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Smooth amplitude-phase formulation of the Schro¨dinger equation based on the Ermakov invariant
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The amplitude-phase formulation of the one-dimensional Schro¨dinger equation is investigated within the
context of Ermakov systems. The boundary conditions for amplitude functions corresponding to bound states
are given in terms of the Ermakov invariant and a related constant, which also monitors the behavior of the
accumulated phase function. A procedure leading to the numerical construction of smooth, nonoscillating
amplitude and phase functions is proposed, and illustrated in the case of the harmonic oscillator and the
centrifugal Coulomb potential. The use of this procedure as a tool to define radial basis functions for bound
channels within the framework of scattering theory is discussed.
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I. INTRODUCTION

Systems composed of two coupled nonlinear differen
equations for the functionsu andr of the type

]x
2u~x!1k2~x!u~x!5

1

ru2~x!
Y@r~x!/u~x!#, ~1!

]x
2r~x!1k2~x!r~x!5

1

ur2~x!
Z@u~x!/r~x!#, ~2!

whereY andZ are arbitrary functions of their arguments, a
known as Ermakov systems. The main characteristic of s
a system follows from the existence of an exact invarianI,

I 5
1

2
uu]xr2r]xuu21Er/u

Y~z!dz1Eu/r

Z~z!dz, ~3!

through whichu(x) andr(x) may be linked using a nonlin
ear superposition principle~see Sec. II!. In what follows, we
shall only be concerned by uncoupled systems, i.e.,Y(z)
50 andZ(z)5az wherea is a constant. Although Ermako
was the first to investigate those systems back in 1880,
tensive studies have only been undertaken since the
1960’s, culminating in the celebrated papers of Reid and R
@1,2#. These studies were sparked by the countless numb
applications Eqs.~1! and ~2! have in various domains o
physics, ranging from the time-dependent harmonic osc
tor to soliton theory and fluid dynamics. The structure
generalized Ermakov systems are still a current topic of
search, particularly concerning extensions to many dim
sions@3#, and the existence of a second invariant~Ref. @4#,
and references therein!.

The amplitude-phase formulation of quantum mechan
is obtained by writing a general solution of the on
dimensional time-independent Schro¨dinger equation

]x
2u~x!1k2~x!u~x!50 ~4!

with k2(x)52(E2V(x)), under the form

u~x!5a~x!@c1 sinf~x!1c2 cosf~x!#, ~5!
1050-2947/2000/63~1!/012103~8!/$15.00 63 0121
l

ch

n-
te
y
of

-
f
-

n-

s

wherec1 and c2 are complex constants. It can be check
that the functiona(x) obeys the second-order nonline
equation

]x
2a~x!1k2~x!a~x!5

a2

a3~x!
~6!

and that]xf5a/a2, a being a constant~see Sec. IIIA!. a(x)
is known as the amplitude function andf(x) as the phase
This transformation, sometimes known as the Milne tra
form @5#, was employed in different manners and differe
contexts~for a brief review, see Sec. 5.10 of Ref.@6#!. The
main use of amplitude-phase formalisms lies not as an a
native to find the eigenfunctions of the Schro¨dinger equation
~though this was implemented in@7#!, but in scattering
theory, where in addition to the potentialV(x) of Eq. ~4!,
there is a short-range potential inducing phase shifts.
known, the wave function of such a problem is given in ea
channel by a superposition of regular and irregular soluti
of Eq. ~4!. The amplitude-phase method enters as a too
construct a basis of regular and irregular solutions, throu
which the scattering parameters are then defined.

In particular, Greene, Rau, and Fano proposed
amplitude-phase method to treat the dynamics of an elec
moving in the arbitrary field of an ionic core@8#, typically
suited to determine the spectra of Rydberg atoms. This tr
ment was undertaken within the framework of multichann
quantum defect theory~MQDT!, a scattering theory-base
formalism describing both bound-state and autoioniz
spectra, characterized by the explicit inclusion of clos
~negative electron energy! collision channels. It was shown
in Ref. @8# how the MQDT~i.e., electron-ion scattering! pa-
rameters, and their behavior as a function of the ene
could be determined in a quite general manner by employ
an amplitude-phase formulation. Since then, amplitu
phase-implemented MQDT has been successfully applie
a varied number of problems in atomic and molecular ph
ics. The nature of the one-dimensional Schro¨dinger equation
to be put in amplitude-phase form depends both on the
ometry of the problem and on the choice of the long-ran
potentialV. The spherical radius is obviously the most com
monly encountered variable for the amplitude and ph
©2000 The American Physical Society03-1
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functions, employed both for atoms~numerous examples ca
be found in Ref.@9#! and molecules~e.g., Ref.@10# for H2)
with one or two outer electrons. However, amplitude-ph
techniques have also been used with other variables, suc
the hyperspherical radius to treat He@11#, the elliptical radius
in polar molecules@12#, or the internuclear coordinate i
atom-atom scattering@13#.

