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Smooth amplitude-phase formulation of the Schrdinger equation based on the Ermakov invariant
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The amplitude-phase formulation of the one-dimensional Sithger equation is investigated within the
context of Ermakov systems. The boundary conditions for amplitude functions corresponding to bound states
are given in terms of the Ermakov invariant and a related constant, which also monitors the behavior of the
accumulated phase function. A procedure leading to the numerical construction of smooth, nonoscillating
amplitude and phase functions is proposed, and illustrated in the case of the harmonic oscillator and the
centrifugal Coulomb potential. The use of this procedure as a tool to define radial basis functions for bound
channels within the framework of scattering theory is discussed.
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[. INTRODUCTION wherec, andc, are complex constants. It can be checked
that the functiona(x) obeys the second-order nonlinear
Systems composed of two coupled nonlinear differentiakquation
equations for the functions andp of the type

2
a
F2a(x)+K3(X) a(x) = (6)
FRU(X)+ KU = ——Y[p(x)/u(x)], (1) X a3(x)
pu=(x)
and thatd,¢»=al a?, a being a constarsee Sec. llIA. a(x)
52 +K2 _ 7 / , 2 is known as the amplitude function arf{x) as the phase.
(X)) up?(x) LU/ ()] @ This transformation, sometimes known as the Milne trans-

form [5], was employed in different manners and different
whereY andZ are arbitrary functions of their arguments, are contexts(for a brief review, see Sec. 5.10 of Rg6]). The
known as Ermakov systems. The main characteristic of suciain use of amplitude-phase formalisms lies not as an alter-
a system follows from the existence of an exact invarlant native to find the eigenfunctions of the Sctiimger equation
(though this was implemented ifi7]), but in scattering
1 plu ulp theory, where in addition to the potentigl(x) of Eq. (4),
|:§|Uﬁxp—po7xu|2+f Y(g)d§+f Z(Hd¢g, G there is a short-range potential inducing phase shifts. As
known, the wave function of such a problem is given in each
through whichu(x) andp(x) may be linked using a nonlin- channel by a superposition of regular and irregular solutions
ear superposition principlesee Sec. )L In what follows, we  of Eq. (4). The amplitude-phase method enters as a tool to
shall only be concerned by uncoupled systems, YéZ) construct a basis of regular and irregular solutions, through
=0 andZ(¢{)=a/ wherea s a constant. Although Ermakov Wwhich the scattering parameters are then defined.
was the first to investigate those systems back in 1880, in- In particular, Greene, Rau, and Fano proposed an
tensive studies have only been undertaken since the la@mplitude-phase method to treat the dynamics of an electron
1960’s, culminating in the celebrated papers of Reid and Ragnoving in the arbitrary field of an ionic coré], typically
[1,2]. These studies were sparked by the countless number sfiited to determine the spectra of Rydberg atoms. This treat-
applications Eqs(1) and (2) have in various domains of ment was undertaken within the framework of multichannel
physics, ranging from the time-dependent harmonic oscillaguantum defect theoryMQDT), a scattering theory-based
tor to soliton theory and fluid dynamics. The structure offormalism describing both bound-state and autoionizing
generalized Ermakov systems are still a current topic of respectra, characterized by the explicit inclusion of closed
search, particularly concerning extensions to many dimentnegative electron energyollision channels. It was shown
sions[3], and the existence of a second invarigRef. [4],  in Ref.[8] how the MQDT(i.e., electron-ion scatteringa-
and references therein rameters, and their behavior as a function of the energy,
The amplitude-phase formulation of quantum mechanicsould be determined in a quite general manner by employing
is obtained by writing a general solution of the one-an amplitude-phase formulation. Since then, amplitude-

dimensional time-independent Schinger equation phase-implemented MQDT has been successfully applied to
a varied number of problems in atomic and molecular phys-
afu(x)+ k?(x)u(x)=0 (4) ics. The nature of the one-dimensional Sclinger equation
to be put in amplitude-phase form depends both on the ge-
with k?(x)=2(E—V(x)), under the form ometry of the problem and on the choice of the long-range
potentialV. The spherical radius is obviously the most com-
u(x)=a(x)[cq Sin¢(x)+c,cosd(X)], (5) monly encountered variable for the amplitude and phase
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functions, employed both for atonfisumerous examples can smooth amplitude functions in both of these paradigmatic

be found in Ref[9]) and moleculege.g., Ref[10] for H,) cases, does not depend to a large extent on the properties of

