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An algorithm based on local scaling transformations for electronic structure calculations that scales linearly
with the size of the system is presented. The key feature of the method is the absence of the orthogonalization
step during iterative minimization. We illustrate the feasibility and potential of the method by applying it to
total energy calculations for a variety of small clusters, viz; Nda;Al, Na,g, Si;, and Al ;. The method is
easily parallelizable and therefore has the potential to deal with large real life systems.

PACS numbsds): 36.40.Cg, 71.24:q, 31.15-p, 71.15-m

It is now well recognized that microscopic many-body seek a method of energy minimization that avoids this step.
guantum mechanical calculations yielding detailed informadn this Brief Report we present one such algorithm by taking
tion about electronic structure are at the heart of understang completely different path from those mentioned above. Our
ing the properties of systems such as molecules, clusteralgorithm is based on local scaling density functional theory
surfaces, and solids. Typically such calculations employ ei{LSDFT) as advanced by Ludanand co-worker$5]. The
ther Hartree-Fock and related techniques or, for larger syd-SDFT is a rigorous formulation of DFT, constructive in
tems, the powerful density functional thed®FT) [1]. Most  nature, and satisfies tié¢ andv representability conditions
of the popular algorithms use either direct diagonalization oon the energy functional. In principle, the method is appli-
iterative minimization schemes. In either of these cases theable to Hartree-Fock or Kohn-Sham Hamiltonians and
algorithm scales as the cube of the system size; the cogields the corresponding orbitals and energies. In what fol-
comes from the Householder rotations or from the orthogolows we give a short presentation of the formulation relevant
nalization step. It can be seen that even with the availabilitto our algorithm. The formal aspects, generalizations, and
of faster computers saturation will be reached very quickly other details of the method may be found elsewléie
Hence, there is considerable interest in developing linear Local scaling transformationgLST's) are coordinate

scaling[ O(N)] methods, i.e., methods scaling & C;N,  transformations that carry a vector-rA(r), wherex(r) is
whereT is the computer time anbl the size of the system. 5 scalar function. The Jacobian for this transformation is
Indeed, suctO(N) methods are considered absolutely essengiyven by

tial for understanding complex real life materials involving

very large numbers of atoms. o IO =N O{L+r -V, In[A ()]} (1)
In the last few years there has been some progress in this

direction. A number of methods exhibiting such linear scal-

ing have been proposgd]. However, almost all successful cqjleq the generating set and the associated generating

implementations rely upon the localized nature of orbitals. 'tdensity

has been pointed out that such methods implemented with

localization constraints, e.g., the orbital minimization R o

method, lead to unacceptably large minimization iterations pe(N=2> |pg(r)|%. (2

due to multiple minima. These methods are dependent on the '

fact that the density matrix is diagonally dominant and the -, . . -,

off-diagonal elements decay with distance, the decay rateSt p(r) be the dens_lty homotopic @pg(r); then we can

being system dependent. This is the nearsightedness prifPnstruct a local scaling transformation such that

ciple of Kohn[3]. Most of these methods employ tight bind- - I - -

ing schemes although a few applications have been made p(r)=J(r;rA(r))pg(rA(r)). 3)

using the density functional method on real life systems.

detailed review ofO(N) methods has been presented b

Goedeckef4]. N P
Since in the conventional methods the limitiNg behav- gi(r)=[IC NI hg(rN(r)) (4)

ior arises from the orthogonalization step, it is desirable to -

generate the transformed densitfr) via

Let us consider an orthonormal set of orbitétsg(F)}

Qt is easy to see that the transformed orbitals obtained from

» . ) . . R R
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The Jacobian must be positive definite for the transformatioms one converting the trial charge density to the known exact
to be unique. The most crucial property of this transforma-ground-state density of the system. This leads to the problem

tion relevent to our discussion is that it maintains the orthouf determination of\(r) from a nonlinear equatiofEg. (6)].

