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Angular momentum can be transferred to a trapped Bose-Einstein condensate by distorting its shape with an
external rotating field, provided the rotational frequency is larger than a critical frequency fixed by the energy
and angular momentum of the excited states of the system. By using the Gross-Pitaevskii equation and sum
rules, we explore the dependence of such a critical frequency on the multipolarity of the excitations and the
asymmetry of the confining potential. We also discuss its possible relevance for vortex nucleation in rotating
traps.
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It is well known that in order to create excitations in a w, andw,=\w, , Where\ is the anisotropy parameter of
superfluid by moving an impurity one has to overcome somehe harmonic confining potential. Then, let us imagine a
critical velocity, which is fixed by the spectrum of the ex- small distortion of the condensate caused by an external per-
cited states of the system. In the case of a rectilinear motioturbation that rotates around thexis at angular velocit{).
of a heavy object, conservation of energy and momentunThis perturbation may be a modulation of the confining po-
yields the critical velocityy .= min[ e(p)/p], wheree(p) is  tential, a rotating laser beam, or something else; we only
the energy of an excitations carrying momentpnthis is ~ assume here that the consequent distortion of the condensate
known as Landau criteriofl]. The external perturbation can is indeed a shape deformation, coupled to the surface modes
also be a moving boundary, like the wall of a container,of the system. Let us consider the process in which the ex-
which produces excitations through its roughness. In liquidernal probe produces a single excited state, corresponding to
helium such a critical velocity has been the object of a long-a surface wave with energyw (/") and angular momentum
standing investigation, involving the structure of the phonon-" alongz (azimuthal quantum numben= /). One can as-
roton branch and the nucleation and dynamics of quantizedign a moment of inertid to the rotating perturbation and
vortex lines and rings. The existence of similar critical ve-write the conservation laws for energy and angular momen-
locities in trapped Bose-Einstein condensates of alkali-metaum, lettingl — at the end. The simple result is that the
atoms is currently under study. In RE€2] an external poten- conservation laws are both satisfied only)fis larger than
tial (a laser beainis used to produce a hole in the conden-the critical angular velocityf).=min[ w(/)//]. This is the
sate, and this hole is moved back and forth at variable velocanalog of the Landau criterion. If the rotation is slower than
ity, playing the role of a massive impurity. Theoretical ()., the condensate simply adjusts its shape to the rotating
interpretations in terms of the Landau criterion have alreadyerturbation by moving as an irrotational and nondissipative
been presented in Reff3,4]. Here we consider the analog fluid. Conversely, if the rotation is faster th&ly, the exter-
process in which the perturbation acts at the surface of theal perturbation can excite surface modes in a continuous
condensate, producing a rotating shape deformation. Thiway, transferring energy and angular momentum to the con-
kind of perturbation has been recently implementefbinto  densate.
excite quadrupole and octopole modes, but the analysis is The excitation spectrum of a condensate can be accurately
also relevant for rotating traps, like the one used in IRgf. evaluated by solving the linearized Gross-PitaevsiP)
to produce quantized vortices. The similarity with liquid he- equation, also known as Bogoliubov's equatidi®y. The
lium is again worth stressing; in that case, when the liquidtheory provides the energy of the excited states at zero tem-
fills a rotating bucket, the roughness of the wall can transfeperature in terms of the relevant quantum numbetsnber
angular momentum to the superfluid, favoring the occurrencef radial nodes and angular momenfurfror our purposes
of quantized vorticity above some critical angular velocity what matters is the enerdyw(/") of the surface modes, i.e.,
[7]. However, since the crucial length scalesaling length, the ones with no radial nodes. In a previous work, we already
surface thickness, interatomic distance,)dtcliquid helium  presented some results for the critical angular veloQigyin
and trapped condensates are different, the role of surface spherical condensaf@]. Here we discuss more systemati-
excitations on the Landau criterion is also very different. Incally the consequences of this critical behavior and provide
particular, surface modes can be ignored in the analysis aksults for nonspherical traps.
the experiments with helium in rotating vessels, while they We avoid the complication of solving Bogoliubov’s equa-
might be crucial for gases of alkali-metal atoms in rotatingtions for axially symmetric condensates by using sum rules.
traps, as discussed below. As already shown irf10], the sum rule approach provides

