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Spin squeezing in two-level systems
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Using a quantum theory for an ensemble of two-level atoms driven by a field in an optical cavity, we show
that the spin associated with the atomic ensemble can be squeezed. Two kinds of squeezing are obtained: on
the one hand, self-squeezing of the spin when the input field is a coherent one and the atomic ensemble exhibits
a large nonlinearity; and on the other hand, squeezing transfer from an incoming squeezed field when the
atomic ensemble has a quasilinear behavior.

PACS numbdps): 42.50.Lc, 42.50.Dv

[. INTRODUCTION the atomic ensemble itself to generate squeezing. This
In high-precision atomic-physics experiments, accuracy i squee;ing may t'hen be called self—squeezir)g. Fpr co_nditions
. o o °Y ¥ which the spin is squeezed, the outgoing field is also
ultimately limited by the so-called quan.tum prgjectlon no'se'squeezed. Indeed, as demonstrated theoreticedly12 and
due to the fact that the atoms are not in an eigenstate qf tr@xperimentall){13,l4], under proper conditions the field go-
measured quantity. If an ens_embIeN)fngependent atoms IS ing out of the cavity is squeezed, due to the nonlinear re-
studied, fluctuations proportional t8~*? result from this  gponse of the atomic ensemble. We show that field squeezing
effect [1,2]. A few years ago, it was shown that using and spin squeezing originate from the same physical process.
squeezed atomic states would allow one to reduce these fluc- Spin squeezing is obtained by solving the full quantum
tuations[3]. Squeezed atomic states are correlated states afiaxwell-Bloch equations. We derive the fluctuation spectra
the atomic ensemble that exhibit reduced fluctuations for thef the spin components in any direction in tXeY plane,
measurement of interest. Implementing such squeezed statassuming that the mean spin is along thelirection. We
would be of particular interest in atomic clocks, where theobtain the variances either by integrating the spectra or with
transition between thE =3 and 4 states of the ground level a direct calculation. For a particular direction in theY
of cesium is detected. plane, the variance is found to be below the quantum limit,
As a model system we have studied the specific case of @hile the variance in the perpendicular direction exhibits ex-
two-level atom, and investigated the possibility of squeezing€ss noise. This result is conceptually very important, since it
the associated spih via the interaction with an electromag- shows that it is possible to create quantum correlations
netic field. Already in the early 1980s, it was conjecturedWithin an ensemble of atoms interacting with a laser field in
that atomic spin squeezing appeared as a counterpart &Pite of the inevitable coupling to the vacuum fluctuations.
squeezing of the electromagnetic figld]. However, the
guantum noise reduction on atomic variables computed in 1. MODEL EOR ATOMIC FLUCTUATIONS
several paperst,5] can be obtained by a mere rotation of the
atomic variables of a two-level system interacting with a We consider an ensemble of motionless two-level atoms
coherent field. As shown in R€f6], in order to be useful for placed inside a single-ended optical cavity and interacting
noise reduction in actual experiments, spin squeezing shouMith a single-mode field. In order to obtain a coupling be-
be obtained in a plane orthogonal to the direction of thetween atoms and light uniform in space, we deal with a ring
mean spin, where the mean value of the spin component @avity configuration as shown in Fig. 1, but the results ob-
zero. Recently, it was proposed to use absorption ofained can be extended with a good approximation to a
squeezed light by atoms in a single pass to produce spihabry-Perot-type cavity. Actually in the linear cavity case
squeezing7]. and with motionless atoms, an averaging should be per-
In this paper we investigate an alternative method, in
which atoms interact with light in an optical cavity. We show
that collective atomic spin squeezing may appear in two dif- Aom
ferent situations. On the one hand, one can achieve spin

squeezing by letting the atoms interact with incoming A|n atoms
squeezed light in an optical cavity. This configuration was %
already used in Ref$8] and[9] to study the modification of

the spontaneous emission due to the interaction of atoms A

with squeezed light. We find that the optimal conditions for

the transfer of squeezing from the incident light to the atoms

correspond to a nonsaturating intensity, in the strong-

coupling regime. On the other hand, one can also achieve

spin squeezing by letting the atoms interact with incident FIG. 1. Ring cavity configuration for the study of atom-field
coherentlight. In this case, one relies on the nonlinearity of coupling.
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formed over the values of the field “seen” by the atoms inthe field emitted by the atomic polarization, and from the