normality of the orbitals. Such a local scaling transformationnote that the nonlinear equation has to be solved with the
can be VieWed as a Coordinate transformation that Continl,bonstraint on the Jacobian, which could be Very tncky

ously deformSpg(F) to obtain p(F). The scalar function It is now possible to set up an efficient algorithm by draw-
NG, connectingog(F) andp(r) satisfies the nonlinear equa- ing _up_on.the considerable expertis_e developeq in iterative
tion minimization schemes such as conjugate gradient methods.
Here we present a simple steepest descent based algorithm.
- p(F) LSDFT algorithm.Initialization: Choose an initial ortho-
A(r)= (147-% NP TLpgA (D) ®  normal set{¢(r)}, A(r)=1 and¢;(r)=¢(r). lterate the

following steps till minimization. (1) Calculate p(r), E
~ Now consider the Hohenberg-Kohn total energy func-gng 5E/5)\(F)|>\(;):1. (2) Calculate the new\(r)=1
tional for aNe-electron system in an gxternal potent4ir). _ a5E/57\(|7)|)\(r‘):1. (3) Calculate the new i(r)
The total energy for this system is given by ) S - -
=[IEINEN T (TN (D). (4) Setgsi(r) = gi(T). _
E[{i(N=T{(N}+Ecoul p]+ Exd p1+ Eexd p], In the above algorithm is evaluated by a standard line
(7 minimization technique, i.eE(«) is line minimized to ob-
tain the bestr and the resulting(F) is accepted only if the

whereEcoy is the electron-electron Coulomb interaction en-corresponding Jacobian is positive definite. Otherwise a
ergy, E. is the exchange correlation energy, d@ig.is the  gmajler value ofx yielding lower energyE(e) is to be ac-

electron-ion interact'ion energy. o cepted. In practice, for all the cases investigated this has
In all the conventional methods the total enefgis mini-  peyer happened.
mized withe respect tg;(r) by explicitly incorporating the For implementation of the above algorithm we need to

constraint of orthonormality of orbitals. Now we note that evaluate the functional derivativeE/S\(r). It is easy to
{¢i(r)} is related to the generating s{e;b'g(r)} via the local  show that
scaling transformation as

()= O3(NO{1+1- VeI (D THY204(N(F).  (8)

Hence the total energg can be viewed as a functional of
r) and\(r). This immediately suggests a minimization ~ 6E - .
Zbcgr(le)me for ghza total energy by c)(ljnsiggring it as a functional 5 7yl :Z’ (H=e) (N3 7 (N +1-V o (N],
of M(r) with some suitable fixed generating $e,(r)}, i.e., Mn=1 (13
E[N(r);{¢g(r)}]. The ground-state enerdy, is then at-
tained as the extremum of a double minimization procedurewhere H is the standard Kohn-Sham Hamiltonian aad
R R =(¢i|H| ;). The second term in the square brackets was
Eo=miny@ ming, )y E[M1)i{dg(r)}]. (9  obtained by Taylor series expansion assuming that the
change in\(r) from its initial value is small. In fact, this is

OE < SE[{wi}] 6y (r)
ON(T) T osyr(r)y an(r)’

(12

Interorbit minimization is minimization at fixeN(F): the most convenient way to ensure the positivity constraint
onJ.
(SRS min{¢g(;)} E[)\(F);{gbg(F)}] (20 We have successfully tested this algorithm by calculating
the ground-state energies of a number of clusters. The imple-
and intraorbit minimization is minimization at fixg,(r)}: ~ Mentation is based on the standard plane wave pseudopoten-
tial formulation using a periodically repeated large unit cell.
Eo<min,; E[A(F);{¢Q(F)}]. (12 It may be mentioned that the algorithm is easy to incorporate

within existing pseudopotential codes. The numerical details
A steplike procedure combining these two minimizationand other aspects of the algorithm will be reported elsewhere
schemes will eventually lead ;. The minimization pro- [6]. We report the total energies for the clusters Naa,Al,
posed here is the intraorbit minimizatipkq. (11)], carried  Nayg, Sis, and Al 3, representing 2, 10, 20, 16, and 39 elec-
out with the constraint that the Jacobian of the transformatron systems. The timings reported here are those for total
tion is positive definite. In fact our results show that, with theenergies obtained to within 0.005 hartree of the Kohn-Sham
proper choice of generating orbitals, the intraorbit minimiza-total energies with identical parameters such as energy cut-
tion procedure is sufficient to attain the ground-state energyoff, cell dimension, pseudopotential, etc. All the calculations
at least to within acceptable accuracy. In spite of the formuexcept for Si use the local Bachelet-Hamann-Schluter pseu-
lation being available for quite some time, there are no redopotential 7].
ported applications except for simple atoms to our knowl- The CPU timings in units of timings for Naas a function
edge. This is mainly because the transformation was viewedf the number of orbitals for all the clusters studied are
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FIG. 1. The CPU timings in units of timings for Mas a func- 0.01
tion of the number of orbitals for all the clusters.
0.005
shown in Fig. 1. The timings required to generate the initial g o
guess are not included. As expected the graph shows a Iinez“g
behavior. & -0.005
Figure 2 shows the generating densig(F) (shownbya & -om . ,
dashed lingand the final density)(F) (shown by a continu- 0015 | |
ous line. Figures 3a), 3(b), and 3c) show the generating
wave functions for the first state, eighth state, and highesi -002 1
occupied stat¢all shown by a dashed linerespectively, and

the corresponding final wave functiofshown by a continu- ) 2 5 -0 S5 0 5 10 15 20
ous ling. All the plots are along thex axis for the Na,

cluster. These illustrate the ability of LST to continuously .,
deform the initial density and wave functions toward the
final self-consistent density and wave functions in about
40-50 iterations. The final density and wave functions are -oo1
virtually indistinguishable from the full self-consistent

