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Input-output relations in optical cavities: A simple point of view

Andrea Aiello*
Dipartimento di Fisica, Universita` degli Studi di Roma ‘‘La Sapienza,’’ Piazzale A. Moro 2, 00185 Rome, Italy
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In this paper, we present a very simple approach to input-output relations in optical cavities, limiting
ourselves to one- and two-photon states of the field. After field quantization, we derive the nonunitary trans-
formation betweeninside and output annihilation and creation operators. Then we express the most general
two-photon state generated byinside creation operators, through base states generated byoutput creation
operators. After renormalization of coefficients of the inside two-photon state, we calculate the outside photon-
number probability distribution in a general case; then we treat with some detail the single-mode and sym-
metrical cavity case. We found that the statistics of emitted photons may exhibit either quantum or classical
behavior, depending both on source properties and on cavity characteristics.

PACS number~s!: 42.50.2p, 42.60.Da
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I. INTRODUCTION

The problem of interaction between a pair of atoms in f
space and in a cavity has been the subject of several in
tigations in past years@1–6#. Recently, the spontaneou
emission of a pair of two identical atoms or molecules in
planar Fabry-Perot microcavity has been the subject of
oretical and experimental research@7,8#. This paper starts
from our attempt to give a simple interpretation to som
recent experimental results@8#. Consider a process of spon
taneous emission of a pair of photons by two distinct m
ecules inside a microcavity. If we measure the number
photons emitted outside the cavity, and if there are not
sipative phenomena, we will find only three possible resu
two photons detected on the right and none on the left,
photons detected on the left and none on the right, one p
ton detected on the left and one on the right. In this paper,
look for a solution to this question: If we know the distrib
tion of the number of photons outside the cavity, how can
obtain information about the process of emission that ge
ated the photons without completely solving the proble
Our basic idea is to describe the electromagnetic field ins
the cavity by means of a two-photon state as generally
possible; the coefficients of the expansion of this state i
proper basis set depend on the process which generate
state itself. If we project this state on the basis number st
defined outside the cavity, we obtain directly the probabi
distribution we look for. Therefore, if we change the abov
mentioned coefficients, we can study how the probabi
distribution changes, and by comparison with the measu
distribution we can obtain the values of these coefficien
getting information about the process active inside the c
ity. This procedure is not orthodox or fully justified, howev
the obtained results show good internal consistency. The
lations of input-output and their connection with the tra
tional stochastic methods based on Langevin equations
been studied by Kno¨ll et al. @9#. The aim of the present pape
is to generalize the methods used to describe an optical
ment with two inputs and two outputs, as a beam splitter
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derive simple relations between fields inside and outsid
planar Fabry-Perot cavity. In Sec. II, we quantize the el
tromagnetic field generalizing to three dimensions an
proach presented by Barnettet al. @10# and derive the rela-
tions between operators defined in the space inside
outside the cavity. Then, in Sec. III, we build and study t
states of the field generated by linear and bilinear forms
creation operators both inside and outside the cavity and
Sec. IV, we calculate the outside probability distributions
these two-photon states. Finally, we summarize our result
Sec. V.

II. SPATIAL MODES AND FIELD QUANTIZATION

Now we calculate the appropriate normal modes for qu
tization of the electromagnetic field. In a traditional a
proach, one first determines the modes of the class
boundary value problem, then one quantizes the field
terms of these modes@11–17#. An alternative approach ha
been presented by Barnettet al. @10#. We have generalized
this work, restricted to one-dimensional fields, to thre
dimensional fields.

Consider a pair of lossless infinitesimally thin dielectr
slabs atz56 l /2, placed to form a planar Fabry-Perot cavit
as shown in Fig. 1.

We impose appropriate boundary conditions@10# both on
slab 1 and on slab 2, obtaining, respectively,

b̂Rl~k!eiwR(2 l /2)5t1l~k!âRl~k!eiwR(2 l /2)

1r 1l~k!b̂Ll~k!eiwL(2 l /2),
~1!

âLl~k!eiwL(2 l /2)5t1l~k!b̂Ll~k!eiwL(2 l /2)

1r 1l~k!âRl~k!eiwR(2 l /2),

and

ĉRl~k!eiwR( l /2)5t2l~k!b̂Rl~k!eiwR( l /2)

1r 2l~k!ĉLl~k!eiwL( l /2), ~2!
©2000 The American Physical Society13-1
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b̂Ll~k!eiwL( l /2)5t2l~k!ĉLl~k!eiwL( l /2)

1r 2l~k!b̂Rl~k!eiwR( l /2),

wherer il(k),t il(k) ( i 51,2) are the reflection and transmi
sion coefficients of thei-dielectric slab and the annihilation
operators are defined as in Fig. 1.wR(z) andwL(z) are the

FIG. 1. Schematic representation of a planar Fabry-Perot ca

with notation for input operatorsâRl(k),ĉLl(k), inside operators

b̂Rl(k),b̂Ll(k), and output operatorsâLl(k) and ĉRl(k).
or
qs
ll

om
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phases generated by field propagation inside the cavity.
freely choose the zero phases in the middle of the cavity
that wF(2z)52wF(z), where F5R,L and wR(z)5
2wL(z). Then we can put

wL~6 l /2!57d/2, wR~6 l /2!56d/2, ~3!

whered[v l cosu/c is half of the phase gained in a doub
traversal of the cavity@18#. From Eqs.~1! and ~2!, we can
express the inside operatorsb̂Rl(k) and b̂Ll(k) and the out-
put operatorsâLl(k) andĉRl(k) in terms of the input opera
tors âRl(k) and ĉLl(k). Assuming that input operators sa
isfy canonical commutation rules, it is not difficult to sho
that the output operatorsĉRl(k) andâLl(k) satisfy canonical
commutation rules too:

@ âLl~k!,âLl8
†

~k8!#5@ ĉRl~k!,ĉRl8
†

~k8!#5dll8d~k2k8!,

~4!

