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Accurate and efficient evolution of nonlinear Schrödinger equations
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A numerical method is given for affecting nonlinear Schro¨dinger evolution on an initial wave function,
applicable to a wide range of problems, such as time-dependent Hartree, Hartree-Fock, density-functional, and
Gross-Pitaevskii theories. The method samples the evolving wave function at Chebyshev quadrature points of
a given time interval. This achieves an optimal degree of representation. At these sampling points, an implicit
equation, representing an integral Schro¨dinger equation, is given for the sampled wave function. Principles and
application details are described, and several examples and demonstrations of the method and its numerical
evaluation on the Gross-Pitaevskii equation for a Bose-Einstein condensate are shown.

PACS number~s!: 03.75.Fi, 31.15.2p, 42.65.2k
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I. INTRODUCTION

Nonlinear Hamiltonians and Schro¨dinger equations often
arise when many-particle quantum dynamics are reduce
effective one-particle quantum motion. Typical examples
the time-dependent Hartree-Fock@1#, Hartree @2#, and
density-functional theories@3#, as well as the Gross
Pitaevskii@4# equation for the dynamics of a Bose-Einste
condensate~BEC!. Typically, an initial value propagation
problem@with c(r ,t50)5f(r )# is encountered,

i\
]c

]t
52

\2

2m
¹2c1V~r !c1W„r ,t,$c~ t !%…c, ~1!

wherec(t)5c(r ,t) is the time-dependent wave function fo
an effective particle in ann-dimensional spatial vectorr
~typically, n51, 2, or 3!; \5h/2p, whereh is Planck’s con-
stant; andm is the effective particle mass. The linear opera
V(r ) represents an external potential usually a trap for c
fining the particles, whileW„$c(t)%,r ,t… is the term, which
includes the nonlinear potential, resulting from the origin
particle-particle interactions, and any explicit tim
dependent field applied on the system.

A numerical scheme for solving the nonlinear Sch¨-
dinger equation must address the method of affecting t
evolution and the spatial representation of the wave func
and differential operators. These two topics are interrela
and should be applied in a balanced way. Spatial represe
tions usually consist of equally spaced grid with finit
difference approximations of differential operators@5#. Add-
ing grid points is inefficient if high precision is neede
Instead, a global method, such as the Fourier-grid met
@6#, needs to be applied. A matching high-precision tim
evolution method must now follow.

The usual differential equation methods, such as adap
Runge-Kutta, and Adams-Bashforth-Moulton predicto
corrector schemes~see Ref.@5# for references!, as well as
more recent and specialized techniques@7–9# are low order
in time steps. If one is going to use a Fourier representat
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as we plan to do in this paper, such a choice of tempo
method yields an unbalanced overall treatment.

The widely used evolution method of Kosloff and c
workers @10–12# applicable only to thelinear Schrödinger
equation, should set the standard for nonlinear evolut
Only a global evolution approach of this kind can match t
high-quality spatial representation of the Fourier grid@13#. It
is the purpose of this paper to show that this can be do
The Kosloff method exploits the existence of a closed fo
for the evolution operator of the linear Schro¨dinger equation,
c(t)5e2( i /\)Hitf, which is expanded by a series of Cheb
shev polynomials. The resulting method is highly efficie
and accurate. However, it cannot be used to treat explic
time-dependent and nonlinear Hamiltonians.

Extension of the Kosloff method to time-dependent Ha
iltonians has been made possible using at2t8 formalism
@14–16# or a Lanczos subspace propagation@17,18#. How-
ever, these methods are expensive because physical tim
treated on an equal global footing as the space degree
freedom and auxiliary time (t8) must be introduced to affec
the propagation.

In this paper, we present an evolution method which a
exploits the power of the Chebyshev interpolation. Howev
this is done in such a way that a closed form for the evo
tion operator is no longer needed, so that nonlinear and
plicitly time-dependent Hamiltonians can be treated. W
achieve this by performing the Chebyshev interpolationin
the time domaininstead of the energy domain, as effective
done in the Kosloff method@12#. This alternative treatmen
is flexible enough to treat both time-dependent and nonlin
Hamiltonians. We describe the method in Sec. II, and th
in Sec. III, show several examples of its use in the contex
Bose-Einstein condensation, since this admits the simp
archetype of nonlinear Schro¨dinger equations.

II. METHOD

The following integral equation is equivalent to th
Schrödinger equation:

c~ t !5f2
i

\ E
0

t

Ĥ„$c~t!%,t…c~t!dt, ~2!
©2000 The American Physical Society10-1
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ROI BAER PHYSICAL REVIEW A 62 063810
whereĤ52(\2/2m)¹21V̂1Ŵ. The crux of the method is
to perform the time evolution within an interval@0,T#, on
Chebyshev sampling points. In order to understand what
means and why it is important, let us briefly outline the pr
ciples of Chebyshev approximation theory.