Despite all these developments, the determination of
amplitude a is still a delicate task for bound states in
potential well. For reasons that will become apparent in S
III, the amplitude function is tractable only if it does no
present an oscillatory behavior in the radial variable@then the
oscillatory behavior of the wave function as given by Eq.~5!
is only due to the sine and cosine of the phase#. However, for
a given Schro¨dinger equation, there exists an infinite numb
of real amplitude functions, corresponding to differe
boundary conditions. And these solutions generally oscill
except for very specific choices of boundary conditions.
our knowledge, a general method that would lead to suc
choice has not yet been proposed. Most works followed
suggestion initially made in Ref.@7#, namely, to use classica
boundary conditions fora at the potential minimumxmin :

a~E,xmin!5k21/2~xmin ,E!, ~7a!

]xa~E,xmin!50, ~7b!

wherek is the classical momentum~in units of\) andE the
energy of the particle in the well. But this choice is n
always possible, and when it is, it does not always lead
satisfactory behavior for the amplitude function: correctio
to this method have consequently been proposed by diffe
authors@14–16#. A related problem concerns the energy d
pendence of the phase function~more precisely of the accu
mulated phase function, to be defined below!: one of the
main advantages of MQDT over standard scattering the
relies on obtaining collision parameters smooth in energ
avoiding the singularities that usually appear at resona
energies—which makes possible the use of interpolation
cedures. This feature is crucially dependent on the ene
behavior of the phase function, which is highly oscillato
for arbitrary boundary conditions.

The aim of this paper is twofold. First, to establish
explicit link between Ermakov systems and the amplitu
phase approach. To this end, some results concerning
coupled Ermakov systems and the principle of nonlinear
perposition will be briefly reviewed in Sec. II. The oth
objective, reported in Sec. III, is to present results aim
toward the practical implementation of amplitude-pha
techniques for bound states or bound channels. From a
eral standpoint, the principle of nonlinear superposit
sheds new light on the amplitude-phase approach by cla
ing the choices of boundary conditions fora(x) and of the
energy dependence forf(x); in particular, a procedure
aimed at obtaining a smooth radial behavior for the am
tude function, using the Ermakov invariantI, will be pre-
sented. This procedure will be illustrated and discussed
Sec. IV for the harmonic oscillator potential and for the Co
lomb field. It will be seen that our procedure which yiel
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smooth amplitude functions in both of these paradigma
cases, does not depend to a large extent on the properti
the potential~as the convexity of the potential or the type
minimum!. For completeness, we point out that the inter
for smooth amplitude-phase functions is not limited
MQDT analysis. In particular, Milne’s transform has be
used in trajectory representations of quantum mechanics
Ref. @17# and especially Ref.@18#, where it is suggested~and
illustrated in the case of the harmonic oscillator! that the
smoothness of the amplitude function plays a role in
interpretation of Born’s probabilistic postulate.

II. UNCOUPLED ERMAKOV SYSTEMS

An uncoupled Ermakov system is a special case~actually
the simplest one! of the system given above by Eqs.~1! and
~2!. It consists of the following pair of differential equation

]x
2u~x!1k2~x!u~x!50, ~8!

]x
2a~x!1k2~x!a~x!5

a2

a3~x!
, ~9!

where a2 is real constant. It may be shown thatu(x) and
a(x) are related by a transformation functiont5a/u. If the
equation fort is solved, then one may obtain the gene
solution for one of the equations~8! or ~9! from the knowl-
edge of a particular solution of the other: this is a brief sta
ment of the so-called nonlinear superposition principle. F
details, the reader is referred to Refs.@2# and @19#; we only
summarize the following results, useful in view of Sec.
below.

~i! It may be shown that the quantity

I 5
1

2 Fa2UuaU
2

1uu]xa2a]xuu2G ~10!

is invariant ~independent ofx), or more precisely, that it
defines a class of invariants. From now on,a2 will be set
equal to unity without any loss of generality~sincea2 can be
absorbed intoa by redefininga→a/a1/2).

~ii ! If u1(x) is a particular real solution of Eq.~8!, then
the general solution of Eq.~9! is given by

a~x!5u1~x!F 1

2I
12I S c2E dx

u1
2~x8!

