f dwﬂ——gwRq, (36)
(ren) )
VIE(,Q) = Voo, Q>+qf do
_ 1 2~2
=V4q(9,Q)+ 5 6w g~ (37

We shall redefine the system potential using{*"(q). This

renormalized potential gives an inverted harmonlc oscillator

with the curvature parametesg. This renormalized curva-

ture differs from the pole location of the spectral function

H(w), namely,wg, by a factor of order of the interaction

coupling. In the weak coupling limit these two quantities are

given by
© r
w2R= wg-i- 2[ dw% (38
wr(w)
wB~wo+2f do———. (39

w +wo

The equatlon fow? gives a precise relation, while the equa-
tion for w3 is an approximate relation valid for weak cou-
pling, the exact relation being given by E&3). In general,
one can prove that

(40)

2 2
wg<wg,

PHYSICAL REVIEW A 63012104

n=0 m=or n=o
—e ° 00 L2
- 0

FIG. 1. Analytic structure of (w?) as a function of the com-
plex w? variable. The pole at- wé moves as indicated when the
friction 7 becomes large with the parametef; fixed. The continu-
ous branch cut starts from a thresholdugt.

In the infinite cutoff limit,{)— <, the quantityk is divergent.

In Fig. 1 we show schematically the analytic structure of
the functionF (z?), basic to the determination of the discon-
tinuity function H(w). Unlike the case of the normal har-
monic oscillator for which the pole location may have an
imaginary part, the pole af’= _sz appears exactly on the
real axis. The other singularity is the branch cut starting from
the threshold?= w?.

The physical meaning of the basic functig(r) is better
understood by solving the operator Langevin equation for
this system:

2

d<q

t
F—w§q+2fod7a,(t— 7A(7)=Fq(t). (43)

The quantitywé here should be understood as a function of
w3 after eliminatingw3 with Eq. (33). The homogeneous
solution to this Langevin equation is given by usingd) and

g(t); with the initial data ofq(0), q(0)=p(0),

a(t)=a(0)g(t)+p(0)g(t). (44)
The main term g(t)~Nsinhgt)wg and g(t)
~N coshgt) describes an average motion(t)) under the
renormalized, inverted harmonic oscillator modified by the
environment, for which the original parametes?| is re-
placed by the new shiftenbé. The correction to this classi-
cal motion given by the second term in E@8) describes a

beyond the weak Coup“ng approxima‘[ion_ To give an ex.damped Oscillati_on with an amplitude decreasing as an in-
ample, in the Ohmic model that will be discussed shortly, theverse power of time at large times.

relation becomes

1

wp~WR™ 57, (41

wherey is the Ohmic friction. A more precise relation in this
case is Eq(86) below. The relation to the bare quantity; is

K~ —.

TwWo

wr~ wgt K7, (42

A straightforward calculation oK and ¢ path integration
finally gives an effective action valid for any initial state of
the g system. We first define new functions by

h(w,t)= fotdrg(r)e_i‘”, (45)

k(w,1)= fothg(T)e_im=iwh(w,t)+g(t)e‘i“’t_
(46)
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With the normalization fixed by unitarity, one has for the express our result as a transformation of the initial Wigner

effective actionJ defined byp(®=tr(Jp;)

iS,
2mg)

I(Xe, &3 X650 = (47)
whereS; is given by[19]

| u, v, T
|SCI:__§f_§§i_W§i§f+§xf§f_ixi§iv (48)

2
. 2 -
g g 1
U=|2| I;+1,-2215, V=—I,, 49
(Q pHz2gls V=i (49
1 g 1.
W:§|3_?|1:§9V. (50
o0 ﬁw 5
|1:f dwcothTI’(w)|h(w,t)| , (51
|2:f dwcoth%wr(wnk(w,tnz, (52)

o Bw
l3= L do coth—-r(w)Reh(w,Dk" (,1)], (53

g(t—1)

- ga—ﬂmn)
9(t) '

§f(9(t—7')— 90D

En=—§
(54)

function f{}) to the final onef{Y’ . We give this in Appendix

A. This mappingf{})— &) is an integrated form describing
the dynamics of the system. Its differential form is known
as the Fokker-Planck equation, and we shall explain this
briefly in Appendix B.