Let us consider a condensate that is initially in its groundrigorous upper bounds to the dispersiarf/) using the
state in an axially symmetric trap, with trapping frequenciesground-state density, the solution of the stationary GP equa-
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tion, as the main ingredient. The key quantities are the 1
k-energy weighted moments), = /5 Sg(E)EXdE of the dy-

namic structure factorSg(E) ==, |(j|F|0)|?8(E—E;o), as-

sociated with a given excitation operaté, where Ej, 08 -
=(E;—Eop) is the excitation energy of the eigenstai¢
of the Hamiltonian. Them; and m; moments can be
written as expectation values of commutators),
=(U2(O|[F[H.FI]0) and mg=(u2)0|[F H], < O°T
[H,[H,F]1]|0), and the ratio ifi3/m;) Y2 gives the desired
upper bound to the energy of the states excited by the opera-\g
tor F. In order to select the surface modes, one chooses the =~ 0.4
excitation operator in the forrﬁin“Llri/Y//(ei L&), with

/#0, whereN is the number of atoms in the condensate.

The explicit calculation of the rationfz/m;) with this op- 0.2 + 1
erator gives the dispersion law

W)= wl/[1+(/=1)B,], (D) 0 , . .
0 5 10 15 20
where
4

f dr (V, \/H)Zri/*“ FIG. 1. The quantityw(/)//, in units of w, , obtained with

B,= 2) Egs. (1) and (2) as a function of/ for three condensates 6fRb

/ 2/ 2 atoms with different values oh=w,/w, : prolate §=0.1),

drnrf spherical §=1), oblate § =10). The three condensates have the

same value ofN=10° and wn,=\"3w, =27(20 Hz). Open
andr, =(x>+y?)Y2 Heren(r, ,z) is the ground-state den- circles correspond to the exact solution of the Bogoliubov equation
sity of the condensate that can be calculated by solving thi the spherical case\(=1). The dashed line is the hydrodynamic
stationary GP equation. The sum rule estimate is close to theredictiona(/)//'=117.
exact Bogoliubov spectrum whenever the state excite& by
is highly collective, with a strength that almost exhausts theconsequence for the evaluation of the critical frequeficy
dynamic structure factor. This is true for shape deformations=min[w(/)//], since the hydrodynamic dispersion gives
of low multipolarity, which are the important ones for the w(/)//=w, /\/7 and henc&).=0; conversely(), always
present analysis. The dynamic structure factor associategkhibits a minimum, even for very lardé, when calculated
with large / excitations is expected to be more and morewith Bogoliubov’'s equations or using the sum rule results
fragmented and, consequently, the sum rule upper bound bgEgs. (1) and (2)].
comes less accurate. In Fig. 1 we show typical results fan(/)//, in units of
The surface state with lowest energy is the quadrupoles, , obtained by inserting in Eq$1) and (2) the ground-
mode. The sum rule estimate is easily obtained by insertingtate density of three different condensates®@®b atoms
/=2 into Egs.(1) and(2). One finds (we usea=100g, for the scattering length, whemg, is the
Bohr radiug. The stationary GP equation has been solved
(Exin)1 numerically as in Ref{11]. The condensates have the same
(Eho)L

