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Ab initio linear scaling method for electronic structure calculations via local
scaling transformations
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An algorithm based on local scaling transformations for electronic structure calculations that scales linearly
with the size of the system is presented. The key feature of the method is the absence of the orthogonalization
step during iterative minimization. We illustrate the feasibility and potential of the method by applying it to
total energy calculations for a variety of small clusters, viz., Na2 , Na7Al, Na20, Si4, and Al13. The method is
easily parallelizable and therefore has the potential to deal with large real life systems.

PACS number~s!: 36.40.Cg, 71.24.1q, 31.15.2p, 71.15.2m
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It is now well recognized that microscopic many-bo
quantum mechanical calculations yielding detailed inform
tion about electronic structure are at the heart of understa
ing the properties of systems such as molecules, clus
surfaces, and solids. Typically such calculations employ
ther Hartree-Fock and related techniques or, for larger s
tems, the powerful density functional theory~DFT! @1#. Most
of the popular algorithms use either direct diagonalization
iterative minimization schemes. In either of these cases
algorithm scales as the cube of the system size; the
comes from the Householder rotations or from the ortho
nalization step. It can be seen that even with the availab
of faster computers saturation will be reached very quick
Hence, there is considerable interest in developing lin
scaling@O(N)# methods, i.e., methods scaling asT5C1N,
whereT is the computer time andN the size of the system
Indeed, suchO(N) methods are considered absolutely ess
tial for understanding complex real life materials involvin
very large numbers of atoms.

In the last few years there has been some progress in
direction. A number of methods exhibiting such linear sc
ing have been proposed@2#. However, almost all successfu
implementations rely upon the localized nature of orbitals
has been pointed out that such methods implemented
localization constraints, e.g., the orbital minimizatio
method, lead to unacceptably large minimization iteratio
due to multiple minima. These methods are dependent on
fact that the density matrix is diagonally dominant and
off-diagonal elements decay with distance, the decay
being system dependent. This is the nearsightedness
ciple of Kohn@3#. Most of these methods employ tight bind
ing schemes although a few applications have been m
using the density functional method on real life systems
detailed review ofO(N) methods has been presented
Goedecker@4#.

Since in the conventional methods the limitingN3 behav-
ior arises from the orthogonalization step, it is desirable
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seek a method of energy minimization that avoids this st
In this Brief Report we present one such algorithm by tak
a completely different path from those mentioned above. O
algorithm is based on local scaling density functional the
~LSDFT! as advanced by Luden˜a and co-workers@5#. The
LSDFT is a rigorous formulation of DFT, constructive i
nature, and satisfies theN and v representability conditions
on the energy functional. In principle, the method is app
cable to Hartree-Fock or Kohn-Sham Hamiltonians a
yields the corresponding orbitals and energies. In what
lows we give a short presentation of the formulation relev
to our algorithm. The formal aspects, generalizations, a
other details of the method may be found elsewhere@5#.

Local scaling transformations~LST’s! are coordinate
transformations that carry a vectorrW→rWl(rW), wherel(rW) is
a scalar function. The Jacobian for this transformation
given by

J„rW;rWl~rW !…5l3~rW !$11rW•¹W rW ln@l~rW !#%. ~1!

Let us consider an orthonormal set of orbitals$fg(rW)%
called the generating set and the associated genera
density

rg~rW !5(
i

ufg
i ~rW !u2. ~2!

Let r(rW) be the density homotopic torg(rW); then we can
construct a local scaling transformation such that

r~rW !5J„rW;rWl~rW !…rg„rWl~rW !…. ~3!

It is easy to see that the transformed orbitals obtained fr

c i~rW !5@J„rW;rWl~rW !…#1/2fg
i
„rWl~rW !… ~4!

generate the transformed densityr(rW) via

r~rW !5(
i

uc i~rW !u2. ~5!
©2000 The American Physical Society01-1
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The Jacobian must be positive definite for the transforma
to be unique. The most crucial property of this transform
tion relevent to our discussion is that it maintains the ort
normality of the orbitals. Such a local scaling transformat
can be viewed as a coordinate transformation that cont
ously deformsrg(rW) to obtain r(rW). The scalar function
l(rW) connectingrg(rW) andr(rW) satisfies the nonlinear equa
tion

l3~rW !5
r~rW !

$11rW•¹W ln@l~rW !#%rg„rWl~rW !…
. ~6!