B. Barrier penetration factor

The flux at positiorx is computed from the formula

= d
o= [ e (59
to give
dxdé; i i
I(x,t)=f ngg zp*(xi—%)zp xﬁ—%
- ~2
X gx+ g_% Xi+iW§i

v( [ . )2
Xexg — 5 §i+g—V(X—9Xi)

. (60)

1( 0X;)?
X— 0X;
2g2V g I

We use the WKB formula for energy eigenstates of the
IVHO. Considering the incident left mover a0 with unit

take a pure initial state given by the wave functig(x).
The Wigner function in this case is

dXidfi . 1
- = <_2

f\(l\l?)(xap):f 27T\/E¢ _gi

¥

Xi+ %fi)e_A,
(55)
detl ] . )
A= S [&+i1(g91+935)(x—gx)
+i(93,+933) (p—gx;) ]2
1 . .
+ 5 [31(x=gx))*+ Jo(p—gxi)?
+235(x— %) (p—gx)], (56)

C= JOcdwcothETwr(w)|gh(w,t)—gk(w,t)|2, (57)

! !
2 Jg=————. (59)

27 2
I1|2_|3 I1|2_|3

(D=1

31,2:

point)
Y(X)~ \}—;(ix))exp(ifxidx’p(x’)), P(X)=V2E+ w3x?,

(61)

wherex, = \2|E|/wg and T(E) is the transmission coeffi-
cient as a function of the enerdyin a pure quantum state.
This choice of the wave function gives the trasmission coef-
ficient

2%
IT(E)| 1 (62)

+ e727TE/‘”B '

A point that becomes important when we compare our
result with those of other papers is how one prepares the
initial state. In much past work a thermal equilibrium be-
tween the subsystem and the environment is often assumed,
and in this context it is natural to take for our choice of the
pure state the reference system characterized by the curva-
ture wg, the exact pole curvature. The choice of the WKB

Although it is not used in the calculation of the flux factor wave function, using the curvature parametgy, fits with
in the next subsection, it is of great theoretical interest tahis picture. But it should be kept in mind that we may in
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principle take any reference curvatutesreafter denoted by The first few terms of this series are

) and in these cases we replasg below by . 1
Expanding wave functions i§; , we derive a general for- Aox)=|(x)|%  Ai(xi) == (* dp— pa* ) (X)),

mula for the dynamical factor. This involves an infinite se- 2

ries of the expansion i§ of the initial density matrix ele- (64)

ment,

1
. Ax(xi) = gL P ) () + | ay2(x)) ). (65)
wm+wawuram=gkmmwﬂ (63)

Computation of the flux factor is then given by

)

(0= 2 Tn(x,0), (66)
.Xi)zl

g 2
_ e_B /2_
mﬁ}
(67)

'92

foly et

g
R R A SR P B 9
—(\/I_l) szgAn(. + — a) fd,B(,Ble )" |gx+

\% i : )2
5 §i+g—v(x—gxi) -

o s )a+i(|3 ol

g 9 g?

4m>f'§A<m

The second equality follows by a trivial scale change of the wag 99
integration variables; ,&; . Ih(X,t)—=| T(E)|%( ( ) (—2— 1) (n=1)
One may use the expansion.df,(x/g+ I,a/g) in pow- 9 71
ers of the coupling: (
This along with
PR N A EAR ?
LRI R T R IR (=0 =[T(E)PHD (72
1 A(k—l) X gives a general formula for the dynamical factor:
(k 1)' g - o0 n-1 - .
g 99 wgd g+ wgg
e fy=——|5-1|2 | —= = :
MR . 69 wgg \g* /i1l g wp(g+ wgg)
9 (73)
For calculation of the penetration factor one needs only thd NS IS the main result of the present work. _
x—s o0 limit of the flux function. From the WKB formula The salient feature of this result is factorization; the main
' suppression factor given B (E)|? is affected by the pres-
IT(E |2 dn 1 ence of the thermal environment only via the renormalization
An(x) = effect, as will be more fully discussed shortly. The other
Nt dg Vp(xi— &12)p(xi+ &12) prefactorf(t) carries dynamical information about the time
X+ 12 evolution. _
Xex;{ f dx! p(x’)) (69 The basic functiong(t) andg(t) that appear in the dy-
£=0 namical functionf(t) are the solution to the homogeneous
part (Fo=0) of the Langevin equatiot¥3) with the initial
one has condition,g(0)=0, g(0)=1. More conveniently, one may
- rewrite the dynamical function as
X
An(x)—|T( E)|2[ e ') +O(x” 3)] (70) oo(t) _
f(t)=m. Po(t) =0o(t). (74)
Only the term containing(\1,/g)a]"~* remains here. One
may then derive Hereqg(t) is the solution with the initial condition
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4(0) = wgq(0). (75) | | | f

