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Shape deformations and angular-momentum transfer in trapped Bose-Einstein condensates
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Angular momentum can be transferred to a trapped Bose-Einstein condensate by distorting its shape with an
external rotating field, provided the rotational frequency is larger than a critical frequency fixed by the energy
and angular momentum of the excited states of the system. By using the Gross-Pitaevskii equation and sum
rules, we explore the dependence of such a critical frequency on the multipolarity of the excitations and the
asymmetry of the confining potential. We also discuss its possible relevance for vortex nucleation in rotating
traps.
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It is well known that in order to create excitations in
superfluid by moving an impurity one has to overcome so
critical velocity, which is fixed by the spectrum of the e
cited states of the system. In the case of a rectilinear mo
of a heavy object, conservation of energy and momen
yields the critical velocityvc5min@e(p)/p#, wheree(p) is
the energy of an excitations carrying momentump; this is
known as Landau criterion@1#. The external perturbation ca
also be a moving boundary, like the wall of a contain
which produces excitations through its roughness. In liq
helium such a critical velocity has been the object of a lo
standing investigation, involving the structure of the phono
roton branch and the nucleation and dynamics of quant
vortex lines and rings. The existence of similar critical v
locities in trapped Bose-Einstein condensates of alkali-m
atoms is currently under study. In Ref.@2# an external poten-
tial ~a laser beam! is used to produce a hole in the conde
sate, and this hole is moved back and forth at variable ve
ity, playing the role of a massive impurity. Theoretic
interpretations in terms of the Landau criterion have alre
been presented in Refs.@3,4#. Here we consider the analo
process in which the perturbation acts at the surface of
condensate, producing a rotating shape deformation.
kind of perturbation has been recently implemented in@5# to
excite quadrupole and octopole modes, but the analys
also relevant for rotating traps, like the one used in Ref.@6#
to produce quantized vortices. The similarity with liquid h
lium is again worth stressing; in that case, when the liq
fills a rotating bucket, the roughness of the wall can trans
angular momentum to the superfluid, favoring the occurre
of quantized vorticity above some critical angular veloc
@7#. However, since the crucial length scales~healing length,
surface thickness, interatomic distance, etc.! in liquid helium
and trapped condensates are different, the role of sur
excitations on the Landau criterion is also very different.
particular, surface modes can be ignored in the analysi
the experiments with helium in rotating vessels, while th
might be crucial for gases of alkali-metal atoms in rotati
traps, as discussed below.

Let us consider a condensate that is initially in its grou
state in an axially symmetric trap, with trapping frequenc
1050-2947/2000/63~1!/011601~4!/$15.00 63 0116
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v' and vz5lv' , wherel is the anisotropy parameter o
the harmonic confining potential. Then, let us imagine
small distortion of the condensate caused by an external
turbation that rotates around thez axis at angular velocityV.
This perturbation may be a modulation of the confining p
tential, a rotating laser beam, or something else; we o
assume here that the consequent distortion of the conden
is indeed a shape deformation, coupled to the surface mo
of the system. Let us consider the process in which the
ternal probe produces a single excited state, correspondin
a surface wave with energy\v(l ) and angular momentum
l alongz ~azimuthal quantum numberm5l ). One can as-
sign a moment of inertiaI to the rotating perturbation an
write the conservation laws for energy and angular mom
tum, letting I→` at the end. The simple result is that th
conservation laws are both satisfied only ifV is larger than
the critical angular velocityVc5min@v(l )/l #. This is the
analog of the Landau criterion. If the rotation is slower th
Vc , the condensate simply adjusts its shape to the rota
perturbation by moving as an irrotational and nondissipat
fluid. Conversely, if the rotation is faster thanVc , the exter-
nal perturbation can excite surface modes in a continu
way, transferring energy and angular momentum to the c
densate.