with one or two outer electrons. However, amplitude-phasehe potentialas the convexity of the potential or the type of

techniques have also been used with other variables, such esnimum). For completeness, we point out that the interest

the hyperspherical radius to treat Hel], the elliptical radius ~ for smooth amplitude-phase functions is not limited to

in polar moleculeg12], or the internuclear coordinate in MQDT analysis. In particular, Milne’s transform has been

atom-atom scatteringl3]. used in trajectory representations of quantum mechanics, see
Despite all these developments, the determination of th&ef.[17] and especially Ref.18], where it is suggeste@nd

amplitude « is still a delicate task for bound states in aillustrated in the case of the harmonic oscillatéhat the

potential well. For reasons that will become apparent in Secsmoothness of the amplitude function plays a role in the

[ll, the amplitude function is tractable only if it does not interpretation of Born’s probabilistic postulate.

present an oscillatory behavior in the radial varidlien the

oscillatory behavior of the wave function as given by E3). Il. UNCOUPLED ERMAKOV SYSTEMS

is only due to the sine and cosine of the pHab®wever, for . )

a given Schirdinger equation, there exists an infinite number AN uncoupled Ermakov system is a special casetually

of real amplitude functions, corresponding to differentthe simplest oneof the system given above by Ed4) and

boundary conditions. And these solutions generally oscillate(,z)- It consists of the following pair of differential equations:

except for very specific choices of boundary conditions. To

2 2 -
our knowledge, a general method that would lead to such a FHUX) +k()u(x) =0, 8)
choice has not yet been proposed. Most works followed the )
suggestion initially made in Ref7], namely, to use classical 2 2 __a
boundary conditions fow at the potential minimunx,;, Fxe(x) + K a(x) a3(x) ©
(B Xmin) =K~ Y2(Xmin,E), (7ad  wherea? is real constant. It may be shown thatx) and
a(x) are related by a transformation functios a/u. If the
3y (E,Xmin) =0, (7b) equation fort is solved, then one may obtain the general

solution for one of the equatior8) or (9) from the knowl-
wherek is the classical momentuin units of ) andE the ~ edge of a particular solution of the other: this is a brief state-
energy of the particle in the well. But this choice is not ment of the so-called nonlinear superposition principle. For
always possible, and when it is, it does not always lead to &letails, the reader is referred to Refg] and[19]; we only
satisfactory behavior for the amplitude function: correctionssummarize the following results, useful in view of Sec. Il
to this method have consequently been proposed by differefelow.
authors[14—16. A related problem concerns the energy de- (i) It may be shown that the quantity
pendence of the phase functiémore precisely of the accu-
mulated phase function, to be defined belowne of the | =
main advantages of MQDT over standard scattering theory 2

2
+ |udya— adyul? (10

112
, (1D

a(X)=uy(X)

1 o) 2 21,
§+2Ic U1(X)+WU2(X)

relies on obtaining collision parameters smooth in energy— . . ) .

avoiding the singularities that usually appear at resonancl invariant (independent of), or more precisely, that it

energies—which makes possible the use of interpolation prg?efinés a class of invariants. From now Qﬁ W'"2 be set

cedures. This feature is crucially dependent on the energ§dual to unity without any loss of geq/eral(mncea can be

behavior of the phase function, which is highly oscillatory @bsorbed intar by redefininga— a/a 2);

for arbitrary boundary conditions. (i) If uy(x) is a part|cular'rea'l solution of Ed8), then
The aim of this paper is twofold. First, to establish anthe general solution of Ed9) is given by

explicit link between Ermakov systems and the amplitude- 2

phase approach. To this end, some results concerning un- i+2| C_J' dx

coupled Ermakov systems and the principle of nonlinear su- 2l UE(X')

perposition will be briefly reviewed in Sec. Il. The other

objective, reported in Sec. lll, is to present results aimedvherec is a real constant.

