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Spin squeezing in two-level systems
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Using a quantum theory for an ensemble of two-level atoms driven by a field in an optical cavity, we show
that the spin associated with the atomic ensemble can be squeezed. Two kinds of squeezing are obtained: on
the one hand, self-squeezing of the spin when the input field is a coherent one and the atomic ensemble exhibits
a large nonlinearity; and on the other hand, squeezing transfer from an incoming squeezed field when the
atomic ensemble has a quasilinear behavior.

PACS number~s!: 42.50.Lc, 42.50.Dv
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I. INTRODUCTION

In high-precision atomic-physics experiments, accurac
ultimately limited by the so-called quantum projection nois
due to the fact that the atoms are not in an eigenstate o
measured quantity. If an ensemble ofN independent atoms i
studied, fluctuations proportional toN21/2 result from this
effect @1,2#. A few years ago, it was shown that usin
squeezed atomic states would allow one to reduce these
tuations@3#. Squeezed atomic states are correlated state
the atomic ensemble that exhibit reduced fluctuations for
measurement of interest. Implementing such squeezed s
would be of particular interest in atomic clocks, where t
transition between theF53 and 4 states of the ground lev
of cesium is detected.

As a model system we have studied the specific case
two-level atom, and investigated the possibility of squeez
the associated spin12 via the interaction with an electromag
netic field. Already in the early 1980s, it was conjectur
that atomic spin squeezing appeared as a counterpa
squeezing of the electromagnetic field@4#. However, the
quantum noise reduction on atomic variables computed
several papers@4,5# can be obtained by a mere rotation of t
atomic variables of a two-level system interacting with
coherent field. As shown in Ref.@6#, in order to be useful for
noise reduction in actual experiments, spin squeezing sh
be obtained in a plane orthogonal to the direction of
mean spin, where the mean value of the spin compone
zero. Recently, it was proposed to use absorption
squeezed light by atoms in a single pass to produce
squeezing@7#.

In this paper we investigate an alternative method,
which atoms interact with light in an optical cavity. We sho
that collective atomic spin squeezing may appear in two
ferent situations. On the one hand, one can achieve
squeezing by letting the atoms interact with incomi
squeezed light in an optical cavity. This configuration w
already used in Refs.@8# and@9# to study the modification of
the spontaneous emission due to the interaction of at
with squeezed light. We find that the optimal conditions
the transfer of squeezing from the incident light to the ato
correspond to a nonsaturating intensity, in the stro
coupling regime. On the other hand, one can also ach
spin squeezing by letting the atoms interact with incid
coherentlight. In this case, one relies on the nonlinearity
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the atomic ensemble itself to generate squeezing. T
squeezing may then be called self-squeezing. For condit
in which the spin is squeezed, the outgoing field is a
squeezed. Indeed, as demonstrated theoretically@10–12# and
experimentally@13,14#, under proper conditions the field go
ing out of the cavity is squeezed, due to the nonlinear
sponse of the atomic ensemble. We show that field squee
and spin squeezing originate from the same physical proc

Spin squeezing is obtained by solving the full quantu
Maxwell-Bloch equations. We derive the fluctuation spec
of the spin components in any direction in theX,Y plane,
assuming that the mean spin is along theZ direction. We
obtain the variances either by integrating the spectra or w
a direct calculation. For a particular direction in theX,Y
plane, the variance is found to be below the quantum lim
while the variance in the perpendicular direction exhibits e
cess noise. This result is conceptually very important, sinc
shows that it is possible to create quantum correlati
within an ensemble of atoms interacting with a laser field
spite of the inevitable coupling to the vacuum fluctuation

II. MODEL FOR ATOMIC FLUCTUATIONS

We consider an ensemble of motionless two-level ato
placed inside a single-ended optical cavity and interact
with a single-mode field. In order to obtain a coupling b
tween atoms and light uniform in space, we deal with a r
cavity configuration as shown in Fig. 1, but the results o
tained can be extended with a good approximation to
Fabry-Perot-type cavity. Actually in the linear cavity ca
and with motionless atoms, an averaging should be p

FIG. 1. Ring cavity configuration for the study of atom-fie
coupling.
©2000 The American Physical Society12-1
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L. VERNAC, M. PINARD, AND E. GIACOBINO PHYSICAL REVIEW A62 063812
formed over the values of the field ‘‘seen’’ by the atoms
the standing-wave structure. However, no major change
the conclusion are expected from this effect. In most ca
quantum optics experiments performed in linear cavit
were found to be in good agreement with models assum
ring cavities@13,15,16#.

