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Input-output relations in optical cavities: A simple point of view
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In this paper, we present a very simple approach to input-output relations in optical cavities, limiting
ourselves to one- and two-photon states of the field. After field quantization, we derive the nonunitary trans-
formation betweerninside and outputannihilation and creation operators. Then we express the most general
two-photon state generated lyside creation operators, through base states generatedutput creation
operators. After renormalization of coefficients of the inside two-photon state, we calculate the outside photon-
number probability distribution in a general case; then we treat with some detail the single-mode and sym-
metrical cavity case. We found that the statistics of emitted photons may exhibit either quantum or classical
behavior, depending both on source properties and on cavity characteristics.

PACS numbds): 42.50—p, 42.60.Da

[. INTRODUCTION derive simple relations between fields inside and outside a
planar Fabry-Perot cavity. In Sec. Il, we quantize the elec-
The problem of interaction between a pair of atoms in freefromagnetic field generalizing to three dimensions an ap-
space and in a cavity has been the subject of several inveproach presented by Barnet al. [10] and derive the rela-
tigations in past year§1—-6]. Recently, the spontaneous tions between operators defined in the space inside and
emission of a pair of two identical atoms or molecules in aoutside the cavity. Then, in Sec. Ill, we build and study the
planar Fabry-Perot microcavity has been the subject of thestates of the field generated by linear and bilinear forms of
oretical and experimental researfh8]. This paper starts creation operators both inside and outside the cavity and, in
from our attempt to give a simple interpretation to someSec. IV, we calculate the outside probability distributions for
recent experimental resulf8]. Consider a process of spon- these two-photon states. Finally, we summarize our results in
taneous emission of a pair of photons by two distinct mol-Sec. V.
ecules inside a microcavity. If we measure the number of
p_hot(_)ns emitted outside th_e gavity, and if there are not dis- || SPATIAL MODES AND FIELD QUANTIZATION
sipative phenomena, we will find only three possible results:
two photons detected on the right and none on the left, two Now we calculate the appropriate normal modes for quan-
photons detected on the left and none on the right, one phdization of the electromagnetic field. In a traditional ap-
ton detected on the left and one on the right. In this paper, weroach, one first determines the modes of the classical
look for a solution to this question: If we know the distribu- boundary value problem, then one quantizes the field in
tion of the number of photons outside the cavity, how can wéerms of these moddd1-17. An alternative approach has
obtain information about the process of emission that geneleen presented by Barnedt al. [10]. We have generalized
ated the photons without completely solving the problem?his work, restricted to one-dimensional fields, to three-
Our basic idea is to describe the electromagnetic field insiddimensional fields.
the cavity by means of a two-photon state as generally as Consider a pair of lossless infinitesimally thin dielectric
possible; the coefficients of the expansion of this state in &labs az= *+1/2, placed to form a planar Fabry-Perot cavity,
proper basis set depend on the process which generated thg shown in Fig. 1.
state itself. If we project this state on the basis number states We impose appropriate boundary conditi¢a] both on
defined outside the cavity, we obtain directly the probabilityslab 1 and on slab 2, obtaining, respectively,
distribution we look for. Therefore, if we change the above-

mentioned coefficients, we can study how the probability Bry (K)EeRCID =t (K)ap, (k)€ #rR(172)
distribution changes, and by comparison with the measured

distribution we can obtain the values of these coefficients, 414, (k)b (k)e'eL=172),
getting information about the process active inside the cav- 1)
ity. This procedure is not orthodox or fully justified, however - oL (—112) N oL (—112)

the obtained results show good internal consistency. The re- ap)(k)e't 9=ty (k)b (ke

lations of input-output and their connection with the tradi-
tional stochastic methods based on Langevin equations have
been studied by Kibet al.[9]. The aim of the present paper

is to generalize the methods used to describe an optical elénd
ment with two inputs and two outputs, as a beam splitter, to

+r1(K)agy (k)e'er(12),

Cra(K) e R =1, (k) bR, (k)€'#R(12)

*Email address: andrea.aiello@romal.infn.it +r2)\(k)(A:L)\(k)ei¢L(”2), (2
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Mirror 1 Mirror 2 phases generated by field propagation inside the cavity. We
m ) freely choose the zero phases in the middle of the cavity, so
that ¢e(—2)=—¢e(2), where F=R,L and o¢g(2)=
—¢.(2). Then we can put

bra(k) era(k) oL (£1=F512, er(£1/2)==612, 3)
where 6= wl cosé/c is half of the phase gained in a double
R 20 traversal of the cavity18]. From Egs.(1) and (2), we can
ara(k) bra (k) ea(k) express the inside operiﬂcﬁﬁk(k) andb,, (k) and the out-
K put operators, , (k) andcg, (k) in terms of the input opera-
tors ag, (k) andc,, (k). Assuming that input operators sat-
26 isfy canonical commutation rules, it is not difficult to show
apy (k) that the output operatots, (k) andé,_)\(k) satisfy canonical
k, commutation rules too:
=-l/2 =1/2 - . N[ o . : '
#=y #=lf [8un(K).A] (K T=[Ern(K), 85, (K'Y ]= 3008k —K'),
FIG. 1. Schematic representation of a planar Fabry-Perot cavity (4)
with notation for input operatorag, (k),c,,(k), inside operators [aL,\(k),c;A,(k’)]:[CR)\(k),aL\,(k’)]ZO,

bry(K),bL,(K), and output operators, , (k) andcgy (K).
while the intracavity operatorbg, (k) and by, (k) satisfy

by, (k)e'ettD=t, (k)c ,(k)e el anomalous commutation rul¢$0,19
(k)b (k)& o 1 |r (o (0
_ _  [Bra(K), By (K ]= 8300 (k—K') —
wherer;, (k),ti, (k) (i=1,2) are the reflection and transmis- |1=r 1 (K)ra(k)e?|
sion coefficients of thé-dielectric slab and the annihilations . ~ )
operators are defined as in Fig. dr(z) and ¢ (z) are the =[bur(k),bp, (K], ®)