the standing-wave structure. However, no major changes imcoming field A"™. The fluctuations of the incoming field

the conclusion are expected from this effect. In most casesan be seen as a Langevin force for this equaltioff. The

guantum optics experiments performed in linear cavitiesatomic polarization and populations are given by quantum

were found to be in good agreement with models assumingiangevin equations derived from the Bloch equations, by

ring cavities[13,15,18. adding Langevin forces corresponding to the coupling with
The round-trip time in the cavity is, the amplitude trans- the vacuum field surrounding the system:

mission coefficient of the coupling mirror i5,,, and the

amplitude reflection coefficient is.,, , with r2, +t2, =1. dP(t) , _

The cavity is assumed to have a high finessg, &1). The gt~ (rHIJ)PM)—2igAM S +Fe(D), ()

decay rate of the field in the cavity is=(1—r.y,)/7

=T/27, where T=t2, . The atomic system has a ground dPi(t)

stateg and an excited state separated by the enerdyw,. =—(y—iA)PT(t)+2igS,(t)AT(t) + Fpi(t),

We call y the decay rate of the atomic dipole, due to a purely dt

radiative process. The atoms are driven by a field the fre- ©

quency of whicb isw_ . This field is represented by the op- ds,(t)

eratorA(t)e™'“t!. The mean-square value of the field will be _ . + +

expressed in number of photons per second. The cavity reso- dt ~27(S)FN2)=iglA( P =AM PI(Y)]

nance closest ta, has a frequencywc. We define the

atomic and cavity detuning parameters/as (wy— w,), &

=A/yandAc=(wc—w), 6c=Ac/k. The atom-field cou-

pling constant igy= &,d/#%, whered is the atomic dipole, and The noise operatosp(t), Fpt(t), andFSZ(t) are character-

+Fs (1) (10

Eo=Vhw 12€xScC. ized by zero averages and by correlation functions that are
We define the collective polarizatid?(t) and the collec- given in the Appendix.
tive population differencé&,(t) as The field coming out of the cavity is given by
N .
A (1) =t o A(t) — AN (T). 11
p(t):izl Si(t), (1) () =tca,At) (t) (13)

We will be interested in the quantum fluctuations of the field

‘ N . operatorA and of the atomic operators around their steady-
P (UZZl Si (1), (2)  state mean values
N AN(t)=a,+ SA"(t), (12)
S0=2 S:i(V), (3)
. A(t)=ag+ SA(t), (13
whereS;(t) andS,T(t) are the lowering and raising operators
for individual atoms in the rotating frame, P(t)=po+ oP(t), (14
S(v=lgi)(ele ', “ P'(t)=poc+ 8P"(1), (15)
Ty — | | a—iogt

ands, (t) is given by ,
. wfggg} ;\;n=<A';(t)>st.< S?(OT;A(t»st-h po=<F;(t)>st. Poc
= t))sy and s,0=(S,(1))s; are the steady-state mean
S, ()= 5 ([e)(el—]gi)(gi)- (6)  values. We choose the phases such #ha real.
The mean values can easily be computed from Efs:
The field inside the cavity is related to the incident field (10) without the fluctuating terms, which are the usual
and to the atomic polarization by Maxwell-Bloch equations. The steady-state solutions of this
system are given by

