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Dynamics of barrier penetration in a thermal medium:
Exact result for the inverted harmonic oscillator
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The time evolution of quantum tunneling is studied when the tunneling system is immersed in a thermal
medium. We analyze in detail the behavior of the system after integrating out the environment. An exact result
for the inverted harmonic oscillator of the tunneling potential is derived and the barrier penetration factor is
explicitly worked out as a function of time. The quantum mechanical formula for the case without environment
is modified both by the potential renormalization effect and by a dynamical factor which may differ apprecia-
bly from the one previously obtained in the time range of 1/~curvature at the top of potential barrier!.
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I. INTRODUCTION

Tunneling phenomena in thermal media are of both th
retical and practical interest in many areas of physics.
instance, in cosmology there are a variety of tunneling p
nomena that may have occurred during the evolution of
universe. If the phase transition related to electroweak ga
symmetry is of first order as assumed in the electrow
scenario of baryogenesis@1#, then the tunneling from a meta
stable state to the true ground state of the electroweak th
must occur through either a quantum effect or thermally
tivated barrier crossing. Another possible first order ph
transition in cosmology is the quark-hadron phase transit
We should not fail to mention also the classic example o
tunneling phenomenon that takes place in the central cor
stars: a thermonuclear reaction@2#.

A common circumstance for all these is the presence o
environment: the tunneling we are interested in does not
place for the system in isolation. Thus we are very interes
in how substantially the quantum mechanical formula for
tunneling rate is modified by dissipative interaction with t
surrounding medium. Despite this obvious interest, ma
past works in cosmology and astrophysics have relied
simple methods to deal with the tunneling problem, eith
using the bounce solution in the Euclidean approach@3–6# or
exploiting some variant of the classical van’t Hoff
Arrhenius law@7,8#.

On the other hand, since the pioneering work@9# on quan-
tum dissipation to tunneling phenomena at zero temperat
there have appeared many extended works in conde
matter and statistical physics~a partial list of these works is
given in @10–12#!. The intensive theoretical activity in thi
field is presumably related to the experimental possibility
observing macroscopic quantum tunneling in various ar
of condensed matter physics. The problem is not sim
however, and only a limited class of problems has been
dressed. Thus even in idealized models one often assu
that the entire system is in thermal equilibrium and attem
to derive quantities of limited value such as the decay rat
the metastable state by an extension of bounce analysis@4,5#.
In some of these works@10,11#, the key quantity is the
1050-2947/2000/63~1!/012104~15!/$15.00 63 0121
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imaginary part of the free energy, which may be interpre
as the decay rate. However, since the equilibrium value
the free energy of the entire system is necessarily real,
must extract the imaginary part by projecting to the init
metastable state. In some discussions in the literature it is
clear how this projection is performed on rigorous groun
although some of its physical consequences are reason
There is indeed some criticism of this type of approa
@12,13#. It seems that a more fundamental microscopic
proach to deal with the tunneling in a dissipative medium
needed.

With this background in mind, our aim in the prese
work is to clarify dynamical aspects of tunneling in a m
dium: how the barrier penetration basic to quantum tunne
proceeds in real time. The key idea is separation of a sm
system from a larger environment, and we would like
determine the reduced density matrix for the small system
integrating out environment variables@14#. This makes it
easy to compute the penetrating flux factor for an ene
eigenstate of the small subsystem. Our approach does no
the Euclidean technique, which in our opinion obscures
dynamics of time evolution. Neither do we assume that
tunneling system is in thermal equilibrium with the enviro
ment, although we can discuss this case using our fundam
tal formula. Moreover, we are able to deal with both t
quantum and the thermally activated regions in a unifi
way.

The model we use to extract exact results for the bar
penetration is the inverted harmonic oscillator~IVHO!. Since
the form of the potential we use for exact results is ve
specialized, we cannot discuss the tunneling for gen
cases with full confidence. Nevertheless, we believe that
method employed in the present work, especially the integ
transform of the Wigner function, should be useful in der
ing approximate yet valuable results for the general poten
in the semiclassical approach. We hope to return to a gen
tunneling potential in our subsequent work.

We take for the environment infinitely many harmon
oscillators of arbitrary spectrum. This is a standard case s
ied by many people in the field. The system of a norm
harmonic oscillator coupled to this environment is analy
cally solvable, as discussed in@15–17#. Our barrier penetra-
©2000 The American Physical Society04-1
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tion model corresponds to the case of imaginary frequen
In the present work we shall employ and extend some te
niques we developed in the case of the normal oscillator

The main result of the present work is summarized b
formula for barrier penetration:

f ~ t !uT~E!u2, f ~ t !5
p0~ t !

vBq0~ t !
5

1

vB

d

dt
lnuq0~ t !u. ~1!

This formula is applied to an eigenstate of energyE taken for
the initial IVHO subsystem. The well known quantum m
chanical penetration formula is modified by the environm
effect in two ways; first, via a change of the original curv
ture v0 ~bare parameter! to the renormalized, pole curvatur
vB ,

uT~E!u25
1

11e2puEu/v0
→ 1

11e2puEu/vB
, ~2!

with E the energy measured from the top of the poten
barrier. This effect is essentially similar to, but numerica
different from, the curvature renormalization effect mu
emphasized by Caldeira and Leggett@9#. In their work two
cases with and without the friction term, but both includi
the curvature renormalization given byvR ~which is larger
thanvB), are compared. The result of Caldeira and Legg
is understood when one writesvB in terms ofvR .

The second environment effect is the time dependent
tor f (t) which is the ratio of the momentump0(t)5q̇0(t) to
the rescaled coordinate trajectoryq0(t). This trajectory func-
tion q0(t) obeys the homogeneous Langevin equation,
~43! below, under a thermal environment, being charac
ized by an initial energy corresponding to the top of t
potential barrier. When the dynamical functionf (t)51, the
IVHO subsystem has the energy of the barrier top, and
deviation from unity is a measure of energy flow from t
environment. Whenf (t).1, namely, up0(t)u.vBuq0(t)u,
the IVHO system is excited by an energy inflow from t
environment. On the other hand, whenf (t),1, the system is
deexcited by an energy outflow. The factorf (t) deviates
from unity within a time range of order 1/vB , and both for
t!1/vB and for t@1/vB the effect is small:f (t)'1. We
find interesting examples in which this dynamical functi
exceeds unity, thus implying enhanced penetration, albei
a short period of time of order 1/vB .