a 84 I Super-Ohmic ,/
This condition corresponds to zero energy at time@®, since

1., 1 ’ o
02— = w2g2= Q&7
Hyq 2q 5 wgq°=0. (76) | o o Drude

That is, the particle is on the top of the renormalized poten- I }6
tial barrier. Note, however, that the exact pole curvatuge i c}\o\
appears here instead of the renormalized The ratio of the ,‘\(\\0
momentum to the coordinate fdi(t) is a measure of the Rl , .
energy flow from the thermal environment. Thus, the case of 0 W Q

f(t)>(<)1 corresponds to an energy inflgautflow). Both
att<l/wg and att> 1/wg this functionf(t) is nearly unity
and it deviates appreciably from unity only within the time
range of lbg.

An explicit formula useful for detailed analysis of the
dynamical functionf (t) is

FIG. 2. Schematic form of model spectral weights. The spectral
function r(w)=c?(w)/(2w) is plotted as a function of the fre-
quencyw.

have a convergent integré80) for the formula forg(0) a
physical cutoffQ) of the environment spectrum is necessary;
thus the simple-minded Ohmic model without the cutoff
should be treated with caution.
2 The asymptotic formuld@78), as will be shown later, de-
+2[ doH(w)(wcoswt+wg sinwt). (77)  scribes well, even numerically, the dynamical function at all
e times, including small times. For instance, the expansion in

do(t) =g(t) + wgg(t) = Nes!

The first term represents a simple classical motion under thiiMe t of Ed. (78) gives aimost the same result as E€9),

potential, modified by the curvature renormalization, whileXCEPt for tlgeillinissing faCtd;l' . h
the second term is a further deviation due to the environmeng W€ would like to stress that two propertidgf) <1 wit
interaction. The environment effect fé(t) appears in two 1(0)=1 for smgllt and_ f.(oo)_l’ are generic features for
ways: the first via the definition ofog determined by the any model| having a finite physical cutoff of the speptral
potential renormalization due to the environment interactioﬁ’,"elght r(w). As shown later, however, some approxima-

and the second the continuous part of the spectral integral iflons or models with the infinite cutoff violate these general

Eq. (77), and its associated deviation of the normalizationPrOPerties.
fa((l:tcgr B from unity. Although our fundamental formul&?2) is derived for en-

Before we go on to specific models of the environment, it€'9Y €igenstates, one may compute the barrier penetration

is appropriate to discuss some general results. First, both {iRCtor for any mixed state by suitably weighting this rate for
he energy eigenstate. A salient feature of our flux formula

the weak coupling region and at the asymptotic late time th
Piing reg ymp %72) is that the dependence on the initiglystem state is

dynamical functionf(t) behaves as . X )
given by the well known quantum mechanical barrier pen-
F(t)~f asynf1), etration facto T(E)?|, the other factoff(t) being indepen-
dent of the initial state. This property of factorization is spe-
2 o cific to the harmonic barrier. For a more general potential
fasyn{t)=1— me* “’Btf doH(w)(w?+ wé)sinw t. barrier the dynamical factor may depend on the energy of the
B “e 78) initial state asf(t;E).

We would like to stress that our result extends the result
of [9] in several ways. First, we derived the tunneling rate for
any energy eigenstate, while the authors of R&fdeal with
the zero temperature limit of the mixed state in complete
_equilibrium. Our method is also completely different from

This form has the correct asymptotic behavigr)=1 as
well as the correct initial behaviof(0)=1 if the integral
above is convergent.