@ âLl~k!,ĉRl8
†

~k8!#5@ ĉRl~k!,âLl8
†

~k8!#50,

while the intracavity operatorsb̂Rl(k) and b̂Ll(k) satisfy
anomalous commutation rules@10,19#

@ b̂Rl~k!,b̂Rl8
†

~k8!#5dll8d~k2k8!
12ur 1l~k!r 2l~k!u2

u12r 1l~k!r 2l~k!e2idu2

5@ b̂Ll~k!,b̂Ll8
†

~k8!#, ~5!

ty
@ b̂Ll~k!,b̂Rl8
†

~k8!#5dll8d~k2k8!
r 2l~k!eid@12ur 1l~k!u2#1r 1l* ~k!e2 id@12ur 2l~k!u2#

u12r 1l~k!r 2l~k!e2idu2

5@ b̂Rl~k!,b̂Ll8
†

~k8!#* . ~6!

These equations are the three-dimensional generalization of Eqs.~9! given in Ref.@10# for one-dimensional fields.
Because of the presence of the cavity, the positive frequency part of the vector potential is now written as

Â1~r ,t !5E dkS \

16p3«0v
D 1/2

(
l51,2

Fl~k,r !exp~2 ivt !, ~7!

where

Fl~k,r !55
âRl~k!el~k1!eik1•r1âLl~k!el~k2!eik2•r, 2`,z, l /2

b̂Rl~k!el~k1!eik1•r1b̂Ll~k!el~k2!eik2•r, 2 l /2,z, l /2

ĉRl~k!el~k1!eik1•r1 ĉLl~k!el~k2!eik2•r, l /2,z,`.

~8!
by
c-

les
We note that using different pairs of annihilation operat
for each region of space delimited by the cavity, as in E
~7! and ~8!, we obtain a free-field like representation for a
space inside and outside the cavity, but the canonical c
s
.

-

mutation rules are lost for intracavity operators, as shown
Eqs. ~5! and ~6!. Conversely, if we choose the mode fun
tions, for example, as in Ref.@12#, we lose free-field-like
representation, but we obtain canonical commutation ru
3-2
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for annihilation and creation operators in whole space. I
easy to show that our result agrees with that of De Mar
et al. @12#, indeed, defining

âRl~k![âkl ,
~9!

ĉLl~k![âkl8 ,

by a straightforward calculation, we obtain their result

Fl~k,r !5e~k,l!~Uklâkl1Ukl8 âkl8 !, 2`,z,1`, ~10!

where now the mode functionsUkl are defined differently on
the three regions of the space, as shown in Tables~2.6! and
~2.7! of Ref. @12#.

A. One-dimensional formulation

In this paper, we are interested in deriving input-outp
relations for a single transverse mode of the cavity, hav
finite cross-section areaA orthogonal to thez axis, which, in
fact, depend upon the geometrical and transmitting prop
ties of the cavity itself@20,21#. Then, following Ref.@22#, we
impose periodic boundary conditions on both directionsx
and y, fix a linear polarization parallel to thex axis, and
consider only field excitations transverse to thez axis. Then,
defining

âRl~0,0,kz![c1/2â1~v!

ĉLl~0,0,kz![c1/2â2~v!
J kz5uku[v/c, ~11!

and similarly for the other operators, we obtain a on
dimensional representation of the field, exactly like that
Ref. @10#, and as shown in Fig. 2. It is not difficult to sho
with a straightforward calculation that the inside operat
b̂i(v), i 51,2 are related to input operatorsâi(v) and i
51,2 by the relations

b̂~v!5B~v!â~v!,
~12!

f~v![S f 1~v!

f 2~v! D ~ f 5a,b!,

FIG. 2. Schematic representation of a one-dimensional Fa

Perot cavity with notation for input operatorsâi(v),i 51,2, inside

operatorsb̂i(v),i 51,2, and output operatorsĉi(v),i 51,2.
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where the matrix elementsBi j (v) of B(v) are given by

Bii ~v!5
t i~v!

12r 1~v!r 2~v!exp~2iv l /c!
,

Bi j ~v!u iÞ j5r i~v!exp~ iv l /c!Bj j ~v! ~13!

( i , j 51,2), where we used the same notation as in Ref.@10#.
Similarly, the output operatorsĉi(v) and i 51,2 are related
to the input operators by

ĉ~v!5C~v!â~v!, ~14!

where the matrix elementsCi j (v)( i , j 51,2) of the unitary
matrix C(v) are given by

Cii ~v!5
t1~v!t2~v!

12r 1~v!r 2~v!exp~2iv l /c!
,

~15!
Ci j ~v!u iÞ j

5
r j~v!exp~2 iv l /c!1r i~v!exp@ iv l /c12i argt j~v!#

12r 1~v!r 2~v!exp~2iv l /c!
.

This leads to the result

@ âi~v!,â j
†~v8!#5@ ĉi~v!,ĉ j

†~v8!#

5d i j d~v2v8! ~ i , j 51,2!, ~16!

while for inside operators the commutation rules are giv
by Eqs.~9! of Ref. @10#:

@ b̂i~v!,b̂ j
†~v8!#5@B~v!B †~v8!# i j d~v2v8!

[Gi j ~v!d~v2v8!, ~17!

where, for construction,G(v)5G †(v), being Gi j (v)
[@G(v)# i j . Noting that Det@B(v)#Þ0 for t1(v)Þ0 and
t2(v)Þ0, we can invert Eq.~12! to express the relation
between inside and output operators as

ĉ~v!5C~v!B 21~v!b̂~v![M~v!b̂~v!, ~18!

where

M~v!5S 1

t2* ~v!

r 2~v!

t2~v!
exp~2 iv l /c!

r 1~v!

t1~v!
exp~2 iv l /c!

1

t1* ~v!