—dg(tt) =—(k+iAc)A(t)+ig/7P(1)+ 2kl T Al"(1), INBo(1—15)
o(1—
(7) Po 1+ 52+2|ﬁ0|2, (17)
and A'(t) is given by an equation which is a Hermitian
conjugate of Eq(7). This equation expresses the derivative N(1+ &2)
of the intracavity field as coming from the recycling of the S,0=— , (18
field of the cavity and loss through the coupling mirror, from 2(1+6°+2|Bol?)
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2C Ty — T4y el ot
Vb B"{ 1+52+2|Bo|2)
2Cs To calculate the atomic fluctuations we are going to write
( Sc— —) ] (19 Egs.(25—(27) in a matrix form in Fourier space. We intro-
1+ 82+2|Bol? duce|5S(w)] which is a three-dimensional vector,
where we have introduced the scaled fields SP(w)
Bo=920!7, (20) |6S(w)]=| SPT (@) |, (30)
0S(w)
Bin=93ain /7, (21)
N and its adjoin{ 6S(w)|=|6S(w)]".
and the cooperativity parameter In the same way the atomic polarization and the fields will
Ng? be represented by two-dimensional vectors:
- 2kyT’ (22) SP(w)
|6P(w)] = 5P ()| (3
For large enough values @, and C, the solution exhibits
the well-known bistable behavior of the intracavity field. It is SA
in the vicinity of the bistable turning point that the squeezing |6A(w)] = () (32)
of the outgoing field is maximum. On the other hand, for SAT(w) |’

large g (or large C), one can reach, even for sma, a _ o _ _ .
regime of vacuum Rabi splitting or a strong-coupling regimeln order to obtain physical insight into the spin squeezing
in which two peaks appear in the reflection spectrum wher@nd its connection with the field squeezing, we will solve the

the atomic and cavity frequencies are equal. system of equation&3)—(27) in two steps. First, in atomic
To obtain equations for the field and atomic fluctuations,fluctuations, we separate the contributions of the fluctuations
we linearize Eqs(7)—(10): of the driving field present in the cavity from the contribu-
tions of all the empty modes. Second, we calculate the fluc-
dosA(t) ] ) tuations of the cavity field to obtain the final expressions of
gt~ (kTiAc)sA(L)+(ig/T)SP(1) the collective spin fluctuations.
‘ The atomic fluctuations have two different origins, which
+ 2kl T SA™(1), (23)  are due to the fluctuations of the cavity fieth(w) and

S5AT(w) and to the fluctuations of the empty modEs(w),

dsAT(t) B A SAT D= (ia/ 7 8Pt Fpt(w), and Fsz(w), respectively. Thus the atomic fluctua-
dt (r=ikc) (D)= (ig/m)oP(D) tions |8S(w)] can be written as the sum of two contribu-
. tions:
+2k/ TSAM (1), (24)
|6S(w)] =|8S1(@)] +[8S,(w)]. (33
dsP(t) ) _ _
g~ (y+14)oP(1)—2igagdS,(t) — 2ig SA(1)Sy0 |5S,(w)] is the linear response of the atomic spin to the
fluctuations of the driving field, whilésS,(w)] is the re-
+Fp(1), (25  sponse to the vacuum field fluctuations coming from all the
; directions of space, i.e., the spin fluctuations associated with
déP(t) . T . . + spontaneous emission. We assume that spontaneous emission
dat —(y=1A)8P(1) +2igagdS,(1) +2ig 6A (t)S,0 is not modified by the presence of the cavity, which is valid
for cavities that subtend a small solid angle in space. We
+Fpi(t), (260 write | 6S,(w)] as
doS,(t =
jf ) 2y88.0)—igag SP()— 5P ()] |5S1()] =gN[x()]|5A(w)], (34

where[ y(w)] is a 3X2 matrix, which can be deduced di-
—ig[poSAT(1) = po SA(D]+Fs(t). (27)  rectly from Eqs.(25)—(27), or calculated by using the linear
response theory12]. We obtain the same equation for the
We will compute the fluctuations in the Fourier space. Forpolarization,
any operatoiO(t) in the rotating frame, we define the Fou-
rier transform as |6P1(@)] =gN[ x(@)]22 SA(w)], (35

where [ x(w)],, is the restriction of[ y(w)] to the two-

— iwt
O(w)_f O(t)e™dt, (28) dimensional subspace generatedRfy») and P'(w) only.
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The second contributiohsS,(w)] is independent of the Finally we replace the field fluctuation&g. (42)] in Eq.
fluctuations of the driving field, and is linked to spontaneous(36) to obtain the collective atomic spin fluctuations:
emission. It is also computed from the Bloch equations. Its

correlation functions can be calculated from E(&5)—(27) |6S(@)]=[I( ) ]| SA™ ()] +]5Sy(w)]
without the terms indA and SAT, or by using the quantum
regression theorem dgsee Ref[18]). +IK(@)]|6P5(w)]. (43
Using Eq.(34), we have The matrice§ J(w)] and[K(w)] are given by
|6S(w)] =gN[x(@)]|6A(w)] +]8Sx(w)].  (36) Ng
We now calculate the cavity field fluctuation$A(w). [J(w)]= ,/2,(7.[)(((")][“(‘0)]’ (44)
The field seen by the atoms inside the cavity is obtained by
writing the Fourier transform of Eq¢23): iNg?
[K(0)]= 5 —[x(@)][r(o)]e]. (45

