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The problem of the quantum-limited or intrinsic linewidth of a good-cavity laser is revisited. Starting from
the Scully-Lamb master equation, we present a fully analytical treatment to determine the correlation function
and the spectrum of the cavity field at steady state. For this purpose, we develop an analytical approximation
method that implicitly incorporates the microscopic fluctuations of both the phase and intensity of the field,
and, in addition, takes full account of the saturation of the nonlinear gain. Our main result is a simple formula
for the quantum-limited linewidth that is valid from near to far above threshold and also includes the presence
of thermal photons. Close to the threshold, the linewidth is twice as large as predicted by the standard
phase-diffusion treatment neglecting intensity fluctuations, and even 50% above threshold the increase is still
considerable. In general, quantum fluctuations of the intensity are present and continue to influence the line-
width as long as the photon-number distribution is not strictly Poissonian. This inherent relationship is dis-
played by a formula relating the linewidth and the Man@ebarameter. More than 100% above treshold the
linewidth is found to be smaller than predicted by the standard treatment, since the simple phase-diffusion
model increasingly overestimates the rate of phase fluctuations by neglecting gain saturation. In the limit of a
very large mean photon number the expected perfectly coherent classical field is obtained.

PACS numbds): 42.50.Ar, 42.55.Ah, 42.50.Lc

[. INTRODUCTION between the gain and loss processes sustains a constant av-
erage field only but, due to the quantum nature of these pro-
When the radiation field is described classically and sponcesses, fluctuations of the field around its mean are induced
taneous emission is neglected in comparison to induce@n a microscopic scale. We note that the resonator losses are
emission, the steady-state linewidth of an ideal single-modéaused by the outcoupling of the field through the output
laser, i.e., of a laser with a perfectly stabilized classical in‘mirror as well as by any additional linear damping process
tensity, has the shape ofé@function. This is due to the fact such as absorption. For good-cavity lasers the combined ef-

that the cavity losses are exactly compensated for by the gaf§ct Of these losses can be described by a single cavity-

and, as a result, the field in the resonator remains constarff@MPping constany that is the sum of the constants referring

From a fully quantized description of the electromagnetict© the individual processes. The usual treatniénts| of the

field, however, it follows that the laser linewidth cannot be!"fNSIC 1aser linewidth rests on the approximation that the
smaller than a certain quantum limit, related to the well-inewidth arises from fluctuations of the phase of the field

known Schawlow-Townes linewidth, which is inversely pro- described by phase diffusion.

. . . A In this paper, we rely on the Scully-Lamb modi8] of the
portional to the laser intensifyl]. This limit has been stud- laser since it is applicable for an arbitrary strond saturation of
ied extensively in the past decadése Refs[2-5] and ! " 1S appil rary g safurat

) ) , the lasing atomic transition. Neglecting intensity fluctua-
references therejnin view of the importance of stable €o- {jons 5 simple analytic expression for the linewidth has been
herent signals for various h|gh-preC|S|on measurements angkrived in this model by means of different meth¢@s 5.
because of an ongoing interest in fundamental problems o, the other hand, the intrinsic laser linewidth can be deter-
quantum optics, renewed attention has been paid recently {@ined exactly by numerically calculating the first-order cor-
the quantum limitation of the laser linewidth. The investiga-relation function of the field and performing the Fourier
tions have been extended to cover bad-cavity la&sa-  transform of the latter. Thus, both the effects of fluctuations
sers without inversiori7], and a chaotic laser cavit)8].  of the phase of the field and of its amplitude, or intensity,
Different systems have been devised in this context to reducespectively, are implicitly taken into account. Investigations
the quantum limit of the linewidth by means of correlatedof this kind have been performed by L[d1] who started
spontaneous emission scheni@s Recently, even theoreti- from the Scully-Lamb master equatid] and found nu-
cal models for light amplification without stimulated emis- merically that near threshold the intrinsic laser linewidth is
sion have been investigated in order to obtain a reduced ulip to twice as large as that given by the phase-diffusion
timate quantum limit of the laser linewid{l.0]. coefficient at the mean photon number.