D .

~19!

It should be noted that the generic 232 matrix that rep-
resents a beam splitter must beunitary to preserve the ca
nonical bosonic relations of commutation for both input a
output operators; in our caseM(v) is not unitary at all. In
fact, while output operatorsĉi(v) satisfy the canonical rela
tions ~16!, inside operatorsb̂i(v) satisfy the relations~17!,
that is the so-called anomalous relations of commutation
this case, using Eqs.~18! and ~19!, we obtain

y-
3-3
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ANDREA AIELLO PHYSICAL REVIEW A 62 063813
M †~v!M~v!5G 21~v!. ~20!

Because of the nonunitarity ofM(v), the ‘‘photon-
number’’ operator is not conserved on a single mode. In f
from Eqs.~18!–~20! we obtain

ĉ†~v!• ĉ~v!5b̂†~v!•G 21~v!•b̂~v!Þb̂†~v!•b̂~v!.
~21!

Anyway, because we are working with linear transform
tions, the most general bilinear form in inside creation o
erators b̂i

†(v) is still bilinear in output creation operator

ĉi
†(v):

g11ĉ1
†ĉ1

†1g12ĉ1
†ĉ2

†1g21ĉ2
†ĉ1

†1g22ĉ2
†ĉ2

†

5b11b̂1
†b̂1

†1b12b̂1
†b̂2

†1b21b̂2
†b̂1

†1b22b̂2
†b̂2

† . ~22!

Because the first of the two forms applied to a vacu
generates a two-photon state of the electromagnetic field
equality ensures the same for the second one. Therefore
is possible to associate with the most general two-pho
state generated by inside operators a state with two pho
physically generatedinside the cavity, then, from the rela
tions betweeninput andoutputoperators, we can obtain in
formation about the field outside the cavity, that is the act
object of measurement. In the following section, we stu
how we can do this.

III. STATES OF THE FIELD

We define the states generated by the linear and bilin
forms of inside operators as

b̂i
†~v!u0&[uFi~v!; in&,

~23!
b̂i

†~v!b̂ j
†~v8!u0&[uFi~v!,F j~v8!; in&,

whereFi(v) andF j (v8) are labels that depends, on contin
ous variablesv,v8 and on discrete variablesi , j 51,2. Be-
cause of Eq.~17!, these states are not orthogonal:

^Fi~v!; inuF j~v8!; in&5Gi j ~v!d~v2v8!, ~24!

and

^Fi~v1!,F j~v2!; inuFk~v3!,Fl~v4!; in&

5Gik~v1!Gjl ~v2!d~v12v3!d~v22v4!

1Gil ~v1!Gjk~v2!d~v22v3!d~v12v4!. ~25!

From Eqs.~24! and ~25! we note that anomalous commut
tion rules, represented by the 232 Hermitian matrixG(v),
form a metric in the two-dimensional Hilbert space gen
ated by inside operatorsb̂i(v). For example, if we write the
most general one-photon state created byinsideoperators as

uf&5(
i 51

2 E dv Ki~v!uFi~v!; in&, ~26!
06381
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whereKi(v)PC, then its norm is

^fuf&5(
i , j

1,2 E dv Ki* ~v!Gi j ~v!K j~v!

5E dv K†~v!•G~v!•K ~v!, ~27!

where the metriclike role of matrixG(v) is clear.
As before, we can define the states generated by the li

and bilinear forms of output operators as

ĉi
†~v!u0&[uFi~v!;out&,

ĉi
†~v!ĉ j

†~v8!u0&[uFi~v!,F j~v8!;out&, ~28!

which, using Eq.~18!, can be written in terms of inside op
erators:

uFi~v!;out&[(
k

1,2

Mik* ~v!uFi~v!; in&,

~29!
uFi~v!,F j~v8!;out&

[(
k,l

1,2

Mik* ~v!M jl* ~v8!uFk~v!,Fl~v8!; in&,

whereMi j (v)[@M# i j . Of course these states are orthono
mal.

It is possible to make number states also for a continu
distribution of modes, following the method of Blowet al.

@22#. For this purpose we define two operatorsĈi(h) as

Ĉi~h!5E dv h i* ~v!ĉi~v!, i 51,2, ~30!

whereh i(v) are two arbitrary complex functions that satis
the normalization condition

E dvuh i~v!u251, i 51,2. ~31!

The construction of number states is more problematic
inside operators. As before, we define

B̂i~j!5E dv j i* ~v!b̂i~v!, i 51,2, ~32!

wherej i(v) are two complex arbitrary functions that can b
chosen to satisfy the four conditions

@B̂i~j!,B̂j
†~j!#5E dv j i* ~v!Gi j ~v!j j~v![G i j ~j!,

~33!

where G i j (j) is a given matrix. Suppose we setG i j (j)
5d i j . BecauseG(j) is Hermitian by construction, Eq.~33!
corresponds to 2% 2 conditions, two real and a complex on
which the two complex arbitrary functionsj i(v)( i 51,2)
3-4
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must satisfy. Thej i modules can be determined imposin
G i i (j)51. In fact, given an arbitrary functionj̄(v) such as

E dvu j̄~v!u251, ~34!

if Gii (v)Þ0, that is if ur 1(v)r 2(v)u2Þ1, we can write
j i(v) as

j i~v!5
u j̄~v!u

AGii ~v!
eif i (v), i 51,2, ~35!

where f i(v) is an arbitrary phase, and we can obta
G i i (j)51. Phases are still arbitrary, but in off-diagonal e
ments ofG(j) there is only the phase difference betwe
j1(v) andj2(v) that is not sufficient, by itself, to satisfy th
two requested conditions. In fact, you can see that o
proper linear combinations of inside operators can gene
canonical commutation relations. Consider the unitary ma
U(v) that makesG(v) diagonal

U †~v!•G~v!•U~v!5D~v!, ~36!

where the diagonal matrixD(v) has elementsDi j (v)
5l i(v)d i j , l i(v), i 51,2 being the twoG(v)’s eigenval-
ues

l i~v!5G11~v!2~21! i uG12~v!u, i 51,2. ~37!

