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Quantum-limited linewidth of a good-cavity laser: An analytical theory
from near to far above threshold
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The problem of the quantum-limited or intrinsic linewidth of a good-cavity laser is revisited. Starting from
the Scully-Lamb master equation, we present a fully analytical treatment to determine the correlation function
and the spectrum of the cavity field at steady state. For this purpose, we develop an analytical approximation
method that implicitly incorporates the microscopic fluctuations of both the phase and intensity of the field,
and, in addition, takes full account of the saturation of the nonlinear gain. Our main result is a simple formula
for the quantum-limited linewidth that is valid from near to far above threshold and also includes the presence
of thermal photons. Close to the threshold, the linewidth is twice as large as predicted by the standard
phase-diffusion treatment neglecting intensity fluctuations, and even 50% above threshold the increase is still
considerable. In general, quantum fluctuations of the intensity are present and continue to influence the line-
width as long as the photon-number distribution is not strictly Poissonian. This inherent relationship is dis-
played by a formula relating the linewidth and the MandelQ parameter. More than 100% above treshold the
linewidth is found to be smaller than predicted by the standard treatment, since the simple phase-diffusion
model increasingly overestimates the rate of phase fluctuations by neglecting gain saturation. In the limit of a
very large mean photon number the expected perfectly coherent classical field is obtained.

PACS number~s!: 42.50.Ar, 42.55.Ah, 42.50.Lc
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I. INTRODUCTION

When the radiation field is described classically and sp
taneous emission is neglected in comparison to indu
emission, the steady-state linewidth of an ideal single-m
laser, i.e., of a laser with a perfectly stabilized classical
tensity, has the shape of ad function. This is due to the fac
that the cavity losses are exactly compensated for by the
and, as a result, the field in the resonator remains cons
From a fully quantized description of the electromagne
field, however, it follows that the laser linewidth cannot
smaller than a certain quantum limit, related to the we
known Schawlow-Townes linewidth, which is inversely pr
portional to the laser intensity@1#. This limit has been stud
ied extensively in the past decades~see Refs.@2–5# and
references therein!. In view of the importance of stable co
herent signals for various high-precision measurements
because of an ongoing interest in fundamental problem
quantum optics, renewed attention has been paid recent
the quantum limitation of the laser linewidth. The investig
tions have been extended to cover bad-cavity lasers@6#, la-
sers without inversion@7#, and a chaotic laser cavity@8#.
Different systems have been devised in this context to red
the quantum limit of the linewidth by means of correlat
spontaneous emission schemes@9#. Recently, even theoreti
cal models for light amplification without stimulated emi
sion have been investigated in order to obtain a reduced
timate quantum limit of the laser linewidth@10#.

The quantum-limited laser linewidth is also called the
trinsic or natural linewidth of the laser. Its origin, like th
origin of the microscopic intensity fluctuations, lies in th
fact that in the stationary regime of operation the bala
1050-2947/2000/62~6!/063814~8!/$15.00 62 0638
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between the gain and loss processes sustains a constan
erage field only but, due to the quantum nature of these p
cesses, fluctuations of the field around its mean are indu
on a microscopic scale. We note that the resonator losse
caused by the outcoupling of the field through the out
mirror as well as by any additional linear damping proce
such as absorption. For good-cavity lasers the combined
fect of these losses can be described by a single cav
damping constantg that is the sum of the constants referrin
to the individual processes. The usual treatment@2–5# of the
intrinsic laser linewidth rests on the approximation that t
linewidth arises from fluctuations of the phase of the fie
described by phase diffusion.

In this paper, we rely on the Scully-Lamb model@3# of the
laser since it is applicable for an arbitrary strong saturation
the lasing atomic transition. Neglecting intensity fluctu
tions, a simple analytic expression for the linewidth has be
derived in this model by means of different methods@3–5#.
On the other hand, the intrinsic laser linewidth can be de
mined exactly by numerically calculating the first-order co
relation function of the field and performing the Fouri
transform of the latter. Thus, both the effects of fluctuatio
of the phase of the field and of its amplitude, or intensi
respectively, are implicitly taken into account. Investigatio
of this kind have been performed by Lu@11# who started
from the Scully-Lamb master equation@3# and found nu-
merically that near threshold the intrinsic laser linewidth
up to twice as large as that given by the phase-diffus
coefficient at the mean photon number.