toward the practical implementation of amplitude-phase (iii) By choosing a second real solutiog(x) of Eq. (8),

techniques for bound states or bound channels. From a gemdependent fromu;(x) and labeling their WronskiaiwVv

eral standpoint, the principle of nonlinear superposition=\[u,,u,]=(d,u;)u,—u;(dyu,), the general solution of

sheds new light on the amplitude-phase approach by clarifyEq. (9) takes the form

ing the choices of boundary conditions fafx) and of the

energy dependence fo#(x); in particular, a procedure

aimed at obtaining a smooth radial behavior for the ampli- a(X)=

tude function, using the Ermakov invariahtwill be pre-

sented. This procedure will be illustrated and discussed in 4lc 172

Sec. IV for the harmonic oscillator potential and for the Cou- — —Uuy(X)uy(x) (12

lomb field. It will be seen that our procedure which yields w
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Real solutions of Eq9) are thus positively defined quadratic from the amplitude and phase functions. Ntx) define a
forms, and it follows thaty(x) does not vanish. A particular potential well on an intervdls,,s,] (typically s; ,= * or
solution «(x) is obtained by choosing particular values for 0). Two basis functions of the Schtinger equatior{8) lag-
the two constant$ and c [this is equivalent to setting par- ging 7/2 out of phase may be defined by

ticular boundary conditions for Eq9)].
(iv) Let us introduce another solutigix) of Eq. (8) and
put

_ Uz(Xx)
g(x;l,c)=2I W —cuy(x) |, (13
so that the Wronskian af; andg becomes
Wluy,g]=2l. (14
Then we have
1 1/2
a(x)=| 5r[ui(x)+g%(x:1.0)]| (15)

which although similar to, is not the canonical form of the

quadratic form.

Ill. AMPLITUDE-PHASE FORMULATION

f=ba(x)sing(x), (18a

g=ba(x)cosé(x), (18b)
whereb is a constant. It is usually required thafs;) =0, so
fis regular ats;. A general solution of Eq(8) may then be
written as a superposition of the basis functions

u(x,E)=cosé(E)f(x,E)+sins(E)g(x,E)

=ba(x,E)sin ¢(x,E)+ S(E)]. (19
u(x,E) physically represents the radial wave functidor x
larger than a cutoff radius) of a particle in the long-range
potentialV that scatters off an additional short-range poten-
tial. 5(E) appears an effective phase shift in the given colli-
sion channel and generally depends on the endr§fE)
takes into account both the scattering phase-shift due to the
short-range potential and the long-range boundary conditions
in the potentiaV. Only in the case of single-channel scatter-

We now specialize the formulas given above to theing doesé represent a scattering phase shift, see, e.g., Ref.

amplitude-phase formulation of the Schiger equation.
Atomic units will be used throughout.

A. Milne transform and scattering basis functions

Clearly, by settind?®=2(E— V), Eq.(8) above is nothing
but the time-independent Scliinger equation. Leti(x) be
a general solution of Ed8), and search fou under the form

given by Eq.(5). Then by a straightforward substitution, we

are led to the two equations

Fra()+K(X)a()=aX[h(x)]% (1)
(0= — &
o = .
IxP
Herea is the same constant that appears in &, which
will be set equal to 1. Note also the identity

Wl asing,acos¢]=a. Inserting Eg.(17) into Eqg. (16)
yields the(nonlineay equation fora, which is simply Eq.
(9). Therefore, the equation fer forms with the Schrdinger
equation an uncoupled Ermakov pair.

Because Milne’s transform maintains the WKB structure
« is called the amplitude and the phase. Recall that in the

[22], whereé is denotedmu].

It is now apparent that the radial behavior and the energy
dependence of the amplitude and phase functions directly
determine those of the radial basis functiéasdg. Further-
more, quantities such as phase-shifts or scattering matrices
are defined in terms of these functions through a procedure
based on a Lippmann-Schwinger equation ty@®] or
R-matrix type[9] structure, wherd is the nonperturbed so-
lution. If « oscillates,f andg can still be formally defined
through Eqgs(18a),(18b), but their pathological behavior will
have as a counterpart an odd behavior of, say, the phase
shifts, which renders the problem numerically intractable.
For example, the wave functiofil9) represents physical
states ifu converges as,, that is for energies such that
#(s,,E)+S6(E)=nm, wheren is an integer. Clearly, a
highly oscillatory energy dependence ¢(s,,E) will trans-
late into 5(E), i.e., in the energy dependence of the short-
range and long-range dynamical parameters, making less re-
liable or even impossible the use of interpolation procedures.

a can be obtained by direct integration of the nonlinear
Eq. (9). Alternatively it is also possible to obtain the ampli-
tude from two arbitrary independent solutions of the Sehro

'dinger equation, relying on the connection between solutions

of Egs.(8) and(9) given in the context of Ermakov systems.