Fon(K)ET1=|r 3, (K)[2]+ 15 (K)e 1= |r, (K)|?]
|1_r1>\(k)r2>\(k)92i§|2
=[bga(k),b/, , (k)]*. (6)

These equations are the three-dimensional generalization of @ggiven in Ref.[10] for one-dimensional fields.
Because of the presence of the cavity, the positive frequency part of the vector potential is now written as

[y (K),bh, (K" )]= 8y, 8(k—k')

1/2
. h
A+(r,t)=fdk(—) > Fk,nexp —iwt), 7
16m3eqw/ 2=12
where
ap (K& (k e T+a (k) e (ko)ek-T, —=<z<I/2
Fa(ki,r) =1 bry(K) € (k. )e™+ by, (k) g (ko)e'*-T,  —1/2<z<I/2 (8)

Cra(K) € (k1) e+ T+ (K) € (k)elk-T,  1/12<z<e.

We note that using different pairs of annihilation operatorsmutation rules are lost for intracavity operators, as shown by
for each region of space delimited by the cavity, as in EqsEgs. (5) and (6). Conversely, if we choose the mode func-
(7) and (8), we obtain a free-field like representation for all tions, for example, as in Refl12], we lose free-field-like
space inside and outside the cavity, but the canonical conrepresentation, but we obtain canonical commutation rules
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Mirror 1 Mirror 2 where the matrix elemenB;;(w) of B(w) are given by

_ _ ti(w)
. s Bii(w)zl_ > al/c)’
dn (w) by (w) & (w) ri(o)ry(w)exp2iol/c)

Bij(w)]i+j=ri(w)expiwl/c)Bjj(w) (13
&(w) by(w) az(w) (i,j=1,2), where we used the same notation as in Ref|.
Similarly, the output operators,(») andi=1,2 are related
L] ] to the input operators by

z=—-1/2 z2=1/2 c(w)=Cw)a(w), (14)

FIG. 2. Schematic representation of a one-dimensional Fabryyhere the matrix elements;;(w)(i,j=1,2) of the unitary
Perot cavity with notation for input operatoag(w),i=1,2, inside matrix C(w) are given by J

operatorsh;(w),i=1,2, and output operators(w),i=1,2.

c B t1(@)ty(w)
for annihilation and creation operators in whole space. It is i(@)= 1-r(w)ry(w)expiol/c)’
easy to show that our result agrees with that of De Martini (15)
et al.[12], indeed, defining Cij(@)]ixj
ag (K)=ay, , :r,-(w)exri—iwl/c)+ri(w)exp[iwl/c+2i argtj(w)]

9 1-r(w)ry(w)expiwl/c)

c(k)=a., This leads to the result

[a(w).a](0")]=[Ci(w),¢] ()]

Fr(k,r)=e(k,\) (U +ULaL), —o<z<+o, (10) =5,8(w—w') (i,j=1,2, (16

by a straightforward calculation, we obtain their result

where now the mode functionis,, are defined differently on while for inside operators the commutation rules are given
the three regions of the space, as shown in Taf#eé8 and by Egs.(9) of Ref.[10]:
(2.7 of Ref.[12]. R -
[bi(),b{(0")]=[B(w)B (0")]jd(w—w")
A. One-dimensional formulation EGij(w)é(w— w'), (17)

In this paper, we are interested in deriving input-output ) )
relations for a single transverse mode of the cavity, havingvhere, for construction,§(w)=G"(w), being Gj;(w)
finite cross-section ared orthogonal to the axis, which, in ~ =[9(w)]ij. Noting that Det5(w)]#0 for t;(w)#0 and
fact, depend upon the geometrical and transmitting properttz(@)#0, we can invert Eq(12) to express the relation
ties of the cavity itself20,21]. Then, following Ref[22], we ~ between inside and output operators as
impose periodic boundary conditions on both directions - 1 ap N
andy, fix a linear polarization parallel to the axis, and w)=Clw)B"(w)b(w)=M(w)b(w), (18)
consider only field excitations transverse to #exis. Then,

defining where
ap,(0,0k,)=c"ay(w) " ! EZ(“’) exp(—iwl/c)
k= |k|=wlc, (11) tz(w) 2lw)
CLA(0,0k,)=cay(w) M= () 1
rlow .
and similarly for the other operators, we obtain a one- ty(w) exp—iwl/c) t* (o)
dimensional representation of the field, exactly like that in ! (19)
Ref.[10], and as shown in Fig. 2. It is not difficult to show
with a straightforward calculation that the inside operators It should be noted that the generic<2 matrix that rep-
bi(w), i=1,2 are related to input operatogs(w) and i resents a beam splitter must baitary to preserve the ca-
=1,2 by the relations nonical bosonic relations of commutation for both input and
output operators; in our cask{(w) is not unitary at all. In
b(w)=B(w)a(w), fact, while output operators,(w) satisfy the canonical rela-

(12)  tions (16), inside operator®;(w) satisfy the relation$17),
)= fi(w) (f=a.b) that is the so-called anomalous relations of commutation. In
©)= folw) IRk this case, using Eq$18) and(19), we obtain
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MM (0)M(0)=G Y w). (200  whereK;(w) e C, then its norm is

Because of the nonunitarity ofM(w), the “photon- L2 .
number” operator is not conserved on a single mode. In fact, <¢|¢>=i2 f do K7 (0)Gjj(0)Kj(w)
from Eqgs.(18)—(20) we obtain )

cl(w)-c(w)=b"(w)- G Hw)-b(w)#b'(w)-b(w). ZfdwKT(w)-g(w)-K(w), (27)
(21)
where the metriclike role of matrig(w) is clear.