In the present paper, we derive an analytical express
for the quantum-limited laser linewidth by means of inves
gating the two-time first-order correlations of the field. T
treatment is restricted to single-mode lasers in the go
©2000 The American Physical Society14-1
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ULRIKE HERZOG AND JÁNOS A. BERGOU PHYSICAL REVIEW A62 063814
cavity limit, i.e., we make the usual assumption that
cavity-damping timeg21 is long in comparison to all othe
relevant time scales. This ensures that the time depend
of the polarization and population inversion of the gain m
dium can be adiabatically eliminated and the Scully-La
model of the laser can be applied. Our approximat
scheme is an extension of an analytical method develo
previously by one of the authors for calculating photo
number variances@12,13#. It makes use of the fact that th
photon-number distribution of the laser radiation is stron
peaked at a large mean photon number. Therefore, it is
necessary to study the density-matrix elements of the fiel
detail but it suffices to directly evaluate the expectation v
ues and correlation functions of interest, in the approxim
tion of small fluctuations.

The paper is organized as follows. In Sec. II, we deve
a general approximation method for the determination of
first-order correlation function of the field in the resonator
a micromaser or laser. The method is applied in Sec. II
study the laser linewidth. In order to reveal the influence
intensity fluctuations on the latter, an expression for
photon-number variance of the laser in the presence of t
mal photons is also derived in this section. Our results
discussed in Sec. IV and compared to the standard linew
formula ensuing from the phase-diffusion approximation.
nally, a summary is given in Sec. V.

II. GENERAL APPROXIMATION METHOD

The power spectrum of a radiation field is defined as
Fourier transform of its normalized first-order correlati
function. When the field is a single-mode field with fr
quencyn, the steady-state spectrum is given by

S~v!5
1

p
ReE

0

`^a†~ t !a~0!&s

^a†a&s

e2 i (v2n)tdt, ~2.1!

wherea anda† are the photon annihilation and creation o
erators in the interaction picture and the subscripts denotes
the stationary state. We consider a single-mode radia
field contained in a leaky cavity and being sustained b
gain mechanism. The overall losses of the field mode
supposed to be due to the coupling of the cavity field to
environment, modeled by a reservoir in thermal equilibriu
Therefore the damping of the field can be described by
standard master equationṙ5Lr for its reduced density op
eratorr, where the action of the superoperatorL is defined
as

Lr52
g

2
~11nb!~a†ar22ara†1ra†a!2

g

2
nb~aa†r

22a†ra1raa†!. ~2.2!

Here,g is the cavity-damping constant, andnb denotes the
mean number of thermal photons in the cavity. We also n
that for any field operators, the relations
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Tr~a†Ls!52
g

2
Tr~a†s!, ~2.3!

Tr~a†aLs!52g Tr~a†as!1gnb Tr s, ~2.4!

follow from Eq. ~2.2!. To model the gain in a simple way
we assume that excited atoms are injected into the ca
with rater. The atoms are supposed to interact with the fi
one after the other during a timet that is negligibly short in
comparison to both the cavity-damping timeg21 and the
mean time interval between successive atoms. The effect
single atom on the field can be formally written asr(t1t)
5Mr(t), where the superoperatorM depends on the specifi
kind of interaction process. For a micromaser, the interac
time t is given by the transit time of the atoms through t
microwave cavity, andM5M (t) has to be obtained in the
usual way@14# from the Jaynes-Cummings Hamiltonian@15#
for the atom-field interaction by performing the trace wi
respect to the atoms. In order to describe a laser, it is
sumed that excited two-level atoms are injected into a re
nant cavity and interact independently with the field duri
time intervals that are determined by the survival timeG21

of the atoms as effective two-level systems, before they
cay into different energy states@4#. The superoperatorM that
has to be used for the laser is found by averagingM (t) with
respect to the interaction timet, according to M
5G*0