WKB approximation, the phase is the classical Jacobi prinypq goal is then to set the free parameteeid| [Eq. (12)]

cipal function and the amplitude squared is the inverse of the ;) < 1o yield smooth amplitude and phase functions, which
classical momentum, which is a smooth function, so that th¢n turn determind andg through Eqs(18a),(18b). We shall

WKB wave functions oscillate in a well-defined envelope.
This is not the case herex diverges exponentially beyond

adopt this last approach in what follows.

the turning points but has a generally highly oscillatory be-

havior between the turning points of the potential, wheye

and u, oscillate. This is problematic from a computational

B. General solution for @ and ¢

Let V(x) define a potential well with singularities at the

point of view, because within scattering theory, such agointsx=s,; ands, (typically s; ,= =% or 0). The general
MQDT, a basis of the Schdinger equation is constructed solution for the amplitude function is given by Ed.2),
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1 5| 2 21, E£E.)= ol (2n+1) o5
a(x)=| | 5y +21c? |ui(x)+ Wuz(x) B(E#Ep) =arctan2lc) + —— . (25
41c vz C. Smooth energy dependence and normalization
—y Ur()u2(x) (20) _
We now discuss how the energy dependence of the con-

vergence and of the normalization of the scattering wave
The equation for the phase, H@.7), is readily integrated to  fynction given by Eq(19) depends on the parametersnd
give I. Square-integrableL?) functions are only properly defined
at the eigenvalueg, of Eq. (8). By normalizing through the
Ua(X) +d, (21)  Wwell-known trick combining the continuity equation for the
' probability density and I'Hopital’s rulée.g., Sec. 5.7 of Ref.

Uz(X)
. . : _ 6]), we have
whered is the integration constant. We also introduce the[ lj

parametei3 defined by f
B=d(s2) — d(s1). (22)

B is usually known as the accumulated phase fundtsamce
it gives the value of the accumulated phase at a given e
ergy), or alternatively as the quantum number functisimce
Bl counts the number of half-cycles of the wave function
betweens; ands,).

To be more specific, we choose from now on the indepen
dent solutionss; andu, to be respectively regular a{ and
s,. This choice is advantageous for the discussion that fol
lows, and also in practical applications, ag (u,) is ob-

tained by outwardinward) numerical integration of Eq8). Dirac-delt izt ¢ i funct
We also set the integration constant of E@1) to d irac-delta normalization of continuum wave functions.

—arctan(Zc), so that ¢(s;)=0. Comparison of Eq(15) As known,dg B also fixes théimprope) normalization of

with Egs.(189,(18b) thus leads to the identification bfvith ~ NONL” functions that converge a but diverge as,. This

u; and ofb? with 21. Of course, this identification is only up is the case for the wave functidd9),

to a multiplicative constank, that for simplicity will not be _ :

explicit here; note however that and ¢ are left unchanged U E)=2la(x E)siM ¢(x.E) + &(E)] @7

by the transformationsu;—«u;, W—«W, 1—«?l, ¢  provided thatB(E)+ 8(E)=n. Its normalization is given

—clK?. by 1 9e[ B(E) + 6(E) ] which with an energy independent in-
Note thatl =b%2 only holds wheru=f or u=g is in-  yariant and by assuming &(E) negligible yieldsEq. (25)]

serted into the invariant Eq10). A general solutioru(x) of

Eq. (8), u=c;f+c,g, gives for the invariant

—2lc

1
—+2I02)W

d(X)= arcta+ o0

£2(x, Eq) dx=1 9 3(Eq) = | mden, (26)

S1

where the last equality is obtained by using E2p). Since
r[ZE,B(EO) is energy dependeifand has the dimensions of the
inverse of the energy| must also be energy dependent in
order to normalize the functions to unity. Alternatively,
may be taken as energy independent, in which case the nor-
malization is inversely proportional to the energy. The func-
tions are said to be energy normalizéat normalized per
unit energy incremept when |=1/7, given that dgn
=[Eq(n+1)—Eyx(n)]~ L. This choice is usually made in
scattering theory, since it is the analog for bound states of the

S2 2 &EC
. f us(x,E)dx=1 T (28
b r - 2
1= (lesf2+cal, (23 o1 T2l

The normalization is thus conditioned by the energy depen-
dence of the accumulated phase functign This is why
obtaining a nonoscillating dependence®fs a function of

the energy has been a major goal of much work regarding the
use of amplitude-phase procedure in generalized quantum
defect theory14,16. The point is that for thé? solutions of

Eq. (8), we haveB=nm, but whenE+#E,, B(E) oscillates
around the line B=mn* (n*real) joining those points

so if we put|cq|?+]|c,/?=1, then1=Db?%2 holds for any
solution of EQ.(8). This is the case in particular for the
scattering wave functiofiL9). We shall assume these choices
to hold hereatfter.