Anyway, because we are working with linear transforma- aq pefore, we can define the states generated by the linear
tions, the most general bilinear form in inside creation 0p-44 pilinear forms of output operators as

eratorsBiT(w) is still bilinear in output creation operators
cl(w): ¢/()|0)=[Fi(w);o0ut,

Y1CICL+ Y1C1Ch+ ¥21C5C] + ¥2:L3Ch ¢/ (w)cf(0)]0)=|Fi(w),Fj(w');ouh, (28

= B11bIb]+ B1 010+ Boiblbl+ BobIb. (220 which, using Eq(18), can be written in terms of inside op-
erators:
Because the first of the two forms applied to a vacuum
generates a two-photon state of the electromagnetic field, the 12
equality ensures the same for the second one. Therefore, ifIiFi(w);out>EZ M} (w)|Fi(w);iny,
is possible to associate with the most general two-photon K
state generated by inside operators a state with two photonlg o
physically generateéhside the cavity, then, from the rela- | i(@),Fj(w");0uh
tions betweennput and output operators, we can obtain in- 12
formation about the field outside the cavity, that is the actual EE Mi*k(w)Mﬁ(w')|Fk(w),F|(w’);in>,
object of measurement. In the following section, we study kil
how we can do this.

(29

whereM;;(w)=[M];; . Of course these states are orthonor-
mal.
It is possible to make number states also for a continuous
We define the states generated by the linear and bilinedlistribution of modes, following the method of Bloet al.

forms of inside operators as [22]. For this purpose we define two operat@g») as

lll. STATES OF THE FIELD

gt — r
: =|F; . - .
b (@IO=[F ()i 3 En= [ dont@io), =12, @0
b{(w)b](w")|0)=[Fi(w),Fj(w");in), _ _ _
wheren;(w) are two arbitrary complex functions that satisfy
whereF;(w) andF;(w') are labels that depends, on continu- the normalization condition
ous variablesw,w’ and on discrete variabldsj=1,2. Be-

cause of Eq(17), these states are not orthogonal: j do|p(0)?=1, i=12. (31)

Fi(w);in|Fi(w');in)=G;(w)S(w—v'"), (29
il IFi(wiin) =Gy (w) & ) The construction of number states is more problematic for
and inside operators. As before, we define

(Fi(@1),Fj(,);in|F(w3),F|(wy);in)
=Gi(01)Gji(w3) (w1~ w3) (W~ w,)
+G G. S(wo— S(wn— (25 whereé;(w) are two complex arbitrary functions that can be
1(01)Gji(@2) 8w~ wg) w1~ wa). (29 chosen to satisfy the four conditions

From Egs.(24) and (25) we note that anomalous commuta-
tion rules, represented by thex2 Hermitian matrixG(w), [Bi(&) Q_T(g)]:f do & (0)Gii(w)&(w)=T"; (&)
form a metric in the two-dimensional Hilbert space gener- ner ' R e
ated by inside operatofs(w). For example, if we write the
most general one-photon state createdrisjde operators as

éi<§)=de§r<w>6i(w>, i=12, (32

(33

where T'j;(§) is a given matrix. Suppose we s&t;(¢)

2 = ¢, . Becausd’(¢) is Hermitian by construction, E¢33)

| )= Z j do K;(0)|Fi(w);in), (26) corresponds to @2 conditions, two real and a complex one,
i=1 which the two complex arbitrary functiong(w)(i=1,2)
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must satisfy. Thet; modules can be determined imposing functions singz/c) and cosgz/c) and, as a consequence, the

[;i(§)=1. In fact, given an arbitrary functioé(w) such as free-field-like representation will be lost.
However, it is still possible to write the most general two-

J dw|€(m)|2:1, (34) photon state generated by inside operatp(®) as
if Gii(w)#0, that is if [r,(w)r(w)|?+1, we can write L2 _
gi(wl)I as |¢>:i2j dwf do'Kjj(w,0")|Fi(),Fj(o');in),
_ (43
gi(w):MeWi(w), i=1,2, (35)
i(@) where, by construction, the matriX(w,w’) of elements

where ¢,(w) is an arbitrary phase, and we can obtain Kii (@, @), satisfy

I';i(§)=1. Phases are still arbitrary, but in off-diagonal ele-
ments ofI'(¢) there is only the phase difference between Klw,0)=K (o', ), (44)
&1(w) andé,(w) that is not sufficient, by itself, to satisfy the

two requested conditions. In fact, you can see that onl3(Nhere
proper linear combinations of inside operators can generatE
canonical commutation relations. Consider the unitary matrix
U(w) that makegj(w) diagonal

“T” indicates transposition. In fact, the matrix
(w,w") is fixed by the emission process inside the cauvity.