On the other hand, one can prove for the initial-time be

havior of f(t) that Caldeira-Leggett’s Euclidean approach, and our method
makes it possible to discuss the dynamics of the time evolu-

(5(0) tion. The third point is that we derived the prefactor rigor-
f(t):l—wB< 1-— )t , (79 ously, unlike previous approximate calculations. In the next

wp section we explicitly show how we effectively obtain the

result of Caldeira and Leggett.

g0 2 (= o, o
1-—F=—| doH(ow)o(o+wg)>0. (80 C. Some examples
wpg wpY wc
We would like to compute this dynamical function for a
The last inequality means that, for very smgll f(t)<1, few typical examples of the environment spectrum. The

giving rise to suppression for barrier penetration. In order tespectral functiorr (w) is taken as
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1.2
1+ M/op=0.1

Ohmic model

-0.6

0 . 1I l 2
TIME ( units of 1/wg)

FIG. 3. Dynamical functiorf(t) for the Ohmic model. Values

PHYSICAL REVIEW A 63012104

N/@e=0.1

0.8

04

Threshold model
Q/w=50 oc/wg=1

1
TIME ( units of 1/ws)

FIG. 5. Dynamical functiorf(t) for the threshold model of low
threshold. Values of the friction, the cutoff, and the threshold rela-

of the friction » relative to the system curvature are given for eachtjve to the system curvature are given for each case. Dotted lines are
case. Dotted lines are calculated using the approximate, asymptotiilculated using the approximate, asymptotic formfylg.(t), Eq.

formula f54(t), Eq.(78) in the text.

(1) rolw)=—o, (81)
2 S LA (82
(@ role) = 0y

(3) rr(w)= g[w—wce(w)]0(|w| w0 00— ),
(83

(4) re(@)=—w?d@)0@—|o). (84

As usual, 6(x) is the step function and(x) the signature
function. The first exampley(w) is the Ohmic modefwith-
out physical cutoff of the environment spectryrihe second
ro(w) the Drude model, and the fourtl(w) a super-Ohmic
model, while the third one+(w) has a threshold ab. In
Fig. 2 these spectral weights are schematically depicted

(78) in the text.

spectrum. In Appendix C we give the parameters necessary
to compute the dynamical functidit).

We note here that the Ohmic model defined here by the
spectral weight (w) should, strictly speaking, be taken as
some limit of the infinite cutoff. This cutoff could be given
by a straightforward frequency cutoff likeo| <, or by a
smoother function as in the case of the Drude model at large
Q. The method of introducing the cutoff does not matter
provided a cutoff is there, but in some evaluations of the
integral one should first introduce a finite cutoff and then
take the infinite cutoff limit.

The dynamical factof(t) is plotted in Figs. 3—7 for these
four cases. As the frictiom becomes large, deviation 6t)
from unity becomes appreciable, but only in a time range of
order llvg. For physical reasons we always takes wg.

We have found an interesting behaviorfdf); some models
can give enhancement over the usual quantum formula in the
time ranget~1/wg. These are the threshold model with a
large w. and the super-Ohmic model, for which the dynami-
cal factor can exceed unity. The super-Ohmic model also has

. |the peculiar feature that the dynamical functibft) can

the last three caseQ acts as a cutoff of the environment €ven become negative for a short time interval. The use of

1.2
1 Mep=0.1

0.8

0.4

Drude model Q/wg=50

1
TIME ( units of 1/wg)

FIG. 4. Dynamical functiori(t) for the Drude model. Values of

the asymptotic or weak coupling expression ffiay ,{t), Eq.
(79), is compared to the exact result in these figures. Except

0.8 r

Threshold model
i Qlwy=50  Oc/op=10

0 ‘ 0;2 I 014 ‘ Oj6 I 0.8
TIME ( units of 1/0s)

the friction and the cutoff relative to the system curvature are given
for each case. Dotted lines are calculated using the approximate, FIG. 6. The same as in Fig. 5, for the threshold model of high

asymptotic formuld ,s,,(t), Eq.(78) in the text.

threshold.
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N/op=0.1

09 - Ohmic {(Local) approximation

ol
0.8 N/wp=0.5

-1k q

Super-Ohmic model | o7
Q/mp= 50 N/ow =1
2 : : : : : : : 06 R E——
0 0.2 04 0.6 0.8 0 1 2 3 4 5
TIME ( units of 1/wg) TIME ( units of 1/wg)
FIG. 7. Dynamical functionf(t) for the super-Ohmic model. FIG. 8. Dynamical functiorf(t) in the local, Ohmic approxi-