Now consider the Hohenberg-Kohn total energy fun
tional for aNe-electron system in an external potentialV(rW).
The total energy for this system is given by

E@$c i~rW !%#5T@$c i~rW !%#1ECoul@r#1Exc@r#1Eext@r#,
~7!

whereECoul is the electron-electron Coulomb interaction e
ergy,Exc is the exchange correlation energy, andEext is the
electron-ion interaction energy.

In all the conventional methods the total energyE is mini-
mized withe respect toc i(rW) by explicitly incorporating the
constraint of orthonormality of orbitals. Now we note th

$c i(rW)% is related to the generating set$fg
i (rW)% via the local

scaling transformation as

c i~rW !5„l3~rW !$11rW•¹W rW ln@l~rW !#%…1/2fg
i
„rWl~rW !…. ~8!

Hence the total energyE can be viewed as a functional o
fg(rW) andl(rW). This immediately suggests a minimizatio
scheme for the total energy by considering it as a functio
of l(rW) with some suitable fixed generating set$fg(rW)%, i.e.,
E@l(rW);$fg(rW)%#. The ground-state energyE0 is then at-
tained as the extremum of a double minimization procedu

E05minl(rW) min $fg(rW)% E@l~rW !;$fg~rW !%#. ~9!

Interorbit minimization is minimization at fixedl(rW):

E0<min $fg(rW)% E@l~rW !;$fg~rW !%# ~10!

and intraorbit minimization is minimization at fixed$fg(rW)%:

E0<minl(rW) E@l~rW !;$fg~rW !%#. ~11!

A steplike procedure combining these two minimizati
schemes will eventually lead toE0. The minimization pro-
posed here is the intraorbit minimization@Eq. ~11!#, carried
out with the constraint that the Jacobian of the transform
tion is positive definite. In fact our results show that, with t
proper choice of generating orbitals, the intraorbit minimiz
tion procedure is sufficient to attain the ground-state ene
at least to within acceptable accuracy. In spite of the form
lation being available for quite some time, there are no
ported applications except for simple atoms to our kno
edge. This is mainly because the transformation was vie
06520
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as one converting the trial charge density to the known ex
ground-state density of the system. This leads to the prob
of determination ofl(rW) from a nonlinear equation@Eq. ~6!#.
Note that the nonlinear equation has to be solved with
constraint on the Jacobian, which could be very tricky.

It is now possible to set up an efficient algorithm by dra
ing upon the considerable expertise developed in itera
minimization schemes such as conjugate gradient meth
Here we present a simple steepest descent based algori

LSDFT algorithm.Initialization: Choose an initial ortho-
normal set$f i(rW)%, l(rW)51 andc i(rW)5f i(rW). Iterate the
following steps till minimization. ~1! Calculate r(rW), E

and dE/dl(rW)ul(rW)51. ~2! Calculate the newl(rW)51
2adE/dl(rW)ul(rW)51. ~3! Calculate the new c i(rW)
5@J„rW;rWl(rW)…#1/2f i„rWl(rW)…. ~4! Setf i(rW)5c i(rW).

In the above algorithma is evaluated by a standard lin
minimization technique, i.e.,E(a) is line minimized to ob-
tain the besta and the resultingl(rW) is accepted only if the
corresponding Jacobian is positive definite. Otherwise
smaller value ofa yielding lower energyE(a) is to be ac-
cepted. In practice, for all the cases investigated this
never happened.

For implementation of the above algorithm we need
evaluate the functional derivativedE/dl(rW). It is easy to
show that

dE

dl~rW !
5(

i

dE@$c i%#

dc i* ~rW !

dc i* ~rW !

dl~rW !
, ~12!

dE

dl~rW !
U

l(rW)51

5(
i

~H2e i !c i~rW !@ 3
2 f i* ~rW !1rW•¹W f i* ~rW !#,

~13!

where H is the standard Kohn-Sham Hamiltonian ande i
5^c i uHuc i&. The second term in the square brackets w
obtained by Taylor series expansion assuming that
change inl(rW) from its initial value is small. In fact, this is
the most convenient way to ensure the positivity constra
on J.