(k+iAc—iw)6A(w)= 2kl T6A™(w)+(ig/7) 6P(w).
(37 We see that the spin fluctuations contain a contribution
The dipole fluctuations generate a fluctuating field,from the incoming field, modified by the atomic susceptibil-

to the intracavity field fluctuations. As a result, the fluctua-résonance fluorescendehe last two terms in Eq(43)].
tions of the field going out of the cavity are modified. This is These two contributions are not correlated, since they corre-

at the origin of the well-known squeezing effect produced bysPond to independent quantum fluctuations.
two-level atoms in a cavity13]. The second term in E¢43) is atomic excess noise due to

Equations forsA(w») and SAT(») can be written in ma- SPontaneous emission emitted into the cavity mode. The
third contribution is also due to spontaneous emission. It

trix form as . : .
comes from the fluorescence light emitted by the atoms into
(k+i[e]Ac—iw)|6A(w)] =2kl 7| 6A(w)] + (ig/T) the cavity mode, and processed by the atomic medium in the
cavity.
X[e]|6P(w)], (39 In order to evaluate the spin squeezing, we will use the
. . variances of the spin components, which are equal to the
where[e] is a 2x2 matrix: noise spectrum integrated over the whole frequency range.
1 0 Let us point out that the variances of the atomic spin en-
[e]= ) (399 semble can be calculated directly without calculating the
0 -1 spectra. We can write Eq&23)—(27) in matrix form as
With Eq. (36), Eq. (38) can be rewritten as d| 5&(t)]
| g = [BIISE]+|F 4, (46)
(k+i[e]Ac—iw)|6A(w)] =2kl 7| SA™ ()] +ig®N/ €]
X[ x(@)]2g SA(w)] +(ig/7) where| 8&(t)] is a column vector:
X[e][6P(w)]. (40) |6E(D)]=[8A(t), 5AT(1), 8P (1), 6P(1),85,()[". (47)
We define the transfer matrpu(w)] from the incoming  [B] is the evolution matrix of the system of equatiq@8)—
field to the intracavity field as (27), and|F,] is the column vector:
2if ()] =(k+i[e]Ac—iw) = (Ig°N/7)[ ][ x(@)]22- 2k . 2k
(41) [Fe(O]=| \—0A(D, \|—
The first term in Eq(41) is due to the empty cavity while ‘ T
the second term accounts for the complex atomic suscepti- X 5A'”T(t),Fp(t),pr(t),FsZ(t) . (48
bility, evaluated at the operating point. Using E41) in Eq.
(40), we have We define the covariance matii%s(t) ] by
1 . i =
N 2KT - _
and the diffusion matrix by
X[e]|oP2(w)]. (42)
[F(DI[F(t)[=[D]a(t—t"). (50)

Indeed, each atom sees a quantum field that is modified by
all the other atoms. This contributes to create a quantum The value of the diffusion matrikD] is given in the Ap-
correlation among the atomic ensemble. pendix. We will study the two cases of a coherent input field
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and of a broadband squeezed input field. A single-modé&or example, such an effect was found in the interaction of

squeezed input field can be written [49)] free atoms with a strong fieldt]. However, this case has to
o o be compared more carefully with the one of a coherent spin
ags=acoshr)—a'e'’sinhr), (51  state.
We define a coherent spin state fdratoms as an en-
élzé*cosf(r)—ée’“gsinr’(r), (52 semble ofN uncorrelated spins, each of them being an eigen-