In a simpler way, a two-photon state generatedbiput
operatorg30) can be written as

U (0)-G(0)-Uw)=D(w), (36)
where the diagonal matrixD(w) has elementsD;;(w) [Fa(7),Fo(n);0ub= (2" %Cl(5)Cl(5)|0)
=\i(®)dj, \(w), 1=1,2 being the twdj(w)'s eigenval-
ues =(271/2)5abj de do' 73(w) ny(w’)
Ni(@)=G1i(@)—(—1)'|Gix(@)], i=12. (37) X|Fa(w),Fp(w');oub), (45)

Then if we define the operatots(w) as
where @,b=1,2). In the next section, we will show how to

d(w)=UT(0)b(w), (38)  express this state by inside states.

you can see that they satisfy the following “quasicanonical”
relations: IV. TWO-PHOTON STATES PROBABILITY

DISTRIBUTIONS
3 AR B N
[di(@).dj(0")]=Ai(w) 80— o). (39 It is well known that the inverse of photon mean flight

If we want to obtain fully canonical relations it is necessary!ime in @ planar Fabry-Perot cavity is given (3]

to break the unitarity of the relation between operath(s)
and b;(w) introducing the matrixS(w) with elementsE;; _cl-ry(w)ry(w)l

=(\;) Y25, and to define the operatol§ (w) as Year= | 2|11 ()r ()| Y2’ (46)
b'(w)=E&(w)d(w). (40) . . _
Now we consider the spontaneous emission of a pair of two
In fact an easy calculation shows that identical atoms or molecules within the microca\ig]. Let
vatom D€ the single atomic decay rate. In the atom-dominate
[Bi’(w).f)j’f(w’)]=5ij5(w—w’), (41  decay regime(that is, whenyca< vaom [23]), for 1/yaom
<t<1/vy.a, the electromagnetic field can be found in a state
where, using Eq(40), similar to |¢). If the matrix M(w) should be unitary, we

should calculate easily, as in the quantum theory of a lossless
beamsplittef24], the probability distribution of photon num-
ber states outside the cavity. This is not our case, however,
we will see that after renormalization of the state coef-

—(—1)e ¥, (w)] j=1,2, (42) ficientsK(w,w’), itis possible to obtain significant results.

For this, we calculate the probability amplitude to find the

and ¢(w)=ard G,,(w)] is the relative phase of the two electromagnetic field, represented by the staewithin the
components olG(w) eigenvectors. Of course by means of cavity, in the outside state|F,(7),Fp(7);0ut), (a,b
these operators we could make orthonormal input number 1,2). It is simple to show with the use of EqR9) and
states but this would result in their being associated with thé43)—(45), whose result is

B/ ()= ———— [, ()
. V2) ()
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(Fa(7),Fp(n);ou ) o o
Kz + Eyyri(wy e ¥ery (wy)eivetle 4
:2(271/2)53bJ’ dwj dw’na(a))nb(a)/) I _ j
X[M(w)-G(0) K(w,0') GT(0") MT(0")]ab. 1 1
@7 Kurra(w)e™?e 4+ Koory (w;)e™rl/ + —

By a lengthy but straightforward calculation, it is simple to U L L i

show that
[M(w) G(0) K(w,0")-GT(0") MT(0')]ap .
K]l + Knrl(wl)e“"/crl(wz)e“2’/° +
Epab(wvw’)v (48) —
where we have defined thex2 matrix element® ,p(w,»")
as 1 ? 1
Pi(w,0")=Ly(w)Li(w")[Kit+ Kypay(w)a (o) Kigry (w2)e2/e 4 Koyry (wy)eirtle . N
L § L L
+Kpai(o') +Kaag(w)],
FIG. 3. Diagrams illustrating the probability amplitudé=-
Pifw,w')=Ly(w)Li(w)[Kija( o)+ Kyai(w) ported in th_e left coIL_Jm); relgt_ive to _Eq. (52). Here,
ri(w) [ry(w)] is the reflection coefficient of mirror ¢at the lefy [2
+ Kot Ky (w)az(w')], (at the right]. The photon of angular frequeney; is always plot-

(49 ted higher than the photon of angular frequengy

Po(w,w")=Li(w)Ly(w")[Kypai(w")+Kpa(w) (@)

+ Kot Kppas(w)ay(0')], ﬁi(w)zm- ai(w)=ri(w)e'“’e, =12 (50
Podw,0')=L1(0) Lo )[KytKijas(w)as(w') Now we evaluate the rati®,,(R,L|R,R) between the prob-
% ! 2 2n T 2 ability P,,(R,L) of observing one photon behind mirror 2
+Koraz(o0') +Kppas(w)], and one photon behind mirror(toincidencg, and the prob-
ability P, (R,R) of observing two photons behind mirror 2.
being Using Eqgs.(47) we obtain
2
* *
Pou(R,L) (F4( 77),F2(77)§0U11 z,//) 2 f dwlf dwy 77 (01) 75 (02) Pl @1, 03)
ROU[(R1L|R!R): = 2 = . (51)
POUI(R’R) <F1( 77)§0U11 ¢> —1/2 * *
2 dw; | deyni(@1) 7] (@2)P1i(w;,0;)
We now illustrate the meaning of this formula. We start writing explicitly the value of the RfjoP4:
Pidwg,0) Kyl p(@2)€ 2%+ Kool 1 (1)1 + Ko+ Kof 1 (01)€' 1% 5(wp) €l 2/ 52

Pll(wl ' (1)2) K11+ K22I’ 1(a)1)ei‘”1llcl' 1(a)2)ei“’2”°+ Klzr 1(w2)ei‘”2”°+ K21r 1(w1)ei“’1llc .

