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Sampling the canonical phase from phase-space functions
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We discuss the possibility of sampling exponential moments of the canonical phase from thes-parametrized
phase-space functions. We show that the sampling kernels exist and are well-behaved for anys.21, whereas
for s521 the kernels diverge in the origin. In spite of that, we show that the phase-space moments can be
sampled with any predefined accuracy from theQ function measured in the double-homodyne scheme with
perfect detectors. We discuss the effect of imperfect detection and address sampling schemes using other
measurable phase-space functions. Finally, we discuss the problem of sampling the canonical phase distribu-
tion itself.

PACS number~s!: 42.50.Dv
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I. INTRODUCTION

Studying the phase of quantized radiation field modes
a long history~for a review on the quantum phase concep
see, e.g.,@1#!. Its importance in today’s problems is als
apparent. For example, phase and photon number mea
ments have been considered as a basis in some qua
teleportation schemes@2#. Notwithstanding the various
phase-dependent effects in quantum optics, phase itsel
not been uniquely measured and its very definition a
physical quantity has been subject to many dispu
Whereas for highly excited~quasiclassical! radiation field
states different approaches give similar results, the var
concepts differ in the phase properties of quantum st
close to vacuum. Therefore the question has arisen of w
are the differences between these approaches and how
evant are they experimentally. In this paper, we concent
on the canonical phase and its relation tos-parametrized
phase-space functions, with special emphasis on the me
ability of its exponential moments by ‘‘weighted’’ averagin
of measured phase-space functions.

The canonical phase distributionP(w) of a radiation field
mode~harmonic oscillator! prepared in a quantum state d
scribed by a density operator%̂ is defined by

P~w!5~2p!21^wu%̂uw&, ~1!

where the Fock-state expansion of the~unnormalizable!
phase statesuw& reads

uw&5 (
n50

`

einwun&. ~2!

Even though there has been no known experimental sch
that is directly governed byP(w), this distribution has very
nice properties: it is non-negative, conjugated to the phot
number distribution~in the sense that a phase shifter shifts
phase distribution while a number shifter does not chang
1050-2947/2000/62~6!/063811~10!/$15.00 62 0638
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@3#!, there exist number-phase uncertainty relations@4#, and
in comparison to other phase distributions,P(w) is the
sharpest one.

The lack of direct experimental availability ofP(w) has
led us to the search of schemes for sampling the canon
phase statistics from quantities that can be measured dire
@5–7#. In balanced four-port homodyning~for a review on
quantum-state measurement using homodyning, see,
@8#!, the exponential momentsCk of the canonical phase,

Ck5E
2p

dw eikwP~w!, C2k5Ck* , ~3!

can be sampled by integrating the measured quadrat
component statistics multiplied by well-behaved kernel fun
tions @5–7#. An advantage of the method is that it applies
both the quantum regime and the classical regime in a
fied way. Of course, the question has been whether or n
is possible to find other~and possibly better! measurement
schemes suitable for sampling the exponential moment
the canonical phase.

It is well known that balanced double homodyning~eight-
port homodyning! provides us with a two-dimensional set o
data whose statistics correspond to as-parametrized phase
space functionWs(q,p) with s<21 @9#. In this scheme, the
limiting case ofs521, which corresponds to the HusimiQ
functionQ(q,p)5W21(q,p), requires perfect detection, i.e
100% detection efficiency. Having a sampling scheme le
ing from a measureds-parametrized phase-space function
the exponential canonical-phase moments would be the m
direct method of measuring the exponential moments of
canonical phase. Since each measurement event (q,p) al-
ready yields a phase value arg(q1 ip), the measured value
only need to be ‘‘weighted’’ by the kernel functions in th
averaging procedure yielding the exponential momentsCk .

There are also measuring schemes, e.g., unbalanced
modyning, suitable for determinings-parametrized phase
space functionsWs(q,p) with larger values ofs @10#.
©2000 The American Physical Society11-1
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However, in these schemes the functionsWs(q,p) are not
obtained in terms of the statistics of measurement ev
(q,p), but they are obtained pointwise for each phase-sp
point (q,p) set up in the experiment. Moreover, they a
typically reconstructed from the measured data rather t
measured directly. Nevertheless, it is interesting to ask
question of the prospects of phase measurement in sch
of that type.