The rest of this paper is organized as follows. In Sec
we explain how we model the environment and its inter
tion with a quantum system, and introduce the influen
functional. The quantum Langevin equation is also brie
touched upon. In Sec. III we work out exact consequen
for the inverted harmonic oscillator, and give the barrier p
etration factor, taking an energy eigenstate for the ini
state. This section is somewhat long, but we explain ma
ematical details to the extent that the paper is clearly p
sented and self-contained. Our general result includes a
tegral transform of the Wigner function from the initial to th
final one, as explained in Appendix A. The fundamental f
mula ~1! is derived along with an explicit form o
01210
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p0(t)/q0(0), Eq. ~77!. The Ohmic or local approximation
~the inherently nonlocal term of the environment interacti
in the full Langevin equation being replaced by a few expa
sion terms! is shown to lead to some anomalous behavior
the dynamical factor. In Sec. IV some applications to
mixed initial state are discussed using the exact result for
inverted harmonic oscillator. Our understanding of the res
of Ref. @9# is also shown in terms of the diagonalized curv
ture parametervB . Three appendixes explain technic
points somewhat off the main stream of arguments in
text. Appendix A gives the interesting form of the integr
transform of the Wigner function, while Appendix B give
the differential form of the Fokker-Planck equation, both d
rived for the harmonic model of the environment. Append
C explains parameters necessary for our numerical comp
tion of the dynamical function.

II. MODEL OF THE ENVIRONMENT AND INFLUENCE
FUNCTIONAL METHOD

We expect that the behavior of a small system immer
in a thermal environment is insensitive to detailed model
of the environment and the form of its interaction with th
system. Only global quantities such as the environment t
perature, the friction, and the threshold of the environm
spectrum are expected to be important. Since the pionee
work of Feynman-Vernon@14# and Caldeira-Leggett@9#, the
standard model uses an infinite set of harmonic oscilla
@its coordinate variable denoted byQ(v)# for the environ-
ment and a bilinear interaction with the small system~de-
noted byq),

LQ5
1

2Evc

`

dv@Q̇2~v!2v2Q2~v!#,

L int52qE
vc

`

dvc~v!Q~v!. ~3!

We assume the existence of a thresholdvc.0. The coupling
strength to the environment is specified byc(v). In the
present section we do not assume any special form for
potential of theq system,V(q).

It is now appropriate to explain the influence function
method @14#. The influence functional denoted b
F@q(t),q8(t)# results after integration of the environme
variableQ(v) when one computes the density matrix of t
entire system. Since the density matrix is a product of
transition amplitude and its conjugate, the path integral f
mula resulting from the environment integration has a fu
tional dependence on both the system pathq(t) and its con-
jugate path q8(t). We thus define, when the initia
environment is in a mixed state given by a density mat
r i(Qi ,Qi8), the influence functional

F@q~t!,q8~t!#[E DQ~t!E DQ8~t!E dQiE dQi8

3E dQfE dQf8d~Qf2Qf8!K„q~t!,Q~t!…

3K* „q8~t!,Q8~t!…r i~Qi ,Qi8!, ~4!
4-2
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K„q~t!,Q~t!…5exp~ iSQ@Q#1 iSint@q,Q# !, ~5!

SQ@Q#1Sint@q,Q#5E
0

t

dt~LQ@Q#1L int@q,Q# !, ~6!

r i~Qi ,Qi8!5(
n

wncn* ~Qi8!cn~Qi !, ~7!

wherewn is the probability of finding a pure staten in the
initial environment. The fact that there is ad function
d(Qf2Qf8) for the environment variable at the final timet
indicates that one does not observe the environment partt.
Throughout this discussion we consider a definite time in
val 0,t,t.

For the thermal ensemble of aQ harmonic oscillator of
frequencyv (b51/T being the inverse temperature!, the
density matrix is

rb~Q,Q8!5S v

p coth~bv/2! D
1/2

expF2
v

2 sinh~bv!

3@~Q21Q82!cosh~bv!22QQ8#G , ~8!

and one can explicitly perform theQ(v) path integration in
Eq. ~4!, since theQ(v) integration is Gaussian. The result
a nonlocal action

F@q~t!,q8~t!#5expS 2E
0

t

dtE
0

t

ds@j~t!aR~t2s!j~s!

1 i j~t!a I~t2s!X~s!# D , ~9!

with

j~t!5q~t!2q8~t!, X~t!5q~t!1q8~t!, ~10!

a~t![aR~t!1 ia I~t!5
1

2pE2`

`

dvã~v!e2 ivt, ~11!

ã~v!5 i E
vc

`

dv8c2~v8!S 1

v22v821 i01
2

2p i

ebv821

3d~v822v2!D . ~12!

Both aR anda I are real functions. A complex combinatio
of these, the kernel functiona(t) that appears in the expo
nent of the influence functional, is the real-time therm
Green’s function for a collection of harmonic oscillato
Q(v), which makes clear the relation to thermal field theo

The reduced density matrixr (R) for the q system is de-
fined as follows. For simplicity we take for the initial syste
a pure quantum state given by a wave functionc(qi),
01210
t
r-

l

.

r (R)~qf ,qf8!5E Dq~t!E Dq8~t!

3E dqiE dqi8c* ~qi8!

3F@q~t!,q8~t!#eiSq[q] 2 iSq[q8]c~qi !.

~13!

HereSq@q# is the action for theq system. This density ma
trix r (R) may be used to compute the physical quantit
of one’s interest.

It is sometimes convenient to introduce the Wigner fun
tion by

f W
(R)~x,p!5E

2`

` dj

A2p
r (R)S x1

j

2
,x2

j

2De2 ipj. ~14!

We shall later mention the master equation forf W
(R) . Here we

quote for comparison a master equation for the Wigner fu
tion when the entire system is in a pure quantum state:

] f W

]t
52p

] f W

]x
1

1

i\ FVS x1
i\

2

]

]pD2VS x2
i\

2

]

]pD G f W .

~15!

It takes the form of an infinite dimensional differential equ
tion.

The master equation is simplified in the semiclassi
limit of \→0 to

] f W

]t
52p

] f W

]x
1

]V

]x

] f W

]p
. ~16!

A great virtue of the Wigner function is that this semiclas
cal equation coincides with the Liouville equation for th
distribution function of a classical statistical system in t
phase space (x,p). It is thus easy to write down the sem
classical solution in the form of an integral transform,

f W~x,p!5E
2`

`

dxiE
2`

`

dpi f W
( i )~xi ,pi !

3d„x2 x̃cl~ t !…d„p2 p̃cl~ t !…, ~17!

where the classical deterministic flow (xi ,pi)→( x̃cl ,p̃cl) is
defined by the classical mapping satisfying

p̃cl5
dx̃cl

dt
,

dp̃cl

dt
52S ]V

]x D
x5 x̃cl

. ~18!

Although it is not our main tool of analysis, it might be o
some use to recall the quantum Langevin equation for
model of Eq.~3! @18#. By eliminating the environment vari
ableQ(v,t) one derives the operator equation for theq vari-
able,
4-3
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d2q

dt2
1

]V

]q
12E

0

t

dsa I~ t2s!q~s!5FQ~ t !, ~19!