Values of the friction and the cutoff are given for each case. Dottednation. Values of the friction are given for each case.
lines are calculated using the approximate, asymptotic formula
fasyn(D), EQ.(78) in the text. 1. 1
quzqz— §w§q2=0. (87)
at initial times this approximate form gives a reasonable fit to
more exact results. The presence of the normalization factorhe zero energy solution that is initially on the potential top

N in the formula is important to get a good agreement. is then
The initial-time behavior of the Ohmic modéB1) does
not reflect the necessary conditionf¢D)=1, sincef(t) at Qo(t)=N[(w, + wr)e’ "+ (w_—wr)e “+']. (89

very smallt is singular, having no smooth derivative tat .
=0 (the left and the right derivatives do not meietthe case | e parameters here are given by

of the infinite cutoff limit. This implies thaf(0)<1 in this 5

case indicates an anomaly associated with the infinite cutoff, ®e= /w§+ ”_iﬁ, (89)
and should not be taken too seriously. On the other hand, the - 4 2

Drude model for a large but finite cutoff has the expecte
decrease of (t) from unity at small times. The larger the

cutoff is, the more abrupt this decrease is, and a local mini- (01 + 0R)E" — ., (0 — og)e o+
mum of f(t) appears at a time proportional to(1L/ f(hy= 2@ TR WHl@-TOR (90)

%oth of which are larger thamg. It is then easy to get

: . . ( :
Finally, we note how the dynamical function behaves in wr[ (0, +wr)e’ '+ (w_—wg)e °+
the Ohmic or local approximation. We wish to distinguish _ ) L )

discussed. First, write Eq22) for the IVHO: f(0)=1. More precisely,

g dq f(t)—1—nt. (91

— + 77— —wid=Fq(t). (85 : . o is ai

de? dt Its asymptotic late time behavior is given by

. —(w;tw_)t
There is a problem of how to interpret the zero energy solu- f(t)—f(=)(1+Ce ), (92)
tion since thewg we need for this is not well defined. One o (0, +o_ ) wg—o_)
choice might be to use the relation obtained frog{w) in f(o)=—<1, C=-—— R _—"2>0. (93
the Ohmic model: @R w-_(0;+og)
The functionf(t) of Eq. (90) is plotted in Fig. 8. The prop-
Wg= \ /sz-i- %_ g (86)  erty f(«)<1 shows an anomalous behavior of this local ap-

proximation, which we regard as a defect inherent in the

. L . _ . local approximation.
This relation is derived by using two exact definitions, the

one for wg [EQ. (33)] and another fomwg [Eg. (38)], along
with the form of the weight (). In this case the dynami-
cal function is trivial;f(t)=1. But it is by no means obvious To illustrate the advantages of our approach, we take up
that this choice is unique, since without a specific form of thetwo applications of our basic formula E¢r2) along with
weight function there is no way to locate the pole curvatureEq. (73). The first example is computation of the tunneling
wg . rate for the kind of potential depicted in Fig. 9. Qualitatively,
Another choice is to take a more phenomenological viewa new normal harmonic oscillator is added in the left region
limited to the local Langevin equation, and define the zeraof the previous inverted harmonic oscillator. The simplest
energy condition by takingg for wg; namely, at time 0, example of this class of potential is a cubic form,

IV. APPLICATIONS
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| THERMAL AVERAGE

TUNNELING POTENTIAL

o 10)

0.1
kg T ( units of @sh )
FIG. 9. Schematic form of a general potential as a function of
position. FIG. 10. Thermally averaged tunneling probability based on Eq.

(96) with f(t)=1 takingw, = wg. Points marked with crosses are

3 2 calculated using the approximate formyi0).
(OB 3 wB 2
V(X)=— ——=X"— —X". (94)
36V, 2 holds. This approximately reduces to

HereV, is the barrier height measured from the left bottom
of the potential, andvg is taken real and positive. The im-
portant quantity added, a new frequensgy in the left har-
monic well, is equal tavg in this cubic potential. Below we
generally distinguish the twapg and w, , having a more
general tunneling potential in mind.