Suppose a functionf̃ (t), defined in the time interva

@0,T#, is given, and we wish to construct a polynomialf̃ N(t)
of a given degreeN21, which is best in some sense over t
interval @0,T#. For this purpose, we first transform the fun
tion to an equivalent function defined in the interv
xP@21,1#. This is done by the linear mappingx5(2t/T)
21 and f (x)5 f̃ @1/2T(11x)#. We now introduce the
Chebyshev polynomials@19# defined as Cn(x)5cosnu,
wherex5cosu, forming a family of orthogonal polynomials
over the interval:

2

p E
21

1 Cn~x!Cm~x!

A12x2
dx5dnm~11dn0!. ~3!

We use Chebyshev polynomials to approximate the func
by a truncated expansion ofN terms, forming a polynomia
of degreeN21:

f ~x!' f N~x!5 (
k50

N21

FkCk~x!. ~4!

The expansion coefficients are defined as follows:

Fk5
22dk0

p E
21

1 f ~x!Ck~x!

A12x2
dx. ~5!

Thus, within the interval,

max
x

u f ~x!2 f N~x!u'max
x

u f N11~x!2 f N~x!u

5uFNumax
x

CN~x!u<uFNu. ~6!

The magnitude ofFN approximately bounds the truncatio
error of the approximation. It can be proved that this meth
of generating the coefficients leads to the best converg
polynomial approximation in the maximum norm@19#. This
result is closely related to the fact that of allN-degree poly-
nomials pN(x)5xN1aN21xN211¯1a0 , the polynomial
22NCN(x) is the smallest~maximum normwise! in the inter-
val @21,1#.

We then find that this procedure for approximating fun
tions is a ‘‘best-fit technique.’’ We now add to this fact th
concept of the Gaussian quadrature, also called ‘‘quadra
of the highest degree of algebraic precision.’’@20# This tech-
nique is applied to the integrals that define the expans
coefficients. The Gaussian quadrature theory implies that
following rank-N quadrature rule is exact for all polynomia
of degree 2N21 @20#:

E
21

1 p~x!

A12x2
dx'

p

N (
n50

N21

p~xn!, ~7!
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where the pointsxn are theN roots of theNth Chebyshev
polynomialCN(x):

xn5cosS pS n1
1

2D
N

D , n50,1,...,N21. ~8!

Applying the Gaussian quadrature to the orthogonal relati
of the Chebyshev polynomials@Eq. ~3!# of ordern,N shows

2

N (
k50

N21

Cn~xk!Cm~xk!5dnm~11dn0!. ~9!

Thus the following reciprocal relations concerningf (x) are
valid:

f ~x!' (
n50

N21

FnCn~x!, ~10!

Fk5
22dk0

N (
n50

N21

f ~xn!Ck~xn!. ~11!

We already noted that the Chebyshev approximation en
the flavor of a best fit. Using Eq.~9!, it is now evident that
simultaneously it is also aninterpolation, since it isexact on
the sampling points:

f ~xn!5 (
k50

N21

FkCk~xn!. ~12!

In conclusion, the advantage of sampling a function at
roots of theNth Chebyshev polynomial is that the resultin
representation is exact at the sampling points~as with any
interpolation! and, concurrently,between the sampling point
one is assured that the truncation error is uniformly spr
~best-fit flavor!.

We summarize by writing the completeness and ortho
nal properties of the Chebyshev polynomials on theN sam-
pling points:

(
n50

N21

Ck~xn!Ck8~xn!5
N

22dk,0
dk,k8 . ~13!

(
k50

N21
22dk0

N
Ck~xn!Ck~xn8!5dn,n8 . ~14!

Once the interpolation is implemented, integrals over the
terpolated function can be performed analytically:

E
0

t

f̃ ~t!dt5
T

2 E
21

t

f ~x8!dx8

5
T

2 (
k50

N21

FkE
21

x

Ck~x8!dx8

5
T

2 (
k50

N21

FkSk~x! ~15!
0-2
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ACCURATE AND EFFICIENT EVOLUTION OF . . . PHYSICAL REVIEW A 62 063810
@note that the transformationt5 1
2 T(11x) is used#. With no-

tation x5cosu, it is straightforward to show that

Sk~cosu!5
cosu cosku211k sinku sinu

k221
~kÞ1!,

~16!

S1~cosu!5
sin2 u

2
. ~17!