FQ~ t !52E
vc

`

dvc~v!S Q~v,0!cos~vt !1
P~v,0!

v
sin~vt ! D ,

~20!

^FQ~t!FQ~s!sym&env5E
vc

`

dvr ~v!cosv~t2s!cothS bv

2 D ,

~21!

where r (v)5c2(v)/(2v) and ^&env is the thermal average
over the environment variables. Thus, the kernel funct
a I(t) describes a nonlocal action from the environme
while FQ(t) is a random force from the environment. Th
local approximation toa I , taking the form of a I(t)
5dv2d(t)1hd8(t), gives

d2q

dt2
1

]V

]q
1dv2q1h

dq

dt
5FQ~ t !. ~22!

The parameterdv2 in this case is the frequency shift due
the presence of the environment, andh is the Ohmic friction.
We call this approximation the Ohmic approximation. P
haps more suitably, it might better be called the local
proximation.

On the other hand, the real part of the kernel functionaR
describes fluctuation, and it is related to the dissipationa I by
the fluctuation-dissipation theorem; for their Fourier comp
nents

ã I~v!5
1

p
PE

vc

`

dv8
2v8ãR~v8!tanh~bv8/2!

v22v82
, ~23!

where P denotes the principal part of the integration.

III. EXACT RESULTS FOR INVERTED HARMONIC
OSCILLATOR

A. Formalism

We specialize the system dynamics of barrier penetra
to that of the inverted harmonic oscillator given by the L
grangian density

Lq5
1

2
q̇22Vq~q!, Vq~q!52

1

2
v0

2q2, v0
2.0. ~24!

There are similarities to the case of a normal oscillator
v0

2,0, and we can take over some of the results derived
the unstable (uv0u2.vc

2) @16,17# or the stable (0,uv0u2

,vc
2) harmonic oscillator.

The Gaussian nature of the system is a great simplifi
tion, as demonstrated by Eq.~4!, and one may write an ef
fective action for theq system including the environmen
effect:
01210
n
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a-

iSeff5 i E
0

t

dtS 1

2
j̇Ẋ1

v0
2

2
jXD

2E
0

t

dtE
0

t

ds@j~t!aR~t2s!j~s!

1 i j~t!a I~t2s!X~s!#. ~25!

The linearity in theX(t) variable here gives a trivialX(t)
path integration in the form of ad functional; it determines
the j(t) path as

d2j

dt2
2v0

2j~t!12E
t

t

dsj~s!a I~s2t!50. ~26!

The finalj path integration then leads to

2E
0

t

dtE
0

t

dsj~t!aR~t2s!j~s! ~27!

for the exponent factor, plus a surface term resulting after
X(t) partial integration. The functionj(t) here is the solu-
tion of Eq. ~26! and the result of the path integral must b
written with a specified boundary conditionj(0)5j i , j(t)
5j f .

The standard technique of solving this type of integ
differential equation forj(t) is the Laplace transform@16#.
We shall summarize only the final result. Two fundamen
solutions to this equation areg(t2t) and its time derivative
ġ(t2t) given by

g~t!5
N

vB
sinh~vBt!12E

vc

`

dvH~v!sin~vt!, ~28!

N5122E
vc

`

dvvH~v!,1. ~29!

The important properties are thatg(t) is odd andġ(t) is
even with g(0)50 and ġ(0)51, which gives the relation
fixing N. In terms of this basic functiong(t) a general solu-
tion to the integro-differential equation with the give
boundary condition@16,19# is

j~t!5
g~ t2t!

g~ t !
j i1S ġ~ t2t!2

ġ~ t !

g~ t !
g~ t2t! D j f . ~30!

The weight functionH here is a discontinuity of some
analytic function@F(z) of a complex variablez5v# across
the branch-point singularity along the real axis atv.vc ,
and is given by

H~v!5
r ~v!

@v21v0
22P~v!#21@pr ~v!#2

, r ~v!5
c2~v!

2v
,

~31!

P~v!5PE
vc

`

dv8
2v8r ~v8!

v22v82
, ~32!
4-4
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where the integral forP stands for its principal part. The
value vB in Eq. ~28! is determined as a solution for th
isolated pole on the real axis atv252vB

2,0:

2vB
21v0

21E
vc

`

dv
2vr ~v!

vB
21v2

50. ~33!

In general, one has

vB
2.v0

2 . ~34!

Since many workers in this field use a renormalized
tential according to Ref.@9#, we also introduce these:

Vq1VqQ5Vq
(ren)~q!1VqQ

(ren)~q,Q!, ~35!

Vq
(ren)~q!5V2q2E

vc

`

dv
r ~v!

v
[2

1

2
vR

2q2, ~36!

VqQ
(ren)~q,Q!5VqQ~q,Q!1q2E

vc

`

dv
r ~v!

v

[VqQ~q,Q!1
1

2
dv2q2. ~37!

We shall redefine theq system potential usingVq
(ren)(q). This

renormalized potential gives an inverted harmonic oscilla
with the curvature parametervR . This renormalized curva
ture differs from the pole location of the spectral functi
H(v), namely,vB , by a factor of order of the interactio
coupling. In the weak coupling limit these two quantities a
given by

vR
25v0

212E
vc

`

dv
r ~v!

v
, ~38!

vB
2'v0

212E
vc

`

dv
v r ~v!

v21v0
2

. ~39!

The equation forvR
2 gives a precise relation, while the equ

tion for vB
2 is an approximate relation valid for weak co

pling, the exact relation being given by Eq.~33!. In general,
one can prove that

vB
2,vR

2 , ~40!

beyond the weak coupling approximation. To give an e
ample, in the Ohmic model that will be discussed shortly,
relation becomes

vB'vR2
1

2
h, ~41!

whereh is the Ohmic friction. A more precise relation in th
case is Eq.~86! below. The relation to the bare quantityv0 is

vR'v01kh, k'
V

pv0
. ~42!
01210
-

r

-
e

In the infinite cutoff limit,V→`, the quantityk is divergent.
In Fig. 1 we show schematically the analytic structure

the functionF(z2), basic to the determination of the disco
tinuity function H(v). Unlike the case of the normal har
monic oscillator for which the pole location may have
imaginary part, the pole atz252vB

2 appears exactly on the
real axis. The other singularity is the branch cut starting fr
the thresholdz25vc

2 .
The physical meaning of the basic functiong(t) is better

understood by solving the operator Langevin equation
this system:

d2q

dt2
2v0

2q12E
0

t

dta I~ t2t!q~t!5FQ~ t !. ~43!