number of atomsN=10, and the same average trapping
frequency, wh0=(wxwywz)1/3=)\1/3wi=277(20 Hz), but
where Eyi,), and Epy), are the radial contributions to the different asymmetry parametenn=0.1 (prolate, A=1
kinetic and external potential energies, respectively. For nongspherical and A=10 (oblate. The N dependence of
interacting particles these two energies are equal and ong(/)// is instead given in Fig. 2, where we plot the curves
getsw=2w, . The other interesting limit ibl—c (Thomas-  for condensates with differemt but the same prolate geom-
Fermi limit), when the kinetic energy in the ground state isetry: \ =0.06 andw,,=27(82.5 Hz), close to the values of
much smaller than both the atom-atom interaction energref. [6]. In order to test the accuracy of the sum rule ap-
and the trapping potential. In this limit Ed3) gives @  proach, we have also solved numerically the Bogoliubov
=\2w, . The latter result can also be obtained by solvingequations for a spherical condensate. The results are shown
the hydrodynamic equations of a superflfdd], which pro-  as open circles in Fig. 1 and can be compared with the sum
vide the general dispersion law(/) = \// w, for the surface rule results forn=1 (solid circle3. As one can see, the
modes withm= =+ /. The hydrodynamic approach, however, accuracy of the sum rule approach is very good for the low-
is accurate only for the lowest multipoles when one can comest values of/, remaining of the order of 10% up to
pletely neglect the contribution of the quantum pressure term=10. This is enough for our purposes. Finally, the hydrody-
in the GP equation; for the values bifthat are relevant in  namic prediction is also shown as a dashed line in both fig-
the current experiments, the hydrodynamic dispersion soouores.
becomes inaccurate a$ increases. This has an important In Table | we summarize the situation for three different
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the quadrupole mode, for example, it is very well reproduced
by the hydrodynamic value, /\2=0.70%, . The mini-
mum of w(/)// instead depends anin a more significant
way, since it involves higher”s, especially for the oblate
geometry.

The frequencies(/)// in Table | are thresholds for the
transfer of angular momentum to a condensate through shape
deformations. The values of actually involved in a given
experiment depend on the type of process used. For instance,
a laser beam that makes a rotating hollow on the surface of
the condensate might excite a bunch of states with several
/s, just as happens for a hole moving through the fluid and
exciting phononlike excitations with several momentum
0.2 F — components. Conversely, the stirred confining potential of
Ref.[6], with a rotating quadrupole deformation, is expected
to excite mostly quadrupole excitations. What really happens
just above, or close to the threshold cannot be described only

0 5 10 15 20 in terms of elementary excitations. In fact, once a threshold
) is reached, the rotating perturbation can pump many excita-
tions into the condensate, bringing it far from the linear re-

FIG. 2. Same as in Fig. 1 but for condensates with differentgime. A wider configuration space is made available and the
values ofN. All condensates have the samg,=27(82.5 Hz) and system can find new rotating equilibrium states, like the sta-
A =0.06. The parameters used for the cuNre 2x 10° are close to  tionary deformed configurations discussed 113], or jump
the actual situation in the experiments of R into states with quantized vorticity.

Concerning vortices, an important frequency scale is fixed
condensates. The parameters of the fimblate and the by the difference between the energy per particle of a con-
second(spherical are close to the ones of current experi- densate with and without vortex calculated in the rotating
ments by Madisoet al.[6] and Matthewst al.[12], respec-  frame, Q,=(1/4)[(E/N),— (E/N)4]. This corresponds to
tively. The third one(oblate is presented in order to stress the ratio between the “excitation” energy of the vortex in
the dependence of the critical frequencies on the geometry dhe rest frame, £, —Ey), and its angular momentuiN?.
the trap. Actually, the critical frequencies(/)//” for the  When the rotation frequendy is equal to(),, the energies of
lowest multipoles {'=2,3,4) turn out to be rather indepen- the configurations with and without vortex are equal in the
dent of the shape of the condensate and are well described bgtating frame and, abov@,, , the vortex state becomes the
the hydrodynamic dispersion, which is independent.oFor  global energy minimum. In this sens€), is analog to