The round-trip time in the cavity ist, the amplitude trans-
mission coefficient of the coupling mirror istcav , and the
amplitude reflection coefficient isr cav , with r cav

2 1tcav
2 51.

The cavity is assumed to have a high finesse (tcav!1). The
decay rate of the field in the cavity isk5(12r cav)/t
5T/2t, where T5tcav

2 . The atomic system has a groun
stateg and an excited statee, separated by the energy\v0.
We callg the decay rate of the atomic dipole, due to a pur
radiative process. The atoms are driven by a field the
quency of which isvL . This field is represented by the op
eratorA(t)e2 ivLt. The mean-square value of the field will b
expressed in number of photons per second. The cavity r
nance closest tovL has a frequencyvC . We define the
atomic and cavity detuning parameters asD5(v02vL), d
5D/g andDC5(vC2vL), dC5DC /k. The atom-field cou-
pling constant isg5E0d/\, whered is the atomic dipole, and
E05A\vL/2e0Sc.

We define the collective polarizationP(t) and the collec-
tive population differenceSz(t) as

P~ t !5(
i 51

N

Si~ t !, ~1!

P†~ t !5(
i 51

N

Si
†~ t !, ~2!

Sz~ t !5(
i 51

N

Sz i~ t !, ~3!

whereSi(t) andSi
†(t) are the lowering and raising operato

for individual atoms in the rotating frame,

Si~ t !5ugi&^ei ue1 ivLt, ~4!

Si
†~ t !5uei&^gi u,e2 ivLt ~5!

andSz i(t) is given by

Sz i~ t !5
1

2
~ uei&^ei u2ugi&^gi u!. ~6!

The field inside the cavity is related to the incident fie
and to the atomic polarization by

dA~ t !

dt
52~k1 iDC!A~ t !1 ig/tP~ t !1A2k/t Ain~ t !,

~7!

and A†(t) is given by an equation which is a Hermitia
conjugate of Eq.~7!. This equation expresses the derivati
of the intracavity field as coming from the recycling of th
field of the cavity and loss through the coupling mirror, fro
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the field emitted by the atomic polarization, and from t
incoming field Ain. The fluctuations of the incoming field
can be seen as a Langevin force for this equation@17#. The
atomic polarization and populations are given by quant
Langevin equations derived from the Bloch equations,
adding Langevin forces corresponding to the coupling w
the vacuum field surrounding the system:

dP~ t !

dt
52~g1 iD!P~ t !22igA~ t !Sz~ t !1FP~ t !, ~8!

dP†~ t !

dt
52~g2 iD!P†~ t !12igSz~ t !A†~ t !1FP†~ t !,

~9!

dSz~ t !

dt
522g~Sz~ t !1N/2!2 ig@A†~ t !P~ t !2A~ t !P†~ t !#

1FSz
~ t !. ~10!

The noise operatorsFP(t), FP†(t), andFSz
(t) are character-

ized by zero averages and by correlation functions that
given in the Appendix.

The field coming out of the cavity is given by

Aout~ t !5tcavA~ t !2Ain~ t !. ~11!

We will be interested in the quantum fluctuations of the fie
operatorA and of the atomic operators around their stea
state mean values

Ain~ t !5ain1dAin~ t !, ~12!

A~ t !5a01dA~ t !, ~13!

P~ t !5p01dP~ t !, ~14!

P†~ t !5p0c1dP†~ t !, ~15!

Sz~ t !5sz01dSz~ t !, ~16!

where ain5^Ain(t)&st , a05^A(t)&st , p05^P(t)&st , p0c
5^P†(t)&st, and sz05^Sz(t)&st are the steady-state mea
values. We choose the phases such thata0 is real.

The mean values can easily be computed from Eqs.~7!–
~10! without the fluctuating terms, which are the usu
Maxwell-Bloch equations. The steady-state solutions of t
system are given by

p05
iNb0~12 id!

11d212ub0u2
, ~17!

sz052
N~11d2!