The quantityv0
2 here should be understood as a function

vB
2 after eliminatingv0

2 with Eq. ~33!. The homogeneous
solution to this Langevin equation is given by usingg(t) and
ġ(t); with the initial data ofq(0), q̇(0)5p(0),

q~ t !5q~0!ġ~ t !1p~0!g~ t !. ~44!

The main term g(t)'N sinh(vBt)/vB and ġ(t)
'N cosh(vBt) describes an average motion^q(t)& under the
renormalized, inverted harmonic oscillator modified by t
environment, for which the original parameteruv0

2u is re-
placed by the new shiftedvB

2 . The correction to this classi
cal motion given by the second term in Eq.~28! describes a
damped oscillation with an amplitude decreasing as an
verse power of time at large times.

A straightforward calculation ofX andj path integration
finally gives an effective action valid for any initial state o
the q system. We first define new functions by

h~v,t !5E
0

t

dtg~t!e2 ivt, ~45!

k~v,t !5E
0

t

dtġ~t!e2 ivt5 ivh~v,t !1g~ t !e2 ivt.

~46!

FIG. 1. Analytic structure ofF(v2) as a function of the com-
plex v2 variable. The pole at2vB

2 moves as indicated when th
friction h becomes large with the parametervR

2 fixed. The continu-
ous branch cut starts from a threshold atvc

2 .
4-5
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With the normalization fixed by unitarity, one has for th
effective actionJ defined byr (R)5tr(Jr i)

J~Xf ,j f ;Xi ,j i ;t !5
1

2pg~ t !
eiScl, ~47!

whereScl is given by@19#

iScl52
U

2
j f

22
V

2
j i

22Wj ij f1
i

2
Xf j̇ f2

i

2
Xi j̇ i , ~48!

U5S ġ

g
D 2

I 11I 222
ġ

g
I 3 , V5

1

g2
I 1 , ~49!

W5
1

g
I 32

ġ

g2
I 15

1

2
gV̇, ~50!

I 15E
vc

`

dv coth
bv

2
r ~v!uh~v,t !u2, ~51!

I 25E
vc

`

dv coth
bv

2
r ~v!uk~v,t !u2, ~52!

I 35E
vc

`

dv coth
bv

2
r ~v!Re@h~v,t !k* ~v,t !#, ~53!

j̇~t!52j i

ġ~ t2t!

g~ t !
2j f S g̈~ t2t!2

ġ~ t2t!ġ~ t !

g~ t !
D .

~54!

For the discussion of the barrier penetration factor,
take a pure initial state given by the wave functionc(x).
The Wigner function in this case is

f W
(R)~x,p!5E dxidj i

2pAC
c* S xi2

1

2
j i DcS xi1

1

2
j i De2A,

~55!

A5
det I

2C
@j i1 i ~gJ11ġJ3!~x2ġxi !

1 i ~ ġJ21gJ3!~p2g̈xi !#
2

1
1

2
@J1~x2ġxi !

21J2~p2g̈xi !
2

12J3~x2ġxi !~p2g̈xi !#, ~56!

C5E
vc

`

dv coth
bv

2
r ~v!uġh~v,t !2gk~v,t !u2, ~57!

~J!5~ I !21, J1,25
I 2,1

I 1I 22I 3
2

, J352
I 3

I 1I 22I 3
2

. ~58!

Although it is not used in the calculation of the flux fact
in the next subsection, it is of great theoretical interest
01210
e

o

express our result as a transformation of the initial Wign
function f W

( i ) to the final onef W
(R) . We give this in Appendix

A. This mappingf W
( i )→ f W

(R) is an integrated form describin
the dynamics of theq system. Its differential form is known
as the Fokker-Planck equation, and we shall explain
briefly in Appendix B.

B. Barrier penetration factor

The flux at positionx is computed from the formula

I ~x,t !5E
2`

` dp

A2p
p fW

(R)~x,p;t ! ~59!

to give

I ~x,t !5E dxidj i

2pg
c* S xi2

j i

2 DcS xi1
j i

2 D
3F ġ

g
x1S g̈2

ġ2

g
D xi1 iWj i G

3expF2
V

2 S j i1
i

gV
~x2ġxi ! D 2

2
1

2g2V
~x2ġxi !

2G . ~60!

We use the WKB formula for energy eigenstates of t
IVHO. Considering the incident left mover atx,0 with unit
flux, we take as the wave funtion atx.x* ~the right turning
point!

c~x!'
T~E!

Ap~x!
expS i E

x
*

x

dx8p~x8! D , p~x!5A2E1vB
2x2,

~61!

wherex* 5A2uEu/vB and T(E) is the transmission coeffi
cient as a function of the energyE in a pure quantum state
This choice of the wave function gives the trasmission co
ficient

uT~E!u2'
1

11e22pE/vB
. ~62!

A point that becomes important when we compare o
result with those of other papers is how one prepares
initial state. In much past work a thermal equilibrium b
tween the subsystem and the environment is often assum
and in this context it is natural to take for our choice of t
pure state the reference system characterized by the cu
ture vB , the exact pole curvature. The choice of the WK
wave function, using the curvature parametervB , fits with
this picture. But it should be kept in mind that we may
4-6
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principle take any reference curvature~hereafter denoted by
ṽ) and in these cases we replacevB below by ṽ.

Expanding wave functions inj i , we derive a general for
mula for the dynamical factor. This involves an infinite s
ries of the expansion inj of the initial density matrix ele-
ment,

c~xi1j i /2!c* ~xi2j i /2!5 (
n50

`

An~xi !j i
n . ~63!
th

th

01210
-

The first few terms of this series are

A0~xi !5uc~xi !u2, A1~xi !5
1

2
~c* ]c2c]c* !~xi !,

~64!

A2~xi !5
1

8
@~c* ]2c1c]2c* !~xi !1u]cu2~xi !#. ~65!

Computation of the flux factor is then given by
I ~x,t !5 (
n50

`

I n~x,t !, ~66!

I n~x,t !5E dxidj i

2pg
An~xi !j i

nF ġ

g
x1S g̈2

ġ2

g
D xi1 i S I 3

g
2

ġI 1

g2 D j i GexpF2
V

2 S j i1
i

gV
~x2ġxi ! D 2

2
1

2g2V
~x2ġxi !

2G
5S g

AI 1
D nE da

2pġ
AnS x

ġ
1

AI 1

ġ
a D e2a2/2E db~b1 ia!nH g̈

ġ
x1S g̈AI 1

ġ
2

I 3

AI 1
D a1 i S I 3

g
2

ġI 1

g2 D g

AI 1

bJ e2b2/2.

~67!
in
-
ion
er
e

us
The second equality follows by a trivial scale change of
integration variablesxi ,j i .