The problem we set up is to compute the tunneling rate .
trapped in the metastable state in the left oscillator part a-{,he last formula holds fo.T>“’B' Th|§ IS the_ gxpected clas-
temperaturd, the same temperature as the environment. Th ical formula for the barrier penetration at finite temperature.

setting of this problem is the same as in the Euclidean aporé guantitatively, we computed E¢96) numerically to
proach of Graberet al. [19]. We assume that the tempera- compare with various approximate formulas. The quantity

ture T<V, with a further condition oVy>w, . Under these E(T;og Icor;:_pu]:[_ed from Eq(96) With f(;)=1,| is plotted in
circumstances theth energy eigenstate of the left oscillator 'g. 10. In this figure an approximate formula
is distributed with the probabilityw, of the Boltzmann-

0} = dx 1
F(T,oc)%zﬁ_*efﬁvof -

2 0 Bw, 14 x2™Bes
Inge—BVo

= m%eiﬁvo. (99

Gibbs ensemble,

e NBwy

n= =(1—e Pox)e NPox, (95)
2 e~ mBw,
m

W

We then convolute with this weight the barrier penetration

factor, to get the tunneling probability,
[(T,t)=(1—e Ao D e MPox
n=0

X|T[=Vo+w, (n+2)]*f(1). (96)

We first discuss the infinite time limit, in whicli(t)
—1. This probability has the zero temperature limit

2_ 1

1+ e2m(Vo~ 0y /2)wg’

(97)

On the other hand, fofr>w, ,

(O

~Vo+ —

I'(0p0)~=|T

which is valid forT<w, .
the discrete sum

Bw* v * e*ﬁw*(nJrl/Z*VO/w*)
=2 sinh—=e AV
F(T’oo) 2 sinh 2 e nZO 1+e727r[(n+l/2)w*7V0]/wB

(98)

wg Siljlf‘(,Bw*/Z) 0BV
w, SIN(Bwgl/2)

1
1+ e—ZﬂT[w* 1(2wg) — V! wg]

F(T,oo):

(100

is compared to the exact result in the casevgft w, . This
interpolation formula is a simple sum of the improved high
and the improved low temperature limits.

We now present our understanding of the result of Cal-
deira and Leggett for the cubic potentialx) [Eq. (94)]. For
this we extend our result of the IVHO to this class of poten-
tial by the formula

X 1d
|(OO,t):eX[{ —fo de\/Z[V(X)— E]>w_5 &|n|q0(t)|,

(101

wherex; are turning points for the enerdy= —V, solution.

We take as the reference curvatuse= wg. The trajectory
functiongg(t) is taken as the classical, zero energy solution,
but we ignore the dynamical function since it is almost unity
in the equilibrium circumstance ¢8]. Thus we find for the
tunneling probability to be compared

|(,t)~|T(E)|2= p( 36\/0) 102
(0,t)=~|T(E)|*=ex "5 o) (102
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The authors of9] write the tunneling probability in terms In the future we wish to examine further this discrepancy
of the renormalized curvatur@g and the frictiony. For the  after we develop a formalism for more general potentials.
Ohmic model of small friction, we gdising Eq.(86) with The second application of our general formula is the prob-
n<wg] lem of time evolution for the same potential as above. For

this we consider the temperature rangesQf<T<V, such
T(E)[P~e 2mVolore™ 48 (103 that the avera i E~
ge energy eigenstakE~T) may be treated
with semiclassically. We thus regard a particle in tith energy
level (n>1) of the left harmonic oscillator as moving almost
18 7V, ™o c_Iassicz_iIIy wi'Fh a periodic_ motion pf frequenay* . Each
AB~ 5 — =3.6—-. (104 time this particle hits against the right barrier, it has a pre-
wR WR scribed probabilitf 72) of tunneling into the far right region.

o . Starting at timet=0, one counts th&th encounter with the
If we had used the IVHO potential instead of the cubic form,po viar gt timet=27k/w, until the final timet; such that

we Wou_ld have obtained a numerical factor slightly differ.entthere are roughly;w, /27 times of possibility of barrier pen-
from this value, 3.6-7~3.14. On the other hand, Caldeira gration. We find it reasonable to use a reset time for each

and Leggett obtain, using a different method, encounter for the time of Eq. (72). Summing up all these
possibilities, one gets the total tunneling probability

