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Amplitude dropout in coupled lasers
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We study the entrainment of coupled solid-state lasers by an external injected field. We show that the total
output intensity exhibits unexpected nonmonotonic behavior as a function of the injected field and find the
critical amplitude marking the transition to the low-intensity branch. In addition, we also show that substantial
partial entrainment can be achieved for injected fields much weaker than that required for full entrainment.

PACS numbgs): 42.55~f, 05.45.Xt, 42.60.Da, 42.60.Fc

Laser arrays are promising for applications that requireequations fall into a class of dynamical models known as
high optical power from a compact sourde-3]. Both solid-  phase modelgl7,19,2Q. Based on the phase model, we pro-
state[4—7] and semiconductdi8—12 arrays are subjects of vide a complete analytical understanding of the nonmono-
intense research, and various aspects of their dynamical b&nic behavior of total output intensity of the laser array as a
havior such as chaotic synchronizat{dr8] and chaotic com- function of the injected field and calculate the strength of the
munication[14] have already been reported. injec_ted field where the abrupt transition to much lower in-

The most efficient mode of operation is realized when thd€nsity occurs.
elements are synchronized such that the output interferes Our starting point is the system of equations describing
constructively and the light intensity is maximized. Unfortu- the dynamics of two evanescently coupled solid-state lasers,
nately, this synchronized state is typically unstable. InsteadVhere the polarization is adiabatically eliminated:
the attracting dynamics is the out-of-phase state, leading to
Eﬂ;;t,rlu;]:.twe interference resulting in low output intensities Ej(1)=(Gj—a;+16)Ej+ k(Ej 1+ Ej_1) +Eg(t),

To date, various techniques have been proposed to obtain
stable in-phase behavior. A potentially useful technique is to . Te 5
inject a common driving laser field into the laser array ele- Gj(n= ;[pj_(1+|Ej| )Gjl, @
ments[7,11,15,18. For sufficiently high driving amplitude,
the elements are entrained and interfere constructively; full i N
entrainment of the array is realized above a certain valu¥here j=1,2, and free end boundary conditiofEq(t)
determined by the coupling of the array elemdtd1]. On = Es(t)=0] are imposed. The variablds and G; are the
the other hand, as a practical matter, this technique wouldimensionless complex electric field and gain for fkiela-
become more powerful if entrainment were achieved withSer- All times and frequencies are scaled relative to the cavity
relatively low driving amplitudes. round trip time, 7., and 7; is the fluorescence time of the

In this paper, we elucidate a newly observed dynamical@ser mediumg; andp; are the dimensionless cavity decay
behavior of a two-laser array under external injection,and pump rates for thth laser, respectivelys is the eva-
namely, a strongly nonmonotonic behavior of the output in-néscent coupling constant between the two lasersFa(t)
tensity as a function of the injected field. We show that sigis the slowly varying amplitude of the external field which
nificant entrainment can be achieved even for relativelydrives each lasef9]. Equations(1) are written in a frame
small injected fields; this feature has obvious practical relfotating with frequencyv, at which the external field has a
evance. To the best of our knowledge, the first numericanonzero Fourier component. This frequency is tuned to mini-
evidence of a nonmonotonic response in two coupled laser¥ize the detuning from the cavity resonances. In practice,
has been recently reported by Khibngtal. [17]. A non-  the output power emitted from an array depends on the tun-
monotonic response of the sliding velocity to the applieding of external field to the cavitieEl6]. The detunings;
force in a two-dimensiona(2D) driven array of Frenkel- =we— ¢~ GjAwj~we—w.j, where wg; is the cavity
Kontorova-type oscillators was recently reported in numerifesonance frequency for lageandA w is the atomic detun-
cal simulations by Brauet al.[18]. Both results suggest that ing from w, in units of the polarization decay rate. For solid-
nonmonotonocity is intrinsic for a broad range of diversestate lasers, the latter dynamic contribution to the detuning is
fields (such as lasers, atomic scale devices, Josephson jungenerally ignored. In the following, we allow for a small
tions) that can be modeled in terms of nonlinear coupledspread in detunings as a way to test the robustness of the
oscillators. entrainment mechanism to a physically reasonable parameter

Starting from the complete equations of motion for thespread.
laser array, we first provide a rigorous reduction of the com- We assumex;=a, p;=p, p>a [7]. Substitutingg;(t)
plete array dynamics to a simpler description. The reduced- VI ;(t)exp(i ¢;(t)), wherel;(t) and¢;(t) are the intensity
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FIG. 1. The normalized total intensity),=(1/41)|(E;