One may use the expansion ofAn(x/ġ1AI 1a/ġ) in pow-
ers of the coupling:

AnS x

ġ
1

AI 1

ġ
a D 5AnS x

ġ
D 1An8S x

ġ
DAI 1

ġ
a1•••

1
1

~k21!!
A n

(k21)S x

ġ
D

3S AI 1

ġ
a D k21

1•••. ~68!

For calculation of the penetration factor one needs only
x→` limit of the flux function. From the WKB formula

An~xi !5
uT~E!u2

n!

dn

dj i
n

1

Ap~xi2j i /2!p~xi1j i /2!

3expS i E
xi2j i /2

xi1j i /2

dx8p~x8! D U
j i50

, ~69!

one has

An~xi !→uT~E!u2H i
~ ivBxi !

n21

n!
1O~xi

n23!J . ~70!

Only the term containing@(AI 1/ġ)a#n21 remains here. One
may then derive
e

e

I n~x,t !→uT~E!u2~21!nS vBg

ġ
D n21S gg̈

ġ2
21D ~n>1!.

~71!

This along with

I ~`,t !5uT~E!u2f ~ t ! ~72!

gives a general formula for the dynamical factor:

f ~ t !5
g̈

vBġ
2S gg̈

ġ2
21D (

n51

` S 2
vBg

ġ
D n21

5
g̈1vBġ

vB~ ġ1vBg!
.

~73!

This is the main result of the present work.
The salient feature of this result is factorization; the ma

suppression factor given byuT(E)u2 is affected by the pres
ence of the thermal environment only via the renormalizat
effect, as will be more fully discussed shortly. The oth
prefactor f (t) carries dynamical information about the tim
evolution.

The basic functionsg(t) and ġ(t) that appear in the dy-
namical functionf (t) are the solution to the homogeneo
part (FQ50) of the Langevin equation~43! with the initial
condition,g(0)50, ġ(0)51. More conveniently, one may
rewrite the dynamical function as

f ~ t !5
p0~ t !

vBq0~ t !
, p0~ t !5q̇0~ t !. ~74!

Hereq0(t) is the solution with the initial condition
4-7
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q̇~0!5vBq~0!. ~75!

This condition corresponds to zero energy at timet50, since

Hq5
1

2
q̇22

1

2
vB

2q250. ~76!

That is, the particle is on the top of the renormalized pot
tial barrier. Note, however, that the exact pole curvaturevB
appears here instead of the renormalizedvR . The ratio of the
momentum to the coordinate forf (t) is a measure of the
energy flow from the thermal environment. Thus, the case
f (t).(,)1 corresponds to an energy inflow~outflow!. Both
at t!1/vB and att@1/vB this function f (t) is nearly unity
and it deviates appreciably from unity only within the tim
range of 1/vB .

An explicit formula useful for detailed analysis of th
dynamical functionf (t) is

q0~ t !5ġ~ t !1vBg~ t !5NevBt

12E
vc

`

dvH~v!~v cosvt1vB sinv t !. ~77!

The first term represents a simple classical motion under
potential, modified by the curvature renormalization, wh
the second term is a further deviation due to the environm
interaction. The environment effect forf (t) appears in two
ways: the first via the definition ofvB determined by the
potential renormalization due to the environment interact
and the second the continuous part of the spectral integr
Eq. ~77!, and its associated deviation of the normalizati
factor N from unity.

Before we go on to specific models of the environment
is appropriate to discuss some general results. First, bot
the weak coupling region and at the asymptotic late time
dynamical functionf (t) behaves as

f ~ t !' f asym~ t !,

f asym~ t !512
2

vBN
e2vBtE

vc

`

dvH~v!~v21vB
2 !sinv t.

~78!

This form has the correct asymptotic behaviorf (`)51 as
well as the correct initial behaviorf (0)51 if the integral
above is convergent.

On the other hand, one can prove for the initial-time b
havior of f (t) that

f ~ t !512vBS 12
ĝ~0!

vB
2 D t1•••, ~79!

12
ĝ~0!

vB
2

5
2

vB
2Evc

`

dvH~v!v~v21vB
2 !.0. ~80!

The last inequality means that, for very smallt, f (t),1,
giving rise to suppression for barrier penetration. In orde
01210
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have a convergent integral~80! for the formula forĝ(0) a
physical cutoffV of the environment spectrum is necessa
thus the simple-minded Ohmic model without the cuto
should be treated with caution.

The asymptotic formula~78!, as will be shown later, de
scribes well, even numerically, the dynamical function at
times, including small times. For instance, the expansion
time t of Eq. ~78! gives almost the same result as Eq.~79!,
except for the missing factorN.

We would like to stress that two properties,f (t),1 with
f (0)51 for small t and f (`)51, are generic features fo
any model having a finite physical cutoff of the spect
weight r (v). As shown later, however, some approxim
tions or models with the infinite cutoff violate these gene
properties.

Although our fundamental formula~72! is derived for en-
ergy eigenstates, one may compute the barrier penetra
factor for any mixed state by suitably weighting this rate f
the energy eigenstate. A salient feature of our flux form
~72! is that the dependence on the initial~system! state is
given by the well known quantum mechanical barrier pe
etration factoruT(E)2u, the other factorf (t) being indepen-
dent of the initial state. This property of factorization is sp
cific to the harmonic barrier. For a more general poten
barrier the dynamical factor may depend on the energy of
initial state asf (t;E).

We would like to stress that our result extends the res
of @9# in several ways. First, we derived the tunneling rate
any energy eigenstate, while the authors of Ref.@9# deal with
the zero temperature limit of the mixed state in compl
equilibrium. Our method is also completely different fro
Caldeira-Leggett’s Euclidean approach, and our meth
makes it possible to discuss the dynamics of the time ev
tion. The third point is that we derived the prefactor rigo
ously, unlike previous approximate calculations. In the n
section we explicitly show how we effectively obtain th
result of Caldeira and Leggett.

C. Some examples

We would like to compute this dynamical function for
few typical examples of the environment spectrum. T
spectral functionr (v) is taken as

FIG. 2. Schematic form of model spectral weights. The spec
function r (v)5c2(v)/(2v) is plotted as a function of the fre
quencyv.
4-8
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DYNAMICS OF BARRIER PENETRATION IN A THERMAL . . . PHYSICAL REVIEW A 63 012104
~1! r O~v!5
h

p
v, ~81!

~2! r D~v!5
hv

p~11v2/V2!
, ~82!

~3! r T~v!5
h

p
@v2vce~v!#u~ uvu2vc!u~V2uvu!,

~83!

~4! r S~v!5
h

p
v2e~v!u~V2uvu!. ~84!