2~11d212ub0u2!
, ~18!
2-2
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SPIN SQUEEZING IN TWO-LEVEL SYSTEMS PHYSICAL REVIEW A62 063812
A2/ktb in5b0F S 11
2C

11d212ub0u2
D

1 i S dC2
2Cd

11d212ub0u2D G , ~19!

where we have introduced the scaled fields

b05ga0 /g, ~20!

b in5gain /g, ~21!

and the cooperativity parameter

C5
Ng2

2kgt
. ~22!

For large enough values ofb0 and C, the solution exhibits
the well-known bistable behavior of the intracavity field. It
in the vicinity of the bistable turning point that the squeezi
of the outgoing field is maximum. On the other hand,
large g ~or large C), one can reach, even for smallb0, a
regime of vacuum Rabi splitting or a strong-coupling regim
in which two peaks appear in the reflection spectrum wh
the atomic and cavity frequencies are equal.

To obtain equations for the field and atomic fluctuatio
we linearize Eqs.~7!–~10!:

ddA~ t !

dt
52~k1 iDC!dA~ t !1~ ig/t!dP~ t !

1A2k/t dAin~ t !, ~23!

ddA†~ t !

dt
52~k2 iDC! dA†~ t !2~ ig/t!dP†~ t !

1A2k/tdAin†~ t !, ~24!

ddP~ t !

dt
52~g1 iD!dP~ t !22iga0dSz~ t !22igdA~ t !sz0

1FP~ t !, ~25!

ddP†~ t !

dt
52~g2 iD!dP†~ t !12iga0dSz~ t !12igdA†~ t !sz0

1FP†~ t !, ~26!

ddSz~ t !

dt
522gdSz~ t !2 iga0@dP~ t !2dP†~ t !#

2 ig@p0dA†~ t !2p0c
dA~ t !#1FSz

~ t !. ~27!

We will compute the fluctuations in the Fourier space. F
any operatorO(t) in the rotating frame, we define the Fou
rier transform as

O~v!5E O~ t !eivtdt, ~28!
06381
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O†~v!5E O†~ t !eivtdt. ~29!

To calculate the atomic fluctuations we are going to wr
Eqs.~25!–~27! in a matrix form in Fourier space. We intro
duceudS(v)] which is a three-dimensional vector,

udS~v!] 5F dP~v!

dP†~v!

dSz~v!
G , ~30!

and its adjoint@dS(v)u5udS(v)#†.
In the same way the atomic polarization and the fields w

be represented by two-dimensional vectors:

udP~v!] 5F dP~v!

dP†~v!
G , ~31!

udA~v!] 5F dA~v!

dA†~v!
G . ~32!

In order to obtain physical insight into the spin squeez
and its connection with the field squeezing, we will solve t
system of equations~23!–~27! in two steps. First, in atomic
fluctuations, we separate the contributions of the fluctuati
of the driving field present in the cavity from the contrib
tions of all the empty modes. Second, we calculate the fl
tuations of the cavity field to obtain the final expressions
the collective spin fluctuations.

The atomic fluctuations have two different origins, whic
are due to the fluctuations of the cavity fielddA(v) and
dA†(v) and to the fluctuations of the empty modes,FP(v),
FP†(v), andFSz

(v), respectively. Thus the atomic fluctua

tions udS(v)] can be written as the sum of two contribu
tions:

udS~v!] 5udS1~v!] 1udS2~v!]. ~33!

udS1(v)] is the linear response of the atomic spin to t
fluctuations of the driving field, whileudS2(v)] is the re-
sponse to the vacuum field fluctuations coming from all
directions of space, i.e., the spin fluctuations associated
spontaneous emission. We assume that spontaneous em
is not modified by the presence of the cavity, which is va
for cavities that subtend a small solid angle in space.
write udS1(v)] as

udS1~v!] 5gN@x~v!#udA~v!], ~34!

where @x(v)# is a 332 matrix, which can be deduced d
rectly from Eqs.~25!–~27!, or calculated by using the linea
response theory@12#. We obtain the same equation for th
polarization,

udP1~v!] 5gN@x~v!#22udA~v!], ~35!

where @x(v)#22 is the restriction of@x(v)# to the two-
dimensional subspace generated byP(v) andP†(v) only.
2-3
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L. VERNAC, M. PINARD, AND E. GIACOBINO PHYSICAL REVIEW A62 063812
The second contributionudS2(v)] is independent of the
fluctuations of the driving field, and is linked to spontaneo
emission. It is also computed from the Bloch equations.
correlation functions can be calculated from Eqs.~25!–~27!
without the terms indA anddA†, or by using the quantum
regression theorem of~see Ref.@18#!.