D 2G 1/2

, ~11!

wherec is a real constant.
~iii ! By choosing a second real solutionu2(x) of Eq. ~8!,

independent fromu1(x) and labeling their WronskianW
[W @u1 ,u2#5(]xu1)u22u1(]xu2), the general solution of
Eq. ~9! takes the form

a~x!5F S 1

2I
12Ic2Du1

2~x!1
2I

W2
u2

2~x!

2
4Ic

W
u1~x!u2~x!G 1/2

. ~12!
3-2
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SMOOTH AMPLITUDE-PHASE FORMULATION OF THE . . . PHYSICAL REVIEW A 63 012103
Real solutions of Eq.~9! are thus positively defined quadrat
forms, and it follows thata(x) does not vanish. A particula
solution a(x) is obtained by choosing particular values f
the two constantsI and c @this is equivalent to setting par
ticular boundary conditions for Eq.~9!#.

~iv! Let us introduce another solutiong(x) of Eq. ~8! and
put

g~x;I ,c!52I S u2~x!

W
2cu1~x! D , ~13!

so that the Wronskian ofu1 andg becomes

W @u1 ,g#52I . ~14!

Then we have

a~x!5F 1

2I
@u1

2~x!1g2~x;I ,c!#G1/2

, ~15!

which although similar to, is not the canonical form of th
quadratic form.

III. AMPLITUDE-PHASE FORMULATION

We now specialize the formulas given above to t
amplitude-phase formulation of the Schro¨dinger equation.
Atomic units will be used throughout.

A. Milne transform and scattering basis functions

Clearly, by settingk2[2(E2V), Eq.~8! above is nothing
but the time-independent Schro¨dinger equation. Letu(x) be
a general solution of Eq.~8!, and search foru under the form
given by Eq.~5!. Then by a straightforward substitution, w
are led to the two equations

]x
2a~x!1k2~x!a~x!5a~x!@]xf~x!#2, ~16!

a2~x!5
a

]xf
. ~17!

Here a is the same constant that appears in Eq.~9!, which
will be set equal to 1. Note also the identi
W @a sinf,a cosf#5a. Inserting Eq. ~17! into Eq. ~16!
yields the~nonlinear! equation fora, which is simply Eq.
~9!. Therefore, the equation fora forms with the Schro¨dinger
equation an uncoupled Ermakov pair.

Because Milne’s transform maintains the WKB structu
a is called the amplitude andf the phase. Recall that in th
WKB approximation, the phase is the classical Jacobi p
cipal function and the amplitude squared is the inverse of
classical momentum, which is a smooth function, so that
WKB wave functions oscillate in a well-defined envelop
This is not the case here:a diverges exponentially beyon
the turning points but has a generally highly oscillatory b
havior between the turning points of the potential, whereu1
and u2 oscillate. This is problematic from a computation
point of view, because within scattering theory, such
MQDT, a basis of the Schro¨dinger equation is constructe
01210
,

-
e
e
.

-

l
s

from the amplitude and phase functions. LetV(x) define a
potential well on an interval@s1 ,s2# ~typically s1,256` or
0). Two basis functions of the Schro¨dinger equation~8! lag-
ging p/2 out of phase may be defined by

f 5ba~x!sinf~x!, ~18a!

g5ba~x!cosf~x!, ~18b!

whereb is a constant. It is usually required thatf(s1)50, so
f is regular ats1. A general solution of Eq.~8! may then be
written as a superposition of the basis functions

u~x,E!5cosd~E! f ~x,E!1sind~E!g~x,E!

5ba~x,E!sin@f~x,E!1d~E!#. ~19!

u(x,E) physically represents the radial wave function~for x
larger than a cutoff radiusr ) of a particle in the long-range
potentialV that scatters off an additional short-range pote
tial. d(E) appears an effective phase shift in the given co
sion channel and generally depends on the energy.@d(E)
takes into account both the scattering phase-shift due to
short-range potential and the long-range boundary condit
in the potentialV. Only in the case of single-channel scatte
ing doesd represent a scattering phase shift, see, e.g.,
@22#, whered is denotedpm̄].

It is now apparent that the radial behavior and the ene
dependence of the amplitude and phase functions dire
determine those of the radial basis functionsf andg. Further-
more, quantities such as phase-shifts or scattering matr
are defined in terms of these functions through a proced
based on a Lippmann-Schwinger equation type@20# or
R-matrix type@9# structure, wheref is the nonperturbed so
lution. If a oscillates,f and g can still be formally defined
through Eqs.~18a!,~18b!, but their pathological behavior wil
have as a counterpart an odd behavior of, say, the ph
shifts, which renders the problem numerically intractab
For example, the wave function~19! represents physica
states if u converges ats2, that is for energies such tha
f(s2 ,E)1d(E)5np, where n is an integer. Clearly, a
highly oscillatory energy dependence off(s2 ,E) will trans-
late into d(E), i.e., in the energy dependence of the sho
range and long-range dynamical parameters, making les
liable or even impossible the use of interpolation procedu

a can be obtained by direct integration of the nonline
Eq. ~9!. Alternatively it is also possible to obtain the amp
tude from two arbitrary independent solutions of the Sch¨-
dinger equation, relying on the connection between soluti
of Eqs.~8! and~9! given in the context of Ermakov system
The goal is then to set the free parametersc andI @Eq. ~12!#
so as to yield smooth amplitude and phase functions, wh
in turn determinef andg through Eqs.~18a!,~18b!. We shall
adopt this last approach in what follows.