As usual,u(x) is the step function ande(x) the signature
function. The first exampler O(v) is the Ohmic model~with-
out physical cutoff of the environment spectrum!, the second
r D(v) the Drude model, and the fourthr S(v) a super-Ohmic
model, while the third oner T(v) has a threshold atvc . In
Fig. 2 these spectral weights are schematically depicted
the last three casesV acts as a cutoff of the environmen

FIG. 3. Dynamical functionf (t) for the Ohmic model. Values
of the frictionh relative to the system curvature are given for ea
case. Dotted lines are calculated using the approximate, asymp
formula f asym(t), Eq. ~78! in the text.

FIG. 4. Dynamical functionf (t) for the Drude model. Values o
the friction and the cutoff relative to the system curvature are gi
for each case. Dotted lines are calculated using the approxim
asymptotic formulaf asym(t), Eq. ~78! in the text.
01210
In

spectrum. In Appendix C we give the parameters neces
to compute the dynamical functionf (t).

We note here that the Ohmic model defined here by
spectral weightr O(v) should, strictly speaking, be taken a
some limit of the infinite cutoff. This cutoff could be give
by a straightforward frequency cutoff likeuvu,V, or by a
smoother function as in the case of the Drude model at la
V. The method of introducing the cutoff does not mat
provided a cutoff is there, but in some evaluations of t
integral one should first introduce a finite cutoff and th
take the infinite cutoff limit.

The dynamical factorf (t) is plotted in Figs. 3–7 for these
four cases. As the frictionh becomes large, deviation off (t)
from unity becomes appreciable, but only in a time range
order 1/vB . For physical reasons we always takeh<vB .
We have found an interesting behavior off (t); some models
can give enhancement over the usual quantum formula in
time ranget'1/vB . These are the threshold model with
largevc and the super-Ohmic model, for which the dynam
cal factor can exceed unity. The super-Ohmic model also
the peculiar feature that the dynamical functionf (t) can
even become negative for a short time interval. The use
the asymptotic or weak coupling expression forf asym(t), Eq.
~78!, is compared to the exact result in these figures. Exc

tic

n
te,

FIG. 5. Dynamical functionf (t) for the threshold model of low
threshold. Values of the friction, the cutoff, and the threshold re
tive to the system curvature are given for each case. Dotted line
calculated using the approximate, asymptotic formulaf asym(t), Eq.
~78! in the text.

FIG. 6. The same as in Fig. 5, for the threshold model of h
threshold.
4-9
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at initial times this approximate form gives a reasonable fi
more exact results. The presence of the normalization fa
N in the formula is important to get a good agreement.

The initial-time behavior of the Ohmic model~81! does
not reflect the necessary condition off (0)51, sincef (t) at
very small t is singular, having no smooth derivative att
50 ~the left and the right derivatives do not meet! in the case
of the infinite cutoff limit. This implies thatf (0),1 in this
case indicates an anomaly associated with the infinite cu
and should not be taken too seriously. On the other hand
Drude model for a large but finite cutoff has the expec
decrease off (t) from unity at small times. The larger th
cutoff is, the more abrupt this decrease is, and a local m
mum of f (t) appears at a time proportional to 1/V.

Finally, we note how the dynamical function behaves
the Ohmic or local approximation. We wish to distingui
this Ohmic approximation from the Ohmic model we ju
discussed. First, write Eq.~22! for the IVHO:

d2q

dt2
1h

dq

dt
2vR

2q5FQ~ t !. ~85!

There is a problem of how to interpret the zero energy so
tion since thevB we need for this is not well defined. On
choice might be to use the relation obtained fromr O(v) in
the Ohmic model:

vB5AvR
21

h2

4
2

h

2
. ~86!

This relation is derived by using two exact definitions, t
one for vB @Eq. ~33!# and another forvR @Eq. ~38!#, along
with the form of the weightr 0(v). In this case the dynami
cal function is trivial;f (t)51. But it is by no means obviou
that this choice is unique, since without a specific form of
weight function there is no way to locate the pole curvat
vB .

Another choice is to take a more phenomenological vi
limited to the local Langevin equation, and define the z
energy condition by takingvR for vB ; namely, at time 0,

FIG. 7. Dynamical functionf (t) for the super-Ohmic model
Values of the friction and the cutoff are given for each case. Do
lines are calculated using the approximate, asymptotic form
f asym(t), Eq. ~78! in the text.
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Hq5
1

2
q̇22

1

2
vR

2q250. ~87!

The zero energy solution that is initially on the potential t
is then

q0~ t !5N@~v11vR!ev2t1~v22vR!e2v1t#. ~88!

The parameters here are given by

v65AvR
21

h2

4
6

h

2
, ~89!

both of which are larger thanvR . It is then easy to get

f ~ t !5
v2~v11vR!ev2t2v1~v22vR!e2v1t

vR@~v11vR!ev2t1~v22vR!e2v1t#
. ~90!

This function behaves reasonably at initial times, hav
f (0)51. More precisely,

f ~ t !→12ht. ~91!

Its asymptotic late time behavior is given by

f ~ t !→ f ~`!~11Ce2(v11v2)t!, ~92!

f ~`!5
v2

vR
,1, C5

~v11v2!~vR2v2!

v2~v11vR!
.0. ~93!

The functionf (t) of Eq. ~90! is plotted in Fig. 8. The prop-
erty f (`),1 shows an anomalous behavior of this local a
proximation, which we regard as a defect inherent in
local approximation.

IV. APPLICATIONS

To illustrate the advantages of our approach, we take
two applications of our basic formula Eq.~72! along with
Eq. ~73!. The first example is computation of the tunnelin
rate for the kind of potential depicted in Fig. 9. Qualitativel
a new normal harmonic oscillator is added in the left reg
of the previous inverted harmonic oscillator. The simple
example of this class of potential is a cubic form,

d
la

FIG. 8. Dynamical functionf (t) in the local, Ohmic approxi-
mation. Values of the friction are given for each case.
4-10
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V~x!52
vB

3

3A6V0

x32
vB

2

2
x2. ~94!

HereV0 is the barrier height measured from the left botto
of the potential, andvB is taken real and positive. The im
portant quantity added, a new frequencyv* in the left har-
monic well, is equal tovB in this cubic potential. Below we
generally distinguish the two,vB and v* , having a more
general tunneling potential in mind.

The problem we set up is to compute the tunneling r
trapped in the metastable state in the left oscillator par
temperatureT, the same temperature as the environment.
setting of this problem is the same as in the Euclidean
proach of Grabertet al. @19#. We assume that the temper
tureT<V0 with a further condition ofV0@v* . Under these
circumstances thenth energy eigenstate of the left oscillat
is distributed with the probabilitywn of the Boltzmann-
Gibbs ensemble,

wn5
e2nbv

*

(
m

e2mbv
*

5~12e2bv
* !e2nbv

* . ~95!

We then convolute with this weight the barrier penetrat
factor, to get the tunneling probabilityG,

G~T,t !5~12e2bv
* ! (

n50

`

e2nbv
*

3uT@2V01v* ~n1 1
2 !#u2f ~ t !. ~96!