Using Eq.~34!, we have

udS~v!] 5gN@x~v!#udA~v!] 1udS2~v!]. ~36!

We now calculate the cavity field fluctuationsdA(v).
The field seen by the atoms inside the cavity is obtained
writing the Fourier transform of Eq.~23!:

~k1 iDC2 iv!dA~v!5A2k/tdAin~v!1~ ig/t!dP~v!.
~37!

The dipole fluctuations generate a fluctuating fie
( ig/t)udP], which is recycled by the cavity and contribute
to the intracavity field fluctuations. As a result, the fluctu
tions of the field going out of the cavity are modified. This
at the origin of the well-known squeezing effect produced
two-level atoms in a cavity@13#.

Equations fordA(v) anddA†(v) can be written in ma-
trix form as

~k1 i @«#DC2 iv!udA~v!] 5A2k/tudAin~v!] 1~ ig/t!

3@«#udP~v!], ~38!

where@«# is a 232 matrix:

@«#5F1 0

0 21G . ~39!

With Eq. ~36!, Eq. ~38! can be rewritten as

~k1 i @«#DC2 iv!udA~v!] 5A2k/tudAin~v!] 1 ig2N/t@«#

3@x~v!#22udA~v!] 1~ ig/t!

3@«#udP2~v!]. ~40!

We define the transfer matrix@m(v)# from the incoming
field to the intracavity field as

2k@m~v!#215~k1 i @«#DC2 iv!2~ ig2N/t!@«#@x~v!#22.
~41!

The first term in Eq.~41! is due to the empty cavity while
the second term accounts for the complex atomic susce
bility, evaluated at the operating point. Using Eq.~41! in Eq.
~40!, we have

udA~v!] 5
1

A2kt
@m~v!#udAin~v!] 1

ig

2kt
@m~v!#

3@«#udP2~v!]. ~42!

Indeed, each atom sees a quantum field that is modified
all the other atoms. This contributes to create a quan
correlation among the atomic ensemble.
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Finally we replace the field fluctuations@Eq. ~42!# in Eq.
~36! to obtain the collective atomic spin fluctuations:

udS~v!] 5@J~v!#udAin~v!] 1udS2~v!]

1@K~v!#udP2~v!]. ~43!

The matrices@J(v)# and @K(v)# are given by

@J~v!#5
Ng

A2kt
@x~v!#@m~v!#, ~44!

@K~v!#5
iNg2

2kt
@x~v!#@m~v!#@«#. ~45!

We see that the spin fluctuations contain a contribut
from the incoming field, modified by the atomic susceptib
ity @the first term in Eq.~43!# and a contribution from the
resonance fluorescence@the last two terms in Eq.~43!#.
These two contributions are not correlated, since they co
spond to independent quantum fluctuations.

The second term in Eq.~43! is atomic excess noise due t
spontaneous emission emitted into the cavity mode. T
third contribution is also due to spontaneous emission
comes from the fluorescence light emitted by the atoms
the cavity mode, and processed by the atomic medium in
cavity.

In order to evaluate the spin squeezing, we will use
variances of the spin components, which are equal to
noise spectrum integrated over the whole frequency ran
Let us point out that the variances of the atomic spin
semble can be calculated directly without calculating
spectra. We can write Eqs.~23!–~27! in matrix form as

dudj~ t !]

dt
52@B#udj~ t !] 1uFj], ~46!

whereudj(t)] is a column vector:

udj~ t !] 5@dA~ t !,dA†~ t !,dP~ t !,dP†~ t !,dSz~ t !uT. ~47!

@B# is the evolution matrix of the system of equations~23!–
~27!, anduFj] is the column vector:

uFj~ t !] 5FA2k

t
dAin~ t !,A2k

t

3dAin†~ t !,FP~ t !,FP†~ t !,FSz
~ t !UT

. ~48!

We define the covariance matrix@G(t)# by

@G~ t !#5udj~ t !] @dj~0!u, ~49!

and the diffusion matrix by

uFj~ t !] @Fj~ t8!u5@D#d~ t2t8!. ~50!