This expression is only apparently complicated, but eactwith angular frequency between, and w;+dw;, and one
term at numerator and denominator is susceptible to a clegghoton on modg with angular frequency between, and
physical interpretation. We assume thgf(wq,w,) is pro-  w,+dw,. At this point it is easy to see how each term that
portional to the probability amplitude that a pair of excited appears in the rati¢52) admits a clear physical interpreta-
molecules within the cavity emit spontaneously one photortion.

with angular frequency, on modei, and one photon with With the help of Fig. 3 we can see, e.g., that the first term
angular frequencyv, on modej, the proportionality factor at numerator, corresponding to the first diagrams of the sec-
being the same for all coefficients;;(w,,w,). More pre- ond row, give us the probability amplitude of simultaneous
cisely, we assume thdﬂ(ij(wl,wz)|2dwldw2 is propor- emission of a pair of photons toward the right, and that the
tional to the emission probability of one photon on made photon of angular frequenay; is detected behind the mirror
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FIG. 4. Plots ofR, for different range of val-
ues. In(a) the plane part corresponds to values of
Ro greater than 2.5.

(@) 0<Ry<2.5 (b) 0 < Ry < 50
2, while the photon of angular frequenay, is detected Ry
behind the mirror 1 after reflection on the mirror 2. The Pout(L,L)=m,

transmission coefficients and all contributions generated by

multiple reflections on the cavity mirrors are computed i”towhere, for exampleP,,(R,R) is the normalized probability

terms L(w1) £1(w;), which we have simplified into EQ. {4 find two photons outside the cavity behind mirror 2 of the
(52). All the other terms in Eq(52) admit analog interpreta- cavity.

tion shown by the remaining diagrams in Fig. 5.
Of course, for reasons of internal consistency of the

theory, we need to renormalize the coefficiekis(w, ,w,)
imposing Now we suppose that the field-mode spectrum is dis-

cretized by an appropriate proced(i22], furthermore we fix
12 the attention on a single mode of assigned angular frequency
Z dwlf dw2|Kij(wl,w2)|2=1. (53 . The commutation relations for creation and annihilation
'l operators defined on this discrete set of modes are written as

A. Single mode

At this point it is easy to obtain the correct probability dis- [a,a']1=[c;,cl1=6, (57)
tributions. If we define v R
AN S

ROUKR,L|R,R)ER1, [biybj]_Gij- (58)
B (54) Now we can have two photons on a single discrete mode,
Rou( R.LIL,L)=R,, therefore we define the states generated by bilinear and qua-

) o - dratic forms of inside and output operators as
and we impose the normalization condition

fi,f;iny=(2"Y3%ib/bT0), 59
Pou( R.R) + Pou R,L)+ Po(L,L)=1, (55) Ifi.fj5im=(2"5%bib;10) (59
and
the desired distributions are then obtained after some algebra
in the form i, f ;out>5(2*1/2)5ij&jaj’r|o>
RZ 1,2
Pout(RvR):m: (56) :(2*1’2)‘%'% (2797 MMEMA [, 5in),
RiR, (60)
PoulRL)= 5V 55 . .
Ri+Ra+RiR, respectively. It is easy to see that

FIG. 5. Plots ofR., for different range of val-
ues. In(a) the plane part corresponds to values of
R.. greater than 1.

@O0<R, <1 (b) 0 <R, <50
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(fi . jin|fy,fin)= (2—1/2)5ij+5k|((3ik(3j| +GyGj)- correspondence between the diagram of Fig. 3 and terms into
(61  EQq.(68). This factor arises since we are not using an ortho-

] normal base and therefore a mixing between normalization

Exactly as before, we define the most general two-photoiyf states with a photon on mode and two photons on mode is

state created by inside operators as produced. Indeed, we will see in the next section that by
12 working with single-photon states that admit only a single
=S K lf fociny, 62 normalization factor, it is possible to obtain a direct associa-

lwy=2 Kyl fi.fim) (62

tion between diagrams and formulas.
Now we calculate Eq(68) for some particular value of

whereC=KT, and we calculate the state ). Let |4) coincide with each of the three states
s — of the orthonormal base defined in the Appendix. It can
(fa.fpioufy)=2(27)%(M-G-K-G'- M )abv(63) readily be shown that fofa) |#)=|n..)
where we have defined the matiix as 1 1
- CRL:iE: Crr= CLLZE:Rout(RvHRaR):Za
[K]ij=Kij=(2""H%iK; . (64) (69)

Therefore, Eq.(49) is formally still valid if we make the and for(b) [¢)=[no)
substitutionK ; — K ; /+/2.
From this point we consider the case of a symmetrical

cavity, that is we assume;(w)=r,(w)=r(w) andty(w) CrL=0 CRR:—CLLZ—iﬁRout(R LIR,R)=0.

=t,(w)=t(w). For simplicity, we choose the phase of J2

transmission and reflection coefficients as (70)
t(w)=iVI-R and r(w)=-+R, (65 It is remarkable that for these states having high symmetry,
. ) _ Roudoes not depend either on mirrors reflectivity, nor on the

and redefine, into a more expressive form: phasewl/c. Following our interpretative scheme, E@9)

shows that when the emission probability of the pair of pho-
(66) tons on the same way or on the opposite way is the same,
that is|Cg|?=|Crrl?+|CLL|?=1/2, the probability of ob-
Then in discrete mode representation, the normalization corserving a coincidence is twice that of the probability of not
ditions can be written as observing. Instead when the two photons are emitted along a
common way, but with pair emission probability amplitude
toward right and left that differs for a sign, E¢70), the
|Crel*+[Crol*+]CyL?=1. (67)  probability of observing a coincidence is zero. But within
our interpretative scheme, which requires no distinction be-
tween left and right for emission of the pair of the photons in
a symmetrical cavity, it is hard to think that this state really
exists. Therefore a statgy) havingCrg# C, is difficult to

Ki1=Crr» Kypp=Cp, Kipp+Ky=2K;,=Cpg,.