In this paper, we try to answer the questions raised ab
focusing our attention on the problem of using balanc
double-homodyne detection for sampling the exponen
moments of the canonical phase. In Sec. II, we present
kernels that relate thes-parametrized phase-space functio
to the exponential phase moments, and in Sec. III we ap
the results to direct sampling of the exponential phase
ments in balanced double-homodyne detection. Other m
surement schemes are discussed in Sec. IV. Section V
dresses the problem of determining the phase distribu
itself, and a conclusion is given in Sec. VI.

II. THE KERNEL FUNCTION

Our task is to find the kernel functionKk(r ;s) such that
the exponential moments of the canonical phase can be g
by (k.0)

Ck5^Êk&5E
0

2p

dw eikwE
0

`

rdr W~r ,w;s!Kk~r ;s!, ~4!

andC2k5Ck* , where

Ê5 (
n50

`

un&^n11u. ~5!

In Eq. ~4!, the phase-space functionW(r ,w;s) is written in
polar coordinates, i.e.,W(r ,w;s)5Ws(r cosw,r sinw). Note
thateikwKk(r ;s) is the (2s)-parametrized phase-space fun
tion of the operatorÊk. We now take advantage of the e
pression@6#

Ck5(
l 50

`

(
n50

l
~21! l 2n

~ l 2n!!An! ~ l 1n!!
^â†l âl 1k&, ~6!

where the expectation value of the normally ordered corr
tions of the photon creation and destruction operators ca
calculated by means ofW(r ,w;s) as @11#

^â†l âl 1k&5~21! l l ! S 12s

2 D lE
0

2p

dw eikw

3E
0

`

rdr r kLl
kS 2r 2

12sDW~r ,w;s! ~7!

(Ll
k , Laguerre polynomial!. Combining Eqs.~4!, ~6!, and~7!,

we derive~Appendix A!
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Kk~r ;s!5
r k2k11

pk/2 E
0

`

drH rk21V (k)~r2!

3@11s1~12s!e2r2
#2k21

3expF2
2~12e2r2

!r 2

11s1~12s!e2r2G J . ~8!

Here, the functionV (k)(r2) is given by

V (k)~r2!5e2r2

(
n50

`
~21!n

n!
An

(k)r2n, ~9!

where

An
(k)5E

0

p

dw1sink22w1•••E
0

p

dw isink2 i 21w i•••

3E
0

2p

dwk21$†sin2w1

3$11sin2w2@11•••~11sin2wk21!#%‡n%. ~10!

It is worth noting thatKk(r ;s) is unique, which follows from
the fact thatKk(r ;s) is the phase-space function ofÊk and
from the uniqueness of phase-space representations. Th
in contrast to the kernel functions that relate quantities to
quadrature-component statistics measured in a balanced
modyne scheme, where certain functions can be added to
kernels without changing the result@6,8,12#.

The integral in Eq.~8! converges fors.21 because

uV (k)~r2!u,e2r2
Vk , ~11!

Vk being some constant. Plots of the kernel function for d
ferent values ofs andk are shown in Fig. 1. We can see th
Kk(r ;s) monotonically increases withr from zero to one for
s>0. If s,0, thenKk(r ;s) attains the maximum at a finite
value of r. The position of the maximum shifts toward th
origin and the value of the maximum tends to infinity
s→21. Hence the kernels that relate the exponential ph
moments to theQ function diverge atr 50. To be more
specific, it can be shown~Appendix B! that

Kk~r ;21!}r 2k ~12!

near the origin.
Though the functionKk(r )[Kk(r ;21) diverges, it can

be used to obtain the exponential phase momentsCk from
the Q function Q(r ,w)5W(r ,w,21). It is not difficult to
prove that Eq.~4! can be rewritten as
1-2
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Ck5E
0

`

rdr Qk~r !Kk~r !, ~13!

where

Qk~r !5E
0

2p

dw eikwQ~r ,w!52e2r 2

(
n50

`
r 2n1k

An! ~n1k!!
rn1k,n

~14!

(rn1k,n5^n1ku%̂un&). It follows from Eq. ~14! that Qk(r )
}r k for small r, and thusQk(r ) exactly compensates for th
divergence ofKk(r ), Eq. ~12!. In other words, if theQ func-
tion of the state is known exactly, then the integration in E
~13! can be performed straightforwardly, thus yielding t
soughtCk . However, measurement of theQ function is al-
ways associated with some error, so that the region clos
the origin of the phase space needs careful consideratio
praxis.