B. General solution for a and f

Let V(x) define a potential well with singularities at th
points x5s1 and s2 ~typically s1,256` or 0!. The general
solution for the amplitude function is given by Eq.~12!,
3-3
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a~x!5F S 1

2I
12Ic2Du1

2~x!1
2I

W2
u2

2~x!

2
4Ic

W
u1~x!u2~x!G 1/2

. ~20!

The equation for the phase, Eq.~17!, is readily integrated to
give

f~x!5arctanF S 1

2I
12Ic2DW

u1~x!

u2~x!
22IcG1d, ~21!

where d is the integration constant. We also introduce t
parameterb defined by

b[f~s2!2f~s1!. ~22!

b is usually known as the accumulated phase function~since
it gives the value of the accumulated phase at a given
ergy!, or alternatively as the quantum number function~since
b/p counts the number of half-cycles of the wave functi
betweens1 ands2).

To be more specific, we choose from now on the indep
dent solutionsu1 andu2 to be respectively regular ats1 and
s2. This choice is advantageous for the discussion that
lows, and also in practical applications, asu1 (u2) is ob-
tained by outward~inward! numerical integration of Eq.~8!.
We also set the integration constant of Eq.~21! to d
5arctan(2Ic), so that f(s1)50. Comparison of Eq.~15!
with Eqs.~18a!,~18b! thus leads to the identification off with
u1 and ofb2 with 2I . Of course, this identification is only u
to a multiplicative constantk, that for simplicity will not be
explicit here; note however thata andf are left unchanged
by the transformationsu1→ku1 , W→kW, I→k2I , c
→c/k2.

Note thatI 5b2/2 only holds whenu5 f or u5g is in-
serted into the invariant Eq.~10!. A general solutionu(x) of
Eq. ~8!, u5c1f 1c2g, gives for the invariant

I 5
b2

2
~ uc1u21uc2u2!, ~23!

so if we put uc1u21uc2u251, then I 5b2/2 holds for any
solution of Eq. ~8!. This is the case in particular for th
scattering wave function~19!. We shall assume these choic
to hold hereafter.

a and f explicitly depend on the boundary condition
i.e., on the parametersc andI. However, as observed in Re
@21#, b is independent of these parameters whenE5E0 , E0
denoting the eigenvalues of the Schro¨dinger equation. For
these energies,u1 is square integrable@u1(s1)5u1(s2)50,
and u2 is thus irregular ats1 and s2], so that by Eqs.~21!
and ~22!,

b~E5E0!5np, ~24!

the integer multiple~n! of p being obtained by counting th
zeros ofu2. But whenEÞE0, we see thatb does depend on
the boundary conditions, since a direct calculation shows
01210
e

n-

-

l-

at

b~EÞE0!5arctan~2Ic !1
~2n11!

2
p. ~25!

C. Smooth energy dependence and normalization

We now discuss how the energy dependence of the c
vergence and of the normalization of the scattering wa
function given by Eq.~19! depends on the parametersc and
I. Square-integrable (L2) functions are only properly define
at the eigenvaluesE0 of Eq. ~8!. By normalizing through the
well-known trick combining the continuity equation for th
probability density and l’Hopital’s rule~e.g., Sec. 5.7 of Ref
@6#!, we have

E
s1

s2
f 2~x,E0!dx5I ]Eb~E0!5Ip]En, ~26!

where the last equality is obtained by using Eq.~25!. Since
]Eb(E0) is energy dependent~and has the dimensions of th
inverse of the energy!, I must also be energy dependent
order to normalize the functions to unity. Alternatively,I
may be taken as energy independent, in which case the
malization is inversely proportional to the energy. The fun
tions are said to be energy normalized~or normalized per
unit energy increment! when I 51/p, given that ]En
.@E0(n11)2E0(n)#21. This choice is usually made in
scattering theory, since it is the analog for bound states of
Dirac-delta normalization of continuum wave functions.