ABCL~%3®W—\?~6.280457N—20. (105 trw,—
KRG “R To(ty) =[T(En)|*5 1, (108
Thus our result gives a result numerically different by a fac- .
tor of about 2 in the weak coupling limit. wheref is some sort of representative value for the dyana-
On the other hand, in the large coupling limjt>2wg, mical factor for each encounter, perhaps some average of
these two are f(t) [Eq. (73)] over one period of oscillation under the har-
monic well, like
AB= ?77_\20 ABCL:?)’JT??—\ZO. (106 — 1 [t 0,
wR wR f= t—f dtf(t), t, =5 (109
*J0 ™

(Although our notation here suggests that this is a correction ) —_ _ _
term to the main term o8 ~27Vo/“r it is actually a leading Another choice forf is the dynamical function at some par-

term for the case of)>2wg.) Our result is about 0.8 times ticular value of time during one period of oscillation, for
the Caldeira-Leggett value. instance, at the classical turning point.

In general, when one writes the deviation of the penetra- For wg>w, , f~1, and
tion factor from the case of no environmenteas*®, one has

tw
the form Fo(O~[T(EI 5= (110
T
7 | 7Vo I . .
AB=® el 2 (107  Thus, the total probability is proportional to tinteand one

@R/ wg may define the tunneling rate per unit time,
Both in our case and in the case of Caldeira and Leggett the r,(t) o,
function® («) is slowly varying albeit numerically different, t :ZH(E)'Z' (111

and the deviation factor is dominated Wolwﬁ. This ap-

pears to be the most important dependence of the parametemsis is nothing but the classic Kramers form{ifg.

the numerical factor being a secondary effect. On the other hand, fomg~w, there may be a large
In our interpretation of the result of Caldeira and Leggettdeviation from the quantum mechanical formula. We plot in

it is crucial to use the pole curvatuég; as our reference, and Fig. 11 some examples of the facEqu. (109)] as a func-

this choice is reasonable because it corresponds to an equu- fth i | ¢ wudiedi
librium in the zero temperature limit considered[8]. With flrgr(lt?on ;i\:‘?&aﬂip;gﬁy' Iar;grgﬁhgﬁsoeés udiedis some

the dynamical function taken dét) =1, this is the only way
the friction () dependence can appear in our approach,
namely, via the parametesg in the initial density matrix. It

is important that our inequalityz<wg implies the general  The work of Sh. Matsumoto is partially supported by the

result of a suppressed rate of tunneling in the medium, thgapan Society for the Promotion of Science.
main point stressed by Caldeira and Leggett. We also note
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that Qetaned comparison between our result anq.thm]ofs APPENDIX A: INTEGRAL TRANSEORM OF THE
possible only by assuming the relati¢®6), specific to the WIGNER EUNCTION

Ohmic spectrum. For different models the difference be-

tween the two might be larger. After some algebra, we obtain
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L — e venient solution to this type of master equation. From the
NG e master equation one can derive a Fokker-Planck equation for
oo bi the Wigner function:
Threshold 6/ =10 (R) (R) (R)
of of of
08 Threshold oc/eg=1 (9\,/[\/ =—p (9\)/(\/ +Q2(t)x (9\|/3v
07 . J P
: TIME AVERAGE _ —I—C(t)%(pfw))—ZDpp(t)—& 5
Q/og=50 M/wp=0.5 p
0 : 2 s s 5 o?*f ()
TIME ( units of 1/xp) +2Dx(V 550 (B1)
FIG. 11. Time averaged dynamical factd(t) for a few S_as o g s
models. g°—gg9 ¢ g/- g
Q2(t)=— = .2=—d—n.—<g——> , (B2)
gg-g® 9dt g\~ ¢
Poup=———[ ax | dntli.p -
2l ,—15) - —eo C(t):_w, 83
1 99—4d
Xexp = 2 g PR e e
1273 1(99- —2999+
o3 By, T2,
) 99-9 9  gg9-g¢
+15(X=Xe)“= 2l 3(X=Xe) (P—Pe) ] |5 ,
u ..
Xg=0Xi+gp;, Pa=0xi+gp;. (A2) 25 2qaa4 o3
Q@UzU—gW+gE——%£—gﬂM (B5)

The definitions ofl; are given in the text, Eq$51)—(53).
The time dependent functiong(t) andpg(t), are homoge-
neous solutions to the Langevin equati@®) with Fo=0. where the coefficient function€2(t), C(t), Dpp(t), and

One may view the mapping frorffy) to f{Y as a kind of D, (t) are local functions of time and are written in terms of
fluid flow. Compared to the classical mapping given in Secg(t), U, V, andW.