FIG. 1. The kernel functionKk(r ;s) for k51,2,3 ands50.75
~full line!, s50 ~broken line!, s520.75 ~dashed-dotted line!, s
521 ~dotted line!.
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III. CANONICAL PHASE FROM DOUBLE HOMODYNING

A. Statistical error

Let us consider balanced double-homodyne detec
~Fig. 2! and first assume perfect detection. Each experim
tal event then gives a pair of real numbers that, after res
ing, define a point in the phase space of the signal, and
probability density of detecting the space points is equa
theQ function of the signal state@9#. When thej th measure-
ment yields the phase-space point with polar coordina
(r j ,w j ) and altogetherN measurements are performed, th
the exponential phase moments can be estimated to be

Ck
(est)5

1

N (
j 51

N

exp~ ikw j !Kk~r j !. ~15!

In order to answer the question of how close isCk
(est) to

the actual momentCk , we calculate the mean value an
dispersion of the estimate~15! over all possible measuremen
results. Since individual measurement outcomes are inde
dent of each other, we can take advantage of the summa
rule for mean values and dispersions of independent qua
ties. Thus, for the real part ofCk

(est) we get the mean value

E~ReCk
(est)!5

1

N (
j 51

N

E@cos~kw j !Kk~r j !#

5
1

N (
j 51

N E
2p

dw jE
0

`

r jdr j

3cos~kw j !Kk~r j !Q~r j ,w j !

5
1

N
N ReCk5ReCk , ~16!

as it should be, and the dispersion

FIG. 2. Double-homodyne scheme@13#. The signal beam is split
on a beam splitter BS1 and the resulting beams are mixed wi
strong coherent local oscillator~LO! on the beam splitters BS2 and
BS4. The LO beams at BS2 and BS4 stem from a common source
split at BS3, and their phases differ byp/2, determined by thel/4
phase shifter. The difference of photocurrents measured at the
tectors D1 and D2 is proportional toq and the photocurrent differ-
ence at D3 and D4 is proportional top.
1-3
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D~ReCk
(est)!5

1

N2 (
j 51

N

D@cos~kw j !Kk~r j !#

5
1

N H E
2p

dwE
0

`

rdr cos2~kw!Kk
2~r !Q~r ,w!

2F E
2p

dwE
0

`

rdr cos~kw!Kk~r !Q~r ,w!G2J .

~17!

Similar expressions hold for the imaginary part ofCk
(est).

Since cos2(kw)51/21cos(2kw)/2, after performing the angu
lar integration in the first term on the right-hand side of E
~17!, the radial part contains the productQ0(r )Kk

2(r ) so that
this integral over the divergent kernel can become infin
Let n0 be the number of photons at which the Fock exp
sion of the state starts. Taking into account Eq.~14!, we see
that the integrand behaves as}r 2(n02k)11 for small r. Thus,
the exponential phase momentsCk can be directly sampled
from the double-homodyne data, provided thatk,n011,
because in this case the dispersion of the estimation
bounded. In the opposite case ofk>n011, the statistical
fluctuation diverges so that the exponential phase mom
cannot be sampled without a proper regularization of
kernels. Note that for states that contain the vacuum, re
larization of the kernels is necessary for all exponen
phase moments.

B. Kernel regularization and sampling algorithm

Since the main part of the statistical error arises from d
close to the origin, it is natural to modify the procedure
omitting the datafalling inside a small circler ,r 0 ~see Fig.
3!. Of course, such a deliberate data filtering introduces
the measurement a state-dependent systematic error. N
theless, the statistical error is reduced and the total error
be acceptable. ReplacingKk(r ) by the regularized function
Kk8(r ) according to

Kk8~r !5u~r 2r 0!Kk~r ! ~18!

@u(x), Heaviside step function#, the systematic error of the
kth moment can be given by

sk
(sys)5E

0

2p

dw eikwE
0

r 0
rdr Q~r ,w!Kk~r !

5E
0

r 0
rdr Qk~r !Kk~r !. ~19!

A measure of the total error is then the sum of the statist
and systematic errors,

Resk
(tot)5uResk

(sys)u1@D~ReCk
(est)!#1/2, ~20!

and Imsk
(tot) accordingly.