As known,]Eb also fixes the~improper! normalization of
non L2 functions that converge ats2 but diverge ats1. This
is the case for the wave function~19!,

u~x,E!5A2Ia~x,E!sin@f~x,E!1d~E!# ~27!

provided thatb(E)1d(E)5np. Its normalization is given
by I ]E@b(E)1d(E)# which with an energy independent in
variant and by assuming]Ed(E) negligible yields@Eq. ~25!#

E
r

s2
u2~x,E!dx5I

]Ec

1

2I
12Ic2

. ~28!

The normalization is thus conditioned by the energy dep
dence of the accumulated phase functionb. This is why
obtaining a nonoscillating dependence ofb as a function of
the energy has been a major goal of much work regarding
use of amplitude-phase procedure in generalized quan
defect theory@14,16#. The point is that for theL2 solutions of
Eq. ~8!, we haveb5np, but whenEÞE0 , b(E) oscillates
around the lineb5pn* (n* real) joining those points
whereb5np ~an example is given in Fig. 1!. As seen from
Eq. ~25!, the value ofb(EÞE0) depends on the choice ofc.
The same goes for the normalization, that is well defin
whenE5E0 but arbitrary elsewhere, depending onc and its
energy dependence.

Now, from the relations given above, it is possible to s
c(E) so as to extend the expressions forb and for the nor-
malization from E5E0 to energy valuesEÞE0. Let E0
5j(n), n being an integer counting the zeros off, andj a
3-4
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known function relatingE0 andn @e.g., for a Coulomb prob-
lem, j(n)521/2(n1 l )2]. The same functional relation
holds forEÞE0, namely,E5j(n* ), n* real. If we require
u(EÞE0) to be normalized in an analogous manner asf (E
5E0) then from Eqs.~26! and ~28! we have

]Ec5p]En* S 1

2I
12Ic2D , ~29!

that is readily solved to givec(n* )5tan(pn* 1cst). The
constant is found by substitutingc(n* ) into the expression
for the accumulated phase Eq.~25! and using the boundar
conditionb(n* →n)5np, from which it follows that

2Ic~n* !52cotpn* ~30!

and with this choiceb(n* )5pn* : the normalization~28!
and the accumulated phase are then nonoscillating funct
of n* ~andE). As a side product, we also obtain the follow
ing important result: the only solutionu@x,E5j(n* )# given
by Eq. ~27! convergent ats2 and normalized asf is the one
for which the relations 2Ic(n* )52cotpn* , b(n* )5pn* ,
and thus cotd52cotpn* hold. This point will be further
discussed in the illustrations given below.

D. Smooth amplitude function

We look here for the adequate parameters leading
smooth amplitude function in the radial variable. We wo
with energy-normalized basis functions soI is fixed, and
there is accordingly a single parameterc which may be var-
ied. We will use a local condition on the derivatives ofa to
find a value ofc yielding a nonoscillating amplitude. Mor
precisely, sincea(x)→1` whenx→s1 ands2, there is at
least one valuex0 such that]xa(x0)50. x0 must lie between
the classical turning points. This may be seen by writing
~9! as

2
1

2
^f;x&5

]x
2a

a
5a242k2, ~31!

FIG. 1. The accumulated phaseb is given as a function of the
principal quantum numbern ~in a.u.! for WKB boundary conditions
~oscillating function! and for optimized boundary condition
~straight line, see text!. The inset gives a magnification forn51
22.
01210
ns

a

.

where ^f;x&[]x
3f/]xf2 3

2 (]x
2f/]xf)2 is the Schwartzian

derivative of the phase. It is easy to show that if^f;x&,0 on
an interval, then]xf cannot have a positive local minimum
on this interval@23#. In the present case, this means that
amplitude cannot have a local maximum, and that its sec
derivative]x

2a is positive. Thus if^f;x& is negative on an
interval,a does not oscillate in this interval.

Now, beyond the turning points, the inequality^f;x&
,0 is always satisfied. We aim at constructing an amplitu
function such that̂f;x& is negative also between the turnin
points. Actually, sincê f;x&,0 is a sufficient but not nec
essary condition to have a nonoscillatinga, we will only
require^f;x&,0 to hold locally on an interval. Denote b
F(x,E) the function

F~x,E!5k22~x,E!2a4~x,E!, ~32!

which is positive if^f;x&,0 holds. Letxm denote a local
minimum of F, so that the three conditions

F~xm ,E!.0, ~33a!

]xF~xm ,E!50, ~33b!

]x
2F~xm ,E!.0 ~33c!

are satisfied. The second of these conditions yields a rela
betweena and]xa, namely,

]xa~xm!5
]xV~xm!