0.8 -

0.6

w(t) /1

TABLE |. Critical frequencies for shape deformations in different condensates. First column: type of
condensate. Next four columns: critical frequenef/)//, in units of the radial trapping frequeney,
=27y, , obtained with the sum rule expressiofis—(2) for ~'=2,3,4 and for its minimum value. The
numbers in brackets are the exact results of Bogoliubov's equations in the spherical case. The last column is
the quantityQ), = (1/4)[(E/N),— (E/N)4] (see text

Condensate @ ﬁ ﬂ M Q,
2 3 4 /
Prolate 0.72 0.61 0.56 0.53 0.35
A=0.0058
v, =175 Hz
N=2.5x10P
Spherical 0.71 0.59 0.53 0.44 0.24
A=1 (0.71) (0.59) (0.52) (0.41)
v, =7.8 Hz
N=3x10°
Oblate 0.71 0.58 0.50 0.33 0.12
A=10
v, =10 Hz
N=3x1C°

011601-3



RAPID COMMUNICATIONS

F. DALFOVO AND S. STRINGARI PHYSICAL REVIEW A63 011601R)

w(/)1/, since the latter represents the frequency abover(2)/2~w, /2 than toQ), . Were this true, one should find
which a surface state of angular momentdhhas negative almost the same critical frequency by repeating the experi-
energy in the rotating framigl4]. A crucial difference, how- ment in spherical or oblate condensates. This clearly sug-
ever, is that in order to transfét% angular momentum and 9ests that the. dependence could discriminate between al-
nucleate a vortex abov@, one has to overcome an energy {ernative descriptions for vortex nucleation and stabiiye,
barrier, while no barrier is found above(/)// for the cre-  [OF instance, Refd.16-18 and references therginAnother

ation of quanta of angular momentum through surface excilmPortant signature of the suggested threshold mechanism
tations would be the observation of strongly deformed configura-

The quantity), can be obtained from the solution of the tions in the initial stage of the vortex nucleation. Preliminary

stationary Gross-Pitaevskii equation for the ground state an y|dence for such deformations has already eme{qéil

the state with a vortex line along We have already pre- inally, the threshold behavior here discussed would imply a

sented some numerical results for this quantity ia]. By significant hysteresis when the rotation frequency is first

repeating the same kind of calculation for the three conden§peeded up to produce vortices and then slowed down again,

sates in Table | we find the values given in the last columrb'C€ Oné expects different mechanisms for the two pro-

[15]. It has been noted in Ref6] that the experimental result C€SS€S: the nucleation of the vortex state at relatively high
for the frequency at which vortices occur is significantly rotation frequency and the destabilization of the vortex at

larger than(),. The critical frequency in the experiment Iowe_r_ fre_quency(for an extensive discussion_ about the_ de-

turns out to bve about 0.67 , to be compared to the value stabilization of vortices sefel6]). The hysteresis mechanism

0.350, given in the first.row, of Table I. This is likely to be of the vortical configurations has some similarity with the
. J_ .

the consequence of the above-mentioned energy barriepehavior of superfluid helium. In that case, however, vortex

which prevents the nucleation of vortices even ab@ye If nt?edve;/zﬂgnoflsthaésiggtztiiz[r\?l\]mt]rrre gljnz:;? dg;!;;ggxhgcgsngt
one tries to impart a rotation to the condensate by rotating 5 ' Pp

slightly asymmetric external field, the crucial question is‘r,Ough surfa.(’:,e_s or, In other words, they have an a_djustable
roughness;” in this sense, they offer an alternative and

how angular momentum is actually transferred to the system, : )
Our analysis suggests that, if the transfer mechanism is th omplementary tool for understanding nucleation processes

creation of surface excitations of multipolarity, the rel- Of quantized vorticity in superfluids.

evant threshold i (/) //, which can be significantly larger This work has been supported by the Ministero
thanQ,, as shown in Table I. This argument might be useddell’'Universita e della Ricerca Scientifica e Tecnologica.
to interpret the fact that the experimental critical frequencyF.D. would like to thank the Dipartimento di Fisica di Trento
of Ref. [6] turns out to be closer to the quadrupole valuefor hospitality.
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