state of the individual spin operator in thé, ¢) direction,
wherea anda' are the operators describing a coherent field,
6 gives the phase of the squeezing, anis the squeezing 09,4= 0xSINOCOSH+ oy sindsing+o,cosd, (57)
parameter, so that the amount of squeezirg i§. The case
of a coherent input field is obtained by takimg=0. This  With eigenvalue+1/2. This coherent spin state is an eigen-
formula can be generalized to a broadband squeezed inpuglue of the collective spin operat® ,==;-1n0j4,4
field, for example, in the case of a squeezed vacuum prdNith eigenvalueS=N/2 [21]. It satisfies the minimum uncer-
duced in a parametric oscillator above threshi@@]. The  tainty relationship with fluctuations equally distributed over
correlation functions of the broadband squeezed field ar&ny two orthogonal components normal to titg¢) direc-

given in the Appendix. tion, the variances of which are equal 2= N/4.
The variances of the spin components and their correla- The previous effect can be obtained by just rotating the
tion functions are elements pG(0)], which verifies[5] coherent spin state. In addition, it should be noted that this
kind of definition for squeezing would not provide noise re-
[BI[G(0)]+[G(0)][B']=[D]. (53)  duction as far as spin measurements are concerned. The cri-

) ) terion for spin squeezing should be that the noise is reduced

Inverting Eq. (53) gives [G(0)], and consequently the jy actual measurements on spin ensembles. These typically
spin variances. We have checked that the variances obtainggl,q|ve starting from the mean spin in som@ ¢) direction,
by the two methods are the same. However, we will see iynq applying am/2 pulse, which brings the mean spin in a
the following that the first method, which consists of evalu-yirection perpendicular to & ¢). One then measures the
ating the noise §pectra, allowg one to better understand ”k?robability to find the spin along theg(¢) direction. For a
origin of the noise on the spin components, and to relatgoherent spin state, since the collective spin has fluctuations
without ambiguity the occurrence of spin squeezing with thesqya to the Heisenberg limit for all components in the plane

squeezing of a field inside the cavity. normal to the new mean spin direction, the fluctuations in the
measurement are proportional {/2. If, however, one can
lll. SPIN SQUEEZING squeeze the fluctuations of the total spin within the plane

Having calculated the quantum fluctuations of the Spm_orthogonal to the mean value, it will result in noise reduction

1/2 ensemble interacting with a field in a cavity, we are in " the above-mentioned measurement.
position to discuss squeezing. In the same way as a squeezed | N€ condition for spin squeezing is then
state of the electromagnetic field is defined by comparison
with the coherent state, a squeezed spin state will be defined ASe=(S,)/2, (58)
as having fluctuations in one component lower than that of a .
coherent spin statd]. Since the noise spectrum of a coher- wh_er_e t_he axes haye been rotated in .SUCh a way thaf the
ent spin state is not white, contrary to the case of a light field®*!S S |n'the direction of the mean spin apdrepresents a

one has to compare the variances of the considered spin Coer_ectlon in theX, Y plane(S;) is then the mean value of the

ponents to the variances of the components of a coherefiPIn: @ndSx and Sy have zero mean values. This can only

spin state. We define the variana® of any operatoO as ~ O¢CUr for a spin ensemble with>1, because it implies the

<602> with 50=0— (O). emergence of quantum correlations within the spin en-
We introduceo, and o, semble.
I HEox Ty We now calculate the variancésS, andAS, of the spin
oyi=(S+9SN)/2, gyiz(a_a‘r)/z, (54)  variables in our reference frame. For this, we perform a ro-
tation defined by angle8 and ¢, such that
andS, andS,
N N cosf= —<Sf> , (59
S=2, oy, §=2, oyi. (55) (S
i=1 i=1
Using the commutation relation of an angular momentum cosfsing= <Sf> ) (60
[S;,S]=iS,, wherej,k,I=X,y,z, spin systems are often 1K)

considered as squeezed if one of the spin compo8giiry )
the x,y plane has a variance below the value given by the First, we calculate the spectra of the components of the