Finally, we can write

Rau RLIRR) accept.
\/E(CRR+ Crprel“/c+ CRL(1+r2e2i“’”°)‘2 From this point we consider only the caGggr=C,, and
= , _ . we define
Crrt C r2e2el/e+ \/ECRLrelwI/c ’
(68)
| | R =g (71
We note the presence of factog®, which we have intro- CrL :

duced because of different normalization required by the dis-
crete mode spectrum. Because of them, there is no exadhen using Eq(71), Eq. (68) can be written as

8R2z2— 4+/2R[cog x+Y)+ Rcogx—Yy)]z+ 1+ 2R cos X+ R?

Rou R.LIRR) = !
ol R L ™ (17 2Rcos 2+ R 72— 2 2R cosx—y) + Rcosx+ y) |2+ 2R

(72)
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where we have used the following notation:

z=({|. (73
This expression seems still rather complicated, but we ca
learn something from it considering the limit cas€gg
=0&2z=0 andCg =0&z=0x:

x=wllc, y=argl,

. 1+2Rcos %+ R?
lim Rou( R,LIR,R) = =Ry,
z—0 2R

(74)
lim Rou(R,L|R,R) 8’ R
Im ) R)= =Ko -
B 1+ 2R cos X+ R2

The first of Eqs(74) is shown in Fig. 4. From Fig. ®), we
can see that whelR—0, Ry— that is, from Eq.(68),
Pou{R,R)—0. Indeed, if in the absence of the cavity the
two photons are emitted, one toward the right and one to

PHYSICAL REVIEW A 62 063813

FIG. 6. Four plots ofR,, calculated for a
symmetrical cavityR=0.999 and several values
of z. The dependence frof for R=0.8 is neg-
ligible and not reported in the figure.

coincidence in absence of a cavity that mixes the directions.
From the graph it is evident that whd® increments, the
reflections increment too, and the coincidence probability
arises from the zero value. In Fig(®, the behavior ofR., is
8hown forRr..<50. We note that wher=(2n+1)#7/2 and
R—1, we haveR,— o, that is the probability of observing
a pair of photons from a side of the cavity goes to zero.
Indeed the second and the third diagram of Fig. 3 contribute
to R.. but the third diagram, giving the probability of obser-
vation of two parallel photons, goes to zero for(2n
+1)m/2 andR=1 because of destructive interference be-
tweenCgrgandC, Re?'®¢. Therefore fozs>1 and realistic
reflectivity, the probability of observing coincidence is al-
ways bigger than the probability of observing two photons
on the same side of the cauvity.

On the other hand, we have also seen that for
—0, Ryu Can be less then 1 fdR—1 and this is certainly
the most interesting case to investigate. In Fig. 6, show the

ward the left, it is impossible to detect two from the samebehavior of Eq.(72), as a function ofx andy, for several

side. WhenR=0.8, R, is practically independent frorR
while it presents an oscillation of period in x. Observing
Fig. 4(a), it is evident that wheiR=0.5, near the resonance
x=1 we haveRy=2, while nearx=(2n+1)x/2, n inte-
ger, there is a region for whicRq<<1. This loss of coinci-

valuesz andR=0.999. ForR=0.8, the dependence froR

is negligible. In Fig. 7, we show the contour plot &f,,
between 0 and 1. From this figure it is evident that the dark
zones, corresponding t8,,<1, have an extension gradu-
ally decreasing forz increasing, until they disappear far

dence is due to the fact that only the first and the last pairs of=1 (not shown in Fig. V. It is interesting to note that the

diagrams in Fig. 3 contribute t&,, but in the first, which
gives the probability amplitude of observing the coincidence
the two amplitudeCg, and Cgr Re?'“¢ interfere destruc-
tively for x=(2n+1)#/2 andR=1, causing zero total am-
plitude. The second of Eg$74) is shown in Fig. Ba) for 0

probability of observing two photons on one side of the cav-
ity is bigger than coincidence probability, when within the
cavity the two photons are emitted along the opposite way.
Indeed only the third and fourth diagrams in Fig. 3 contribute
to Py (R,R), but while in the fourth diagram the two am-

<Ro<1, the plane part of the graph corresponds to theplitudes are always in phase, in the third diagram the two
larger than 1 values. First of all we observe an obvious factamplitudesCgg and C, Re? !¢ can have opposite phases

for R=0, we haveR.=0, that is if the two photons are

and interfere destructively fdR~1. Then if[Crg>|Cgi/,

emitted both on the same way, it is impossible to observe #at is if z>1, either the third or the fourth diagram give
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o

o

»

w

~

"

1] o 1 2 3 4 5 6
2=0.2 FIG. 7. Contour plot of corresponding plot in
) Fig. 6, shows for value®,, between 0 and 1. It
is evident that forz increasing, the zone on the
6 o @ A planex-y in which R,,<1 is decreasing.

z=0.6 z=0.8

negligible contributions an®,,(R,R)~0. Instead if|Cg/| ! . g .
>|Cgrrl (z<1), the fourth diagram gives a consistent con- Z+="5g€ Y, Zi=-FeV. (77)
tribution to P,( R,R) and at the same time the first diagram
(proportional toCg, but in the condition of destructive in-
terferencg gives a negligible contribution t8,(R,L).
Another interesting case is that of the resonance in a

Only for y=7(mod 27) we can have a real positive root:

2Fz—1\2

broad sense, that iel/c==N, with N integer: forN odd RouI(RaL|RvR)|y=7r:( (79
there is resonance in a strict sense whileNoeven there is z—F
anti-resonance. In this case E@2) can be simplified and
written as In Fig. 8b), a plot of Eq.(78) is shown for values of
near to 1/F; from this plot we can see in detail the “jump”
4F272— (—1)N4Fzcosy + 1 from the pole to zero. From Fig.(®, we can observe that
Roul R,LIR,R) = , (75  for R—1 the pole inF and the zero in 1R tend to the