a and ¢ explicitly depend on the boundary conditions,
i.e., on the parametersandl. However, as observed in Ref.
[21], B is independent of these parameters wkenE,, E,

denoting the eigenvalues of the Sdtfirger equation. For S i
these energies), is square integrablgu;(s;)=uy(s,) =0, where=nm (an example is given in Fig.)1As seen from

andu, is thus irregular as, ands,], so that by Eqs(21)  EU:(29), the value of3(E#E,) depends on the choice of
and(22), The same goes for the normalization, that is well defined

whenE=E, but arbitrary elsewhere, depending oand its
B(E=Egy)=nm, (24) energy dependence.

Now, from the relations given above, it is possible to set
the integer multiplgn) of 7 being obtained by counting the c(E) so as to extend the expressions @rand for the nor-
zeros ofu,. But whenE # E,, we see thaB does depend on malization fromE=E, to energy valueE+#E,. Let E,
the boundary conditions, since a direct calculation shows that £(n), n being an integer counting the zerosfoand ¢ a
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25 where (¢;X)= 3>l dyp— 2(52pl d4p)? is the Schwartzian
7 derivative of the phase. It is easy to show thgi#fx)<0 on

20 an interval, therv, ¢ cannot have a positive local minimum

on this interval[23]. In the present case, this means that the

15 amplitude cannot have a local maximum, and that its second

derivative 92« is positive. Thus if{ ¢;x) is negative on an
10 interval, « does not oscillate in this interval.
5 3 Now, beyond the turning points, the inequalify;x)

7/[ 14 16 18 2 <0 is always satisfied. We aim at constructing an amplitude
0

ﬁU’I

-=8

o

] function such thaf¢;x) is negative also between the turning
2 4 6 8 points. Actually, since ¢;x)<0 is a sufficient but not nec-

v essary condition to have a nonoscillating we will only
require(¢;x)<0 to hold locally on an interval. Denote by
F(x,E) the function

0

FIG. 1. The accumulated phageis given as a function of the
principal quantum number (in a.u) for WKB boundary conditions

(oscillating function and for optimized boundary conditions F(x E)=k*2(x E)— a4(X E) (32)
(straight line, see text The inset gives a magnification for=1
—2. which is positive if{ #;x)<0 holds. Letx,, denote a local

minimum of F, so that the three conditions
known function relatindzy andn [e.g., for a Coulomb prob-

lem, &(n)=—-1/2(n+1)?]. The same functional relation F(xm,E)>0, (333
holds forE+#Eg, namely,E=¢&(n*), n* real. If we require
u(E#E,) to be normalized in an analogous manneff & IxF (Xm,E)=0, (33b
=E,) then from Eqs(26) and (28) we have )

92F (Xm,E)>0 (330

deC= mdgn* i +21c?|, (29) are satisfied. The second of these conditions yields a relation
2l betweena andd,«, namely,

that is readily solved to give(n*)=tan(wn* +cst). The AN (Xyn)
constant is found by substituting(n*) into the expression Ixa(Xp) = (34)

2 3 '
for the accumulated phase E@5) and using the boundary 2K*(Xm) @™ (Xm)

condition 5(n* —n)=na, from which it follows that which is inserted into the third condition. Setting

0= a’*(x,,), this gives

2lc(n*)=—cotwn* (30
0N (Xm) A3,V (Xy) ]2
and with this choiceg(n*)=#n*: the normalization(28) 4K (X,) 6%+ 2 X4( m | 4 ~ (Xm)] -2
and the accumulated phase are then nonoscillating functions K*(Xm) K>(Xm)

of n* (andE). As a side product, we also obtain the follow- 5
ing important result: the only solution x,E=£(n*)] given 09— 3L0xV(Xm)] ~0
by Eg.(27) convergent as, and normalized ag is the one K&(Xm)
for which the relations E£(n*)= —cot#n*, B(n*)=wn*,
and thus cod=—cotzn* hold. This point will be further ~Whose real roots are simply obtained, thereby setting bounds
discussed in the illustrations given below. for the value ofa(xq). Next, insert Eq(34) into the invari-

ant, Eq.(10), settingu=f andl=b?2. This leads to

(35

D. Smooth amplitude function AV(X,)

4 X
o O G

. f(Xm) Ixf (Xm)