Heisenberg inequality: spin in theX,Y plane, using Eq(43). The correlation spec-
trum V (w) (k=X,Y;1=X,Y) for the spin fluctuations in
AS,=(S)/2. (56)  theX,Y plane is given by
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(0&(w)0S("))=27Vi(w)d(wt+w’).  (61) TABLE I. Evolution with the cooperativityC of the minimum
spin varianceAS,,, , of the field contributio S; and the atomic
A spin componens, in the X,Y plane, making an angle contribution AS, +AS;+AS,, for k=2y and T=0.1. For each
with the X axis, has a noise spectruvh,(») defined by value of the cooperativity, the optimal values gf,, 4, and &c
have been determined to maximize the spin squeezing. The corre-
(8Sy(w)8S(w")) =27V (w)S(w+w'), (62 sponding values of the atomic detunidgand the intracavity inten-

sity 15 are given on the second and third lines.

which verifies

) C 10 100 1000 10000
V(@) =Vyx(w)cosa+Vyy(w)sira 5 08 4 15 42
+sin 2a Re(Vyy()). 63 o _ _ 0,9 2,6 8,9 23
% of spin squeezing 20% 39% 44% 46%
The variance of this spin componentS, , is obtained by ~ ASnin 0,8 0,61 0,56 0,54
integration of its noise spectrum: AS 0,34 0,17 0,12 0,08
AS,+ASy+AS, 0,46 0,44 0,44 0.46
dw
AS,= f Vi (0)5—. (64)
2

(Bin)? of the atomic detuning and of the cavity detuning
Using Eq.(63), we obtain oc have been optimized to obtain maximum squeezing. The
optimal values ofd and of the intracavity intensity,
AS,=cofaAS,+siPaAS,+sin 2a Re(AS,y), (65  =(Bo)? are given in the second and third lines of Table I.
This squeezing may be called “self-squeezing,” inasmuch it
where ASy and AS, are the variances of the spin compo- is due to the nonlinear action of the atomic ensemble on the
nents along theX and Y axes, respectively, andSyy light fluctuations inside the cavity, which yields squeezing in

= [Vyy(w) (dw/27). the collective atomic spin.
Then the values ok for spin components having maxi- The noise spectrum of the minimum spin component,
mal and minimal variances verify Smin (), is represented in Fig. 2, for paramet&s- 100,
6=20, andl ;= 6.5. It exhibits a peak close to zero frequency
(an 2 2 Re(ASyy) (66 and apeak ata frequen€yy, which is an eigenfrequency of
ASy—AS, the cavity-atom system in a strong fielftequencies 0 and

), are roots of the determinant of matfix(w)] defined in
In order to investigate squeezing, we compare the minigq. (41)). Squeezing in the output field occurs around fre-
mal variance tdSz)/2, which is slightly different fromN/4  quencies 0 an@), [12]. The corresponding normalized spin
in our case because spontaneous emission tends to desti@tianceA S, is 0.83, and the spin squeezing is 17%.
the coherence of individual spins. The corresponding nor- To obtain further insight into the self-squeezing effect, we
malized variance thus obtained is calle8,,. Spin squeez- can examine the contributions of the various terms in Eq.

ing is achieved when Sy;;,<1. (43). The first term, containingdA"(w), is not correlated
with the others and makes only one contribution to the nor-
A. Coherent input field: self-spin squeezing malized variance. The contribution of this ter&$;, shown

Let us first consider the case of a coherent input field. wd" Table |, decreases in the same way XSy, when the

have explored various sets of parameters. Spin squeezing ha§ (@)
been found when the nonlinearity of the atomic ensemble is ~™*
high, which also corresponds to conditions where the outputo.i4 |
field is squeezed. Values for a few physical parameters are, .,
given in Table |, together with the contribution of the various "~ |
terms of Eq(43), which will be discussed further below. Let 0.1}
use emphasize that the parameters chosen in Table | corre, . |
spond to feasible experiments. For example, in the experi-
ments described in Refgl3,14), using cesium atoms cooled 006
in a magneto-optical trap, the dipole linewidif2# is equal 0.04
to 2.6 MHz, and the optical cavity is such that2vy and
T=0.1; the value of the incident field is then about AWV, 0.02 _’/\
and the cooperativity can reach 120. The value of the coop-
erativity could be increased to 1000 and more using other
trapping configurationf22]. FIG. 2. Spectrum of the minimum spin compon&g,(w) as a