From the example in Fig. 4 it is seen that the statisti
error decreases with increasing radiusr 0 @Fig. 4~a!#, whereas
the systematic error increases with the radius@Fig. 4~b!#. The
06381
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total error has thus a minimum at a certain radius@Fig. 4~c!#,
which can be regarded as the optimal radius for regular
tion. Unfortunately, the determination of the systematic er
requires knowledge of the state. Nevertheless, an up
bound of the systematic error can be estimated, without
a priori knowledge of the measured state. Assumingr ,1,
we may write

uQk~r !u52(
n50

`
r 2n1ke2r 2

An! ~n1k!!
urn1k,nu

<2
r ke2r 2

Ak!
(
n50

`

Arn,nrn1k,n1k

<2
r ke2r 2

Ak!
(
n50

`
rn,n1rn1k,n1k

2
<2

r ke2r 2

Ak!
,

~21!

where we have used the inequalityurm,nu2<rmmrnn implied
by positive definiteness ofr. Hence, an upper bound of th
systematic error can be estimated. Using Eq.~19!, we find
that

usk
(sys)u<

2

Ak!
E

0

r 0
dr r k11e2r 2

Kk~r !. ~22!

A typical state for whichusk
(sys)u is of the order of magnitude

of upper-bound value isuck&5(u0&1uk&)/A2. For this state,
Qk(r )5r kexp(2r2)/Ak!, which yields one half of the uppe

FIG. 3. Output of simulated double-homodyne detection o
coherent stateua&, a51 ~a!, and enlarged detail of the outpu
around the origin~b!.
1-4
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SAMPLING THE CANONICAL PHASE FROM PHASE- . . . PHYSICAL REVIEW A 62 063811
bound value. Taking into account thatKk(r )}1/r k for r !1,
we find from the inequality~22! that the upper bound o
usk

(sys)u increases quadratically withr 0. The dependence o
r 0 of the upper bound of theusk

(sys)u is shown in Fig. 5.
Notice that the systematic error is smaller for higherk.

The state-independent upper bound of the systematic e
and the estimated statistical error can now be used to d
mine the upper bound of the total error. Its minimum th
determines an appropriate regularization radiusr 0. A pos-
sible algorithm for optimized data processing is the follo

FIG. 4. Statistical~a!, systematic~b!, and total~c! errors of the
real part of the sampled exponential phase moment ReC2 of a
coherent stateua&, a51 for different numbers of recorded even
N.

FIG. 5. Upper bound ofusk
(sys)u estimated from the inequality

~22! for k51 ~solid line!, k52 ~dashed line!, k53 ~dotted-dashed
line!, andk54 ~dotted line!.
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ing one. In the zeroth step, sampling of the desired expon
tial phase moments from allN measurement events i
performed. Since also data with very smallr may contribute
to the result, the statistical error can be very large. In cont
to the standard sampling technique, where there is no n
for data storage, here the data within a certain small cir
are stored. The radius of the circle should be slightly lar
than the expected regularization radius. The regularized
nel function~18! is now used, withr 0 being increased step
by step, so that in thenth stepn events closest to the origin
are covered byr 0. In each step statistical and systema
errors are estimated. The value ofr 0 for which the total error
is minimized is used for calculation of the final result.

Let us mention that the detrimental effect of diverge
kernelsKk(r ) at r 50 ~in connection with nonzeroQ func-
tion! resembles the interference experiments in@13#, where
the statistics of~experimentally defined! sine and cosine
phase differences are determined. In the experiments,
giving rise to divergences are disregarded, which is criticiz
in @14# from the argument that the disregarded data repre
an extra noise in the statistics. In our case, we disregard
leading to high statistical error and include the resulting s
tematic error into the sampling scheme.

C. Total error and number of measurements

Let us assume that a particular phase momentCk is de-
sired to be determined with a prescribed total precis
sk

(tot) . What is the necessary number of measurement ev
N? If there were no need for regularization and the precis
were limited only by~finite! statistical fluctuation, thenN
}(sk

(tot))22. When the vacuum contributes to the state to
measured and a regularization radiusr 0 is introduced, then
the total error reads

s1
(tot)5A1~2 ln r 0!1/2N21/21B1r 0

2 , ~23!

sk
(tot)5Akr 0

12kN21/21Bkr 0
2 , k>2, ~24!

whereAk and Bk are constants. The optimal regularizatio
radius r 0

(opt) , which minimizes the total error~24! depends
on N as

r 0
(opt)}N21/[2(11k)] . ~25!

From this expression and Eq.~24! we find that

s (tot)}N21/(11k), ~26!

i.e.,

N}~sk
(tot)!2(11k) ~27!