The excitation spectrum of a condensate can be accura
evaluated by solving the linearized Gross-Pitaevskii~GP!
equation, also known as Bogoliubov’s equations@8#. The
theory provides the energy of the excited states at zero t
perature in terms of the relevant quantum numbers~number
of radial nodes and angular momentum!. For our purposes
what matters is the energy\v(l ) of the surface modes, i.e
the ones with no radial nodes. In a previous work, we alre
presented some results for the critical angular velocityVc in
a spherical condensate@9#. Here we discuss more systema
cally the consequences of this critical behavior and prov
results for nonspherical traps.

We avoid the complication of solving Bogoliubov’s equ
tions for axially symmetric condensates by using sum ru
As already shown in@10#, the sum rule approach provide
rigorous upper bounds to the dispersionv(l ) using the
ground-state density, the solution of the stationary GP eq
©2000 The American Physical Society01-1
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tion, as the main ingredient. The key quantities are
k-energy weighted moments,mk5*0

`SF(E)EkdE of the dy-
namic structure factor,SF(E)5( j u^ j uFu0&u2d(E2Ej 0), as-
sociated with a given excitation operatorF, where Ej 0
5(Ej2E0) is the excitation energy of the eigenstateu j &
of the Hamiltonian. Them1 and m3 moments can be
written as expectation values of commutators,m1
5(1/2)^0u†F†,@H,F#‡u0& and m35(1/2)^0u†@F†,H#,
†H,@H,F#‡‡u0&, and the ratio (m3 /m1)1/2 gives the desired
upper bound to the energy of the states excited by the op
tor F. In order to select the surface modes, one chooses
excitation operator in the formF5( i 51

N r i
l Yl l (u i ,f i), with

l Þ0, whereN is the number of atoms in the condensa
The explicit calculation of the ratio (m3 /m1) with this op-
erator gives the dispersion law

v2~ l !5v'
2 l @11~ l 21!b l #, ~1!

where

b l 5

E dr ~¹'An!2r'
2l 24

E dr nr'
2l 22

~2!

and r'5(x21y2)1/2. Heren(r' ,z) is the ground-state den
sity of the condensate that can be calculated by solving
stationary GP equation. The sum rule estimate is close to
exact Bogoliubov spectrum whenever the state excited bF
is highly collective, with a strength that almost exhausts
dynamic structure factor. This is true for shape deformati
of low multipolarity, which are the important ones for th
present analysis. The dynamic structure factor associ
with large l excitations is expected to be more and mo
fragmented and, consequently, the sum rule upper bound
comes less accurate.

The surface state with lowest energy is the quadrup
mode. The sum rule estimate is easily obtained by inser
l 52 into Eqs.~1! and ~2!. One finds

v2~ l 52!52v'
2 S 11

~Ekin!'
~Eho!'

D , ~3!

where (Ekin)' and (Eho)' are the radial contributions to th
kinetic and external potential energies, respectively. For n
interacting particles these two energies are equal and
getsv52v' . The other interesting limit isN→` ~Thomas-
Fermi limit!, when the kinetic energy in the ground state
much smaller than both the atom-atom interaction ene
and the trapping potential. In this limit Eq.~3! gives v
5A2v' . The latter result can also be obtained by solvi
the hydrodynamic equations of a superfluid@10#, which pro-
vide the general dispersion lawv(l )5Al v' for the surface
modes withm56l . The hydrodynamic approach, howeve
is accurate only for the lowest multipoles when one can co
pletely neglect the contribution of the quantum pressure t
in the GP equation; for the values ofN that are relevant in
the current experiments, the hydrodynamic dispersion s
becomes inaccurate asl increases. This has an importa
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consequence for the evaluation of the critical frequencyVc
5min@v(l )/l #, since the hydrodynamic dispersion give
v(l )/l 5v' /Al and henceVc50; conversely,Vc always
exhibits a minimum, even for very largeN, when calculated
with Bogoliubov’s equations or using the sum rule resu
@Eqs.~1! and ~2!#.