We first discuss the infinite time limit, in whichf (t)
→1. This probability has the zero temperature limit

G~0,̀ !'UTS 2V01
v*
2 D U2

5
1

11e2p(V02v
*

/2)/vB
,

~97!

which is valid for T!v* . On the other hand, forT@v* ,
the discrete sum

G~T,`!52 sinh
bv*

2
e2bV0(

n50

`
e2bv

*
(n11/22V0 /v

*
)

11e22p[(n11/2)v
*

2V0]/vB

~98!

FIG. 9. Schematic form of a general potential as a function
position.
01210
e
at
e

p-

holds. This approximately reduces to

G~T,`!'2
bv*

2
e2bV0E

0

` dx

bv*

1

11x2p/bvB

5
bvBe2bV0

2 sin~bvB/2!
'e2bV0. ~99!

The last formula holds forT@vB . This is the expected clas
sical formula for the barrier penetration at finite temperatu
More quantitatively, we computed Eq.~96! numerically to
compare with various approximate formulas. The quan
G(T,`), computed from Eq.~96! with f (t)51, is plotted in
Fig. 10. In this figure an approximate formula

G~T,`!5
vB sinh~bv* /2!

v* sin~bvB/2!
e2bV0

1
1

11e22p[v
*

/(2vB)2V0 /vB]
~100!

is compared to the exact result in the case ofvB5v* . This
interpolation formula is a simple sum of the improved hi
and the improved low temperature limits.

We now present our understanding of the result of C
deira and Leggett for the cubic potentialV(x) @Eq. ~94!#. For
this we extend our result of the IVHO to this class of pote
tial by the formula

I ~`,t !5expS 22E
x1

x2
dxA2@V~x!2E# D 1

vB

d

dt
lnuq0~ t !u,

~101!

wherexi are turning points for the energyE52V0 solution.
We take as the reference curvatureṽ5vB . The trajectory
functionq0(t) is taken as the classical, zero energy soluti
but we ignore the dynamical function since it is almost un
in the equilibrium circumstance of@9#. Thus we find for the
tunneling probability to be compared

I ~`,t !'uT~E!u25expS 2
36

5

V0

vB
D . ~102!

f
FIG. 10. Thermally averaged tunneling probability based on

~96! with f (t)51 takingv* 5vB . Points marked with crosses ar
calculated using the approximate formula~100!.
4-11
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The authors of@9# write the tunneling probability in terms
of the renormalized curvaturevR and the frictionh. For the
Ohmic model of small friction, we get@using Eq.~86! with
h!vR#

uT~E!u2'e22pV0 /vRe2DB ~103!

with

DB'
18

5

hV0

vR
2

53.6
hV0

vR
2

. ~104!

If we had used the IVHO potential instead of the cubic for
we would have obtained a numerical factor slightly differe
from this value, 3.6→p'3.14. On the other hand, Caldeir
and Leggett obtain, using a different method,

DBCL'
162z~3!

p3

hV0

vR
2

'6.280 45
hV0

vR
2

. ~105!

Thus our result gives a result numerically different by a fa
tor of about 2 in the weak coupling limit.

On the other hand, in the large coupling limith@2vR ,
these two are

DB5
36

5

hV0

vR
2

, DBCL53p
hV0

vR
2

. ~106!

~Although our notation here suggests that this is a correc
term to the main term ofe22pV0 /vR, it is actually a leading
term for the case ofh@2vR .) Our result is about 0.8 time
the Caldeira-Leggett value.

In general, when one writes the deviation of the pene
tion factor from the case of no environment ase2DB, one has
the form

DB5FS h

2vR
DhV0

vR
2

. ~107!

Both in our case and in the case of Caldeira and Leggett
functionF(a) is slowly varying albeit numerically different
and the deviation factor is dominated byhV0 /vR

2 . This ap-
pears to be the most important dependence of the parame
the numerical factor being a secondary effect.

In our interpretation of the result of Caldeira and Legg
it is crucial to use the pole curvaturevB as our reference, an
this choice is reasonable because it corresponds to an
librium in the zero temperature limit considered in@9#. With
the dynamical function taken asf (t)51, this is the only way
the friction (h) dependence can appear in our approa
namely, via the parametervB in the initial density matrix. It
is important that our inequalityvB

2,vR
2 implies the genera

result of a suppressed rate of tunneling in the medium,
main point stressed by Caldeira and Leggett. We also n
that detailed comparison between our result and that of@9# is
possible only by assuming the relation~86!, specific to the
Ohmic spectrum. For different models the difference b
tween the two might be larger.
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In the future we wish to examine further this discrepan
after we develop a formalism for more general potentials

The second application of our general formula is the pr
lem of time evolution for the same potential as above. F
this we consider the temperature range ofv* !T!V0 such
that the average energy eigenstate~of Ē'T) may be treated
semiclassically. We thus regard a particle in thenth energy
level (n@1) of the left harmonic oscillator as moving almo
classically with a periodic motion of frequencyv* . Each
time this particle hits against the right barrier, it has a p
scribed probability~72! of tunneling into the far right region
Starting at timet50, one counts thekth encounter with the
barrier at timet52pk/v* until the final timet f such that
there are roughlyt fv* /2p times of possibility of barrier pen-
etration. We find it reasonable to use a reset time for e
encounter for the timet of Eq. ~72!. Summing up all these
possibilities, one gets the total tunneling probability

Gn~ t f !5uT~En!u2
t fv*
2p

f̄ , ~108!

where f̄ is some sort of representative value for the dya
mical factor for each encounter, perhaps some averag
f (t) @Eq. ~73!# over one period of oscillation under the ha
monic well, like

f̄ 5
1

t*
E

0

t
* dt f~ t !, t* 5

v*
2p

. ~109!

Another choice forf̄ is the dynamical function at some pa
ticular value of time during one period of oscillation, fo
instance, at the classical turning point.

For vB@v* , f̄ '1, and

Gn~ t !'uT~En!u2
tv*
2p

. ~110!

Thus, the total probability is proportional to timet, and one
may define the tunneling rate per unit time,

Gn~ t !

t
5

v*
2p

uT~E!u2. ~111!

This is nothing but the classic Kramers formula@7#.
On the other hand, forvB'v* there may be a large

deviation from the quantum mechanical formula. We plot
Fig. 11 some examples of the factorf̄ @Eq. ~109!# as a func-
tion of the average timet* . In most cases studied,f̄ is some
fraction of unity, typically larger than 0.5.
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APPENDIX A: INTEGRAL TRANSFORM OF THE
WIGNER FUNCTION

After some algebra, we obtain
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f W
(R)~x,p!5

1

2pAI 1I 22I 3
2E

2`

`

dxiE
2`

`

dpi f W
( i )~xi ,pi !