`M (t)e2Gtdt @4#.
When the injection times of the atoms are uncorrelat

i.e., for Poissonian pumping, the evolution of the field due
the combined action of the gain and loss mechanisms ob
the master equation

ṙ5r ~M21!r1Lr, ~2.5!

which has the formal solutionr(t)5V(t)r(0) with

V~ t !5exp$ @r ~M21!1L#t%. ~2.6!

Due to the Markovian character of the master equati
the two-time correlation function necessary to determine
spectrum can be easily calculated. For the stationary state
find

^a†~ t !a~0!&s5Tr@a†V~ t !~ar̄ !#, ~2.7!

with r̄5 limt→`r(t) denoting the steady-state density ope
tor. Making use of Eq.~2.6! and taking into account the
relation~2.3!, we obtain from Eq.~2.7! the differential equa-
tion

d

dt
^a†~ t !a~0!&s5H r @b~ t !21#2

g

2J ^a†~ t !a~0!&s ,

~2.8!

where we have introduced the abbreviation

b~ t !5
Tr@a†Ms~ t !#

^a†~ t !a~0!&s

5

(
n51

`

An@Ms~ t !#n21,n

(
n51

`

Ansn21,n~ t !

~2.9!

with
4-2
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s~ t !5V~ t !~ar̄ !. ~2.10!

Under steady-state conditions, it is possible to eliminate
injection rater from Eq. ~2.8! by expressing it in terms o
field expectation values and the cavity decay rate. To
end we start from the steady-state relation

d

dt
n̄5 (

n50

`

nrG n,n5Tr@a†aV̇r̄ #50. ~2.11!

By inserting Eq.~2.6! and utilizing Eq.~2.4!, we arrive at the
photon-number balance equation

r @Tr~a†aMr̄ !2n̄#5g~ n̄2nb!, ~2.12!

wheren̄5^a†a&s5Tr(a†ar̄) is the steady-state mean photo
number^a†(0)a(0)&.

So far, all equations hold exactly and can be applied
lasers as well as to micromasers with Poissonian pumping
order to obtain an analytical expression for the spectrum,
necessary to calculate the quantityb in Eq. ~2.8!. For this
purpose, we use an approximation method that rests on
assumption that the steady-state photon-number distribu
in the cavity is strongly peaked at a large mean photon n
ber n̄. Since the order of magnitude of the width of th
photon-number distribution is determined byADn2, we as-
sume that the relations

n̄@1, ADn25~n22n̄2!1/2!n̄ ~2.13!

are fulfilled for the mean photon number and its varian
Dn2. By means of performing an expansion with respect
suitable parameters in Eq.~2.9! and replacings(t) by its
initial values(0) in small terms in this expansion, it is po
sible to obtain an approximate expression forb. It will not
depend on time, provided that the leading term in the exp
sion proves to be time-independent. In this case the valu
b depends only onr̄ and on the specific form ofM, i.e., the
specific kind of the atom-field interaction process, and
can easily integrate Eq.~2.8! to obtain

^a†~ t !a~0!&s5n̄e[ r (b21)2g/2]t. ~2.14!

Fourier transformation according to Eq.~2.1! yields a
Lorentzian steady-state spectrum that is centered at the
quencyv05n1(r /2)Imb. The linewidth~full width at half
maximum! is given by

Dv5g12r ~12Reb!. ~2.15!

As required, the linewidth reduces to the empty-cavity lin
width g whenr 50 or whenb51, i.e., when either no atom
are injected at all, or when the atoms do not interact with
field andM is equal to the unit operator. Under these con
tions the steady state is, of course, the thermal state
mean photon numbernb , or, for nb50, the vacuum.