The quantum-limited laser linewidth is also called the in- In the present paper, we derive an analytical expression
trinsic or natural linewidth of the laser. Its origin, like the for the quantum-limited laser linewidth by means of investi-
origin of the microscopic intensity fluctuations, lies in the gating the two-time first-order correlations of the field. The
fact that in the stationary regime of operation the balancereatment is restricted to single-mode lasers in the good-
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cavity limit, i.e., we make the usual assumption that the

Y
cavity-damping timey ! is long in comparison to all other Tr(@'Lo)=— ETr(aTa), 2.3
relevant time scales. This ensures that the time dependence
of the polarization and population inversion of the gain me- Tr(a'aLo)=—yTr(atao)+ Y, Tro, (2.9

dium can be adiabatically eliminated and the Scully-Lamb o )

model of the laser can be applied. Our approximationfollow from Eg. (2.2). To model the gain in a simple way,
scheme is an extension of an analytical method develope€ assume that excited atoms are injected into the cavity
previously by one of the authors for calculating photon-W'th rater. The atoms are supposed to interact with the field

number variance§12,13. It makes use of the fact that the °N€ after the other during a timethat is negligibly short in

. . . . 71
photon-number distribution of the laser radiation is stronglycomParison to both the cavity-damping time - and the

peaked at a large mean photon number. Therefore, it is ndpean time interval between successive atoms. The effect of a

necessary to study the density-matrix elements of the field ilir:\%le( Stovr\?thet&ee Zilde(;gne?stgi? [jmeag%dvggtr??h‘zi +eT(2i fic
detail but it suffices to directly evaluate the expectation val- pAL): berop P b

. . . . .~ kind of interaction process. For a micromaser, the interaction
ues and correlation _functlons of interest, in the approximag; .~ s given by the transit time of the atoms through the
tion of small fl_uctuat|o_ns. microwave cavity, andM=M(7) has to be obtained in the
The paper is organized as follows. In Sec. Il, we develop,g 4] way[14] from the Jaynes-Cummings Hamiltonifis]

a general approximation method for the determination of thgq, the atom-field interaction by performing the trace with
first-order correlation function of the field in the resonator of jegpect to the atoms. In order to describe a laser, it is as-
a micromaser or laser. The method is applied in Sec. Il tasymed that excited two-level atoms are injected into a reso-
study the laser linewidth. In order to reveal the influence ofhant cavity and interact independently with the field during
intensity fluctuations on the latter, an expression for theime intervals that are determined by the survival tifie*
photon-number variance of the laser in the presence of theof the atoms as effective two-level systems, before they de-
mal photons is also derived in this section. Our results areay into different energy stat¢4]. The superoperatdvl that
discussed in Sec. IV and compared to the standard linewidthas to be used for the laser is found by averadihg) with
formula ensuing from the phase-diffusion approximation. Fi-respect to the interaction timer, according to M
nally, a summary is given in Sec. V. =I'fgM(ne dr [4].

When the injection times of the atoms are uncorrelated,
i.e., for Poissonian pumping, the evolution of the field due to
the combined action of the gain and loss mechanisms obeys

The power spectrum of a radiation field is defined as théhe master equation
Fourier transform of its normalized first-order correlation

Il. GENERAL APPROXIMATION METHOD

function. When the field is a single-mode field with fre- p=r(M—1)p+Lp, (2.9
quency, the steady-state spectrum is given by which has the formal solutiop(t)=V(t)p(0) with
So) iRefoc<af(t)a(0)>se_i(w_V)tdt o1 V(t)=exp{[r(M—1)+L]t}. (2.6)
m Jo (a'a)s ’ ' Due to the Markovian character of the master equation,

the two-time correlation function necessary to determine the

wherea anda’ are the photon annihilation and creation op- fsiﬁgctrum can be easily calculated. For the stationary state we

erators in the interaction picture and the subscsigenotes

the stationary state. We consider a single-mode radiation (a'(t)a(0))s=Tra'V(t)(ap)], 2.7
field contained in a leaky cavity and being sustained by a

gain mechanism. The overall losses of the field mode argvith p=Ilim;_ ..p(t) denoting the steady-state density opera-
supposed to be due to the coupling of the cavity field to thgor. Making use of Eq.(2.6) and taking into account the
environment, modeled by a reservoir in thermal equilibrium.relation(2.3), we obtain from Eq(2.7) the differential equa-
Therefore the damping of the field can be described by th&on

standard master equatign=Lp for its reduced density op-

d
eratorp, where the action of the superoperatois defined a(a*(t)a(O))f [ r[b(t)—1]— %J(aT(t)a(ODS,
as 2.9
y v where we have introduced the abbreviation
Lp=—3(1+ ny)(a'ap—2apa’+pa'a)— Enb(aa’rp .
n[Mao(t)],—
—2a'pa+paa’). (2.2 Ta'Meo(t)] =1 VMo (0)]n- 1
(t)= = 29
(a'(t)a(0))s =