The value of the diffusion matrix@D# is given in the Ap-
pendix. We will study the two cases of a coherent input fie
2-4
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SPIN SQUEEZING IN TWO-LEVEL SYSTEMS PHYSICAL REVIEW A62 063812
and of a broadband squeezed input field. A single-m
squeezed input field can be written as@19#

âs5â cosh~r !2â†eiu sinh~r !, ~51!

âs
†5â†cosh~r !2âe2 iu sinh~r !, ~52!

whereâ andâ† are the operators describing a coherent fie
u gives the phase of the squeezing, andr is the squeezing
parameter, so that the amount of squeezing ise22r . The case
of a coherent input field is obtained by takingr 50. This
formula can be generalized to a broadband squeezed i
field, for example, in the case of a squeezed vacuum
duced in a parametric oscillator above threshold@20#. The
correlation functions of the broadband squeezed field
given in the Appendix.

The variances of the spin components and their corr
tion functions are elements of@G(0)#, which verifies@5#

@B#@G~0!#1@G~0!#@B†#5@D#. ~53!

Inverting Eq. ~53! gives @G(0)#, and consequently the
spin variances. We have checked that the variances obta
by the two methods are the same. However, we will see
the following that the first method, which consists of eva
ating the noise spectra, allows one to better understand
origin of the noise on the spin components, and to re
without ambiguity the occurrence of spin squeezing with
squeezing of a field inside the cavity.

III. SPIN SQUEEZING

Having calculated the quantum fluctuations of the sp
1/2 ensemble interacting with a field in a cavity, we are in
position to discuss squeezing. In the same way as a sque
state of the electromagnetic field is defined by compari
with the coherent state, a squeezed spin state will be defi
as having fluctuations in one component lower than that
coherent spin state@3#. Since the noise spectrum of a cohe
ent spin state is not white, contrary to the case of a light fie
one has to compare the variances of the considered spin
ponents to the variances of the components of a cohe
spin state. We define the varianceDO of any operatorO as
^dO2&, with dO5O2 ^O&.

We introducesx andsy ,

sxi5~Si1Si
†!/2, syi5~Si2Si

†!/2i , ~54!

andSx andSy

Sx5(
i 51

N

sxi , Sy5(
i 51

N

syi . ~55!

Using the commutation relation of an angular moment
@Sj ,Sk#5 iSl , where j ,k,l 5x,y,z, spin systems are ofte
considered as squeezed if one of the spin componentSu in
the x,y plane has a variance below the value given by
Heisenberg inequality:

DSu<^Sz&/2. ~56!
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For example, such an effect was found in the interaction
free atoms with a strong field@4#. However, this case has t
be compared more carefully with the one of a coherent s
state.

We define a coherent spin state forN atoms as an en
semble ofN uncorrelated spins, each of them being an eig
state of the individual spin operator in the (u,f) direction,

su,f5sx sinu cosf1sy sinu sinf1sz cosu, ~57!

with eigenvalue11/2. This coherent spin state is an eige
value of the collective spin operatorSu,f5( j 51,Ns j u,f ,
with eigenvalueS5N/2 @21#. It satisfies the minimum uncer
tainty relationship with fluctuations equally distributed ov
any two orthogonal components normal to the (u,f) direc-
tion, the variances of which are equal toS/25N/4.

The previous effect can be obtained by just rotating
coherent spin state. In addition, it should be noted that
kind of definition for squeezing would not provide noise r
duction as far as spin measurements are concerned. The
terion for spin squeezing should be that the noise is redu
in actual measurements on spin ensembles. These typi
involve starting from the mean spin in some (u,f) direction,
and applying ap/2 pulse, which brings the mean spin in
direction perpendicular to (u,f). One then measures th
probability to find the spin along the (u,f) direction. For a
coherent spin state, since the collective spin has fluctuat
equal to the Heisenberg limit for all components in the pla
normal to the new mean spin direction, the fluctuations in
measurement are proportional toAN/2. If, however, one can
squeeze the fluctuations of the total spin within the pla
orthogonal to the mean value, it will result in noise reducti
in the above-mentioned measurement.