I, the quantum solution{Al) in a thermal medium is not The quantities that appear in this equation are well under-
deterministic with a broadening given by the coefficient ma-stood by writing a set of moment equations of low orders:

99-9°

trix
d{x) d{p)
i I dt-:<p>’ at =—02(t)(x)=C(t)(p), (B6)
O={, | (A3)
3 12
o d(x?)
Moreover, the initial dIStI’IbutIOI’f\(,'V) itself is broadened by T =2(xp), (B7)
guantum mechanical effects. The peak point of the distribu-
tion is at(xg(t),pg(t)). One might imagine that the mapping d(p?)
(Xi ,pi) — (Xa(t),pa(t)) is not invertible due to dissipative P =—ZQZ(t)<xp>—2C(t)<p2>—4Dpp(t), (BY)
effects from the environment. This is not true; the mapping is dt
actually invertible and
: X+ ¢ %ﬁﬁ=w%—ﬂ%nu%—unam+2D<o (BY)
:gxcl_gpcl _ —OXgt09P¢ dt Xphea

S P (A9

999 gag For instance, the quantit@2?(t) here is a time dependent

with g2—gg+0. curvature parameter modified from the origirg] to that in

a thermal medium, whil€(t) is a time dependent friction.

In similar fashion one understandy,, andD, as fluctua-

tions. The physical behaviors of the harmonic oscillator sys-
One may derive the master equation for the reduced dertem under a thermal environment are all determined by these

sity matrix as described in Ref20]. Our formula for the four quantities, which are functions of the local tirhe

Wigner function(Al) is considered as an explicit and con-  Limiting values relevant to large times> 1/wg are

APPENDIX B: FOKKER-PLANCK EQUATION
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Q%t)~-wj, C(1)=0, (B10) +0 -0)? Q2
B ( ai:wB - (wp ) _m . (C9)
3 2 4 (,!)BJFQ
D t~—ﬁ'w~ﬁrd Foly
pp( )~ 49 ~7 o w COS > (w),
(B11) (3) Threshold model
Dy ~U—gw~ | d BN w2t wz|h
o 7UZgW= || docosh Tl e g esjRle) P N
(B12) T 0%+ w5 Twp wg
APPENDIX C: PARAMETERS IN SPECIFIC _m t We o c10
ENVIRONMENT MODELS Tog oAzl o (€10
We give the various parameters in the four specific mod-
els of the environment given in Sec. Il C. These parameters
are used to calculatg(t) according to _ 2nwg Q we
C(wg)= arctan— —arctan—
N " wp wp
g(t)= w—B S|nr(a)Bt)+2L doH(w)sin(wt), (C1) no. wé wé
¢ + In{ 1+ —|=In| 1+— |,
0? wg
H(w) o) (€2 (C1Y)
(1) = 1
[0?+ 0i—I1(0) ]+ 7% (w)?
2 2
wg= 0+ C(wp). (C3 w—w ® 2 w+ 2
R B H(w)=¥ln<——l) _wm — 11
The parameters are given as follows. m @We m @We
(1) Ohmic model ﬂ(w—wc)l o 2 p(w wC)I ©, 2
n |\t 2 : Q 2 : 5+
(CH
N 4) Super-Ohmic model
g(t)= 5—(evs!—e (@ M), cy WP
2(1)8
(2) Drude model 7 Q2 g 0%ted) 7
N=|1-———5+—Ih—5 . (Cc13
” QZ -1 T () +0)B ™ wpg
N= — | (Co)
2('OB ((,L)B+Q)2
2 2 2 2 2 2
wy O ow Q-
nwg) nw?Q C(wB)Iuln B, H(w)Z—ﬂh’l @
Clop)=——q Mo)=——707, (C7) ™ w5 ™ w?

nQ?

(ai—wé)(a%—wé)(&i—a%)

N
9()= P sinf(wgt) + In calculation ofg(t) for the Ohmic model one needs a

frequency cutoff in intermediate steps of integration, but the

X[(a?—a?)e “s'+ (a2 — w3)e final result does not depend on this cutoff factor. For the
T model having a threshold and for the super-Ohmic model we
T(wg—aj)e “ ], (C8  cannot get analytic forms of the basic functigft).
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