In Fig. 1 we show typical results forv(l )/l , in units of
v' , obtained by inserting in Eqs.~1! and ~2! the ground-
state density of three different condensates of87Rb atoms
~we usea5100a0 for the scattering length, wherea0 is the
Bohr radius!. The stationary GP equation has been solv
numerically as in Ref.@11#. The condensates have the sam
number of atoms,N5105, and the same average trappin
frequency, vho5(vxvyvz)

1/35l1/3v'52p(20 Hz), but
different asymmetry parameter:l50.1 ~prolate!, l51
~spherical! and l510 ~oblate!. The N dependence of
v(l )/l is instead given in Fig. 2, where we plot the curv
for condensates with differentN but the same prolate geom
etry: l50.06 andvho52p(82.5 Hz), close to the values o
Ref. @6#. In order to test the accuracy of the sum rule a
proach, we have also solved numerically the Bogoliub
equations for a spherical condensate. The results are sh
as open circles in Fig. 1 and can be compared with the s
rule results forl51 ~solid circles!. As one can see, the
accuracy of the sum rule approach is very good for the lo
est values ofl , remaining of the order of 10% up tol
510. This is enough for our purposes. Finally, the hydrod
namic prediction is also shown as a dashed line in both
ures.

In Table I we summarize the situation for three differe

FIG. 1. The quantityv(l )/l , in units of v' , obtained with
Eqs. ~1! and ~2! as a function ofl for three condensates of87Rb
atoms with different values ofl5vz /v' : prolate (l50.1),
spherical (l51), oblate (l510). The three condensates have t
same value ofN5105 and vho5l1/3v'52p(20 Hz). Open
circles correspond to the exact solution of the Bogoliubov equa
in the spherical case (l51). The dashed line is the hydrodynam
predictionv(l )/l 51/Al .
1-2
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condensates. The parameters of the first~prolate! and the
second~spherical! are close to the ones of current expe
ments by Madisonet al. @6# and Matthewset al. @12#, respec-
tively. The third one~oblate! is presented in order to stres
the dependence of the critical frequencies on the geometr
the trap. Actually, the critical frequenciesv(l )/l for the
lowest multipoles (l 52,3,4) turn out to be rather indepen
dent of the shape of the condensate and are well describe
the hydrodynamic dispersion, which is independent ofl. For

FIG. 2. Same as in Fig. 1 but for condensates with differ
values ofN. All condensates have the samevho52p(82.5 Hz) and
l50.06. The parameters used for the curveN523105 are close to
the actual situation in the experiments of Ref.@6#.
01160
of
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the quadrupole mode, for example, it is very well reproduc
by the hydrodynamic valuev' /A250.707v' . The mini-
mum of v(l )/l instead depends onl in a more significant
way, since it involves higherl ’s, especially for the oblate
geometry.

The frequenciesv(l )/l in Table I are thresholds for the
transfer of angular momentum to a condensate through sh
deformations. The values ofl actually involved in a given
experiment depend on the type of process used. For insta
a laser beam that makes a rotating hollow on the surfac
the condensate might excite a bunch of states with sev
l ’s, just as happens for a hole moving through the fluid a
exciting phononlike excitations with several momentu
components. Conversely, the stirred confining potential
Ref. @6#, with a rotating quadrupole deformation, is expect
to excite mostly quadrupole excitations. What really happ
just above, or close to the threshold cannot be described
in terms of elementary excitations. In fact, once a thresh
is reached, the rotating perturbation can pump many exc
tions into the condensate, bringing it far from the linear
gime. A wider configuration space is made available and
system can find new rotating equilibrium states, like the s
tionary deformed configurations discussed in@13#, or jump
into states with quantized vorticity.