(k>2). The casek51 needs separate consideration, beca
of the logarithm, which does not provide us with a simp
analytical expression. Obviously,N increases faster tha
(s1

(tot))22 with decreasing error. Thus, we can see that in
limit of small total error ordinary homodyning~which does
not require regularization! is better suitable for sampling ex
1-5
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FIURÁŠEK, DAKNA, OPATRNÝ, AND WELSCH PHYSICAL REVIEW A62 063811
ponential phase moments than the double homodyning,
cause it requires a smaller amount of data to achieve
same precision.

D. Computer simulation

To demonstrate the feasibility of the method, we ha
performed Monte Carlo simulations of double-homodyne
tection of theQ function for sampling the exponential pha
moments of a coherent state. Results are shown in Fig. 6
Table I. From Fig. 6 and Table I it is seen that the samp
exponential phase moments are in good agreement with
exact ones. Note the strong increase of the error with
indexk of the moment~for a detailed error analysis, see Fi
4!. Further, a comparison between the dashed and unda
bars in Fig. 6 clearly shows the difference between the c
cept of canonical phase and the phase concept based o
radially integratedQ function.

In order to compare double homodyning with ordina
homodyning, we have also simulated homodyne detectio
the quadrature-component statistics for sampling the ex
nential phase moments of the same coherent state as i
simulated double-homodyne experiment, using the metho
@5–7#. The results are presented in Table II. Compar
Tables I and II, we see that~for equal total numbers o
events! the error in ordinary homodyning is indeed smal
than in double homodyning. The difference between the

FIG. 6. Sampled exponential phase moments of a coherent
ua&, a51; ~a! real part ofCk

(est), ~b! imaginary part ofCk
(est). The

error bars indicate the estimated statistical error. In the comp
simulation, N5106 events are recorded and perfect detection
assumed. The dashed regions correspond to the phase mome
the radially integratedQ function.

TABLE I. Comparison of the sampled exponential phase m
ments shown in Fig. 6 with the exact ones. The displayed optim
regularization radiir 0 refer to ReCk ; values corresponding to
Im Ck are similar in magnitude.

k Ck ReCk
(est) Im Ck

(est) r 0

1 0.7732 0.779060.0006 20.000860.0007 0.007
2 0.4805 0.48360.003 0.00160.003 0.061
3 0.2559 0.2660.01 0.0060.01 0.160
4 0.1209 0.1360.02 0.0160.02 0.277
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rors observed in the two schemes increases with increa
index k of the moment. Note that fork54 the error in the
double-homodyne scheme isten times largerthan in the or-
dinary homodyne measurement.

E. Imperfect photodetection

Nonperfect detection introduces additional noise into
sampling scheme. In particular, it is well known that wh
the detection efficiencyh is less than the critical value o
1/2, then the density matrix in the Fock basis cannot
sampled from the data measured in balanced four-port ho
dyning in general@15#. The limit may be circumvented usin
sophisticated mathematical processing@16#, provided that
somea priori information about the quantum state is ava
able. This enables one to truncate the state expansion at s
appropriately chosen photon number. Without truncation,
statistical error would explode@17#. Since measurement o
the Q function in balanced eight-port homodyning corr
sponds to measurement of twop/2 shifted quadrature com
ponents in balanced four-port homodyning withh reduced to
h/2, we are just working, for perfect detection, at the critic
value.

In a real experiment, the detection efficiency would
always smaller than unity, but it can be very high, e.g.,h
50.99. The effect of nonperfect detection is that the ex
nential phase moments of a ‘‘smoothed’’ quantum state
sampled rather than those of the true one. Since the a
tional noise is Gaussian, the phase-space function that is
tually recorded is not theQ function but the function
W122h21(q,p). This function cannot be used for samplin
the exact values of the moments because the kernel func
do not exist. What we can do is use the kernel functio
Kk(r ;21) in combination with the measured functio
W122h21(q,p), which gives rise to an additional systemat
error. Of course, such an error cannot be diminished by
creasing the number of measurements. The procedur
equivalent to the use of the kernel functionKk@r ;21
12(h2121)# in combination with theQ function. For a
given quantum state, the systematic error can thus be g
by

DhCk5E
0

`

rdr Qk~r !@Kk~r ;21!2Kk~r ;2312h21!#.

~28!