The condition for spin squeezing is then

DSw<^SZ&/2, ~58!

where the axes have been rotated in such a way that thZ
axis is in the direction of the mean spin andw represents a
direction in theX,Y plane.̂ SZ& is then the mean value of th
spin, andSX and SY have zero mean values. This can on
occur for a spin ensemble withN.1, because it implies the
emergence of quantum correlations within the spin
semble.

We now calculate the variancesDSX andDSY of the spin
variables in our reference frame. For this, we perform a
tation defined by anglesu andf, such that

cosu5
^Sz&

i^SW &i
, ~59!

cosu sinf5
^Sx&

i^SW &i
. ~60!

First, we calculate the spectra of the components of
spin in theX,Y plane, using Eq.~43!. The correlation spec-
trum Vkl(v) (k5X,Y; l 5X,Y) for the spin fluctuations in
the X,Y plane is given by
2-5
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L. VERNAC, M. PINARD, AND E. GIACOBINO PHYSICAL REVIEW A62 063812
^dSk~v!dSl~v8!&52pVkl~v!d~v1v8!. ~61!

A spin componentSa in the X,Y plane, making an anglea
with the X axis, has a noise spectrumVa(v) defined by

^dSa~v!dSa~v8!&52pVa~v!d~v1v8!, ~62!

which verifies

Va~v!5VXX~v!cos2a1VYY~v!sin2a

1sin 2a Re„VXY~v!…. ~63!

The variance of this spin component,DSa , is obtained by
integration of its noise spectrum:

DSa5E Va~v!
dv

2p
. ~64!

Using Eq.~63!, we obtain

DSa5cos2aDSX1sin2aDSY1sin 2a Re~DSXY!, ~65!

whereDSX and DSY are the variances of the spin comp
nents along theX and Y axes, respectively, andDSXY
5*VXY(v) (dv/2p).

Then the values ofa for spin components having max
mal and minimal variances verify

tan 2a5
2 Re~DSXY!

DSX2DSY
. ~66!

In order to investigate squeezing, we compare the m
mal variance tô SZ&/2, which is slightly different fromN/4
in our case because spontaneous emission tends to de
the coherence of individual spins. The corresponding n
malized variance thus obtained is calledDSmin . Spin squeez-
ing is achieved whenDSmin,1.

A. Coherent input field: self-spin squeezing

Let us first consider the case of a coherent input field.
have explored various sets of parameters. Spin squeezin
been found when the nonlinearity of the atomic ensembl
high, which also corresponds to conditions where the ou
field is squeezed. Values for a few physical parameters
given in Table I, together with the contribution of the vario
terms of Eq.~43!, which will be discussed further below. Le
use emphasize that the parameters chosen in Table I c
spond to feasible experiments. For example, in the exp
ments described in Refs.@13,14#, using cesium atoms coole
in a magneto-optical trap, the dipole linewidthg/2p is equal
to 2.6 MHz, and the optical cavity is such thatk52g and
T50.1; the value of the incident field is then about 10mW,
and the cooperativity can reach 120. The value of the co
erativity could be increased to 1000 and more using ot
trapping configurations@22#.

It can be seen that spin squeezing increases with the
operativity parameter, and that squeezing values as hig
46% can be obtained. Let us mention that, for each valu
the cooperativityC, the values of the input laser intensi
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(b in)2 of the atomic detuningd and of the cavity detuning
dC have been optimized to obtain maximum squeezing. T
optimal values ofd and of the intracavity intensityI 0
5(b0 )2 are given in the second and third lines of Table
This squeezing may be called ‘‘self-squeezing,’’ inasmuch
is due to the nonlinear action of the atomic ensemble on
light fluctuations inside the cavity, which yields squeezing
the collective atomic spin.

The noise spectrum of the minimum spin compone
Smin (v), is represented in Fig. 2, for parametersC5100,
d520, andI 056.5. It exhibits a peak close to zero frequen
and a peak at a frequencyV1, which is an eigenfrequency o
the cavity-atom system in a strong field„frequencies 0 and
V1 are roots of the determinant of matrix@m(v)# defined in
Eq. ~41!…. Squeezing in the output field occurs around fr
quencies 0 andV1 @12#. The corresponding normalized sp
varianceDSmin is 0.83, and the spin squeezing is 17%.