Concerning vortices, an important frequency scale is fix
by the difference between the energy per particle of a c
densate with and without vortex calculated in the rotat
frame, Vv5(1/\)@(E/N)v2(E/N)g#. This corresponds to
the ratio between the ‘‘excitation’’ energy of the vortex
the rest frame, (Ev2Eg), and its angular momentumN\.
When the rotation frequencyV is equal toVv the energies of
the configurations with and without vortex are equal in t
rotating frame and, aboveVv , the vortex state becomes th
global energy minimum. In this sense,Vv is analog to

t

pe of

lumn is
TABLE I. Critical frequencies for shape deformations in different condensates. First column: ty
condensate. Next four columns: critical frequencyv(l )/l , in units of the radial trapping frequencyv'

52pn' , obtained with the sum rule expressions~1!–~2! for l 52,3,4 and for its minimum value. The
numbers in brackets are the exact results of Bogoliubov’s equations in the spherical case. The last co
the quantityVv5(1/\)@(E/N)v2(E/N)g# ~see text!.

Condensate v(2)
2

v(3)
3

v(4)
4

minFv~ l !

l
G Vv

Prolate 0.72 0.61 0.56 0.53 0.35
l50.0058
n'5175 Hz
N52.53105

Spherical 0.71 0.59 0.53 0.44 0.24
l51 (0.71) (0.59) (0.52) (0.41)
n'57.8 Hz
N533105

Oblate 0.71 0.58 0.50 0.33 0.12
l510
n'510 Hz
N533105
1-3
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v(l )/l , since the latter represents the frequency ab
which a surface state of angular momentuml has negative
energy in the rotating frame@14#. A crucial difference, how-
ever, is that in order to transferN\ angular momentum and
nucleate a vortex aboveVv one has to overcome an energ
barrier, while no barrier is found abovev(l )/l for the cre-
ation of quanta of angular momentum through surface e
tations.

The quantityVv can be obtained from the solution of th
stationary Gross-Pitaevskii equation for the ground state
the state with a vortex line alongz. We have already pre
sented some numerical results for this quantity in@11#. By
repeating the same kind of calculation for the three cond
sates in Table I we find the values given in the last colu
@15#. It has been noted in Ref.@6# that the experimental resu
for the frequency at which vortices occur is significan
larger thanVv . The critical frequency in the experimen
turns out to be about 0.67v' , to be compared to the valu
0.35v' given in the first row of Table I. This is likely to be
the consequence of the above-mentioned energy bar
which prevents the nucleation of vortices even aboveVv . If
one tries to impart a rotation to the condensate by rotatin
slightly asymmetric external field, the crucial question
how angular momentum is actually transferred to the syst
Our analysis suggests that, if the transfer mechanism is
creation of surface excitations of multipolarityl , the rel-
evant threshold isv(l )/l , which can be significantly large
thanVv , as shown in Table I. This argument might be us
to interpret the fact that the experimental critical frequen
of Ref. @6# turns out to be closer to the quadrupole val
.
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v(2)/2;v' /A2 than toVv . Were this true, one should fin
almost the same critical frequency by repeating the exp
ment in spherical or oblate condensates. This clearly s
gests that thel dependence could discriminate between
ternative descriptions for vortex nucleation and stability~see,
for instance, Refs.@16–18# and references therein!. Another
important signature of the suggested threshold mechan
would be the observation of strongly deformed configu
tions in the initial stage of the vortex nucleation. Prelimina
evidence for such deformations has already emerged@19#.
Finally, the threshold behavior here discussed would impl
significant hysteresis when the rotation frequency is fi
speeded up to produce vortices and then slowed down ag
since one expects different mechanisms for the two p
cesses: the nucleation of the vortex state at relatively h
rotation frequency and the destabilization of the vortex
lower frequency~for an extensive discussion about the d
stabilization of vortices see@16#!. The hysteresis mechanism
of the vortical configurations has some similarity with th
behavior of superfluid helium. In that case, however, vor
nucleation is associated with the pinning of vortex lines
the walls of the container@7#. Trapped condensates have n
rough surfaces or, in other words, they have an adjusta
‘‘roughness;’’ in this sense, they offer an alternative a
complementary tool for understanding nucleation proces
of quantized vorticity in superfluids.
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