Its result is the underestimation of the magnitude of the m

ate

er
s
s of

-
d

TABLE II. Comparison of the exponential phase moments o
coherent stateua&, a51, sampled in homodyne detection with th
exact ones. In the computer simulation, the 2p-phase interval of the
quadrature components is divided into 120 equidistant values,
altogetherN5106 events are recorded.

k Ck ReCk
(est) Im Ck

(est)

1 0.7732 0.773660.0004 0.000260.0006
2 0.4805 0.479560.0009 20.000360.001
3 0.2559 0.257360.0017 0.000560.0017
4 0.1209 0.120060.0021 0.000260.0021
1-6
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SAMPLING THE CANONICAL PHASE FROM PHASE- . . . PHYSICAL REVIEW A 62 063811
ment. Since the difference of the kernel functions is ess
tially nonzero only around the originr 50, the systematic
errorDhCk will be highest for states close to vacuum. Aft
a proper regularization, one can use Eq.~28! to get a reason-
able estimation of the error by substituting the measured
tistics for the unknownQ function.

IV. OTHER MEASUREMENTS OF THE PHASE-SPACE
FUNCTIONS

The phase momentsCk can be also obtained from quas
distributions reconstructed in unbalanced homodyning@10#,
or cavity measurements@18,19#. However, these methods d
not yieldWs(q,p) as statistics of events (q,p), but the func-
tions Ws(q,p) are determined pointwise. The restriction
practice to a selected finite number of points necessarily
sults in a systematic error, because the integration over
phase space is replaced by summation over a finite num
of points selected by the experimentalist. Having determi
Ws(q,p), the exponential phase momentsCk can then be
reconstructed fromWs(q,p) on the basis of Eq.~4!. Since
the kernel functionKk(r ;s) is well behaved fors.21, no
problems with divergences arise here.

In unbalanced homodyning, displaced Fock-state distri
tions p(n,a) are measured@10,20#. It can be expected tha
the cumbersome way of reconstructingCk from p(n,a) via
Ws(q,p) may be avoided and the reconstruction can be p
formed directly from the measured data. This could be d
in a similar way as in the reconstruction of the density ma
in the Fock basis@21#. A similar approach can be used fo
different physical systems: statistics of the displaced F
states of vibrating trap ions has been obtained in st
reconstruction experiments@22#, and schemes based on di
placed Fock statistics of the cavity fields have been s
gested@18,19#. In particular, the scheme of@18# directly
yields the Wigner function, from which the exponenti
phase moments can be obtained in a very straightforw
way. Even though many interesting problems are relate
these schemes, we will not deal with them in this paper
any more detail.

V. PHASE DISTRIBUTION

In order to answer the question of the possibility of dire
sampling of the phase distribution itself, we have first
answer the question of the existence of kernelsF(r ,w
2c;s) such that

P~w!5E
0

2p

dcE
0

`

rdr W~r ,c;s!F~r ,w2c;s!. ~29!

Obviously, F(r ,c2w;s) is the (2s)-parametrized phase
space function of the phase stateuw& in Eq. ~2!. In @23# it is
shown that this function can be given by

F~r ,w;s!5(
m,n

Bm,n~r ,s!ei (m2n)w, ~30!

where
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Bmn~r ,s!5An!

m!
r m2nS s21

2 D nS 2

11sD
m11

3Ln
m2nS 4r 2

12s2D expS 2
2r 2

11sD ~31!

for m>n, and Bnm5Bmn . The series~30! only converges
for s.0 ~for the limiting cases50, see also@24#!.

Let us expressF(r ,w;s) for s.0 in terms ofK(r ;s).
From Eq.~3! it follows that

P~w!5
1

2p (
k52`

`

Cke
2 ikw. ~32!

Combining Eqs.~32! and~4! and recalling Eq.~29!, we may
write F(r ,w2c;s) in the form

F~r ,w;s!5
1

2p F112(
k51

`

Kk~r ;s!cos~kw!G . ~33!

When r→` then Kk(r ;s)→1, and thusF(r ,w,s)→d(w).
Regrouping the terms in Eqs.~A1! and ~A2! ~for s.0) and
using a summation formula for Laguerre polynomials@25#,
we can rewriteKk(r ;s) as

Kk~r ;s!5r kS 2

s11D k11

e22r 2/(11s)

3 (
n50

`
~21!n

A~n11! . . . ~n1k!
S 12s

11sD
n

Ln
kS 4r 2

12s2D ,

~34!

which is suitable for computingF(r ,w;s). An example is
displayed in Fig. 7.

The fact that for a large class of statesW(r ,w;s) does not
exist as a regular function fors.0 limits the applicability of
Eq. ~29!. Nevertheless, there exist states for whichW(r ,w;s)
for s.0 is a regular function that can be sampled us

FIG. 7. Plot of the functionF(r ,w;0.5).
1-7
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unbalanced homodyning. However, fors.0 the statistical
error of the sampledW(r ,w;s) increases withr @26#, so that
application of Eq.~29! requires special regularization.