2k4~xm!a3~xm!
, ~34!

which is inserted into the third condition. Settin
u[a4(xm), this gives

4k2~xm!u212F ]x
2V~xm!

k4~xm!
1

4@]xV~xm!#2

k6~xm!
22G

3u2
3@]xV~xm!#2

k8~xm!
.0 ~35!

whose real roots are simply obtained, thereby setting bou
for the value ofa(xm). Next, insert Eq.~34! into the invari-
ant, Eq.~10!, settingu5 f and I 5b2/2. This leads to

x4F f ~xm!]xf ~xm!

2k4~xm!
G 2

1x2F f 2~xm!2
]xV~xm!

k4~xm!
f ~xm!]xf ~xm!G

22Ix1@]xf ~xm!#250 ~36!

with x[a22(xm),, which may be algebraically or numer
cally solved inx. The real roots of this equation give th
values ofa(xm) compatible with Eq.~33b!. If one of these
values fits with the other two conditions, Eq.~33a! and the
inequality~35!, thenxm is a local minimum ofF. At first, an
arbitrary value ofxm , lying between the turning points, i
chosen. If the abovementioned conditions are not met,
other xm must be chosen, thoughxm may be judiciously
picked by examining the properties of the potentialV(x) ~see
3-5
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the examples given in Sec. IV!. It seems reasonable, how
ever, to choosexm near the maximum ofk, to put a stronger
constraint on Eq.~33a!. Once a suitable value ofa(xm) has
been obtained, the amplitude function is found by calculat
the corresponding value of the parameterc, which is done by
means of the nonlinear superposition principle Eqs.~11! or
~12!,

c56F 1

2I S a2~xm!

f 2~xm!
2

1

2I D G 1/2

1
1

W

u2~xm!

f ~xm!
. ~37!

We thereby also obtain the phase functionf(x) as well as
the basis functiong(x) via Eq. ~13!.

Note that if ^f;x&,0 is verified on the entire interva
@s1 ,s2#, thena will not oscillate by virtue of the sign of the
Schwartzian derivative. But it is generally sufficient f
^f;x&,0 to hold only locally aroundxm , the reason being
that since the Schwartzian derivative is negative both bey
the turning points and atxm ~between the turning points!, it is
expected at most to be mildly positive on finite interva
between the turning points. In other words, when^f;x&,0
only holds locally,]xa is allowed to oscillate mildly, but
these oscillations do not change its sign.

IV. ILLUSTRATIONS

To illustrate the formulas given above and discuss furt
certain aspects of the procedure, we consider herein the
monic oscillator and the Coulomb potential with a centrif
gal barrier.

A. Harmonic oscillator

In atomic units and setting the frequencyv to 1, the
amplitude equation for the linear harmonic oscillator is giv
by Eq. ~9! with k2(x,E)52(E2x2/2)52n* 112x2, and
we introduce the effective quantum numbern5n* by E
5n11/2. Here, the singularities ares152` ands251`.
We chooseu1 regular ats1 , u2 regular ats2, and normalize
the eigenfunctions (E5E0) of the Schro¨dinger Eq.~8! to
unity ~which is in this case equivalent to energy normaliz
tion apart the dimensional constanthv). The invariant is
accordingly set toI 5W @ f ,g#/251/p, implying by Eq.~26!
]Eb(E5E0)5]nb(n5n)5p, wheren is the integer count-
ing the zeros ofu2.

Observe first that for an arbitrary value ofc, the amplitude
function displays strong oscillations, whereas a smooth
havior may be obtained by using an optimized value ofc,
keeping all other parameters constant, including the non
earity parametera of Eq. ~9! which has been set to unity: thi
disagrees with Figs. 2 and 3 of Ref.@18#, where, for the
harmonic oscillator, it was suggested the amplitude oscilla
for a!1 and is smooth fora.1 ~it was furthermore given as
an illustration of a general assumption regarding the beh
ior of a as a function ofa).

Of course, the choice leading to a smooth amplitude fu
tion is not unique. We pickedxm50: it can be checked tha
the conditions~33a!–~33c! are verified irrespective of the
energy, and we take advantage of the simplification]xa(xm
01210
g

d

r
ar-

-

e-

-

s

v-

-

50)50. The adequate root of Eq.~36! gives the value of
a(xm) that is injected in Eq.~37! to getc. Note that despite
some similarity, we are not using here classical bound
conditions, as these would be given@Eqs. ~7a!,~7b!# by
a(0,n)5(2n11)21/2 and ]xa(0,n)50. Actually, it can be
seen that our boundary conditions tend toward the class
boundary conditions in the limit of high quantum numbe
In the particular case of the harmonic oscillator, these t
choices of boundary conditions lead to nonoscillating am
tude functions in the radial variable. Nevertheless, with cl
sical boundary conditions, the invariant cannot be cho
since it is given@Eq. ~10!# by