We look here for the adequate parameters leading to & W
smooth amplitude function in the radial variable. We work m
with energy-normalized basis functions $as fixed, and —2lx+[,f(x)]?=0 (36)
there is accordingly a single parametawhich may be var-
ied. We will use a local condition on the derivativesoto  with y=a " 2(x,,),, which may be algebraically or numeri-
find a value ofc yielding a nonoscillating amplitude. More cally solved iny. The real roots of this equation give the
precisely, sincex(x)— + %< whenx—s; ands,, there is at  values ofa(x,,) compatible with Eq(33b). If one of these
least one valugy such thav,a(xy) =0. Xy must lie between values fits with the other two conditions, E@®3a and the
the classical turning points. This may be seen by writing Eginequality(35), thenx,, is a local minimum ofF. At first, an

2
+X2{f2(xm)_

m

(9) as arbitrary value ofx,,, lying between the turning points, is
) chosen. If the abovementioned conditions are not met, an-
_£<¢_X>: 5x“:a_4_k2 31) other x,, must be chosen, thougk,, may be judiciously
27 a ' picked by examining the properties of the potentiéx) (see
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the examples given in Sec. JVIt seems reasonable, how- 35

ever, to choose,, near the maximum df, to put a stronger

constraint on Eq(333. Once a suitable value @i(x,,) has 3

been obtained, the amplitude function is found by calculating

the corresponding value of the parametewhich is done by 25

means of the nonlinear superposition principle E44) or 3

(12, 2
B T R AT G 15
T2 fx,) 2 W f(Xp) (37)

20 40 60 80 100

We thereby also obtain the phase functi$(x) as well as X

the basis functiog(x) via Eq. (13). FIG. 2. WKB boundary conditionghin line) and smoottithick
Note that if (¢;x)<<0 is verified on the entire interval line) amplitude functions for ah=1 Coulomb centrifugal potential

[s1,S,], thena will not oscillate by virtue of the sign of the plotted for v=8.77. Units in a.u.

Schwartzian derivative. But it is generally sufficient for

(¢;x)<0 to hold only locally around,,, the reason being =0)=0. The adequate root of E¢36) gives the value of

that since the Schwartzian derivative is negative both beyond(x,,) that is injected in Eq(37) to getc. Note that despite

the turning points and ad,, (between the turning pointstis  some similarity, we are not using here classical boundary

expected at most to be mildly positive on finite intervalsconditions, as these would be givéigs. (7a),(7b)] by

between the turning points. In other words, wRef1x)<0 a(0,0)=(2v+1)"Y? and 4,a(0,v)=0. Actually, it can be

only holds locally,d,« is allowed to oscillate mildly, but seen that our boundary conditions tend toward the classical

these oscillations do not change its sign. boundary conditions in the limit of high quantum numbers.
In the particular case of the harmonic oscillator, these two
IV. ILLUSTRATIONS choices of boundary conditions lead to nonoscillating ampli-

tude functions in the radial variable. Nevertheless, with clas-

To illustrate the formulas given above and discuss furthegical boundary conditions, the invariant cannot be chosen

certain aspects of the procedure, we consider herein the hagince it is given[Eq. (10)] by
monic oscillator and the Coulomb potential with a centrifu-
gal barrier. [axui(x,E)]?

1
H(E)= 5| ul0tm EDK(E xm) + 5],

(39

A. Harmonic oscillator
which as indicated, is energy dependent. Another difference

concerns the energy dependence of the accumulated phase
function 8. As Korsch and Laurert7], who used classical
boundary conditions to generatehad remarked, their func-

tion B(v) [denotedN(E) in their work] presents oscillations
about the line joining the eigenvalues of the Sclinger
equation[which, following Eq.(24) has the formy= 7v].

Our initial conditions however yiel@(v)=mwv, as can be
seen on Fig. 1. This is not a coincidence, since it can be
checked that implementing our procedure with the choice
Xm=0 leads to

In atomic units and setting the frequenay to 1, the
amplitude equation for the linear harmonic oscillator is given
by Eq. (9) with k?(x,E)=2(E—x%/2)=2n*+1—x?, and
we introduce the effective quantum numbern* by E
=yp+1/2. Here, the singularities asg= —o ands,= +x.