We have successfully tested this algorithm by calculat
the ground-state energies of a number of clusters. The im
mentation is based on the standard plane wave pseudop
tial formulation using a periodically repeated large unit ce
It may be mentioned that the algorithm is easy to incorpor
within existing pseudopotential codes. The numerical det
and other aspects of the algorithm will be reported elsewh
@6#. We report the total energies for the clusters Na2 , Na7Al,
Na20, Si4, and Al13, representing 2, 10, 20, 16, and 39 ele
tron systems. The timings reported here are those for t
energies obtained to within 0.005 hartree of the Kohn-Sh
total energies with identical parameters such as energy
off, cell dimension, pseudopotential, etc. All the calculatio
except for Si use the local Bachelet-Hamann-Schluter ps
dopotential@7#.

The CPU timings in units of timings for Na2 as a function
of the number of orbitals for all the clusters studied a
1-2
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shown in Fig. 1. The timings required to generate the ini
guess are not included. As expected the graph shows a li
behavior.

Figure 2 shows the generating densityrg(rW) ~shown by a
dashed line! and the final densityr(rW) ~shown by a continu-
ous line!. Figures 3~a!, 3~b!, and 3~c! show the generating
wave functions for the first state, eighth state, and high
occupied state~all shown by a dashed line!, respectively, and
the corresponding final wave functions~shown by a continu-
ous line!. All the plots are along thex axis for the Na20
cluster. These illustrate the ability of LST to continuous
deform the initial density and wave functions toward t
final self-consistent density and wave functions in ab
40–50 iterations. The final density and wave functions
virtually indistinguishable from the full self-consisten
Kohn-Sham density.

Now we offer some remarks about the practical aspect
the algorithm.

~1! The procedure is sensitive to the choice of genera
orbitals. These must be chosen to be homotopic, i.e., to h

FIG. 1. The CPU timings in units of timings for Na2 as a func-
tion of the number of orbitals for all the clusters.

FIG. 2. The generating charge density~dashed line! and the final
charge density~continuous line! for Na20 cluster along thex axis.
06520
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the same number of minima/maxima and the same no
structure as the final orbitals. Fortunately, for small clust
this is not a serious problem since a number of methods
available for generating a good initial guess. In the pres
work we have used the orbitals obtained after a few~typi-
cally two or three! iterations of the standard Kohn-Sha
scheme starting with a random set of orbitals. However,
large systems careful attention will have to be given to
proper choice of the generating set of orbitals.

FIG. 3. The generating wave function~dashed line! and the final
wave function~continuous line! corresponding to the first state~a!,
the eighth state~b!, and the highest occupied state~c! for the Na20

cluster along thex axis.
1-3
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~2! Although in principle LST preserves orthonormalit
in practice this is true only approximately because of d
cretization of the numerical mesh and the interpolation p
cedure required in Eq.~4!. In most cases we have seen th
^c i uc j& is of the order of 1024 and improves as the minimi
zation proceeds. However, it is desirable to reorthogona
the current set of orbitals after some fixed number of ite
tions. Fortunately, it is required to be done only a few tim
~two or three! during the entire minimization process.

~3! In all the cases considered we have achieved the
curacy mentioned above in about 40–50 iterations.

~4! The convergence of the method slows down consid
ably after about 0.005 Hartree. A possible reason is tha
choosing fixed initial orbitals and varyingl(rW) we are car-
rying out only an intraorbit minimization and are neglecti
the interorbit step. Of course, there are also numerical er
due to the interpolation required@Eq. ~4!# and the use of the
steepest descent method. However, an additional few
ventional Kohn-Sham iterations~which combine both inter-
and intraorbital minimization! have always allowed us to
achieve an accuracy better than 0.001 Hartree.

~5! In some cases, albeit rarely, it is observed that
convergence stagnates after a few (;10) iterations. This can
be remedied either by improving the initial guess or
jumping to another orbit by performing one or two Koh
s
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Sham iterations. The use of reorthogonalization and a sm
number of standard Kohn-Sham iterations addsN2 scaling
although with a very small prefactor.

~6! An attractive feature of this algorithm is that it lend

itself to parallelization in a very natural way. Oncel(rW) is
determined, all orbitals are scaled independently and t
contribution to the total energy can be calculated indep
dently.

Finally, we note that the calculation of forces required f
the dynamics is identical to plane wave methods and sc
asN2.

In conclusion, we have presented an algorithm w
nearly linear scalingO(N) that is based on local scalin
transformations. In principle, the method scales linearly
cause it avoids orthogonalization of orbitals. The method
been successfully applied to obtain the ground-state total
ergies of several clusters and the results bring out the po
tial of this method for large scale systems.
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