Here, y is the cavity-damping constant, amg denotes the gl Noy—1n(t)
mean number of thermal photons in the cavity. We also note
that for any field operatoes, the relations with
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o(t)=V(t)(ap). (2.10 (Mp)n,m:An,mpn,m+ Bn—l,m—lpn—l,m—lv (2.19

Under steady-state conditions, it is possible to eliminate thevhere the coefficient®\, ., and B, ;,, are different for the
injection rater from Eq. (2.8) by expressing it in terms of cases of a micromaser or a laser, respectively. It then follows
field expectation values and the cavity decay rate. To thishat the steady-state density operator is diagonal in the

end we start from the steady-state relation photon-number representation, as can be easily shown with
. the help of Eqs(2.2) and (2.5. Therefore the expectation
d— - - value of the fieldwhich in the steady state corresponds to its
—n= —Tifa’ -
dtn_nzo Npnn=Trla’'aVp]=0. 21D ime averagevanishes,

By inserting Eq.(2.6) and utilizing Eq.(2.4), we arrive at the (a)s=Tr(ap)=0. (2.17
photon-number balance equation
o o In terms of the amplitude and phase of the expectation value
r[Tr(a'aMp)—n]=y(n—ny), (2.12 of the field,(a)s, Eq.(2.17 requires that for parameter val-

_ _ ues for which the amplitude is fixed, the phase is uniformly
wheren=(a'a)s=Tr(a'ap) is the steady-state mean photon distributed between 0 and72 i.e., all phase values are
number(a’(0)a(0)). equally probable at steady state. We note that this holds for

So far, all equations hold exactly and can be applied tdasers as well as for micromasers unless the atoms are in-
lasers as well as to micromasers with Poissonian pumping. ljected in a definite superposition of their energy states.
order to obtain an analytical expression for the spectrum, itis |n general, a correlation exists between the values of the
necessary to calculate the quantityin Eq. (2.8). For this  field at different times that decays with increasing time dif-
purpose, we use an approximation method that rests on therence. It is this decay that determines the spectrum and the
assumption that the steady-state photon-number distributioihewidth according to Eqg2.1) and(2.14).
in the cavity is strongly peaked at a large mean photon num-

ber n. Since the order of magnitude of the width of the . THE LASER LINEWIDTH
photon-number distribution is determined kAn?, we as- o .
sume that the relations For the case of the laser, the coefficieAts,, andB,, , in
o Eqg. (2.16 can be written a$3-5]
n>1, An?=(n?-n?Y<n (2.13 . L

2/ N2
are fuffilled for the mean photon number and its variance X1+ 5 (n+m)+2x(n—m)
An2. By means of performing an expansion with respect to Anm=1- 1 3.1
suitable parameters in Eq2.9) and replacingo(t) by its 2+ x(n+m+ 2)+§X2(n—m)2

initial value o-(0) in small terms in this expansion, it is pos-
sible to obtain an approximate expression lort will not

depend on time, provided that the leading term in the expa
sion proves to be time-independent. In this case the value of

,and

xV(n+1)(m+1)

b depends only op and on the specific form d¥l, i.e., the B. = 3.2

specific kind of the atom-field interaction process, and we e D v (Mt Mt 2) 4+ 1,

can easily integrate E¢2.8) to obtain x(n+m+2)+ 2x*(n—m)
(a'(t)a(0))s=nelr P~ D=7z, (214 where we introduced the saturation parameger4g2/T'2

with g and I'"! denoting the atom-field coupling constant
and the average lifetime of the atom as a two-level system,
?éspectively. After changing the index of summation appro-
priately, from Eqs(2.9) and(2.16) we obtain

Fourier transformation according to Ed2.1) yields a
Lorentzian steady-state spectrum that is centered at the fr
quencywg= v+ (r/2)Imb. The linewidth(full width at half
maximun) is given by

Aw=y+2r(1—Reb). (2.19 . 21 [x/(1+ x(n+ 1/2))]Vno,_10(t)