We chooseu; regular ats;, u, regular ats,, and normalize
the eigenfunctions E=E,) of the Schrdinger Eq.(8) to
unity (which is in this case equivalent to energy normaliza-
tion apart the dimensional constant). The invariant is
accordingly set td = W[ f,g]/2= 1/a, implying by Eq.(26)
JeB(E=Ep) =4,B8(v=n)=m, wheren is the integer count-
ing the zeros ofu,. -

Observe first that for an arbitrary value @fthe amplitude c=-— ECO'[’JTV. (39
function displays strong oscillations, whereas a smooth be-
havior may be obtained by using an optimized valuec,of
keeping all other parameters constant, including the nonlin
earity parametea of Eq. (9) which has been set to unity: this
disagrees with Figs. 2 and 3 of Ré€fl8], where, for the
harmonic osgillator, it was sugg_ested the amplitude. oscillate%(y) does oscillate aboutrv, unless the conditioi30) is
for a<1 and is smooth foa=1 (it was furthermore given as enforced
an illustration of a general assumption regarding the behav- '
ior of a as a function of).

Of course, the choice leading to a smooth amplitude func-
tion is not unique. We pickes,,=0: it can be checked that The amplitude equation for the radial variable in a unit
the conditions(33a8—(33¢) are verified irrespective of the charge Coulomb potential with a centrifugal barrier of mag-
energy, and we take advantage of the simplificatigm(x,,  nitude | is given by Eq.(9) with k?(x,E,1)=2[E—I(l

From Eq.(30) it is seen that this is precisely the valaenust

have if one compel$ to the linear behaviog=7v. Note
nonetheless that in general, when our procedure is success-
fully applied, smooth amplitude functions are obtained, but

B. Centrifugal Coulomb potential
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+1)/(2P)—1/x]=—1I(n* +1)2=1(1+1)/x*—1/(2x), and theirx,, lies near the potential minimum. This method hinges
we introduced the effective quantum number by setting on the fact that for small values of energy-normalized
=n* +1, soE=—1/(2v?) for negative energie@ndv is an  functions are independent of the energy, because the behav-
integer,n+1, whenE=E, is an eigenvalue The argument jor of those functions is dominated by the singularitgabf
goes much as in the case of the harmonic oscillator excepghe centrifugal Coulomb potential. Although the method
that heres;=0 ands,=+%, sou; (u,) are obtained by yjelded excellent results and was repeatedly used in many
inward (outward integration from 0 ¢). The eigenfunctions  applications, including in cold atom-atom scatter[dg], it
of the Schrdinger equation are normalized to the energy byjs not clear how it can be straightforwardly generalized to an
taking I=1/7 as egnergy independent: we then havearbitrary potentialfor example, to a potential without singu-
'aEB(E:Eo):(”H) R . . _larities). Furthermore, although removing the oscillations in
Unlike the harmonic oscillator, classical boundary condi-,o energy dependence gf was one of the goals of the

:'O;S ?t thte_: potentl_ﬁl Tml[m(;”.n dlg no; gfl(;/e i strrr:po':h amp“'method, these oscillations are not controlled at the onset, but
ude function, as illustrated in Fig. =1 (thin line), are examined posteriori

though the oscillations are rather moderate as compared to In a recent work Texier and Junggbe] found that these

the ones obtained with arbitrary boundary conditions. On the . "~ . ; o
other hand, the procedure deicribed inySec. D yields 6g)scnlatlons could substantially be reduced by modifying in

smooth behavior(thick line). Here we tookx,=3 and the classical boundary conditions, given by EG&) and

checked this behavior holds irrespective of the energy!’?: () kK(x,E\l), which is replaced by the second order

Again, many other choices are possible. Of course, the acclVKB expansion of the quantum momentumé and (i)
mulated phasg@(») generally shows oscillations around the Xmin Which is replaced by, wherexy, is chosen in order to
line y=mn*. These oscillations are expected to be small ifminimize this second order correctiom¢{Gks—k. The

the amplitude function is smoottior example withx,,=3  method results in important reductions of the oscillations of
andl =1, the oscillations are about two orders of magnitude8 for v=1+2 andl #0 (it becomes ineffective at low ener-
smaller than with the classical boundary conditions, whichgies because the WKB expansion blows up at both turning
are in turn quite smaller than those obtained with arbitrarypoints, but requires the potentials to have negative curvature
boundary conditions These oscillations may be removed, (i.e., 92V<0, which is not the case for the harmonic oscil-
following the analysis of Sec. Il C, by settifdq. (30)] ¢ lator).