With this Chebyshev expansion, we write any time integ
directly in terms of the function values at the sampli
points,

E
0

t

f̃ ~t!dt5T (
n50

N21

f ~xn!I nS 2t

T
21D , ~18!

where

I n~x!5 (
k50

N21
22dk0

2N
Ck~xn!Sk~x!. ~19!

Equations~18! and ~19! are the central equations of th
method. They give the integral of a function of time as
linear combination of the function values at the Chebysh
sampling points. We underline once again the reason th
expressions are essential. By increasing the number of s
pling points, the underlying polynomial approximation is im
proved, not only because it is accurate on more sampli
points but equally important because it is more accuratein
betweenthem. This is not the case, for example, wh
equally spaced points are used.

Using Eq.~19!, we now return to the numerical solutio
of the Schro¨dinger equation. The integral Schro¨dinger equa-
tion @Eq. ~2!# now becomes an implicit equation forc(tn) at
the sampling points

c~ tm!5f2
iT

\ (
n50

N21

Ĥ@c~ tn!,tn#c~ tn!I nm , ~20!

where,I n,m5I n(xm). This implicit equation can be solved b

setting c0(tn)5e2 i ^fuĤ(f)uf&tnf, and then performing the
following iteration to convergence:

cL11~ tm!5f2
iT

\ (
n50

N21

Ĥ@cL~ tn!,tn#cL~ tn!I nm . ~21!

Once the self-consistent solution is obtained, the entire t
dependence within the interval is determined by the Che
shev interpolation:

Ck5
22dk0

N (
n50

N21

c~ tn!CkS 2tn

T
21D ,

~22!

c~ t !5 (
k50

N21

CkCkS 2t

T
21D .
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Memory. The wave function atN different times cn
5c(tn) must be stored in RAM, andN11 additional wave
functionsCn andQ are needed as well in RAM.

~1! Initial guess: Forn50 . . .N21, cn5f.
~2! Setn850. Forn50 . . .N21, Cn5f.
~3! Q5H(cn8 ,tn8)cn8 .
~4! For n50 . . .N21: Cn5Cn2 iT3I n8,nQ.
~5! If ( n8,N), n85n811; go to ~3!.
~6! For n50 to N21, cn5Cn .
~7! Repeat from step~2!, until converged self-consisten

functions are achieved.
~8! Oncecn are at hand, use Eq.~22! to determinec(t)

for any desiredtP@0,T#.
At this point, we should discuss how to estimate the

quired number of Chebyshev sampling points in the interv
A detailed discussion appears in the Appendix.

The method works well even for relatively large interva
T. The size of the interval cannot be increased indefinite
because the iterations start to converge slowly or even
verge altogether. A more efficient iterative process is clea
desirable; however, this issue will be addressed in fut
developments of the method. In this paper, we use s
enough interval lengths so that convergence is efficient.
will be shown in the examples, the use of short or lo
intervals does not affect the extremely high accuracy ach
able with this method.

The cost in memory of the method depends on the len
of the interval. It is found that a reasonable small interv
includes between 3 and 5 sampling points, which means
7–11 auxiliary copies of the wave function are needed. T
amount of numerical work can be measured by the num
of Hamiltonian operations. This equals the number of sa
pling points times the number of iterations~currently, be-
tween five and ten!. Thus, at present, the method is abo
5–10 times more expensive than the Kosloff method~be-
cause of nonlinearity! in terms of CPU and memory require
ments. While this means that the Kosloff method should
preferred for the linear Schro¨dinger equation, this price ha
to be paid for the nonlinear case, unless a substantial re
tion in the number of iterations can be achieved.

III. A BOSE-EINSTEIN CONDENSATE

We chose the simplest archetype of nonlinear Schro¨dinger
equations, the Gross-Pitaevskii theory@4# of the weakly in-
teracting BEC. This theory yields a simple yet illuminatin
description of a BEC, where familiar quantum effects a
distorted by nonlinear artifacts@21#.

The energy functional of an interacting Bose-Einste
condensate within the Gross-Pitaevskii mean-field theory

E~c!5 K cU P2

2m
1V~r !1

1

2
Auc~r !u2Uc L , ~23!

wherec(r ) is the macroscopic coherent wave function, a
V(r ) is an effective trap confining the condensate. We ta
the condensate wave function normalized to 1.0, while
condensate particle number, as well as the two-body inte
0-3
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ROI BAER PHYSICAL REVIEW A 62 063810
tion strength~derived from the scattering length! are ab-
sorbed in the nonlinear constantA.

The Hamiltonian operator corresponding to this ene
functional is obtained from the functional gradient

H~c!c~r !5
dE~c!

dc* ~r !
5F P2

2m
1V~r !1Auc~r !u2Gc~r !.