+E,)|?, as a function of the strength of the dimensionless injecte
field, Ac=\1./1. The curve was computed by gradually increasing
the amplitude of the injected field. An inset shows tnerage
normalized total intensityl;, as a function ofA,. Our statistical
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tinuously to a significantly lower levgR1]. We notice that,
just belowA., the total output intensity of the array is about
70% of the maximum intensityat full entrainment but re-
quires only about 20% of the entrainment injected field,
Ecnir- We estimate that if we apply a different set of initial
conditions, the probability to obtain qualitatively very simi-
lar behavior, as demonstrated in Fig. 1, is in the vicinity of
60%. Our estimation is based on simulating a sample of 500
realizations of distinct initial conditions. In the inset of Fig.
1, we present theveragedvalue of the normalized total
intensity of two coupled lasers versus the dimensionless am-
plitude of the external fieldA,=+I1./I. The curve is ob-
tained by numerically solving Eq&2) for two coupled lasers
and averaging over 500 realizations of the initial conditions.
A characteristic feature of independent solid-state lasers
(i.e., without coupling and external figlds that, for any

Ginitial data their intensities and gains relax to a stationary

state (,G)=(p/a—1,), ie., the amplitudegl;—I| and
|GJ——G| decay to zero. Numerical experimerjtg], using
physically realistic parameter values, show similar transient

average is based on 500 simulations, each performed using a gieehavior of intensities and gains in the full laser array system

ferent set of initial conditions. The other parameters @are0.01,
p=0.015, k=—10% wy=5x10"7, §,=28.18<10°7, and
5,=—26.8<10"7. The entrainment amplitud@..,/|x|=4. All
units are dimensionless.

and the phase of lasgiand assumingq(t) =E.= /I, to be

a constant field, the model equations for two lasers read

1 =2(Gj— )+ 2T 11, cOL b= 1) + 2\/I .l cosepy
141 le .
\/Fsm(d’l_fﬁz)_\/%s'nd’jv 2

G]:(p_GJ_Gjlj)wo,

b=8+(—1)«

where wo= 7./7¢. Throughout the paper, we set=0.01,
p=0.015,k=—10°, wy=5%x10"7, and we vary onlys;,
S5, andl ..

Equations (2) have been studied theoretically fay

coupled laser§7] and the condition for full entrainment has

(2), where both coupling and excitation terms are present.
Once these transients have decayed, it turns out that the dy-
namics of the phaseg; no longer depend on intensities.
This motivates, at least at a heuristic level, the use of phase
equations in Eqd2), with I;=1, as an approximation model

to the full system(2). It turns out that the phase equations
retain the essential features of the dynamics and can be used
to explain the nonmonotonic behavior displayed by the solu-
tion of the complete systert®).

We first present a derivation of the phase equations based
on averaging theory22,23. Our derivation is somewhat
technical, including some rescaling of variables whose moti-
vation is not obvious priori. A consequence of this analysis
is that it significantly widens the range of validity of the
phase model as compared with an earlier derivation based on
singular perturbation techniqudg47]. Indeed, the simula-
tions depicted in Fig. 1 correspond to a differdsignifi-
cantly expandedparameter regime, and as we show below,
can be completely understood in terms of the reduced phase
model.

Substituting Ij=1(x;+1) (x;>—1), Gj=8y;+ta (]

been derived. This condition assumes small deviations in de=1,2), t'=wQt, 5,;=eQA;, 5,=eQA,, k=—£0, A
tunings and small coupling. We denote the dimensionless= (1/|x|)\l./l, and w=alB with f=(p— a)w,, and Q

amplitude of the injected field byA.=l./I, where |

=p/a—1. Ideally, to entrain an array df identical lasers

requires an injected field amplitud&.,,=4|«|, or Eeny

=4|k|\I. The functional form of the total output intensity dt’

= 3%/ a, we transform systern@) into

Xj 2¢e
o Vi D+ = VX +1)(Xj 41+ 1)c08 by 41— &)

may significantly depend on the parameters of the array

(such as detunings and the coupling constdntFig. 1, we
show the normalized total intensityfl.,=(1/41)|(E;

+E,)|?] of two coupled lasers at the center of the far-field
lobe as a function ofA,. The injected field frequency ap-

+AVX;+ 1 cosg],

proximately corresponds to the average of frequencies of
each laser, thus it is tuned to minimize the detunings from
the cavity resonances. We continuously vary the strength of
the injected field to mimic an experiment where the injected
field is gradually increased. Initially, the total intensity grows
with the injected field. When the injection strength reaches
the critical amplitudeA., the total intensity drops discon-
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where here and henceforil-1,2, and cyclic conditions are nearr=0, we getL(x,y)=2y?+ix?+0(r*?) yielding x

imposed K;=X,).