As required, the linewidth reduces to the empty-cavity line-  b(t)=1+ — i

width v whenr =0 or whenb=1, i.e., when either no atoms S Jno (t)

are injected at all, or when the atoms do not interact with the A=1 n-in

field andM is equal to the unit operator. Under these condi- (3.3

tions the steady state is, of course, the thermal state with

mean photon number,, or, for n,=0, the vacuum. Here, use has been made of the fact that the terms propor-

We assume that the superoperatbin Eq. (2.5) is due to  tional to y? in Egs. (3.1) and (3.2) can be neglected for
resonant one-photon interaction of the field with a two-levelln—m|=1 since under normal conditions the relatig?
atom, initially in its excited state. In the photon-number rep-<1 [4] is fulfilled. To evaluates, we now apply the approxi-
resentationM has the general form mation
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1 ) expression(3.9) for the factor in front of the square brackets
1 1 X|5+tn=n in Eq. (3.5, keeping only the terms of lowest order im1/
T 1 1- - b (3.4 and y/(1+ xn), respectively, the contributions containing
l+xin+ 5 xn xn the variance cancel and we finally arrive at the laser line-
2 width
Because of the conditiof2.13 the above approximation is
justified for all terms of the sum in the nominator of Eg.
(3.3), since in these terms—n] is of tﬂe ordEr of magnitude Aw= 2+ xn an) (3.1D
of VAn? or smaller, and sincg/(1+ yn)< 1/n for any value 2n 1+xn

of x. The second term in the square brackets of B)

therefore leads to a contribution tothat is small in com-

parison to the time-independent contribution of the first term The quantum origin of the intrinsic laser linewidth is re-
Replacingo,_1q(t) by its initial value o1 ,(0)= ﬁ,n vealed by noticing that along our lines we would have ob-
in this small contribution and taking into account thatta'ned the resuld » .0 if the.terms of the_order i/arising
$*_ n%p, =M+ An?, we obtain after minor algebra a from the commutation relation for the field operators had

time-independent expression for The latter can be substi- been neglected in Eq¢3.3 and (3.6. The two limiting

tuted into Eq.(2.15 to yield the approximative expression casesyn>1 andyn<1 correspond to a laser that is_oper-
a219toy pP P ated far above threshold or near threshold, respectively, as

ry ¥ [1 An? can be seen from E@3.10. Therefore it is apparent that the
=y— | 1— =3 T) (3.5  linewidth becomes inversely proportional to the mean photon
2(1+xn) 1+xn n numbern only near threshold and far above threshold. In the

intermediate regions the dependencerois more compli-
cated.

We note that because of the relatigh10), the linewidth
can be expressed in terms of any three of the four parameters

n,x,y, and « (or r, respectively. By inserting Eq.(3.10

for the laser linewidth.

In the next step, we eliminate the injection ratey mak-
ing use of the photon-number balance equat®i2. For
the case of the laser, the latter takes the form

X - n+1 _ into Eq. (3.1 and thus eliminatingn, we obtain another
> nz T y(nt1)Pnn= =y(n—np). (3.6 useful expression for the linewidth,
Here again Eqg3.1) and(3.2) have been used together with
Eq. (2.1_6), and the index of summatlon has been chan_ged Aw= Yx v 14 Z+2nb . (3.12
appropriately. We proceed by applying the same approxima- 2 a—vy @

tion scheme that led to E43.5 and perform the expansion
1 1 x(1+n— n) Equation(3.11) describes the dependence of the linewidth of
1+x(n+1) = 1++n 1- I~ (37 a given laser on the mean photon number, while Bdl2
X X describes the dependence on the gain or, alternatively, on the

Using the conditior(2.13 and the relatiorj16] above-threshold ratio, defined simply as the normalized gain
aly. Since the linear gain is easily measurable, this latter
nb<ﬁ, (3.9 equation is the most important of the possible expressions for

the intrinsic laser linewidth from the point of view of experi-
we obtain from Eq.(3.6) after simple transformations the mental accessibility.
approximation In order to facilitate later comparison with the standard
result delivered by the phase-diffusion model, we eliminate

x 1+ X 1420 An? 1+ nb x from the linewidth expressio(8.11). Using Eq.(3.10 one
2(1+ xn) B 1+ yn n n more time, we arrive immediately at
(3.9
When only the first term in the square brackets is kept, Eq. +yy oy
(3.9 yields the familiar relation Aw: o - ﬁnb. (3.13
— r 1 1
=c——= ——1/, (3.10
2y x x\v