We assume that the superoperatorM in Eq. ~2.5! is due to
resonant one-photon interaction of the field with a two-le
atom, initially in its excited state. In the photon-number re
resentation,M has the general form
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where the coefficientsAn,m and Bn,m are different for the
cases of a micromaser or a laser, respectively. It then follo
that the steady-state density operator is diagonal in
photon-number representation, as can be easily shown
the help of Eqs.~2.2! and ~2.5!. Therefore the expectation
value of the field~which in the steady state corresponds to
time average! vanishes,

^a&s5Tr~ar̄ !50. ~2.17!

In terms of the amplitude and phase of the expectation va
of the field,^a&s , Eq. ~2.17! requires that for parameter va
ues for which the amplitude is fixed, the phase is uniform
distributed between 0 and 2p, i.e., all phase values ar
equally probable at steady state. We note that this holds
lasers as well as for micromasers unless the atoms are
jected in a definite superposition of their energy states.

In general, a correlation exists between the values of
field at different times that decays with increasing time d
ference. It is this decay that determines the spectrum and
linewidth according to Eqs.~2.1! and ~2.14!.

III. THE LASER LINEWIDTH

For the case of the laser, the coefficientsAn,m andBn,m in
Eq. ~2.16! can be written as@3–5#

An,m512

xF11
1

2
~n1m!G1

1

8
x2~n2m!2

21x~n1m12!1
1

8
x2~n2m!2

~3.1!

and

Bn,m5
xA~n11!~m11!

21x~n1m12!1
1

8
x2~n2m!2

, ~3.2!

where we introduced the saturation parameterx54g2/G2

with g and G21 denoting the atom-field coupling consta
and the average lifetime of the atom as a two-level syst
respectively. After changing the index of summation app
priately, from Eqs.~2.9! and ~2.16! we obtain

b~ t !511
1

4

(
n51

`

@x/~11x~n1 1/2!!#Ansn21,n~ t !

(
n51

`

Ansn21,n~ t !

.

~3.3!

Here, use has been made of the fact that the terms pro
tional to x2 in Eqs. ~3.1! and ~3.2! can be neglected fo
un2mu51 since under normal conditions the relationx2

!1 @4# is fulfilled. To evaluateb, we now apply the approxi-
mation
4-3
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1

11xS n1
1

2D '
1

11xn̄
F 12

xS 1

2
1n2n̄D

11xn̄
G . ~3.4!

Because of the condition~2.13! the above approximation i
justified for all terms of the sum in the nominator of E
~3.3!, since in these termsun2n̄u is of the order of magnitude
of ADn2 or smaller, and sincex/(11xn̄),1/n̄ for any value
of x. The second term in the square brackets of Eq.~3.4!
therefore leads to a contribution tob that is small in com-
parison to the time-independent contribution of the first te
Replacingsn21,n(t) by its initial valuesn21,n(0)5Anr̄n,n
in this small contribution and taking into account th
(n50

` n2r̄n,n5n̄21Dn2, we obtain after minor algebra
time-independent expression forb. The latter can be substi
tuted into Eq.~2.15! to yield the approximative expression

Dv5g2
rx

2~11xn̄!
F12

x

11xn̄
S 1

2
1

Dn2

n̄
D G ~3.5!

for the laser linewidth.
In the next step, we eliminate the injection rater by mak-

ing use of the photon-number balance equation~2.12!. For
the case of the laser, the latter takes the form

rx

2 (
n50

`
n11

11x~n11!
r̄n,n5g~ n̄2nb!. ~3.6!

Here again Eqs.~3.1! and~3.2! have been used together wi
Eq. ~2.16!, and the index of summation has been chang
appropriately. We proceed by applying the same approxi
tion scheme that led to Eq.~3.5! and perform the expansio

1

11x~n11!
'

1

11xn̄
F12

x~11n2n̄!

11xn̄
G . ~3.7!

Using the condition~2.13! and the relation@16#

nb!n̄, ~3.8!

we obtain from Eq.~3.6! after simple transformations th
approximation

rx

2~11xn̄!
5gF11

x

11xn̄
S 11

Dn2

n̄
D 2

11nb

n̄
G .