=2r cosf+0(r), y=+2rsing+0(r), and K(r)=3r

The advantage of this form is that it makes the separation. O(r2) L(r)=%r+0(r2) M(r)=1+O(r2) and N(r)

of time scales more transparent. We now assume ¢hat _

>max(lg), where w=al/(p—a)wy, and e=—«kal(p
—a)wg. For the set of parameters chosen ab@hat corre-

1+0(r?). Givenp,¢,c,rq (ro>0), we can always choose
>0 (not necessarily small such that dR;/dt’
<0, dR,/dt’<0 in the domainR;=<ry, Ry<rg. This im-

qund to experimentally measurable parameters for thBIies asymptotic stability of the origin in the planBy(,R,)
Nd:YAG laser[5]), @ =200 ande =40. Therefore, we sat- for the averaged equations). NeglectingO(r2) terms in

isfy this assumption ifx|<5x 10~° which, indeed, is satis-

fied in our simulations since we uge|=10"° [24]. Then

the averaged equatioiiS) for phases and redefining param-
eters, we obtain the phase model

system(3) can be regarded as a perturbation, via damping

and coupling terms, of the system with two trivial integrals

of motion ¢;=¢9,$,= ¢35 and two nontrivial integralR,
=L(x1,y1),R2=L(X2,Y2) [25], where

1 2
L(x,y)=§y +Xx—=In(x+1) (4)

(x>—1). Since the level curvels(x;,y;)=R; (i=1,2) are

ovals surrounding the origin, we can Ueand a polar angle

0, as new coordinates on thexj(y;) plane so thatx;
=X(Ri,0,), Yi=Y(R;,#,). In the perturbed syster8), we
have dR;/dt' =0(1/w), d¢;/dt’=0(1l/w), and d6;/dt’

=0(1). This allows us to write approximate equations for

the evolution of amplitude®; and phases; by averaging

the true equations over angular variablss The averaged

equations read as follows:

drR, 1 2¢
W: - EK(RJH‘ XL(Rj)[M(Rj+l)CO$¢j+1_ ?;)

—Acose;],
. (5
d;f,l:Z{Aj_"N(Rj)[M(Rj+1)Sir‘(¢j_¢j+l)_ASin¢j]}a
where
1 (2=
K(r)=zjo y2(r,0)(p_ia+x(r,0)>d0
[K(r)>0 for r>0],
L Lo de
M2 PR
1 (2=
M(r)zﬂfo VX(r,6)+1d6,
and

1 (2= 1
=—| ———do.
2mJo x(r,0)+1

In the asymptotic limit, R;,R,) tend to (0,0), provided

N(r)

their initial values lie within certain bounds. Indeed, by com-

puting the leading terms oK(r), L(r), M(r), and N(r)

b1= 8+ K SiN(po— 1) —Agsingy,
_ (6)
Po= 0+ k SIN(Pp1— o) —AgSing,.

Equations(6) provide a significantly reduced description
which captures nevertheless the essential dynamics, includ-
ing the sudden drop in output intensity depicted in Fig. 1, as
we now show. We write Eqg6) in the following form:

d

m(d’l—" $h2) =61+ 6= Ac(Sing + sing,),
q (7)
a((ﬁl_ h2) = 01— 6,2k SIN(Py— b1)

+Au(Singpo— sing,).

The frequency of the external field is tuned to minimize
the detunings from the cavity resonances, thus we may as-
sume 1+ 8,)=0. This allows us to reduce the dimension-
ality of the parameter space and essentially carry out the
(simplified) analysis of the dynamics and of the fixed points
in the plane ¢;— &,,«). Thus, with these assumptiof6],
the stationary form of Eqg7) reads

sing,+sing,=0,

51_ 52+ 2k S|n( ¢2_ ¢1) +Ae(Sin (]52_ sin (;51) =0. (8)

The first equation in Eqs8) implies that either(@) ¢,
—p1=(2m+21)m, or (b) ¢+ Pp,=27m, wherem is an
integer M=0,1,2 ...). Solutions of clasga) imply sin(¢,
— ) =0, yielding sing;=8,/As, Sind,=351As, and sing,
— )= sinsin (8, /A)— sin"Y(8,/A)]#0, i.e., inconsis-
tency. Hence, the only possibility is the cldb$ of solutions
which, in turn, can be divided into two subclasseseven
and m odd. Form even, the second equation in EdS)
becomes

f(p)=—6—2«k sin¢—2Aesin§=O, (9)
where we substituted= 6, — &, and ¢= ¢, — ;.