It can be seen that spin squeezing increases with the Céanction of the normalized frequency. This spectrum has been ob-
operativity parameter, and that squeezing values as high a&ined fork=2y, 1,=6.5, 5.=6.25, =20, T=0.1, andC=100.
46% can be obtained. Let us mention that, for each value ofhese values correspond to a state close to the lower turning point
the cooperativityC, the values of the input laser intensity of the bistability curve.

w
-20 0 20 40 60 80 fy
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FIG. 3. Contributions of the various terms to the spectrum of Figa)2S;(w) is the contribution of the incoming field modified by the
nonlinear medium(b) S,(w) is the atomic excess noise associated with spontaneous emission in the cavityanSglev) comes from the
spontaneous emission processed by the nonlinear medii8,(w) is due to interference between the terms responsible for contributions

S, (@) and Sy(w).

cooperatively increases. This can be interpreted as originathat is virtually independent of the cooperativity, as can be
ing from the effect of the atomic nonlinearity on the incom- seen in Table I. We can then conclude that spin squeezing
ing field. The incoming coherent field is squeezed by theoccurs via the interaction of the atoms with the squeezed
atomic nonlinear susceptibility, and this squeezing is in turrfield present in the cavity.
transferred to the atoms. It can be seen in Fig) tat the
spectrum corresponding to this terB( w), is similar to the
total spin noise spectrum. ) . . . )
The second and third terms of E@3), associated with We have also examined a different case in which the input
spontaneous atomic emission, are correlated, and make thrbght is broadband squeezed light. We have investigated the
contributions to the total spin noise power. The noise specoptimum conditions for this squeezing to be transferred to
trum given by the second term alone in E43), S,(w), is  the atoms. The best conditions in this case correspond to
shown in Fig. 8b). It corresponds to the noise of free atoms, strong coupling of the atomic ensemble with the cavity and
and exhibits peaks at the generalized Rabi frequefigy to a very weak intracavity resonant field. In contrast to the
=/(41y+ 5%). Figure 3c) shows that the noise spectrum of previous case, the atomic ensemble behaves like a linear sys-
the dipole in the cavitySy(w) [the third term in Eq(43)], tem. The noise spectruly,{») of a spin component for a
has three peaks, at zerf),;, and Qg. Figure 3d) shows coherent input field is shown in Fig. @n this case all the
S.(w), the interference term between the two previous termscomponents are the sajné consists of two identical peaks
It has a negative peak &g which completely cancels the at the characteristic frequency of the linear strongly coupled
two previous contributions @g. This interference simply cavity-atom system();;,=g+/N/7. When the input field is
corresponds to the fact that the atoms interact strongly witlsqueezed, the only difference between the spectrum of the
the cavity in the direction of propagation, and that the emis-minimum spin component and the previous spectrum is the
sion peak at the natural frequen€li of the atoms in free height of the peaks: they become smaller. The amount of
space disappears and is replaced by an emission at the fregueezing transferred to the atoms is always less than the one
guency{), of the coupled system. The spontaneous atomiof the incoming light, because of the coupling of the atoms
emission may also contribute to spin squeei®g|, but, in  with the vacuum. In Figs. &) and %b), we show the effi-
the considered situation, the sum of the three correspondingjency of the spin squeezing for the exact resonance of the
variancesAS,, ASy, andAS. brings a noise contribution field with the atoms and the cavity as a function of the mag-

B. Squeezed input field
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Sspin(w)
0.12
0.1
0.08 =
&
0.06 <
0.04
0.02
-40 -20 0 20 40 OJ/}/
- . (a) R..
FIG. 4. Spectrum of the minimum spin compon&pf,(w) ob- Ain

tained for an incoming coherent field corresponding to a non-

4
saturating intracavity intensity. This spectrum has been obtained for
k=2y, 1,=4.10"%, 5.=6=0, T=0.1, andC=100. 09

0.8

nitude of the incoming squeezing. The spin squeezing is then 0.7 \:\\S\\

highest for perfect squeezing of the incoming field. In Fig. 06 \\S\:\A\

5(a) we see that the amount of spin squeezing increases with §

the cooperativityC, and tends to a limit. This limit depends % os —omk=01 \s\ \S\“ 1

on the value of the ratig/ x, and the maximum efficiency of %411 5 k_05 \ N

the squeezing transfer defined as—AS,/1—e ?") is 0.3 1

equal tox/(y+ k), as can be seen in Fig(l§. This shows 02 | —2k=1 \

that the coupling of the atoms with the surrounding vacuum 04 \

field limits the degree of achievable squeezing in the collec- 1
0 0.2 0.4 0.6 0.8 1

tive spin.