= — 7r cotr(v—1)/2 thereby constructing numerical functions  These authors also make a provision to determine well-

for which the accumulated phase fulfills behaved amplitude and phase functions in an energy range
. below the minimal eigenvalue of E¢8) (v<I+1 in the
B=mn*=m(v=1). (400 coulomb case Accumulated phase functions for those very

low energies have proved to be necessary in problems where

It is interesting to note that these relations hold for the Coucore states having different energies are considéimdex-
lomb functions described analytically by Seat@®enoteds  ample, Sec. Il of Ref.25] discusses how only an appropriate
andc in Ref.[24]) and which are known to yield nonoscil- energy dependence @@ for »<I+1 leads to a tractable
lating amplitude functions. The scattering soluti¢h8) con-  energy dependence of the electronic quantum defects for
structed withs andc (replacingf andg) are normalized to®  triplet H,). The procedure described in Sec. 11l D can also be
and converge at infinity foo=n—46/m. In this sense, the employed in this case. Note in particular that for energies
relations given in Sec. Il C generalize the remarkable propbelow the potential minimum (»<[I(I+1)]¥?), the
erties of the Coulomb analytic functions to arbitrary long- Schwartzian derivativé$;x) is, by Eq.(31), always nega-
range potentials. We also applied our procedure to the casgse, soa can never oscillate, and the desired behavioygor
=0, where the potential displays no minimum; smooth am-can be chosen.
plitude functions were obtained at any energy by allowing an  This is one of the advantages of the method given in Sec.
energy dependence &f,. II: specific amplitude and phase functions are given in terms
of two parameters that monitor the behavior of these func-
tions both in the radialx) and energy(E) variables in a
transparent manner. It is natpriori dependent on the prop-

The failure of classical boundary conditions in practicalerties of the potentia¥, as long as it is possible to obtain two
implementations of amplitude-phase methods for the cenindependent solutions of the ScHinger equation(by in-
trifugal Coulomb potentiallmoreover, forl=0, it is not ward and outward numerical integratjorHowever, while
clear where to take the classical boundary conditided to  the E dependence of the accumulated phase function is con-
the development of alternative schemes, first to handle nuxolled in a straightforward wagSec. Il C) thex smoothness
merically studies of excited and autoionizing states of Ryd-of the amplitude function is determined indirectly by a local
berg atoms and molecules, and also in view of further geneondition: a nonoscillating amplitude is always obtained
eralizing quantum defect theory to an arbitrary long-rangevhen the Schwartzian derivative is negative on the entire
field. Yoo and Green¢l4]| had proposed to use boundary interval[s;,s,], but it is most often sufficient for this con-
conditions fora at positive energies, where the amplitude dition to hold locally atx,,, because it constrains the behav-
function is well defined, then extrapolate to negative energiesr of «, as discussed in Sec. llI D. This is a possible draw-
the energy dependence a{E,x,,) andd,a(E,x,,), where back of the method: depending on the potential properties, it

V. DISCUSSION AND CONCLUSION
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may be easy to determine analytically how to choage potential and the harmonic oscillator, the resulting amplitude
(e.g., for the harmonic oscillator for which the conditions function turned out to be oscillation free. Current work indi-
(339—(330) taken forx,=0 yield a negative Schwartzian cates that the peculiar properties of the chgice 7n* are
derivative on[s;,s,]), whereas in other casés.g., numeri-  best brought to light by examining the semiclassical limit,
cal or model potentiala numerical exploration may result which may be done by setting up a semiclassical Ermakov
necessary. The asymmetry in the treatment of the energy argystem. Full details will be given elsewhere.
radial variables is due to the fact that there is a unique value Anyhow, the results above suggest that techniques based
of ¢ yielding a nonoscillating behavior fg8, whereas there on the properties of Ermakov systems should be useful in the
are infinitely many values of yielding, at a specified en- context of the amplitude-phase formulation of the Sehro
ergy, nonoscillating amplitude functions: taking the seconddinger equation. In addition to possible improvements in nu-
derivative of Eq.(20), it is seen that any value afenclosed merical calculations of wave functions in scattering prob-
betweenc..(x), given by lems, the connection discussed in this article helps in
clarifying the meaning of the amplitude-phase formalism of
lux 1 J21 the wave function. Moreover, further links with current
€x(X)= w f(X) i2|f(x) k(x) — (%) (42) mathematical work on Ermakov systems could be fruitful in
extensions of the formalism, for example to many dimen-
and wherex spans the entire interval between the turningsions.
points, gives rise to a nonoscillating amplitude functen

nqnoscillating amplitudg is also obta}inectitrqsses:i(x) a ACKNOWLEDGMENTS
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