2_(_1\N 2
z°—(=1)"2Fzcosy+F common value 12 compensating each other, so thag

=2. The distance between the pole and zero decreases as
~(1-R)? and already foR=0.9 is less than a part in a
hundred. It is reasonable to think that for higher and more
realistic reflectivity, it is not possible to generate really a

) . tate so well-defined to discriminate between the pole and
is always greater than 1 exce_pt for a small region centere ero. Furthermore the really physical situation is always de-
aroundy = andz= 1/2F that disappears fR—1. We can  gojh0q by a continuous superposition of modes, therefore we
always V\./rlte'Eq..(75) as a ratio between two second degreethinkthat the effective value dRou(R,L|R,R)],_ is ~2 in
polynomials inz all of planey-z. Lastly, we note that whe@rzr=0 or Cy,

=0, we have, respectively,

where F=\2R/(1+R). In Fig. 8a), a plot of Eq.(75) is
shown as a function af andy, for R=0.5 andN odd. The
analog plot foN even can be obtained translating the plot by
an amountr along they axis. It is evident that the rati®

(z-z3)(z-2")

RouRLIRR)=4F2——8»———|
(REIRR) (z-28)(z—22)

(76)

1 R-1
lim Rou( R,L|IR,R) = - — 2, (79
where we have defined the roots of the two polynomials as z—0 F
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P 15 z 2.5 3 FIG. 8. (a) Plot of Eq.(75) for R=0.5. This is
F WEF o not a realistic value, but we choose it to show in
a clear manner the various quantitiéb) The
(a) (b) same as infa) for y= 7r; the vertical straight lines

passing through the pole Fand through zero in

2.5 257 1/2F. (c¢) The same that irfa) for z=1/2F. (d)
2 “ ’a,‘ Plot of 1/ZF (up) andF (down), as function of the
1.8 180 5 adl reflectivity R.
Rou 1 e
0.5 0.5 //"’
F
] o
-0.5 -0.5
2] 1 2 3 4 5 6 o 0.2 0.4 0.6 0.8 1
¥ R
(© @
. R—1 discrete-mode representation, the interpretation of the results
lim Reu(R,L|R,R)=4F2 — 2, (80) P b

was “contaminated” from factors/2 generated by mixing
between normalization of states with one photon per mode
From Eqs.(79) and (80) we deduce that in these limits it is (e.g.,|1,1)) and two photons per mode.g.,|2,0)). Now we
physically indifferent if the two photons are emitted in the will see that when working with one-photon states this mix-
same or in the opposite way within the cavity. We haveing never appears. In the most general form, the one-photon
already obtained the resuR,,=2, when|¢)=|n.) inde-  state|¢) generated by inside operators can be written as
pendently fromR, corresponding to equal probability of

emission of a pair of photons along the same way or the 2

opposite way. In the present case, we have the same result |py=> | doKi(w)|Fi(w);in), (83)

for wl/c=mN andR~1. This is consistent with the fact that i=1

in the limit of total reflectivity in which all frequencies sat-

isfy the resonance(in a broad sensge conditions w,

=nmwc/l, n integer, it is impossible to speak of direction while the analogous state generated by output operators is
(left or right) of emission of a photon, because the two coun-given by

terpropagating waves that constitute a stationary wave within

the cavity have exactly the same weight. Finally, we note

Z—®

that sinceP, (R,R)=Py,{L,L), from Eqgs (55 and (56) -
follows, > |Fa(77);OUt>:C;(77)|O>:f dw 7,(w)|F4(w);ou.
(84)
Pou(R L):ﬂ Pou( R,R) = (81)
out ™ 2+ Rout’ out 2+ Rout The probability amplitude to find the electromagnetic field,
represented by the state) within the cavity, in the state
Then whenR,,=2, we have |Fa(7);0ub), is
1 1
Pou(R,L)= X Pou(R,R)= 1 (82 5
Famioutd)=3, [ do r(@IM@)G(@) k(o).
B. Single-photon states (85)

In this section, we started with investigation of two-
photon states, because we were interested in the leak of sym-
metry in the photon-number probability distributions. Never-The ratio between the probabiliti?,,(R) of observing a
theless the study of one-photon states is not void of interesphoton behind mirror 2 and the probabiliB, (L) of ob-
Indeed in the previous subsection we have shown that iserving a photon behind mirror 1 is equal to
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2

PoulR) [ {Fi(7);0ut )

Rout(R“-): Pou(L) N <F2( U);qu ¢>

2

fdw 75 () Lo(0)[Cr(®)+CL(w)r(w)e' ]

i ’ (86)
fdw 7% (0) L1(0)[CL(®)+ Cr(w)r(w)e' ]

where we have redefineK(w)=Cgr(w) and Ky(w) calculated and measured probability distribution. The
=C, (w). Exactly as in Sec. VA, if we assume method is a natural extension to nonunitary transformation,
Cr(w)(C.(w)) proportional to the probability amplitude of the usual method employed, e.g., in the quantum theory of
that an active medium within the cavity emits a photon ofthe lossless beamsplittd24]. The key role of this analysis
angular frequencw toward the righ{left), each of the terms is played by theR,(R,L|R,R) function defined in Eq(51),
into Eq.(86) admits a clear physical interpretation illustrated which is the ratio between the probability of detecting a
in Fig. 9. single photon behind each mirror’s cavity, and the probabil-
Since in discrete mode representatiépiiny=b'|0), itis 1ty of detecting two photons behind a single mirror’s cavity.
evident that passing to the discrete case, each term betwe&RCh term of this expression has a straightforward physical
the square brackets in E¢86) remain formally unchanged, counterpart, as shown in Fig. 3. Using the single-mode ver-