Kohn-Sham density. E o
Now we offer some remarks about the practical aspects of§ % ]
the algorithm. s 004 \
(1) The procedure is sensitive to the choice of generatings 005 L |
orbitals. These must be chosen to be homotopic, i.e., to havi “\‘
0.06 | Voo .
0.03 . . , , . . , , . 007 F )
A -0.08 L L . L L . L L .
0025 | /i A - 20 -5 10 5 0 5 0 15 20
',‘ 4 ;" "‘ R (au)
002 I . FIG. 3. The generating wave functi¢dashed lingand the final
.%‘ i wave function(continuous ling corresponding to the first stata),
Zo01s L i the eighth statéb), and the highest occupied stdtg for the Ng,
% cluster along thes axis.
© R
oor PAL A 1  the same number of minima/maxima and the same nodal
i AR structure as the final orbitals. Fortunately, for small clusters
0.005 | / i 1 this is not a serious problem since a humber of methods are
/ available for generating a good initial guess. In the present
0 . . . work we have used the orbitals obtained after a feypi-

20 15 10 50 5 10 15 20 cally two or threg iterations of the standard Kohn-Sham
scheme starting with a random set of orbitals. However, for

FIG. 2. The generating charge denditashed lingand the final  large systems careful attention will have to be given to the
charge densitycontinuous ling for Nay, cluster along the axis. proper choice of the generating set of orbitals.
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(2) Although in principle LST preserves orthonormality, Sham iterations. The use of reorthogonalization and a small
in practice this is true only approximately because of disnumber of standard Kohn-Sham iterations atifsscaling
cretization of the numerical mesh and the interpolation proalthough with a very small prefactor.
cedure required in Edf4). In most cases we have seen that () An attractive feature of this algorithm is that it lends
(41| 9;) is of the order of 10% and improves as the minimi- jcoi¢ 14 parallelization in a very natural way. Onigr) is

zation proceeds. However, it is desirable to reorthogonallz%Ietermined, all orbitals are scaled independently and their

t_he current set of qrpltals after some fixed number of '.tera'contribution to the total energy can be calculated indepen-
tions. Fortunately, it is required to be done only a few times

(two or threg¢ during the entire minimization process. dentlly. . .
(3) In all the cases considered we have achieved the ac- Finally, we note that the calculation of forces required for
curacy mentioned above in about 4050 iterations the dynamics is identical to plane wave methods and scales

2
(4) The convergence of the method slows down consider@SN®.

ably after about 0.005 Hartree. A possible reason is that by '”I c?nclusion,llwe rlllav‘teh ;?[r(_asebntedd an ::lllgorlithm I_With
choosing fixed initial orbitals and varying(F) we are car- hearly linear scalingO(N) that is based on local scaling

. . T . transformations. In principle, the method scales linearly be-
rying out on_ly an intraorbit minimization and are ne_glectmg cause it avoids orthogonalization of orbitals. The method has
the interorbit step. Of course, there are also numerical erro ‘

f . )
due to the interpolation requirdéq. (4)] and the use of the Been successfully applied to obtain the ground-state total en-

steepest descent method. However, an additional few COqe._rgies 01_‘ several clusters and the results bring out the poten-

ventional Kohn-Sham iterationsvhich combine both inter- lal of this method for large scale systems.

and intraorbital minimization have always allowed us to It is a pleasure to acknowledge a number of helpful dis-

achieve an accuracy better than 0.001 Hartree. cussions with P. V. Panat, R. K. Pathak, and R. R. Zope.
(5) In some cases, albeit rarely, it is observed that thérinancial assistance from the Department of Science and

convergence stagnates after a fewl(Q) iterations. This can Technology is gratefully acknowledged. One of (#sD.)

be remedied either by improving the initial guess or byacknowledges CSIR, India. E.V.L. acknowledges the support

jumping to another orbit by performing one or two Kohn- of Conicit of Venezuela through G-97000741.
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