3expF2
1

2~ I 1I 22I 3
2!

@ I 1~p2pcl!
2

1I 2~x2xcl!
222I 3~x2xcl!~p2pcl!#G ,

~A1!

xcl5ġxi1gpi , pcl5g̈xi1ġpi . ~A2!

The definitions ofI i are given in the text, Eqs.~51!–~53!.
The time dependent functionsxcl(t) andpcl(t), are homoge-
neous solutions to the Langevin equation~43! with FQ50.

One may view the mapping fromf W
( i ) to f W

(R) as a kind of
fluid flow. Compared to the classical mapping given in S
II, the quantum solution~A1! in a thermal medium is no
deterministic with a broadening given by the coefficient m
trix

~ I !5S I 1 I 3

I 3 I 2
D . ~A3!

Moreover, the initial distributionf W
( i ) itself is broadened by

quantum mechanical effects. The peak point of the distri
tion is at„xcl(t),pcl(t)…. One might imagine that the mappin
(xi ,pi)→„xcl(t),pcl(t)… is not invertible due to dissipative
effects from the environment. This is not true; the mapping
actually invertible and

xi5
ġxcl2gpcl

ġ22gg̈
, pi5

2g̈xcl1ġpcl

ġ22gg̈
, ~A4!

with ġ22gg̈Þ0.

APPENDIX B: FOKKER-PLANCK EQUATION

One may derive the master equation for the reduced d
sity matrix as described in Ref.@20#. Our formula for the
Wigner function~A1! is considered as an explicit and co

FIG. 11. Time averaged dynamical factorf (t) for a few
models.
01210
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venient solution to this type of master equation. From
master equation one can derive a Fokker-Planck equation
the Wigner function:

] f W
(R)

]t
52p

] f W
(R)

]x
1V2~ t !x

] f W
(R)

]p

1C~ t !
]

]p
~p fW

(R)!22Dpp~ t !
]2f W

(R)

]p2

12Dxp~ t !
]2f W

(R)

]x]p
, ~B1!

V2~ t !52
g̈22ġĝ

gg̈2ġ2
5

ġ

g

d

dt
lnFg

ġ
S g̈2

ġ2

g
D G , ~B2!

C~ t !52
gĝ2ġg̈

gg̈2ġ2
, ~B3!

Dpp~ t !5
1

2 S gĝ2ġg̈

gg̈2ġ2
U1

ġ

2g

g2ĝ22gġg̈1ġ3

gg̈2ġ2
W

2
U̇

2
2ġẆD , ~B4!

Dxp~ t !5U2gẆ1
g2ĝ22gġg̈1ġ3

gg̈2ġ2
W, ~B5!

where the coefficient functionsV2(t), C(t), Dpp(t), and
Dxp(t) are local functions of time and are written in terms
g(t), U, V, andW.

The quantities that appear in this equation are well und
stood by writing a set of moment equations of low orders

d^x&
dt

5^p&,
d^p&
dt

52V2~ t !^x&2C~ t !^p&, ~B6!

d^x2&
dt

52^xp&, ~B7!

d^p2&
dt

522V2~ t !^xp&22C~ t !^p2&24Dpp~ t !, ~B8!

d^xp&
dt

5^p2&2V2~ t !^x2&2C~ t !^xp&12Dxp~ t !. ~B9!

For instance, the quantityV2(t) here is a time dependen
curvature parameter modified from the originalv0

2 to that in
a thermal medium, whileC(t) is a time dependent friction
In similar fashion one understandsDpp andDxp as fluctua-
tions. The physical behaviors of the harmonic oscillator s
tem under a thermal environment are all determined by th
four quantities, which are functions of the local timet.

Limiting values relevant to large timest@1/vB are
4-13
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V2~ t !'2vB
2 , C~ t !'0, ~B10!

Dpp~ t !'2
vB

4
ġW'

vB
3

4 E
vc

`

dv coshS bv

2 DH~v!,

~B11!

Dxp~ t !'U2ġW'E
vc

`

dv coshS bv

2 D S v21
5

4
vB

2 DH~v!.

~B12!

APPENDIX C: PARAMETERS IN SPECIFIC
ENVIRONMENT MODELS

We give the various parameters in the four specific m
els of the environment given in Sec. III C. These parame
are used to calculateg(t) according to

g~ t !5
N

vB
sinh~vBt !12E

vc

`

dvH~v!sin~vt !, ~C1!

H~v!5
r ~v!

@v21vR
22P~v!#21p2r ~v!2

, ~C2!

vR
25vB

21C~vB!. ~C3!

The parameters are given as follows.
~1! Ohmic model

N5S 11
h

2vB
D 21

, C~vB!5hvB , P~v!50,

~C4!

g~ t !5
N

2vB
~evBt2e2(v1h)t!. ~C5!

~2! Drude model

N5S 11
h

2vB

V2

~vB1V!2D 21

, ~C6!

C~vB!5
hvBV

vB1V
, P~v!5

hv2V

v21V2
, ~C7!

g~ t !5
N

vB
sinh~vBt !1

hV2

~a1
2 2vB

2 !~a2
2 2vB

2 !~a1
2 2a2

2 !

3@~a1
2 2a2

2 !e2vBt1~a2
2 2vB

2 !e2a1t

1~vB
22a1

2 !e2a2t#, ~C8!
on

01210
-
rs

a65
vB1V

2
6A~vB2V!2

4
2

hV2

vB1V
. ~C9!

~3! Threshold model

N5S 12
h

p

V2vc

V21vB
2

1
h

pvB
arctan

V

vB

2
h

pvB
arctan

vc

vB
D 21

, ~C10!

C~vB!5
2hvB

p S arctan
V

vB
2arctan

vc

vB
D

1
hvc

p H lnS 11
vB

2

V2D 2 lnS 11
vB

2

vc
2D J ,

~C11!

P~v!5
h~v2vc!

2p
lnS v

vc
21D 2

2
h~v1vc!

2p
lnS v

vc
11D 2

2
h~v2vc!

2p
lnS v

V
21D 2

1
h~v1vc!

2p
lnS v

V
11D 2

.

~C12!

~4! Super-Ohmic model

N5S 12
h

p

V2

V21vB
2

1
h

p
ln

V21vB
2

vB
2 D 21

, ~C13!

C~vB!5
hvB

2

p
ln

V21vB
2

vB
2

, P~v!52
hv2

p
ln

V22v2

v2
.

~C14!

In calculation ofg(t) for the Ohmic model one needs
frequency cutoff in intermediate steps of integration, but
final result does not depend on this cutoff factor. For t
model having a threshold and for the super-Ohmic model
cannot get analytic forms of the basic functiong(t).
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