Then if we define the operatorsd̂i(v) as

d̂~v![U †~v!b̂~v!, ~38!

you can see that they satisfy the following ‘‘quasicanonica
relations:

@ d̂i~v!,d̂ j
†~v8!#5l i~v!d i j d~v2v8!. ~39!

If we want to obtain fully canonical relations it is necessa
to break the unitarity of the relation between operatorsd̂i(v)
and b̂i(v) introducing the matrixE(v) with elementsEi j

5(l i)
21/2d i j and to define the operatorsb̂i8(v) as

b̂8~v![E~v!d̂~v!. ~40!

In fact an easy calculation shows that

@ b̂i8~v!,b̂ j8
†~v8!#5d i j d~v2v8!, ~41!

where, using Eq.~40!,

b̂ j8~v![
1

A2l j~v!
@eif(v)/2b̂1~v!

2~21! je2 if(v)/2b̂2~v!# j 51,2, ~42!

and f(v)5arg@G12(v)# is the relative phase of the tw
components ofG(v) eigenvectors. Of course by means
these operators we could make orthonormal input num
states but this would result in their being associated with
06381
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functions sin(vz/c) and cos(vz/c) and, as a consequence, th
free-field-like representation will be lost.

However, it is still possible to write the most general tw
photon state generated by inside operatorsb̂i(v) as

uc&5(
i , j

1,2 E dvE dv8Ki j ~v,v8!uFi~v!,F j~v8!; in&,

~43!

where, by construction, the matrixK(v,v8) of elements
Ki j (v,v8), satisfy

K~v,v8!5K T~v8,v!, ~44!

where ‘‘T’’ indicates transposition. In fact, the matri
K(v,v8) is fixed by the emission process inside the cavi

In a simpler way, a two-photon state generated byoutput
operators~30! can be written as

uFa~h!,Fb~h!;out&5~221/2!dabĈa
†~h!Ĉb

†~h!u0&

5~221/2!dabE dvE dv8ha~v!hb~v8!

3uFa~v!,Fb~v8!;out&, ~45!

where (a,b51,2). In the next section, we will show how t
express this state by inside states.

IV. TWO-PHOTON STATES PROBABILITY
DISTRIBUTIONS

It is well known that the inverse of photon mean flig
time in a planar Fabry-Perot cavity is given by@9#

gcav>
c

l

12ur 1~v!r 2~v!u

2ur 1~v!r 2~v!u1/2
. ~46!

Now we consider the spontaneous emission of a pair of
identical atoms or molecules within the microcavity@8#. Let
gatom be the single atomic decay rate. In the atom-domin
decay regime~that is, whengcav!gatom @23#!, for 1/gatom
!t!1/gcav, the electromagnetic field can be found in a sta
similar to uc&. If the matrix M(v) should be unitary, we
should calculate easily, as in the quantum theory of a loss
beamsplitter@24#, the probability distribution of photon num
ber states outside the cavity. This is not our case, howe
we will see that after renormalization of the stateuc& coef-
ficientsKi j (v,v8), it is possible to obtain significant result
For this, we calculate the probability amplitude to find t
electromagnetic field, represented by the stateuc& within the
cavity, in the outside stateuFa(h),Fb(h);out&, (a,b
51,2). It is simple to show with the use of Eqs.~29! and
~43!–~45!, whose result is
3-5
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^Fa~h!,Fb~h!;outuc&

52~221/2!dabE dvE dv8ha~v!hb~v8!

3@M~v!•G~v!•K~v,v8!•G T~v8!•M T~v8!#ab .

~47!

By a lengthy but straightforward calculation, it is simple
show that

@M~v!•G~v!•K~v,v8!•G T~v8!•M T~v8!#ab

[Pab~v,v8!, ~48!

where we have defined the 232 matrix elementsPab(v,v8)
as

P11~v,v8!5L2~v!L1~v8!@K111K22a1~v!a1~v8!

1K12a1~v8!1K21a1~v!#,

P12~v,v8!5L2~v!L1~v8!@K11a2~v8!1K22a1~v!

1K121K21a1~v!a2~v8!#,
~49!

P21~v,v8!5L1~v!L2~v8!@K22a1~v8!1K11a2~v!

1K211K12a2~v!a1~v8!#,

P22~v,v8!5L1~v!L2~v8!@K221K11a2~v!a2~v8!

1K21a2~v8!1K12a2~v!#,

being
ac
le

ed
to

e
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Li~v![
t i~v!

D~v!
, a i~v![r i~v!eiv l /c, i 51,2. ~50!

Now we evaluate the ratioRout(R,LuR,R) between the prob-
ability Pout(R,L) of observing one photon behind mirror
and one photon behind mirror 1~coincidence!, and the prob-
ability Pout(R,R) of observing two photons behind mirror 2

Using Eqs.~47! we obtain

FIG. 3. Diagrams illustrating the probability amplitudes~re-
ported in the left column!, relative to Eq. ~52!. Here,
r 1(v) @r 2(v)# is the reflection coefficient of mirror 1~at the left! @2
~at the right!#. The photon of angular frequencyv1 is always plot-
ted higher than the photon of angular frequencyv2.
Rout~R,LuR,R!5
Pout~R,L !

Pout~R,R!
5U^F1~h!,F2~h!;outuc&

^F1
2~h!;outuc&

U2

5U E dv1E dv2h1* ~v1!h2* ~v2!P12~v1 ,v2!

221/2E dv1E dv2h1* ~v1!h1* ~v2!P11~v1 ,v2!
U 2

. ~51!

We now illustrate the meaning of this formula. We start writing explicitly the value of the ratioP12/P11:

P12~v1 ,v2!