Although it might seem from this expression thed is pro-

where we have introduced the linear gair=r y/2. How-  portional ton™* in the entire region of laser operation, this is
ever, in order to study the quantum limit of the linewidth, not true since the gain is not constant for a given laser but
also the terms that are small in comparison to the leadingepends on the pumping rate and is connected witta the

term have to be taken into account. When we substitute theelation(3.10. In contrast to this, the cavity decay constant
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v and the saturation parametgrare fixed,y ! being the o 2AN2 -
saturation photon number for the lasing transition between — | —+n|=9[2An?-n(1+2n,)]. (3.18
the atomic energy levels. 1+xn|1+xn

It is interesting to consider two important limiting cases. ) = .
In the far-above-threshold limit, whepgn>1 or a>y, re-  Here again the relation ?=n?+An* has been taken into

spectively, Eqs(3.11)—(3.13 yield the limiting value account, and small contributions have been neglected. Fi-
’ nally, we again make use of the lowest-order photon-number
2 balance equation/(1+ yn) =y [cf. EqQ.(3.10]. Thus, from

Aa)”m=l_(1+ 2n,) = ﬂ(l+ 2n,). (3.14 Eq.(3.18, after simple transformations, we arrive at the rela-
2n 2a tive photon-number variance of the laser

On the other hand, in the vicinity of the threshold, where An?
0<aly—1<1 [17], the linewidth depends on in a differ- o
ent way, described b wy,= (v/n)(1+n,). This difference
can be interpreted to be due to the fact that the contributio€learly, when the thermal photon numbgyis not small in
of intensity fluctuations to the linewidth increases when thecomparison to 1, its influence on the photon-number variance
above-threshold ratio decreases, as we shall show next. of the laser is crucial even far,<n, as is its influence on

In a quantized description of the radiation field, intensitythe intrinsic laser linewidth. Fon,=0, Eq. (3.19 corre-
fluctuations are revealed in an enhancement of the photosponds to the standard result that is known from the literature
number variance as compared to the Poissonian value ¢8—5]. We note that in general the relative strength of the
An?=n that corresponds to a constant intensity. Thereforeintensity fluctuations is characterized by the normalized
we first calculate the steady-state photon-number variancguantity
An? of the laser, taking into account the presence of thermal

1
1+ —|(1+n)=——(1+ny). (3.19
Xxn a—y

photons. To do so we apply an approximation method that <aT2a2>—<aTa>2 n(n—1) Q
has been developed previously by one of the authors in order (a'a)? =T 12%' (3.20
to investigate the photon statistics in saturated multiphoton
atom-field interactiori12,13. We start from the steady-state Here we introduced the Mandél parameter
equation
2
q - L T N LY
a(An2)=n20 (n?-2nn)p, ,=0, (3.15 n xnoooany

where Eq.(3.19 has been applied. Since the conditions

and use the right-hand side of the master equa@oB), to-  (2.13 imply thatQ<n, the intensity fluctuations character-
gether with Eqs(2.2) and (2.16), in order to eXpreS§n,n. ized by Eq.(3.20 are extremell small under these condi-
By taking into account Eq€3.1) and(3.2) and by appropri- tions, and they vanish in the limit— . Therefore, intensity
ately changing the index of summation in the individual fluctuations can be considered to be a true quantum effect in
terms, the resulting equation can be transformed to yield the above-threshold regime of the laser. Nevertheless their
influence on the laser linewidth cannot be neglected, because
n+1)(2n+1-2n) the nonzero value of the latter itself is a small quantum effect
T+ x(n+ 1) —2ny(ny—n) only.

X With the help of Eq.(3.21), the linewidth equations

(3.1)—(3.13 can be finally cast into the form

2L Q0
=0, (3.16 Ao= zﬁ(H 1+Q

S (
2 Pnn| &
n=0

+y[ny(n+1)(2n+1)—(1+ny)n(2n—1)]
(1+np). (3.22

with a=r y/2. The following treatment again relies on the Obviously, close to the threshold, wherdy—1<1 [17]
assumption of a strongly peaked photon-number distributio@nd henceQ>1, the contribution of the intensity fluctua-
subject to the condition&2.13 that imply that the approxi- tions to the intrinsic laser linewidth is the same as that of the
mation(3.7) is valid. When the latter is applied in E(.16), pha_lse quctuation_s. In this case the Iinev_vidth @s twice as large
we obtain a term that is proportional B*_,n%, ,=n°. as it would be without intensity fluctuations, i.e., fQr=0.