When the incoming field is not exactly resonant with both (v) R
the atoms and the cavity, the situation is quite different, as Aln
can be seen in Fig.(6). For a large squeezing of the incom- 26
ing light, excess noise is obtained for the atomic spin. The 4
excess noise goes to infinity for a perfect squeezing of the ——C=01 i
. . . . 2.2
incoming light. This comes from the fact that nonresonant
atoms cause a rotation of the noise ellipse. As a result, the 2 -Gt
squeezed and antisqueezed components are mixed inside th . 1 =10
cavity, and induce excess noise on the spin. cr? 16

< ©--C=100

IV. CONCLUSION

Using a full guantum model for an ensemble of two level
atoms in a cavity, we derived the atomic spin fluctuation
spectra and variances, and rigorously showed the occurrence 5 .
of spin squeezing in such systems. This result is likely to be 0 02 0.4 06 08 1
generalized to atoms interacting with two fields in a Raman- ©
type configuration.

Spin squeezing may occur in two different cases. In the FIG. 5. Minimum spin varianca Sy, as a function of the noise
first one, the nonlinearity of the atomic ensemble is exploitededuction of the incoming fieldRa,=1—e"") in linear condi-
to squeeze the intracavity field, which in turn imprints tions. (@ For values of the cooperatively=0.1, 1, 10, and 100,
squeezing on the atomic ensemble. This effect may be calle§ft? dc=9=0, and k=2y. (b) for values of the parametek
spin self-squeezing. In the second case, the atomic ensemble’/<=0-1, 0.5, and 1, withC=1000, andéc=4=0. (c) For
has a linear behavior. It cannot create squeezing in the intré’-alues of t.he cooperatlvglgi: 0.1, 1’_10’ and 180‘ with an atomic

L . . ; . - detuning different from 05=—1, 6c=0, andx=27.
cavity field. However, if the incoming field is squeezed, the
atom-field coupling in the cavity yields spin squeezing.

X2 quadrant of D] are the correlation functions of a broad-
band squeezed field. Their values are given above for the
APPENDIX case of a squeezing bandwidth much larger than all the char-

) ) - ) acteristic frequencies of the studied systietdl:
Here we give the expression of the diffusion matrix ap-

pearing in Eq.(50). The matrix elements of the higher 2 (SAN(t) A (")) =cosI(r)s(t—t'), (A1)

063812-8
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(9AT(1)SAN(L')) = 3sinh(r)e!’s(t—t'),  (A2)
(SATT(1) SAT(t')) =$sinh(r)e 1 S(t—t),  (A3)
(SAM(t) SAN(L))=sintP(r) s(t—t').  (A4)

The matrix elements of the lowerx33 quadrant of D]

are the correlation functions of the atomic noise operators

appearing in Egs(25)—(27). They were evaluated with the
Einstein generalized relatiof48]. The only nonzero ele-
ments are given below:

2klTcosi(r)  «kl/rsinh2r)e? 0 0 0 7
klTsinh(2r)e™'? 2/ 7sink(r) 0 © 0
[D]= 0 0 2yN O 2yvpo
0 0 0 0 0
i 0 0 2yPoc 0 29(N/2+5,) |

PHYSICAL REVIEW /&2 063812

(Fa(t)Fpr(t'))=2yNa(t—t), (A5)
(FR(DF s (t')=2ypod(t—t'), (A6)
(Fs(DFpi(t"))=2yPocd(t—t'), (A7)
(Fs(DFs(t)))=2¢(NI2+s,0)8(t—1t').  (A8)

The other elements ¢D] are equal to zero since there are
no correlations between atomic and field fluctuations at the
same time. Thus we obtain
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