To obtain further insight into the self-squeezing effect, w
can examine the contributions of the various terms in E
~43!. The first term, containingdAin(v), is not correlated
with the others and makes only one contribution to the n
malized variance. The contribution of this term,DSf , shown
in Table I, decreases in the same way asDSmin when the

TABLE I. Evolution with the cooperativityC of the minimum
spin variance,DSmin , of the field contributionDSf and the atomic
contribution DSv1DSd1DSc , for k52g and T50.1. For each
value of the cooperativity, the optimal values ofb in , d, and dC

have been determined to maximize the spin squeezing. The c
sponding values of the atomic detuningd and the intracavity inten-
sity I 0 are given on the second and third lines.

C 10 100 1000 10000
d 0,8 4 15 42
I 0 0,9 2,6 8,9 23
% of spin squeezing 20% 39% 44% 46%
DSmin 0,8 0,61 0,56 0,54
DSf 0,34 0,17 0,12 0,08
DSv1DSd1DSc 0,46 0,44 0,44 0.46

FIG. 2. Spectrum of the minimum spin componentSmin(v) as a
function of the normalized frequency. This spectrum has been
tained fork52g, I 056.5, dC56.25, d520, T50.1, andC5100.
These values correspond to a state close to the lower turning p
of the bistability curve.
2-6
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FIG. 3. Contributions of the various terms to the spectrum of Fig. 2.~a! Sf(v) is the contribution of the incoming field modified by th
nonlinear medium.~b! Sv(v) is the atomic excess noise associated with spontaneous emission in the cavity mode.~c! Sd(v) comes from the
spontaneous emission processed by the nonlinear medium.~d! Sc(v) is due to interference between the terms responsible for contribut
Sv(v) andSd(v).
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cooperatively increases. This can be interpreted as origi
ing from the effect of the atomic nonlinearity on the incom
ing field. The incoming coherent field is squeezed by
atomic nonlinear susceptibility, and this squeezing is in t
transferred to the atoms. It can be seen in Fig. 3~a! that the
spectrum corresponding to this term,Sf(v), is similar to the
total spin noise spectrum.

The second and third terms of Eq.~43!, associated with
spontaneous atomic emission, are correlated, and make
contributions to the total spin noise power. The noise sp
trum given by the second term alone in Eq.~43!, Sv(v), is
shown in Fig. 3~b!. It corresponds to the noise of free atom
and exhibits peaks at the generalized Rabi frequencyVR

5A(4I 01d2). Figure 3~c! shows that the noise spectrum
the dipole in the cavity,Sd(v) @the third term in Eq.~43!#,
has three peaks, at zero,V1, and VR . Figure 3~d! shows
Sc(v), the interference term between the two previous ter
It has a negative peak atVR which completely cancels th
two previous contributions atVR . This interference simply
corresponds to the fact that the atoms interact strongly w
the cavity in the direction of propagation, and that the em
sion peak at the natural frequencyVR of the atoms in free
space disappears and is replaced by an emission at the
quencyV1 of the coupled system. The spontaneous ato
emission may also contribute to spin squeezing@23#, but, in
the considered situation, the sum of the three correspon
variancesDSv , DSd , and DSc brings a noise contribution
06381
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that is virtually independent of the cooperativity, as can
seen in Table I. We can then conclude that spin squee
occurs via the interaction of the atoms with the squee
field present in the cavity.

B. Squeezed input field

We have also examined a different case in which the in
light is broadband squeezed light. We have investigated
optimum conditions for this squeezing to be transferred
the atoms. The best conditions in this case correspon
strong coupling of the atomic ensemble with the cavity a
to a very weak intracavity resonant field. In contrast to t
previous case, the atomic ensemble behaves like a linear
tem. The noise spectrumSspin(v) of a spin component for a
coherent input field is shown in Fig. 4~in this case all the
components are the same!. It consists of two identical peak
at the characteristic frequency of the linear strongly coup
cavity-atom system,V l in5gAN/t. When the input field is
squeezed, the only difference between the spectrum of
minimum spin component and the previous spectrum is
height of the peaks: they become smaller. The amoun
squeezing transferred to the atoms is always less than the
of the incoming light, because of the coupling of the ato
with the vacuum. In Figs. 5~a! and 5~b!, we show the effi-
ciency of the spin squeezing for the exact resonance of
field with the atoms and the cavity as a function of the ma
2-7
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nitude of the incoming squeezing. The spin squeezing is t
highest for perfect squeezing of the incoming field. In F
5~a! we see that the amount of spin squeezing increases
the cooperativityC, and tends to a limit. This limit depend
on the value of the ratiog/k, and the maximum efficiency o
the squeezing transfer defined as (12DSmin/12e22r) is
equal tok/(g1k), as can be seen in Fig. 5~b!. This shows
that the coupling of the atoms with the surrounding vacu
field limits the degree of achievable squeezing in the coll
tive spin.