Applying the approximation
PPyIng PP IV. DISCUSSION

n®=[n+(n-n)%*~n®+3nAn?, (3.17) Before discussing the analytic results in more detail, it
seems appropriate to say a few words about their range of
which is justified because of the conditio2.13, we arrive  validity, determined by the applicability of our basic assump-
at the equation tions (2.13. Making use of Eq.3.19, the second of the
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inequalities(2.13 can be transformed to yield the condition
[(1+np)al(a—y)]¥2<n¥2 When the laser is operated
e.g., 10% above threshold, i.e., faf y=1.1, this require-
ment can be assumed to be fulfilledhi= 10° which, because
of Eq. (3.10, corresponds tge=10“. At higher above-
threshold ratios our approximation is valid for even smaller
mean photon numbers, or larger valuegofirespectively. In
general, because of Eg®8.10 and(3.19, we can combine
the two inequalities of the conditio(2.13 to yield the re-

quirement 12 14 16 138 2 22 24
above-threshold ratio

normalized linewidth

1
KLy <e—1<>, 4.1) 175
’ X g 15
which has to be fulfilled for the linewidth formuld8.11)— E 125
(3.13 to be valid. Obviously, ify~10"°® andn,<1 as in g 4l
typical continuous-wave gas lasers, our results are already T 075
approximately valid when the laser is operated only more g )
than 1% above threshold, i.e., faf y=1.01. g 03
The linewidth formulag3.11)—(3.13 constitute the main 0.25
result of this paper. They differ from the standard laser line-
width formula 2 3 4 5 6 7 8
above-threshold ratio
yta yxaty vyx vV FIG. 1. Normalized laser linewidth w/(xy) versus the above-
Awpg= in 4 a—y 2T on’ 42 threshold ratioa/y for n,=0. The full line corresponds to our

formula[Eq. (3.12]. For comparison, the curves resulting from the
standard expressiahwyq [dashed line, corresponding to Eg.2)]
and from the approximation wj;,, [dotted line, corresponding to
Eq. (3.14)] are also displayed.

which has been derived far,=0 in the so-called phase-
diffusion model neglecting intensity fluctuatioht8]. Here,
for the last two steps, we used H.10 and the equivalent

relationa = y(1+ xn) in order to transform the standard re- of this underestimation decreases. Figure 1 suggests that the
sult. effects of overestimating phase fluctuations, on the one hand,
In Fig. 1, the linewidth is plotted for different operating and underestimating intensity fluctuations, on the other, just
regimes of the laser. We emphasize that the curves represeompensate approximately when the laser is operated around
ing our result,(3.12, are in perfect agreement with the nu- 100% above threshold.
merical results, found previously for the laser linewidth by |n the following, we shall discuss the reasons for the dis-
computing the two-time correlation function of the fi¢ldl].  crepancy between our result and the standard one in more
From a comparison of Eq4.2) to Eq. (3.13), it is obvious  detail. For this purpose, we first consider the different ap-
that the phase-diffusion result is only a good approximatiorproximation methods that are employed in the literature for
for the linewidth whena/y~2, whereas it underestimates the derivation of Eq(4.2). In the most common approach,
the linewidth closer to the threshold. Higher above thresholdihe master equation of the density operator is transformed
on the other hand, the linewidth is overestimated by(B®)  into an equation for it representation. After changing to
which, for n—o, yields the intensity-independent residual polar coordinates by writing the complex field amplitude as
linewidth Aw= yx/4, instead ofAw=0, to be expected in e=r exp(ip), the exact evolution equation for the qua-
the classical limit. Moreover, we conclude from Fig. 1 thatsiprobability densityP(r,¢) contains derivatives with re-
the linewidth can be approximated yw,,, given by Eq.  spect tor and ¢ to all orders[4]. This is due to the nonlin-
(3.14), provided thata/y=5. The difference between our earity of the underlying master equation, which is revealed
result and the standard one in the far-above-threshold regidny the denominators in Eq63.1) and (3.2). In the standard
shows that the phase-diffusion assumption of the standardeatment it is assumed th& does not change along the
treatment overestimates the contribution of phase fluctuaradial coordinate, corresponding to a neglect of intensity
tions to the linewidth the more the higher above thresholdiuctuations, and that only derivatives up to second order
the laser is operated, i.e., the stronger the effect of the norkave to be taken into account. The latter assumption is nec-
linearity stemming from the gain saturation. On the otheressary to ensure phase diffusion, but it becomes less and less
hand, since intensity fluctuations are neglected, the standajdstifiable as gain saturation, hence nonlinearity of the laser
treatment underestimates the linewidth in the near-thresholdquations, increases. In this case, the simple phase diffusion
regime and corrections are necessary to incorporate the effegtodel can no longer be applied. In addition, mixed terms
of the super-Poissonian photon statistics, as has been empls#so become important in the evolution equationFowhich
sized already by Ly11]. As the above-threshold ratio in- are products of a differential operator acting on the ampli-
creases and the intensity becomes more stabilized, the effetide r and another one acting on the phase. These, in turn,
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lead to cross correlations between the fluctuations of the inpletely neglecting gain saturation, on the other, in general