VI. SUMMARY AND CONCLUSION

The main results can be summarized as follows.~i! There
exist well-behaved kernels for sampling the exponential m
ments of the canonical phase froms-parametrized phase
space functions fors.21. For s521 the kernels diverge
in the origin, and fors,21 the kernels do not exist a
regular functions.~ii ! Even though fors521 the kernels
diverge, their integral with theQ function is finite, so that
they may be used for inferring the exponential phase m
ments from the exactQ function. However, the kernel diver
gence may cause divergent errors of some moments for s
states if fluctuating experimental data are used.~iii ! Finite
errors can be obtained if regularized kernels are used. S
regularization introduces a systematic error, an optimiza
procedure should be used in order to minimize the sum of
statistical and systematic errors.~iv! The fact that the canoni
cal phase moments can be sampled in double homody
has an interesting interpretation. Each measurement e
yields a unique phase value, but these values must be t
with different weights in dependence on the distance fr
the origin of the phase space. This is in contrast to the o
nary ~four-port! homodyning, where a single measureme
does not provide us with a phase value.~v! Even if optimally
regularized kernels are used, the amount of data neces
for realizing a desired precision is larger than in stand
sampling. This is a disadvantage of the double-homod
scheme in comparison with ordinary homodyning.~vi! In
double homodyning, correct results require perfect detect
because there is no simple possibility of compensation
detection losses, which cause an additional systematic e
This is another disadvantage of double homodyning co
pared to ordinary homodyning where a compensation of
perfect detection is possible for efficiencies down toh
.0.5. ~vii ! Thus, in reply to the question posed in the Intr
duction, it does not seem that phase-space measurem
based on double-homodyning are closer to canonical-ph
measurement than quadrature-component measurem
based on ordinary homodyning.~viii ! In contrast to ordinary
homodyning however, the sampling functions in double h
modyning are uniquely defined. This follows from the fa
that they are actually phase-space representations
quantum-mechanical operators.~ix! The exponential phas
moments can also be inferred from the data recorded in o
schemes such as unbalanced homodyning, in wh
s-parametrized phase-space functions are reconstru
pointwise. ~x! Kernels for sampling the distribution of th
canonical phase exist as regular functions only fors.0.
Even though for some states the corresponding phase-s
functions exist and can be measured using unbalanced ho
dyning, the behavior of the statistical error would require
special regularization of the scheme to be applicable.
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APPENDIX A: SAMPLING KERNELS
AND THE FUNCTION V

Substituting Eq.~7! into Eq. ~6! and comparing with Eq.
~4!, we can expressKk(r ;s) as

Kk~r ;s!5r k(
l 50

` S 12s

2 D l

Cl
(k)Ll

kS 2r 2

12sD , ~A1!

where the coefficients

Cl
(k)5 (

n50

l
~21!n

A~n11!•••~n1k!
S l
nD , ~A2!

can be rewritten as

Cl
(k)5

1

pk/2E2`

`

dt1e2t1
2
•••E

2`

`

dtke
2ktk

2
zk

l , ~A3!

with

zk512e2rk
2
, rk

25(
j 51

k

t j
2 . ~A4!

Substituting this expression into Eq.~A1! and using the sum-
mation rule

(
l 50

` S 12s

2
zkD l

L l
kS 2r 2

12sD5S 12zk

12s

2 D 2k21

3expF zkr
2

zk~12s!/221G ,
~A5!

we arrive at

Kk~r ;s!5
r k2k11

pk/2 E
2`

`

dt1H e2t1
2
•••E

2`

`

dtke
2ktk

2

3@11s1~12s!e2rk
2
#2k21

3expF2
2~12e2rk

2
!r 2

11s1~12s!e2rk
2G J ~A6!

Note that the series in Eq.~A5! is only convergent for
uzk(12s)/2u,1. We havezk<1, thus

u~12s!/2u,1⇒s.21 ~A7!

must hold so that theQ function (s521) represents limiting
case for sampling the phase moments.