I ~E!5
1

2 Fu1
2~xm ,E!k~E,xm!1

@]xu1~x,E!#2

k~E,xm! G , ~38!

which as indicated, is energy dependent. Another differe
concerns the energy dependence of the accumulated p
function b. As Korsch and Laurent@7#, who used classica
boundary conditions to generatea had remarked, their func
tion b(n) @denotedN(E) in their work# presents oscillations
about the line joining the eigenvalues of the Schro¨dinger
equation@which, following Eq. ~24! has the formy5pn].
Our initial conditions however yieldb(n)5pn, as can be
seen on Fig. 1. This is not a coincidence, since it can
checked that implementing our procedure with the cho
xm50 leads to

c52
p

2
cotpn. ~39!

From Eq.~30! it is seen that this is precisely the valuec must
have if one compelsb to the linear behaviorb5pn. Note
nonetheless that in general, when our procedure is succ
fully applied, smooth amplitude functions are obtained, b
b(n) does oscillate aboutpn, unless the condition~30! is
enforced.

B. Centrifugal Coulomb potential

The amplitude equation for the radial variable in a u
charge Coulomb potential with a centrifugal barrier of ma
nitude l is given by Eq. ~9! with k2(x,E,l )52@E2 l ( l

FIG. 2. WKB boundary conditions~thin line! and smooth~thick
line! amplitude functions for anl 51 Coulomb centrifugal potentia
plotted forn58.77. Units in a.u.
3-6
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11)/(2x2)21/x#521/(n* 1 l )22 l ( l 11)/x221/(2x), and
we introduced the effective quantum number by settingn
5n* 1 l , soE521/(2n2) for negative energies~andn is an
integer,n1 l , whenE5E0 is an eigenvalue!. The argument
goes much as in the case of the harmonic oscillator ex
that heres150 and s251`, so u1 (u2) are obtained by
inward~outward! integration from 0 (̀ ). The eigenfunctions
of the Schro¨dinger equation are normalized to the energy
taking I 51/p as energy independent: we then ha
I ]Eb(E5E0)5(n1 l )3.

Unlike the harmonic oscillator, classical boundary con
tions at the potential minimum do not give a smooth amp
tude function, as illustrated in Fig. 2 forl 51 ~thin line!,
though the oscillations are rather moderate as compare
the ones obtained with arbitrary boundary conditions. On
other hand, the procedure described in Sec. III D yield
smooth behavior~thick line!. Here we tookxm53 and
checked this behavior holds irrespective of the ener
Again, many other choices are possible. Of course, the a
mulated phaseb(n) generally shows oscillations around th
line y5pn* . These oscillations are expected to be smal
the amplitude function is smooth~for example withxm53
and l 51, the oscillations are about two orders of magnitu
smaller than with the classical boundary conditions, wh
are in turn quite smaller than those obtained with arbitr
boundary conditions!. These oscillations may be remove
following the analysis of Sec. III C, by setting@Eq. ~30!# c
52p cotp(n2l)/2 thereby constructing numerical function
for which the accumulated phase fulfills

b5pn* 5p~n2 l !. ~40!

It is interesting to note that these relations hold for the C
lomb functions described analytically by Seaton~denoteds
andc in Ref. @24#! and which are known to yield nonosci
lating amplitude functions. The scattering solutions~19! con-
structed withs andc ~replacingf andg) are normalized ton3

and converge at infinity forn5n2d/p. In this sense, the
relations given in Sec. III C generalize the remarkable pr
erties of the Coulomb analytic functions to arbitrary lon
range potentials. We also applied our procedure to the c
l 50, where the potential displays no minimum; smooth a
plitude functions were obtained at any energy by allowing
energy dependence ofxm .

V. DISCUSSION AND CONCLUSION

The failure of classical boundary conditions in practic
implementations of amplitude-phase methods for the c
trifugal Coulomb potential~moreover, for l 50, it is not
clear where to take the classical boundary conditions! led to
the development of alternative schemes, first to handle
merically studies of excited and autoionizing states of R
berg atoms and molecules, and also in view of further g
eralizing quantum defect theory to an arbitrary long-ran
field. Yoo and Greene@14# had proposed to use bounda
conditions fora at positive energies, where the amplitu
function is well defined, then extrapolate to negative energ
the energy dependence ofa(E,xm) and ]xa(E,xm), where
01210
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their xm lies near the potential minimum. This method hing
on the fact that for small values ofx, energy-normalized
functions are independent of the energy, because the be
ior of those functions is dominated by the singularity ats1 of
the centrifugal Coulomb potential. Although the meth
yielded excellent results and was repeatedly used in m
applications, including in cold atom-atom scattering@13#, it
is not clear how it can be straightforwardly generalized to
arbitrary potential~for example, to a potential without singu
larities!. Furthermore, although removing the oscillations
the energy dependence ofb was one of the goals of the
method, these oscillations are not controlled at the onset,
are examineda posteriori.