tensity and the phase. does not yield sufficiently accurate results for the quantum-
In the frame of the photon-number representation of thdimited linewidth.

density operator, the standard result has been derived by ap-

plying the quantum fluctuation-regression theorem and ap- V. CONCLUSIONS

proximately investigating the decay of an initial value of the

field instead of the two-time correlation function. This is | this paper, we have studied the quantum-limited line-

done by means of determining the lowest eigenvalue thafgth of a good-cavity laser by determining the first-order
characterizes a single decay rate for all nondiagonal densitysyrelation function of the laser field at steady state. It is the
matrix elementsp, o1 [4]. In a more precise treatment, & gecay of this correlation function and not the phase fluctua-
single decay rate would have to be determined for the quanons  alone that determines coherence properties such as,
tities ynpnn-1 [19], since the average field follows from e g the visibility of interference fringes. By taking the Fou-
performing the sum over these quantities. Moreover, Withyjer transform, we obtained the power spectrum of the laser
ianeaSing above-threshold ratio the influence of the nonlinfie|d and derived an ana|ytica| expression for the quantum-
earity also increases and therefore the quantum fluctuationmited linewidth as a function of the mean photon number
regression theorem cannot be applied anymore, in generpdee Eq.(3.11)] or of the above-threshold ratio of the laser
[20]. _ . [see Eq(3.12)]. Our analytical result is in perfect agreement
With respect to the Heisenberg-Langevin approach, Weyith the results of earlier numerical studigsl]. We explic-
mention that a nonlinearnumber Langevin equation can be jtly demonstrated the effect of a super-Poissonian photon
derived for the complex field amplitude=r exp(i¢). The  statisticssee Eq(3.22] and showed that near threshold the
coupling of the fluctuations of the real amplitudend the  |inewidth is considerably larger than the standard phase-
phased is clearly obvious from this Langevin equation. The diffusion resulfcf. Eq.(4.2)], where the intensity is assumed
derivation of the phase diffusion result, E@.2), rests on  to pe constant, or the photon statistics to be Poissonian, re-
implicitly making a factorization assumption for expectation spectively. Although in most practical cases the laser line-
values containing the complex field amplitudes in the dejdth is limited by the much larger technical noise and the
nominator and their noise operators in the nomind®r intrinsic quantum limit cannot be reached, there exists a va-
Because of the intensity fluctuations near threshold, and bejety of proposals to reach or even go beyond the quantum
cause of the nonlinearity due to gain saturation far abovmit with the help of sophisticated metho§i8,10]. Our re-
threshold, it would be extremely difficult to go beyond this sults show that for a precise quantum-mechanical description
approximation. of the laser linewidth it is necessary to directly calculate the
We finally conclude that the laser linewidth cannot befirst-order correlation function of the laser field, thus implic-
explained satisfactorily with the help of the simple assumpitly incorporating intensity fluctuations as well as phase fluc-

tion that the intensity is constant and the electric-field phasofyations, and to properly take into account the nonlinearity of
executes a random walk in the complex plane as describe@e gain.

by phase diffusion. In the linear approximation, valid near
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