P11~v1 ,v2!
5

K11r 2~v2!eiv2l /c1K22r 1~v1!eiv1l /c1K121K21r 1~v1!eiv1l /cr 2~v2!eiv2l /c

K111K22r 1~v1!eiv1l /cr 1~v2!eiv2l /c1K12r 1~v2!eiv2l /c1K21r 1~v1!eiv1l /c
. ~52!
at
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rm
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This expression is only apparently complicated, but e
term at numerator and denominator is susceptible to a c
physical interpretation. We assume thatKi j (v1 ,v2) is pro-
portional to the probability amplitude that a pair of excit
molecules within the cavity emit spontaneously one pho
with angular frequencyv1 on modei, and one photon with
angular frequencyv2 on modej, the proportionality factor
being the same for all coefficientsKi j (v1 ,v2). More pre-
cisely, we assume thatuKi j (v1 ,v2)u2dv1dv2 is propor-
tional to the emission probability of one photon on modi
h
ar

n

with angular frequency betweenv1 andv11dv1, and one
photon on modej with angular frequency betweenv2 and
v21dv2. At this point it is easy to see how each term th
appears in the ratio~52! admits a clear physical interpreta
tion.

With the help of Fig. 3 we can see, e.g., that the first te
at numerator, corresponding to the first diagrams of the s
ond row, give us the probability amplitude of simultaneo
emission of a pair of photons toward the right, and that
photon of angular frequencyv1 is detected behind the mirro
3-6
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FIG. 4. Plots ofR0 for different range of val-
ues. In~a! the plane part corresponds to values
R0 greater than 2.5.
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2, while the photon of angular frequencyv2 is detected
behind the mirror 1 after reflection on the mirror 2. Th
transmission coefficients and all contributions generated
multiple reflections on the cavity mirrors are computed in
terms L2(v1)L1(v2), which we have simplified into Eq
~52!. All the other terms in Eq.~52! admit analog interpreta
tion shown by the remaining diagrams in Fig. 5.

Of course, for reasons of internal consistency of
theory, we need to renormalize the coefficientsKi j (v1 ,v2)
imposing

(
i , j

1,2 E dv1E dv2uKi j ~v1 ,v2!u251. ~53!

At this point it is easy to obtain the correct probability di
tributions. If we define

Rout~R,LuR,R![R1 ,
~54!

Rout~R,LuL,L ![R2 ,

and we impose the normalization condition

Pout~R,R!1Pout~R,L !1Pout~L,L !51, ~55!

the desired distributions are then obtained after some alg
in the form

Pout~R,R!5
R2

R11R21R1R2
, ~56!

Pout~R,L !5
R1R2

R11R21R1R2
,

06381
y

e

ra

Pout~L,L !5
R1

R11R21R1R2
,

where, for example,Pout(R,R) is the normalized probability
to find two photons outside the cavity behind mirror 2 of t
cavity.

A. Single mode

Now we suppose that the field-mode spectrum is d
cretized by an appropriate procedure@22#, furthermore we fix
the attention on a single mode of assigned angular freque
v. The commutation relations for creation and annihilati
operators defined on this discrete set of modes are writte

@ âi ,â j
†#5@ ĉi ,ĉ j

†#5d i j , ~57!

@ b̂i ,b̂ j
†#5Gi j . ~58!

Now we can have two photons on a single discrete mo
therefore we define the states generated by bilinear and
dratic forms of inside and output operators as

u f i , f j ; in&[~221/2!d i j b̂i
†b̂ j

†u0&, ~59!

and

u f i , f j ;out&[~221/2!d i j ĉi
†ĉ j

†u0&

5~221/2!d i j(
k,l

1,2

~221/2!2dklM ik* M jl* u f k , f l ; in&,

~60!

respectively. It is easy to see that
of

FIG. 5. Plots ofR` for different range of val-

ues. In~a! the plane part corresponds to values
R` greater than 1.
3-7
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^ f i , f j ; inu f k , f l ; in&5~221/2!d i j 1dkl~GikGjl 1Gil Gjk!.
~61!

Exactly as before, we define the most general two-pho
state created by inside operators as

uc&5(
i , j

1,2

Ki j u f i , f j ; in&, ~62!

whereK5K T, and we calculate

^ f a , f b ;outuc&52~221/2!dab~M•G•K̄•G T
•M T!ab ,

~63!

where we have defined the matrixK̄ as

@K̄# i j [K̄ i j 5~221/2!d i j Ki j . ~64!

Therefore, Eq.~49! is formally still valid if we make the
substitutionKii →Kii /A2.

From this point we consider the case of a symmetri
cavity, that is we assumer 1(v)5r 2(v)[r (v) and t1(v)
5t2(v)[t(v). For simplicity, we choose the phase
transmission and reflection coefficients as

t~v!5 iA12R and r ~v!52AR, ~65!

and redefine, into a more expressive form:

K11[CRR, K22[CLL , K121K2152K12[CRL .
~66!

Then in discrete mode representation, the normalization c
ditions can be written as

uCRRu21uCRLu21uCLLu251. ~67!

Finally, we can write

Rout~R,LuR,R!

5UA2~CRR1CRR!reiv l /c1CRL~11r 2e2iv l /c!

CRR1CLLr 2e2iv l /c1A2CRLre
iv l /c U2

.

~68!

We note the presence of factorsA2, which we have intro-
duced because of different normalization required by the
crete mode spectrum. Because of them, there is no e
06381
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correspondence between the diagram of Fig. 3 and terms
Eq. ~68!. This factor arises since we are not using an orth
normal base and therefore a mixing between normaliza
of states with a photon on mode and two photons on mod
produced. Indeed, we will see in the next section that
working with single-photon states that admit only a sing
normalization factor, it is possible to obtain a direct assoc
tion between diagrams and formulas.