In a recent work Texier and Jungen@16# found that these
oscillations could substantially be reduced by modifying
the classical boundary conditions, given by Eqs.~7a! and
~7b!: ~i! k(x,E,l ), which is replaced by the second ord
WKB expansion of the quantum momentum]xf and ~ii !
xmin which is replaced byxm , wherexm is chosen in order to
minimize this second order correction]xfWKB

(2) 2k. The
method results in important reductions of the oscillations
b for n* l 12 andlÞ0 ~it becomes ineffective at low ener
gies because the WKB expansion blows up at both turn
points!, but requires the potentials to have negative curvat
~i.e., ]x

2V,0, which is not the case for the harmonic osc
lator!.

These authors also make a provision to determine w
behaved amplitude and phase functions in an energy ra
below the minimal eigenvalue of Eq.~8! (n, l 11 in the
Coulomb case!. Accumulated phase functions for those ve
low energies have proved to be necessary in problems w
core states having different energies are considered~for ex-
ample, Sec. II of Ref.@25# discusses how only an appropria
energy dependence ofb for n, l 11 leads to a tractable
energy dependence of the electronic quantum defects
triplet H2). The procedure described in Sec. III D can also
employed in this case. Note in particular that for energ
below the potential minimum „n,@ l ( l 11)#1/2

…, the
Schwartzian derivativêf;x& is, by Eq.~31!, always nega-
tive, soa can never oscillate, and the desired behavior fob
can be chosen.

This is one of the advantages of the method given in S
III: specific amplitude and phase functions are given in ter
of two parameters that monitor the behavior of these fu
tions both in the radial~x! and energy~E! variables in a
transparent manner. It is nota priori dependent on the prop
erties of the potentialV, as long as it is possible to obtain tw
independent solutions of the Schro¨dinger equation~by in-
ward and outward numerical integration!. However, while
the E dependence of the accumulated phase function is c
trolled in a straightforward way~Sec. III C! thex smoothness
of the amplitude function is determined indirectly by a loc
condition: a nonoscillating amplitude is always obtain
when the Schwartzian derivative is negative on the en
interval @s1 ,s2#, but it is most often sufficient for this con
dition to hold locally atxm , because it constrains the beha
ior of a, as discussed in Sec. III D. This is a possible dra
back of the method: depending on the potential propertie
3-7
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may be easy to determine analytically how to choosexm
„e.g., for the harmonic oscillator for which the conditio
~33a!–~33c! taken for xm50 yield a negative Schwartzia
derivative on@s1 ,s2#…, whereas in other cases~e.g., numeri-
cal or model potential! a numerical exploration may resu
necessary. The asymmetry in the treatment of the energy
radial variables is due to the fact that there is a unique va
of c yielding a nonoscillating behavior forb, whereas there
are infinitely many values ofc yielding, at a specified en
ergy, nonoscillating amplitude functions: taking the seco
derivative of Eq.~20!, it is seen that any value ofc enclosed
betweenc6(x), given by

c6~x!5
1

W

u2~x!

f ~x!
6

1

2I f ~x!
A 2I

k~x!
2 f 2~x! ~41!

and wherex spans the entire interval between the turni
points, gives rise to a nonoscillating amplitude function@a
nonoscillating amplitude is also obtained ifc crossesc6(x) a
pair number of times without changing the sign of]xa more
than once#.

The exact relationship between the accumulated ph
function smooth in energy, i.e., withc(n* )52cotpn* /2I ,
and the radial properties of the amplitude function remain
be investigated. In both cases examined here, the Coul
ys

01210
nd
e

d

se

o
b

potential and the harmonic oscillator, the resulting amplitu
function turned out to be oscillation free. Current work ind
cates that the peculiar properties of the choiceb5pn* are
best brought to light by examining the semiclassical lim
which may be done by setting up a semiclassical Erma
system. Full details will be given elsewhere.

Anyhow, the results above suggest that techniques ba
on the properties of Ermakov systems should be useful in
context of the amplitude-phase formulation of the Sch¨-
dinger equation. In addition to possible improvements in n
merical calculations of wave functions in scattering pro
lems, the connection discussed in this article helps
clarifying the meaning of the amplitude-phase formalism
the wave function. Moreover, further links with curre
mathematical work on Ermakov systems could be fruitful
extensions of the formalism, for example to many dime
sions.
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