~3.9!

When only the first term in the square brackets is kept,
~3.9! yields the familiar relation

n̄5
r

2g
2

1

x
5

1

x S a

g
21D , ~3.10!

where we have introduced the linear gaina5rx/2. How-
ever, in order to study the quantum limit of the linewidt
also the terms that are small in comparison to the lead
term have to be taken into account. When we substitute
06381
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expression~3.9! for the factor in front of the square bracke
in Eq. ~3.5!, keeping only the terms of lowest order in 1/n̄
and x/(11xn̄), respectively, the contributions containin
the variance cancel and we finally arrive at the laser li
width

Dv5
g

2n̄
S 21xn̄

11xn̄
12nbD . ~3.11!

The quantum origin of the intrinsic laser linewidth is r
vealed by noticing that along our lines we would have o
tained the resultDv50 if the terms of the order 1/n arising
from the commutation relation for the field operators h
been neglected in Eqs.~3.3! and ~3.6!. The two limiting
casesxn̄@1 andxn̄!1 correspond to a laser that is ope
ated far above threshold or near threshold, respectively
can be seen from Eq.~3.10!. Therefore it is apparent that th
linewidth becomes inversely proportional to the mean pho
numbern̄ only near threshold and far above threshold. In t
intermediate regions the dependence onn̄ is more compli-
cated.

We note that because of the relation~3.10!, the linewidth
can be expressed in terms of any three of the four parame
n̄,x,g, and a ~or r, respectively!. By inserting Eq.~3.10!
into Eq. ~3.11! and thus eliminatingn̄, we obtain another
useful expression for the linewidth,

Dv5
gx

2

g

a2g S 11
g

a
12nbD . ~3.12!

Equation~3.11! describes the dependence of the linewidth
a given laser on the mean photon number, while Eq.~3.12!
describes the dependence on the gain or, alternatively, on
above-threshold ratio, defined simply as the normalized g
a/g. Since the linear gain is easily measurable, this la
equation is the most important of the possible expressions
the intrinsic laser linewidth from the point of view of exper
mental accessibility.

In order to facilitate later comparison with the standa
result delivered by the phase-diffusion model, we elimin
x from the linewidth expression~3.11!. Using Eq.~3.10! one
more time, we arrive immediately at

Dv5
a1g

2n̄

g

a
1

g

n̄
nb . ~3.13!

Although it might seem from this expression thatDv is pro-
portional ton̄21 in the entire region of laser operation, this
not true since the gaina is not constant for a given laser bu
depends on the pumping rate and is connected withn̄ via the
relation ~3.10!. In contrast to this, the cavity decay consta
4-4
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g and the saturation parameterx are fixed,x21 being the
saturation photon number for the lasing transition betw
the atomic energy levels.

It is interesting to consider two important limiting case
In the far-above-threshold limit, wherexn̄@1 or a@g, re-
spectively, Eqs.~3.11!–~3.13! yield the limiting value

Dv lim5
g

2n̄
~112nb!5

xg2

2a
~112nb!. ~3.14!

On the other hand, in the vicinity of the threshold, whe
0,a/g21!1 @17#, the linewidth depends onn̄ in a differ-
ent way, described byDv thr5(g/n̄)(11nb). This difference
can be interpreted to be due to the fact that the contribu
of intensity fluctuations to the linewidth increases when
above-threshold ratio decreases, as we shall show next.

In a quantized description of the radiation field, intens
fluctuations are revealed in an enhancement of the pho
number variance as compared to the Poissonian valu
Dn25n̄ that corresponds to a constant intensity. Therefo
we first calculate the steady-state photon-number varia
Dn2 of the laser, taking into account the presence of ther
photons. To do so we apply an approximation method t
has been developed previously by one of the authors in o
to investigate the photon statistics in saturated multipho
atom-field interaction@12,13#. We start from the steady-stat
equation

d

dt
~Dn2!5 (

n50

`

~n222n̄n!rG n,n50, ~3.15!

and use the right-hand side of the master equation~2.5!, to-
gether with Eqs.~2.2! and ~2.16!, in order to expressrG n,n .
By taking into account Eqs.~3.1! and~3.2! and by appropri-
ately changing the index of summation in the individu
terms, the resulting equation can be transformed to yield

(
n50

`

r̄n,nH a
~n11!~2n1122n̄!