without any /2 factor. sion of Eq.(51), we found both Bose-Einsteir(, = 1) and
For sake of consistency now we must impose Maxwell-Boltzmann R~ 2) partition statistics of photons
emitted, varying source and cavity characteristics, as shown
in Figs. 4-7.
f do{|Cr(w)[*+|CL(w)[?}=1. (87)
ACKNOWLEDGMENTS
In this case the normalized probabilitiBg,( R) andP (L) ) ) ) .
are given by | am grateful to Daniele Fargion for helpful discussions
and encouragement, and to Elena Cianci and Fabio Palmieri
RoulRIL) 1 for their help in writing the manuscript. A special thanks to
Poul(R) = T Ry(RIL)” PoulL) = TF Rog(RID) Giovanni Di Giuseppe for reading the manuscript.
u ou
(88)
APPENDIX
V. SUMMARY

In Sec. IV, we introduced the three orthonormal states

We have derived some simple relations for an electromag=) and [no) without derivation. This will be done in this
netic field inside and outside an optical cavity, using a non&PPendix. _ . _
unitary transformation between inside and output operators, W€ have rewritten the commutation relation for operators
The convenience of this approach lies in the fact that we d®;(w) and b,(w) in discrete-mode representation and the
not need to know any details of internal processes that gersymmetrical cavity as
erate the two photons, to calculate the photon-number prob-
ability (_jistributi_on out;ide the cavity. Conversely, we can [Bz(w),f,;(w)]:[Bl(w),ﬁi(w)]EA(w)’
obtain information on internal processes, by comparing the

(A1)
noon 1t [D2(w),bi(0)]1=[b1(w),bl(0)]*=p(w)A(w),
C Cp(w)r (w)etle |—
rlw) + Cuwin () * where we have defined
1-R?
_ _ _ _ Alw)= ,
1-2Rcog2wl/c)+R?
Cr(w)rs(w)ee + Cp(w) + — (AZ)

R
p(w)E—Z%COS(wUC).
FIG. 9. Diagrams illustrating the probability amplitudés-
ported in the left column relative to Eg.(86). Here, ri(w)
[r.(w)] is the reflection coefficient of mirror (at the lefy [2 (atthe  Using a slightly different notation with respect to Sec. VA,
right)]. we define

063813-12



INPUT-OUTPUT RELATIONS IN OPTICA. . .. PHYSICAL REVIEW A 62 063813

(b)) (b))~

IR, Liiny= —— T T |0y, R+L=2, (A3) s 5 5 S
where again the factorR!£!) ~*2 is due to the possible S D
.. S | S StS (A9)

presence of two photons on a single mode. Of course, since

b, and b} does not commute, these kets do not form anNow consider the generic matri%{«), (aeR) given by
orthonormal base, but they are however linearly independent. Ma) =S+ a?S,+ 2aS,. (AL0)

Indeed if we define
It is characterized by

DefMa)]=(1-a?)3, T{Ma)]=3+a? (All)

we can calculate, using Eg@Al) and (A2), If we indicate with A\g,\. N(a)’s eigenvalues and with
ny,n- the corresponding eigenvectors, we can write
1 V2p p?

G(R.LR',L')=A% \2p 1+p* \2p|. (A5)

(R,L;in|R',Liny=G(R,L;R' L), (A4)

n+=%(1,\/§,1) Ai=(1+a)?

2 1
P \/EP 1 n0=ﬁ(—1,0,1) )\o=(l—a2),

Therefore the kets defined in EGA3) are linearly indepen-

dent, their Gram being determinant positj\&s: 1
n,=§(1,—ﬁ,1) Ao=(1-a)? (A12)
DefG]=A%1-p?)3=0. (AB)
Using Eq.(A9), it is easy to see that
By diagonalization ofG, after some algebra we obtain the a+pB
orthonormal base we look for Ma)N(B)=(1+ aﬁ)zA{ 17 ad)" (A13)

1 ) 1 ) 1 _ Since M(0)= S, is the identity matrix, it is clear that the
In.)= §|2,0i'”>+ E|1’1?'n>+ §|0,2;|n>, inverse of V() is still a matrix of the form(A10). Indeed
putting 8= — «a into Eq. (A13), we obtain

Ma)M-a)=(1-a*?S,, (A14)
Ing)=— \/_|2 ,0;in) + \/_|0 ,2;in), (A7) that is
1
Ha)=——SM-a). Al5
|n>=%|2,0;in)—%|l,1;in>+%|0,2;in). . (1—a2)2N( @ (A1)
Finally, from Eq.(A5) we get
Note on matrix G G=A2Mp). (A16)

_ The form of the matrixG is particular and justifies this As a curiosity, we note that in two dimensions the matrices
little note. LetSy, S;, andS, from the following 3x3 ma-  Afa) that satisfy the algebréA13) are given by

trix:
Ma)=og+aoq, (A17)

1 00 0 0 1
whereo,=1 ando is the first of the Pauli matricgq26], p.
$=({0 1 0], §={0 1 0], 160). It is easy to show that
0 0 1 1 00

DefMa)]=1—a? TiMa)]=2. (A18)

The eigenvaluea . and the corresponding eigenvectors
01 0 are given by
=11 0 1J. (A8) 1
01 0 n+—§(1,1) AN=1+a,
(A19)
It can be readily shown that they satisfy the following mul- 1 _
e : n_=-(-11) rx_=1-a.
tiplication table: 2
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