Now we calculate Eq.~68! for some particular value o
the stateuc&. Let uc& coincide with each of the three state
of the orthonormal base defined in the Appendix. It c
readily be shown that for~a! uc&5un6&

CRL56
1

A2
, CRR5CLL5

1

2
⇒Rout~R,LuR,R!52,

~69!

and for ~b! uc&5un0&

CRL50, CRR52CLL52
1

A2
⇒Rout~R,LuR,R!50.

~70!

It is remarkable that for these states having high symme
Rout does not depend either on mirrors reflectivity, nor on t
phasev l /c. Following our interpretative scheme, Eq.~69!
shows that when the emission probability of the pair of ph
tons on the same way or on the opposite way is the sa
that is uCRLu25uCRRu21uCLLu251/2, the probability of ob-
serving a coincidence is twice that of the probability of n
observing. Instead when the two photons are emitted alon
common way, but with pair emission probability amplitud
toward right and left that differs for a sign, Eq.~70!, the
probability of observing a coincidence is zero. But with
our interpretative scheme, which requires no distinction
tween left and right for emission of the pair of the photons
a symmetrical cavity, it is hard to think that this state rea
exists. Therefore a stateun0& havingCRRÞCLL is difficult to
accept.

From this point we consider only the caseCRR5CLL and
we define

CRR

CRL
[z5uzueiargz. ~71!

Then using Eq.~71!, Eq. ~68! can be written as
Rout~R,LuR,R!5
8R2z224A2R@cos~x1y!1R cos~x2y!#z1112R cos 2x1R2

~112R cos 2x1R2!z222A2R@cos~x2y!1R cos~x1y!#z12R
, ~72!
3-8
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FIG. 6. Four plots ofRout calculated for a
symmetrical cavityR50.999 and several value
of z. The dependence fromR for R>0.8 is neg-
ligible and not reported in the figure.
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where we have used the following notation:

x[v l /c, y[argz, z[uzu. ~73!

This expression seems still rather complicated, but we
learn something from it considering the limit casesCRR
50⇔z50 andCRL50⇔z5`:

lim
z→0

Rout~R,LuR,R!5
112R cos 2x1R2

2R
[R0 ,

~74!

lim
z→`

Rout~R,LuR,R!5
8R2

112R cos 2x1R2
[R` .

The first of Eqs.~74! is shown in Fig. 4. From Fig. 4~b!, we
can see that whenR→0, R0→` that is, from Eq.~68!,
Pout(R,R)→0. Indeed, if in the absence of the cavity th
two photons are emitted, one toward the right and one
ward the left, it is impossible to detect two from the sam
side. WhenR>0.8, R0 is practically independent fromR
while it presents an oscillation of periodp in x. Observing
Fig. 4~a!, it is evident that whenR>0.5, near the resonanc
x.p we haveR0.2, while nearx5(2n11)p/2, n inte-
ger, there is a region for whichR0,1. This loss of coinci-
dence is due to the fact that only the first and the last pair
diagrams in Fig. 3 contribute toR0, but in the first, which
gives the probability amplitude of observing the coinciden
the two amplitudesCRL and CRLRe2iv l /c interfere destruc-
tively for x.(2n11)p/2 andR.1, causing zero total am
plitude. The second of Eqs.~74! is shown in Fig. 5~a! for 0
,R0,1; the plane part of the graph corresponds to
larger than 1 values. First of all we observe an obvious fa
for R50, we haveR`50, that is if the two photons are
emitted both on the same way, it is impossible to observ
06381
n
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a

coincidence in absence of a cavity that mixes the directio
From the graph it is evident that whenR increments, the
reflections increment too, and the coincidence probabi
arises from the zero value. In Fig. 5~b!, the behavior ofR` is
shown forR`<50. We note that whenx5(2n11)p/2 and
R→1, we haveR`→`, that is the probability of observing
a pair of photons from a side of the cavity goes to ze
Indeed the second and the third diagram of Fig. 3 contrib
to R` but the third diagram, giving the probability of obse
vation of two parallel photons, goes to zero forx5(2n
11)p/2 and R.1 because of destructive interference b
tweenCRR andCLLRe2iv l /c. Therefore forz@1 and realistic
reflectivity, the probability of observing coincidence is a
ways bigger than the probability of observing two photo
on the same side of the cavity.

On the other hand, we have also seen that forz
→0, Rout can be less then 1 forR→1 and this is certainly
the most interesting case to investigate. In Fig. 6, show
behavior of Eq.~72!, as a function ofx and y, for several
valuesz andR50.999. ForR>0.8, the dependence fromR
is negligible. In Fig. 7, we show the contour plot ofRout,
between 0 and 1. From this figure it is evident that the d
zones, corresponding toRout,1, have an extension gradu
ally decreasing forz increasing, until they disappear forz
>1 ~not shown in Fig. 7!. It is interesting to note that the
probability of observing two photons on one side of the ca
ity is bigger than coincidence probability, when within th
cavity the two photons are emitted along the opposite w
Indeed only the third and fourth diagrams in Fig. 3 contribu
to Pout(R,R), but while in the fourth diagram the two am
plitudes are always in phase, in the third diagram the t
amplitudesCRR and CLLRe2iv l /c can have opposite phase
and interfere destructively forR;1. Then if uCRRu.uCRLu,
that is if z.1, either the third or the fourth diagram giv
3-9
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FIG. 7. Contour plot of corresponding plot i
Fig. 6, shows for valuesRout between 0 and 1. It
is evident that forz increasing, the zone on th
planex-y in which Rout,1 is decreasing.
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negligible contributions andPout(R,R);0. Instead ifuCRLu
.uCRRu (z,1), the fourth diagram gives a consistent co
tribution to Pout(R,R) and at the same time the first diagra
~proportional toCRL but in the condition of destructive in
terference! gives a negligible contribution toPout(R,L).