11x~n11!
22n̄g~nb2n!

1g@nb~n11!~2n11!2~11nb!n~2n21!#J
50, ~3.16!

with a5rx/2. The following treatment again relies on th
assumption of a strongly peaked photon-number distribu
subject to the conditions~2.13! that imply that the approxi-
mation~3.7! is valid. When the latter is applied in Eq.~3.16!,

we obtain a term that is proportional to(n50
` n3r̄n,n5n 3.

Applying the approximation

n 35@ n̄1~n2n̄!3#'n̄313n̄Dn2, ~3.17!

which is justified because of the condition~2.13!, we arrive
at the equation
06381
n

.

n
e

n-
of
,

ce
al
at
er
n

l

n

a

11xn̄
F 2Dn2

11xn̄
1n̄G5g@2Dn22n̄~112nb!#. ~3.18!

Here again the relationn 25n̄21Dn2 has been taken into
account, and small contributions have been neglected.
nally, we again make use of the lowest-order photon-num
balance equationa/(11xn̄)5g @cf. Eq. ~3.10!#. Thus, from
Eq. ~3.18!, after simple transformations, we arrive at the re
tive photon-number variance of the laser

Dn2

n̄
5S 11

1

xn̄
D ~11nb!5

a

a2g
~11nb!. ~3.19!

Clearly, when the thermal photon numbernb is not small in
comparison to 1, its influence on the photon-number varia
of the laser is crucial even fornb!n̄, as is its influence on
the intrinsic laser linewidth. Fornb50, Eq. ~3.19! corre-
sponds to the standard result that is known from the litera
@3–5#. We note that in general the relative strength of t
intensity fluctuations is characterized by the normaliz
quantity

^a†2
a2&2^a†a&2

^a†a&2
5

n~n21!

n̄2
215

Q

n̄
. ~3.20!

Here we introduced the MandelQ parameter

Q[
Dn2

n̄
215nb1

11nb

xn̄
5

g1nb a

a2g
, ~3.21!

where Eq. ~3.19! has been applied. Since the conditio
~2.13! imply that Q!n̄, the intensity fluctuations characte
ized by Eq.~3.20! are extremely small under these cond
tions, and they vanish in the limitn̄→`. Therefore, intensity
fluctuations can be considered to be a true quantum effec
the above-threshold regime of the laser. Nevertheless t
influence on the laser linewidth cannot be neglected, beca
the nonzero value of the latter itself is a small quantum eff
only.

With the help of Eq. ~3.21!, the linewidth equations
~3.11!–~3.13! can be finally cast into the form

Dv5
g

2n̄
S 11

Q

11QD ~11nb!. ~3.22!

Obviously, close to the threshold, wherea/g21!1 @17#
and henceQ@1, the contribution of the intensity fluctua
tions to the intrinsic laser linewidth is the same as that of
phase fluctuations. In this case the linewidth is twice as la
as it would be without intensity fluctuations, i.e., forQ50.

IV. DISCUSSION

Before discussing the analytic results in more detail
seems appropriate to say a few words about their rang
validity, determined by the applicability of our basic assum
tions ~2.13!. Making use of Eq.~3.19!, the second of the
4-5
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inequalities~2.13! can be transformed to yield the conditio
@(11nb)a/(a2g)#1/2!n̄1/2. When the laser is operate
e.g., 10% above threshold, i.e., fora/g51.1, this require-
ment can be assumed to be fulfilled ifn̄*103 which, because
of Eq. ~3.10!, corresponds tox&1024. At higher above-
threshold ratios our approximation is valid for even sma
mean photon numbers, or larger values ofx, respectively. In
general, because of Eqs.~3.10! and ~3.19!, we can combine
the two inequalities of the condition~2.13! to yield the re-
quirement

Ax~11nb!!
a

g
21!