The multiple integration in Eq.~A6! can be conveniently
performed in hyperspherical coordinates. For this purp
we introduce the functionV (k)(r2) @6#,
1-8
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V (k)~r2!5E
0

p

dw1Fsink22w1•••E
0

p

dw isink2 i 21w i

3•••E
0

2p

dwk21expS 2(
l 51

k

lt l
2D G , ~A8!

where

t i5r cosw i)
j 51

i 21

sinw j if i ,k, ~A9!

and

tk5r)
j 51

k21

sinw j , ~A10!

with r5rk . The exponent can be expressed in hypersph
cal coordinates as

(
l 51

k

lt l
k5r21r2sin2w1@11sin2w2$11•••~11sin2wk21!%#.

~A11!

Inserting this expression into Eq.~A8! and expanding the
exponential function into a Taylor series, we arrive at Eq.~9!
together with Eq.~10!. A recurrence formula for the coeffi
cientsAn

(k) in Eq. ~10! can be readily obtained:

An
(k)5B2n1k22(

l 50

n S n
l DAl

(k21) , k>3, ~A12!

where

Bj5E
0

p

dw sinjw5Ap

GS j 11

2 D
GS j 12

2 D ~ j >0!. ~A13!

Starting fromAn
(2)52B2n , the formulas~A12! and~9! allow

for fast and accurate numerical determination of the fu
tions V (k)(r2) even for highk.

APPENDIX B: ASYMPTOTICS OF V „k…
„r2

…

AND DIVERGENCE OF KERNELS Kk„R…

In order to analyze the divergence of the kernelsKk(r ),
we must first know the asymptotic behavior of the functio
V (k)(r2) for larger. We start from the integral represent
tion ~A8! and write the exponent~A11! as

(
l 51

k

lt l
k5r21r2sin2w1F~w2 , . . . ,wk21!, ~B1!

with

F~w2 , . . . ,wk21!511sin2w2@11sin2w3~11••• !#.
~B2!
06381
ri-
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Note thatF>1. We insert Eq.~B1! into Eq. ~A8! and inte-
grate overw1. Assumingk>2, the relevant integral is

I 5E
0

p

dw1sink22w1e2r2F sin2w1

52E
0

p/2

dw1sink22w1e2r2F sin2w1. ~B3!

Assumingr2@1, we may write sinw1'w1, because the in-
tegrand is essentially nonzero only forw1!1. From the same
argument, we can extend the integration from (0,p/2) to
(0,̀ ),

I'2E
0

`

dw1w1
k22e2r2F w1

2
5GS k21

2 D ~r2F!(12k)/2.

~B4!

To finish the calculation ofV, one has to integrateF (12k)/2

over the remaining anglesw2 , . . . ,wk21 ~with appropriate
measure!. We eventually find the asymptotic behavior

V (k)~r2!;Ckr
12ke2r2

. ~B5!

The factor exp(2r2) comes from the firstr2 in Eq. ~B1!.
Taking into account thatV (1)(r2)52 exp(2r2), we see that
the asymptotic behavior~B5! holds for allk>1.

To investigate the divergence ofKk(r ) at r→0, we make
use of the integral representation~8!, which is rewritten here
as

Kk~r !5
r k

pk/2E0

`

drrk21V (k)~r2!

3e(k11)r2
exp@2~er2

21!r 2#. ~B6!

For smallr, the dominant contribution to this integral come
from larger. We can replaceV by the asymptotic formula
~B5! and absorb the prefactors intoCk ,

Kk~r !'Ckr
kE

0

`

drekr2
exp@2~er2

21!r 2#. ~B7!

Change of the variable according to

t5~er2
21!r 2 ~B8!

yields

Kk~r !'
1

2r kE0

`

dtS ln
t1r 2

r 2 D 21/2

~ t1r 2!k21e2t. ~B9!

The integration region of Eq.~B9! can be divided in two
parts,t,R2 andt.R2, with R'r . For smallr, the dominant
contribution stems from the latter part where the approxim
tion

ln
t1r 2

r 2
' ln

1

r 2
~B10!
1-9
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can be used, and we find that

Kk~r !'
~22 ln r !21/2

2r k E
0

`

dt~ t1r 2!k21e2t. ~B11!

The integral is finite forr→0, and thus

Kk~r !;
r 2k

~2 ln r !1/2
. ~B12!
J.

.

m

-

t.

al

06381
The logarithm singularity in the denominator is very weak
comparison to the polynomial one in the numerator. Only
polynomial divergence is relevant in Eq.~4!, because it de-
termines whether the integral is convergent or not. Thus
need not consider the logarithmic part, so that Eq.~B12!
simplifies to

Kk~r !;r 2k. ~B13!
r,

-
f the

is
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