Another interesting case is that of the resonance i
broad sense, that isv l /c5pN, with N integer: forN odd
there is resonance in a strict sense while forN even there is
anti-resonance. In this case Eq.~72! can be simplified and
written as

Rout~R,LuR,R!5
4F2z22~21!N4Fz cosy11

z22~21!N2Fz cosy1F2
, ~75!

whereF[A2R/(11R). In Fig. 8~a!, a plot of Eq.~75! is
shown as a function ofz andy, for R50.5 andN odd. The
analog plot forN even can be obtained translating the plot
an amountp along they axis. It is evident that the ratioRout
is always greater than 1 except for a small region cente
aroundy5p andz51/2F that disappears forR→1. We can
always write Eq.~75! as a ratio between two second degr
polynomials inz:

Rout~R,LuR,R!54F2
~z2z1

u !~z2z2
u !

~z2z1
d !~z2z2

d !
, ~76!

where we have defined the roots of the two polynomials
06381
-

a

d

s

z6
u [2

1

2F
e6 iy, z6

d [2Fe6 iy. ~77!

Only for y5p(mod 2p) we can have a real positive root:

Rout~R,LuR,R!uy5p5S 2Fz21

z2F D 2

. ~78!

In Fig. 8~b!, a plot of Eq.~78! is shown for values ofz
near to 1/2F; from this plot we can see in detail the ‘‘jump’
from the pole to zero. From Fig. 8~d!, we can observe tha
for R→1 the pole inF and the zero in 1/2F tend to the
common value 1/A2 compensating each other, so thatRout
52. The distance between the pole and zero decrease
;(12R)2 and already forR50.9 is less than a part in a
hundred. It is reasonable to think that for higher and m
realistic reflectivity, it is not possible to generate really
state so well-defined to discriminate between the pole
zero. Furthermore the really physical situation is always
scribed by a continuous superposition of modes, therefore
think that the effective value ofRout(R,LuR,R)uy5p is ;2 in
all of planey-z. Lastly, we note that whenCRR50 or CRL
50, we have, respectively,

lim
z→0

Rout~R,LuR,R!5
1

F2
→

R→1
2, ~79!
3-10



in

INPUT-OUTPUT RELATIONS IN OPTICAL . . . PHYSICAL REVIEW A 62 063813
FIG. 8. ~a! Plot of Eq.~75! for R50.5. This is
not a realistic value, but we choose it to show
a clear manner the various quantities.~b! The
same as in~a! for y5p; the vertical straight lines
passing through the pole inF and through zero in
1/2F. ~c! The same that in~a! for z51/2F. ~d!
Plot of 1/2F ~up! andF ~down!, as function of the
reflectivity R.
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lim
z→`

Rout~R,LuR,R!54F2 →
R→1

2. ~80!

From Eqs.~79! and ~80! we deduce that in these limits it i
physically indifferent if the two photons are emitted in th
same or in the opposite way within the cavity. We ha
already obtained the resultRout52, whenuc&5un6& inde-
pendently fromR, corresponding to equal probability o
emission of a pair of photons along the same way or
opposite way. In the present case, we have the same r
for v l /c5pN andR;1. This is consistent with the fact tha
in the limit of total reflectivity in which all frequencies sa
isfy the resonance~in a broad sense! conditions vn
5npc/ l , n integer, it is impossible to speak of directio
~left or right! of emission of a photon, because the two cou
terpropagating waves that constitute a stationary wave wi
the cavity have exactly the same weight. Finally, we n
that sincePout(R,R)5Pout(L,L), from Eqs ~55! and ~56!
follows,

Pout~R,L !5
Rout

21Rout
, Pout~R,R!5

1

21Rout
. ~81!

Then whenRout52, we have

Pout~R,L !5
1

2
, Pout~R,R!5

1

4
. ~82!

B. Single-photon states

In this section, we started with investigation of tw
photon states, because we were interested in the leak of
metry in the photon-number probability distributions. Neve
theless the study of one-photon states is not void of inter
Indeed in the previous subsection we have shown tha
06381
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discrete-mode representation, the interpretation of the res
was ‘‘contaminated’’ from factorsA2 generated by mixing
between normalization of states with one photon per m
~e.g.,u1,1&) and two photons per mode~e.g.,u2,0&). Now we
will see that when working with one-photon states this m
ing never appears. In the most general form, the one-pho
stateuf& generated by inside operators can be written as

uf&5(
i 51

2 E dv Ki~v!uFi~v!; in&, ~83!

while the analogous state generated by output operato
given by

uFa~h!;out&5Ĉa
†~h!u0&5E dv ha~v!uFa~v!;out&.

~84!

The probability amplitude to find the electromagnetic fie
represented by the stateuf& within the cavity, in the state
uFa(h);out&, is

^Fa~h!;outuf&5(
i 51

2 E dv ha* ~v!@M~v!G~v!#aiKi~v!.

~85!

The ratio between the probabilityPout(R) of observing a
photon behind mirror 2 and the probabilityPout(L) of ob-
serving a photon behind mirror 1 is equal to
3-11
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Rout~RuL !5
Pout~R!

Pout~L !
5U ^F1~h!;outuf&

^F2~h!;outuf&
U2

5U E dv h1* ~v!L2~v!@CR~v!1CL~v!r 1~v!eiv l /c#

E dv h2* ~v!L1~v!@CL~v!1CR~v!r 2~v!eiv l /c#
U 2

, ~86!
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where we have redefinedK1(v)[CR(v) and K2(v)
[CL(v). Exactly as in Sec. V A, if we assum
CR(v)„CL(v)… proportional to the probability amplitud
that an active medium within the cavity emits a photon
angular frequencyv toward the right~left!, each of the terms
into Eq.~86! admits a clear physical interpretation illustrat
in Fig. 9.

Since in discrete mode representationu f i ; in&[b̂i
†u0&, it is

evident that passing to the discrete case, each term betw
the square brackets in Eq.~86! remain formally unchanged
without anyA2 factor.