1

x
, ~4.1!

which has to be fulfilled for the linewidth formulas~3.11!–
~3.13! to be valid. Obviously, ifx'1026 and nb!1 as in
typical continuous-wave gas lasers, our results are alre
approximately valid when the laser is operated only m
than 1% above threshold, i.e., fora/g*1.01.

The linewidth formulas~3.11!–~3.13! constitute the main
result of this paper. They differ from the standard laser lin
width formula

Dvpd5
g1a

4n̄
5

gx

4

a1g

a2g
5

gx

4
1

g

2n̄
, ~4.2!

which has been derived fornb50 in the so-called phase
diffusion model neglecting intensity fluctuations@18#. Here,
for the last two steps, we used Eq.~3.10! and the equivalen
relationa5g(11xn̄) in order to transform the standard r
sult.

In Fig. 1, the linewidth is plotted for different operatin
regimes of the laser. We emphasize that the curves repre
ing our result,~3.12!, are in perfect agreement with the n
merical results, found previously for the laser linewidth
computing the two-time correlation function of the field@11#.
From a comparison of Eq.~4.2! to Eq. ~3.13!, it is obvious
that the phase-diffusion result is only a good approximat
for the linewidth whena/g'2, whereas it underestimate
the linewidth closer to the threshold. Higher above thresh
on the other hand, the linewidth is overestimated by Eq.~4.2!
which, for n̄→`, yields the intensity-independent residu
linewidth Dv5gx/4, instead ofDv50, to be expected in
the classical limit. Moreover, we conclude from Fig. 1 th
the linewidth can be approximated byDv lim , given by Eq.
~3.14!, provided thata/g*5. The difference between ou
result and the standard one in the far-above-threshold re
shows that the phase-diffusion assumption of the stand
treatment overestimates the contribution of phase fluc
tions to the linewidth the more the higher above thresh
the laser is operated, i.e., the stronger the effect of the n
linearity stemming from the gain saturation. On the oth
hand, since intensity fluctuations are neglected, the stan
treatment underestimates the linewidth in the near-thres
regime and corrections are necessary to incorporate the e
of the super-Poissonian photon statistics, as has been em
sized already by Lu@11#. As the above-threshold ratio in
creases and the intensity becomes more stabilized, the e
06381
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of this underestimation decreases. Figure 1 suggests tha
effects of overestimating phase fluctuations, on the one h
and underestimating intensity fluctuations, on the other,
compensate approximately when the laser is operated aro
100% above threshold.

In the following, we shall discuss the reasons for the d
crepancy between our result and the standard one in m
detail. For this purpose, we first consider the different a
proximation methods that are employed in the literature
the derivation of Eq.~4.2!. In the most common approach
the master equation of the density operator is transform
into an equation for itsP representation. After changing t
polar coordinates by writing the complex field amplitude
e5r exp(if), the exact evolution equation for the qu
siprobability densityP(r ,f) contains derivatives with re
spect tor andf to all orders@4#. This is due to the nonlin-
earity of the underlying master equation, which is revea
by the denominators in Eqs.~3.1! and ~3.2!. In the standard
treatment it is assumed thatP does not change along th
radial coordinate, corresponding to a neglect of intens
fluctuations, and that only derivatives up to second or
have to be taken into account. The latter assumption is n
essary to ensure phase diffusion, but it becomes less and
justifiable as gain saturation, hence nonlinearity of the la
equations, increases. In this case, the simple phase diffu
model can no longer be applied. In addition, mixed ter
also become important in the evolution equation forP, which
are products of a differential operator acting on the am
tude r and another one acting on the phase. These, in t

FIG. 1. Normalized laser linewidthDv/(xg) versus the above-
threshold ratioa/g for nb50. The full line corresponds to ou
formula @Eq. ~3.12!#. For comparison, the curves resulting from th
standard expressionDvpd @dashed line, corresponding to Eq.~4.2!#
and from the approximationDv lim @dotted line, corresponding to
Eq. ~3.14!# are also displayed.
4-6
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lead to cross correlations between the fluctuations of the
tensity and the phase.