When the incoming field is not exactly resonant with bo
the atoms and the cavity, the situation is quite different,
can be seen in Fig. 5~c!. For a large squeezing of the incom
ing light, excess noise is obtained for the atomic spin. T
excess noise goes to infinity for a perfect squeezing of
incoming light. This comes from the fact that nonreson
atoms cause a rotation of the noise ellipse. As a result,
squeezed and antisqueezed components are mixed insid
cavity, and induce excess noise on the spin.

IV. CONCLUSION

Using a full quantum model for an ensemble of two lev
atoms in a cavity, we derived the atomic spin fluctuati
spectra and variances, and rigorously showed the occurr
of spin squeezing in such systems. This result is likely to
generalized to atoms interacting with two fields in a Ram
type configuration.

Spin squeezing may occur in two different cases. In
first one, the nonlinearity of the atomic ensemble is exploi
to squeeze the intracavity field, which in turn imprin
squeezing on the atomic ensemble. This effect may be ca
spin self-squeezing. In the second case, the atomic ense
has a linear behavior. It cannot create squeezing in the in
cavity field. However, if the incoming field is squeezed, t
atom-field coupling in the cavity yields spin squeezing.

APPENDIX

Here we give the expression of the diffusion matrix a
pearing in Eq.~50!. The matrix elements of the higher

FIG. 4. Spectrum of the minimum spin componentSmin(v) ob-
tained for an incoming coherent field corresponding to a n
saturating intracavity intensity. This spectrum has been obtained
k52g, I 054.1026, dC5d50, T50.1, andC5100.
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32 quadrant of@D# are the correlation functions of a broad
band squeezed field. Their values are given above for
case of a squeezing bandwidth much larger than all the c
acteristic frequencies of the studied system@20#:

^dAin~ t !dAin†~ t8!&5cosh2~r !d~ t2t8!, ~A1!

-
or

FIG. 5. Minimum spin varianceDSmin as a function of the noise
reduction of the incoming field (RAin512e22r) in linear condi-
tions. ~a! For values of the cooperativelyC50.1, 1, 10, and 100,
with dC5d50, and k52g. ~b! for values of the parameterk
5g/k50.1, 0.5, and 1, withC51000, anddC5d50. ~c! For
values of the cooperativelyC50.1, 1, 10, and 100, with an atomi
detuning different from 0:d521, dC50, andk52g.
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^dAin~ t !dAin~ t8!&5 1
2 sinh~r !eiud~ t2t8!, ~A2!

^dAin†~ t !dAin†~ t8!&5 1
2 sinh~r !e2 iud~ t2t8!, ~A3!

^dAin†~ t !dAin~ t8!&5sinh2~r !d~ t2t8!. ~A4!

The matrix elements of the lower 333 quadrant of@D#
are the correlation functions of the atomic noise opera
appearing in Eqs.~25!–~27!. They were evaluated with th
Einstein generalized relations@18#. The only nonzero ele-
ments are given below:
.
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^FP~ t !FP†~ t8!&52gNd~ t2t8!, ~A5!

^FP~ t !FSz
~ t8!&52gp0d~ t2t8!, ~A6!

^FSz
~ t !FP†~ t8!&52gp0cd~ t2t8!, ~A7!

^FSz
~ t !FSz

~ t8!!&52g~N/21sz0!d~ t2t8!. ~A8!

The other elements of@D# are equal to zero since there a
no correlations between atomic and field fluctuations at
same time. Thus we obtain
@D#5F 2k/t cosh2~r ! k/t sinh~2r !eiu 0 0 0

k/t sinh~2r !e2 iu 2k/t sinh2~r ! 0 0 0

0 0 2gN 0 2gp0

0 0 0 0 0

0 0 2gp0c 0 2g~N/21sz0!
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