For small values of\,, this equation has two solutions,
one stable and one unstable. By increasing the strength of the
injected fieldA., a saddle-node bifurcation occurs at a criti-
cal value A;.

For Ac>A., Eqg. (9 has no real solution. To deter-
mine A;, we solve the systenf(¢)=0 and f'(¢)=0,
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FIG. 3. The critical amplitudeA., as a function of the differ-
ences in detuningd=6,—8,. The solid line is the theoretical
curve, while the points are the results of numerical calculafigigs
(2)]. The other parameters are as in Fig. 1. All units are dimension-
less.

FIG. 2. The critical amplitudeA., as a function of the coupling
strength,x. The solid line is the theoretical curve, while the points
are the results of numerical calculatidi&y. (2)]. The other param-
eters are the same as in Fig. 1. All units are dimensionless.

namely, — 6— 2k sin ¢, —2A;sin(¢/2)=0 and — 2« CoS¢; , iy , )
—A.cOs(J2)=0. Making a substitution tarf./2)=z and In Fig. 2, we show the critical amplitudk, as a function
eliminating A,, we obtainz3+ (8/4x)z2+ (8/4x) =0, with of the coupling strength for fixed z. The solid line is ob-
the solutign 2=[—(q/2)+ yD]¥3+[ - (q/2)— VD" tained based on the analytical expresdj&iq. (10)], while
— 5/12«, whereD=(p/3)3+(q/2)2, p=— 621482, andq the points are determined from the solution of the full set of
=(5/4Kj+(53/864x3) Substituting’ the expressi(;n farin equationg Egs. (2)]. We notice that the fit between the nu-

: L ; merical and analytical expressions is excellent. We also cal-
the equations above yields an expressionApr culated the dependence of the critical amplitugeon the

1— 22 diffference in detuningsd,— 8,=6. The outcome is pre-
= "2k (100  sented in Fig. 3, where the solid line shows the analytical
\/(1+Z expression Eq. (10)] while the points are the result of the

numerical simulations. As in Fig. 2, we obtain an almost
perfect agreement.

In summary, we have demonstrated that the far-field total
intensity at the center of the lobé,, exhibits nonmono-
tonic behavior as a function of the injected field. Initially the
b total intensity grows but, at a critical injection amplitude,
g(¢)5—5—2Ksin¢+2Aesin§:0, (11) A, it undergoes a sharp transition to a lower intensity

branch. This behavior can be analytically explained by the

A similar analysis shows that this equation has two solu-reduced phase model” of the array. For the parameter val-

tions, one close tap~0 and the other close té~ . The ues considered in this paper, one can achieve a significant
stability of these solutions is determined by checking theoartlal_entral_nmgnt of thg array—up to 700./0 of the maximum
sign of g’ (). Sinceg’(0)>0 andg’(7)<0, the solution intensity—with injected fields about five times smaller than
b~0 is unstéble whilep~ 1 is stable. At s’mall values of the saturation entrainment fiel&,,. This could result in
the amplitude of ,the injected field fhe system has two significant reductions of the power required to entrain laser
stable solutions, one close 102 thateéolves Eq©) and one arrays by injgc.tion, thergby r.e.moving' one of.the main ob-
close to7 that solves Eq(11). Since the total output inten- stacles that limit the applicability of this technique.
sity is given byl =4 cog(¢/2) [27], one solution has high We thank Dr. L. Zhang for his helpful comments and
intensity while the other one has low intensity. suggestions on the manuscript. This work was partially sup-
Each of these stable solutions has a basin of attraction arbrted(Y.B. and V.P) by the Engineering Research Program
the selection of the solution depends, of course, on the initiabf the DOE Office of Basic Energy Sciences under Contract
conditions. WherA,=A., the high-intensity solution disap- No. DE-AC05-960R22725 with UT-Battelle, LLC, and by
pears at the saddle-node point and for higher valueAof the Office of Naval Researcty.B.). A.l.K. acknowledges
only the low-intensity solution remains. the DOE, Grant No. DE-FG02-93-ER251.

Omitting the (very smal) higher order terms inS/ « yields
the simple but accurate approximation=(6/—4k)Y3
—(6/12k).

For m odd, the second equation in Eq8) reads
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