In the frame of the photon-number representation of
density operator, the standard result has been derived by
plying the quantum fluctuation-regression theorem and
proximately investigating the decay of an initial value of t
field instead of the two-time correlation function. This
done by means of determining the lowest eigenvalue
characterizes a single decay rate for all nondiagonal den
matrix elementsrn,n21 @4#. In a more precise treatment,
single decay rate would have to be determined for the qu
tities Anrn,n21 @19#, since the average field follows from
performing the sum over these quantities. Moreover, w
increasing above-threshold ratio the influence of the non
earity also increases and therefore the quantum fluctua
regression theorem cannot be applied anymore, in gen
@20#.

With respect to the Heisenberg-Langevin approach,
mention that a nonlinearc-number Langevin equation can b
derived for the complex field amplitudee5r exp(if). The
coupling of the fluctuations of the real amplituder and the
phasef is clearly obvious from this Langevin equation. Th
derivation of the phase diffusion result, Eq.~4.2!, rests on
implicitly making a factorization assumption for expectati
values containing the complex field amplitudes in the
nominator and their noise operators in the nominator@4#.
Because of the intensity fluctuations near threshold, and
cause of the nonlinearity due to gain saturation far ab
threshold, it would be extremely difficult to go beyond th
approximation.

We finally conclude that the laser linewidth cannot
explained satisfactorily with the help of the simple assum
tion that the intensity is constant and the electric-field pha
executes a random walk in the complex plane as descr
by phase diffusion. In the linear approximation, valid ne
threshold, it is true that the behavior of the phase fluctuati
alone can be described by phase diffusion, but intensity fl
tuations contribute to the linewidth as well. Farther abo
threshold, on the other hand, the simple model breaks d
because the fluctuations of the intensity and of the phase
coupled due to the nonlinearity of the gain, and the beha
of the phase fluctuations cannot be characterized as sim
phase diffusion. The frequently used procedure of disreg
ing the microscopic intensity fluctuations and assuming t
the photon-number distribution is strictly Poissonian, on
one hand, and not properly taking into account or even co
-
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pletely neglecting gain saturation, on the other, in gene
does not yield sufficiently accurate results for the quantu
limited linewidth.

V. CONCLUSIONS

In this paper, we have studied the quantum-limited lin
width of a good-cavity laser by determining the first-ord
correlation function of the laser field at steady state. It is
decay of this correlation function and not the phase fluct
tions alone that determines coherence properties such
e.g., the visibility of interference fringes. By taking the Fo
rier transform, we obtained the power spectrum of the la
field and derived an analytical expression for the quantu
limited linewidth as a function of the mean photon numb
@see Eq.~3.11!# or of the above-threshold ratio of the las
@see Eq.~3.12!#. Our analytical result is in perfect agreeme
with the results of earlier numerical studies@11#. We explic-
itly demonstrated the effect of a super-Poissonian pho
statistics@see Eq.~3.22!# and showed that near threshold th
linewidth is considerably larger than the standard pha
diffusion result@cf. Eq.~4.2!#, where the intensity is assume
to be constant, or the photon statistics to be Poissonian
spectively. Although in most practical cases the laser li
width is limited by the much larger technical noise and t
intrinsic quantum limit cannot be reached, there exists a
riety of proposals to reach or even go beyond the quan
limit with the help of sophisticated methods@9,10#. Our re-
sults show that for a precise quantum-mechanical descrip
of the laser linewidth it is necessary to directly calculate
first-order correlation function of the laser field, thus impli
itly incorporating intensity fluctuations as well as phase flu
tuations, and to properly take into account the nonlinearity
the gain.
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