For sake of consistency now we must impose

E dv$uCR~v!u21uCL~v!u2%51. ~87!

In this case the normalized probabilitiesPout(R) andPout(L)
are given by

Pout~R!5
Rout~RuL !

11Rout~RuL !
, Pout~L !5

1

11Rout~RuL !
.

~88!

V. SUMMARY

We have derived some simple relations for an electrom
netic field inside and outside an optical cavity, using a n
unitary transformation between inside and output operat
The convenience of this approach lies in the fact that we
not need to know any details of internal processes that g
erate the two photons, to calculate the photon-number p
ability distribution outside the cavity. Conversely, we c
obtain information on internal processes, by comparing

FIG. 9. Diagrams illustrating the probability amplitudes~re-
ported in the left column!, relative to Eq. ~86!. Here, r 1(v)
@r 2(v)# is the reflection coefficient of mirror 1~at the left! @2 ~at the
right!#.
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calculated and measured probability distribution. T
method is a natural extension to nonunitary transformati
of the usual method employed, e.g., in the quantum theor
the lossless beamsplitter.@24#. The key role of this analysis
is played by theRout(R,LuR,R) function defined in Eq.~51!,
which is the ratio between the probability of detecting
single photon behind each mirror’s cavity, and the proba
ity of detecting two photons behind a single mirror’s cavit
Each term of this expression has a straightforward phys
counterpart, as shown in Fig. 3. Using the single-mode v
sion of Eq.~51!, we found both Bose-Einstein (Rout51) and
Maxwell-Boltzmann (Rout52) partition statistics of photons
emitted, varying source and cavity characteristics, as sh
in Figs. 4–7.
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APPENDIX

In Sec. IV, we introduced the three orthonormal sta
un6& and un0& without derivation. This will be done in this
appendix.

We have rewritten the commutation relation for operat
b̂1(v) and b̂2(v) in discrete-mode representation and t
symmetrical cavity as

@ b̂2~v!,b̂2
†~v!#5@ b̂1~v!,b̂1

†~v!#[D~v!,
~A1!

@ b̂2~v!,b̂1
†~v!#5@ b̂1~v!,b̂2

†~v!#* [r~v!D~v!,

where we have defined

D~v![
12R2

122R cos~2v l /c!1R2
,

~A2!

r~v![22
AR

11R
cos~v l /c!.

Using a slightly different notation with respect to Sec. V
we define
3-12
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uR,L; in&[
~ b̂1

†!R

AR!

~ b̂2
†!L

AL!
u0&, R1L52, ~A3!

where again the factor (R!L!) 21/2 is due to the possible
presence of two photons on a single mode. Of course, s
b̂1 and b̂2

† does not commute, these kets do not form
orthonormal base, but they are however linearly independ
Indeed if we define

^R,L; inuR8,L8; in&[G̃~R,L;R8,L8!, ~A4!

we can calculate, using Eqs.~A1! and ~A2!,

G̃~R,L;R8,L8!5D2S 1 A2r r2

A2r 11r2 A2r

r2 A2r 1

D . ~A5!

Therefore the kets defined in Eq.~A3! are linearly indepen-
dent, their Gram being determinant positive@25#:

Det@G̃#5D6~12r2!3>0. ~A6!

By diagonalization ofG̃, after some algebra we obtain th
orthonormal base we look for

un1&5
1

2
u2,0;in&1

1

A2
u1,1;in&1

1

2
u0,2;in&,

un0&52
1

A2
u2,0;in&1

1

A2
u0,2;in&, ~A7!

un2&5
1

2
u2,0;in&2

1

A2
u1,1;in&1

1

2
u0,2;in&.

Note on matrix G̃

The form of the matrixG̃ is particular and justifies this
little note. LetS0 , S1, andS2 from the following 333 ma-
trix:

S05S 1 0 0

0 1 0

0 0 1
D , S15S 0 0 1

0 1 0

1 0 0
D ,

S25S 0 1 0

1 0 1

0 1 0
D . ~A8!

It can be readily shown that they satisfy the following mu
tiplication table:
06381
ce
n
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Sm•Sn S0 S1 S2

S0 S0 S1 S2

S1 S1 S0 S2

S2 S2 S2 S01S1 ~A9!

Now consider the generic matrixN(a), (aPR) given by

N~a!5S01a2S11A2aS2 . ~A10!

It is characterized by

Det@N~a!#5~12a2!3, Tr@N~a!#531a2. ~A11!

If we indicate with l0 ,l6 N~a!’s eigenvalues and with
n0 ,n6 the corresponding eigenvectors, we can write

n15
1

2
~1,A2,1! l15~11a!2,

n05
1

A2
~21,0,1! l05~12a2!,

n25
1

2
~1,2A2,1! l25~12a!2. ~A12!

Using Eq.~A9!, it is easy to see that

N~a!N~b!5~11ab!2NS a1b

11ab D . ~A13!

Since N(0)5S0 is the identity matrix, it is clear that the
inverse ofN(a) is still a matrix of the form~A10!. Indeed
putting b52a into Eq. ~A13!, we obtain

N~a!N~2a!5~12a2!2S0 , ~A14!

that is

N 21~a!5
1

~12a2!2
N~2a!. ~A15!

Finally, from Eq.~A5! we get

G̃5D2N~r!. ~A16!

As a curiosity, we note that in two dimensions the matric
N(a) that satisfy the algebra~A13! are given by

N~a![s01as1 , ~A17!

wheres05I ands1 is the first of the Pauli matrices~ @26#, p.
160!. It is easy to show that

Det@N~a!#512a2, Tr@N~a!#52. ~A18!

The eigenvaluesl6 and the corresponding eigenvectorsn6

are given by

n15
1

2
~1,1! l1511a,

~A19!

n25
1

2
~21,1! l2512a.
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