~24!

For the purpose of demonstrating the time evolution meth
here we study the ground state, the low-lying excitations,
the aperture leakage of a one-dimensional~1D! BEC.

A. 1D BEC ground state

The BEC is cooled to its ground state by evolving it
imaginary time. We start from an arbitrary statef(r ) and
propagate the equation,

\
dc

dt
5@m2H„c~ t !…#c~ t !, c~0!5f, ~25!

wherem, the norm conservation Lagrange multiplier, is a
justed so as to keep the norm ofc equal to 1~since the exact
imaginary time dynamics are not of interest, only the fin
result is important; this needs only be strictly required
wards the last iterations!. BecauseH is a gradient of the
energy, the resulting motion leads to a steepest-descent
method, forcing the wave function to the minimum ener
E(c). We consider a harmonic trap,

V~x!5 1
2 mv2x2, ~26!

where we work in units of time and distance such that\
51, m50.5, andv51. We also consider an anharmon
potential, which for definiteness we take as a Morse form

V~x!5V0~12e2ax!2, ~27!

and, in the same units,V056.25 anda50.2. This set of
parameters leads to the same second derivative at thex50
well minimum as that of the harmonic potential of Eq.~26!.
The ground-state energies we find for the 1D BEC in th
traps are shown as a function of the nonlinear constan
Fig. 1.

It is important to study the qualities of the global spat
representation, and we use the ground-state computation
this purpose. In the linear equation, the number of spa
grid points is determined by the largest potential-energy
ference@11# DV5Vmax2Vmin . For the nonlinear case, thi
type of analysis cannot be valid in general. When the n
linearity constant is positive, however, a simple extens
can be formulated withDV increased by a small multiple o
the nonlinear potential. However, whenA is negative, ex-
tremely high-kinetic-energy components are important
stabilizing the 1D BEC against collapse, and a high spa
frequency representation is required. The convergence o
ground-state energy with respect to the spatial grid spa
can be studied in Fig. 2. As the nonlinearity constant gro
in magnitude, the grid spacing required for achieving a giv
06381
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relative error grows. However, whenA is negative, the re-
quired grid spacing is much smaller.

B. Low-lying dipole excitations of BEC

The method of computing low-lying excitation in th
BEC consists of perturbing the ground-state wave funct
cgs, and then measuring the time dependent response.
we follow Ref. @7#, and apply a small momentum kickp
5\k:

ck~x!5e2 ikxcgs.

The response is determined by time evolution according
the real-time Schro¨dinger equation:

i\
dc

dt
5H„c~ t !…c~ t !, c~0!5ck .

FIG. 1. The ground-state energy of a BEC for harmonic a
anharmonic potentials.

FIG. 2. Convergence of the ground-state energy of a BEC w
grid spacing. Shown are the relative discretization errors in
Fourier spatial representation for several values of the nonlinea
constant.
0-4
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ACCURATE AND EFFICIENT EVOLUTION OF . . . PHYSICAL REVIEW A 62 063810
During this evolution in time, the position signalr (t)
5^c(t)u r̂ uc(t)& executes an intricate oscillatory motion, in
volving frequencies related to excitation energies of
BEC, which can be resolved by a Fourier analysis.

We first apply this method to a BEC in a harmonic tr
@Eq. ~26!#. We found that the condensate exhibits only
single excitation energy, with the same frequency as a
monic oscillator,v51. This was confirmed up to a larg
nonlinear constant 0<A<128. Thus, in the ground state of
harmonic trap, the BEC ground-state dipole excitations
identical to that of a simple harmonic oscillator.

Next, an anharmonic trap was examined@Eq. ~27!#. The
computation was performed using a spatial grid extend
from x0526, to xf510, with a grid spacingdx51. The
frequency resolved spectra for several values ofA are shown
in Fig. 3, and the strong influence of the condensate non
earity on the ground-state excitation spectrum is observe

In order to appreciate the magnitude of the numerical
rors incurred by evolution, we performed three computatio
of the time dependent trajectoryr (t)5^c(t)u r̂ uc(t)& of the
anharmonic oscillator, withA58. All three trajectories star
from the same initial kicked ground state, and are compu
using 2000 time steps of sizeT50.1, totaling to timeTf
5200. Each trajectory was computed using a different nu
ber N of sampling points of theT interval ~with N55, 10,
and 20 points used, respectively!. The time propagation erro
incurred in the first two trajectories can be estimated by
quantitiesen(t)5r n(t)2r 3(t) ~n51 and 2!. The rate of er-
ror accumulationen(t)/t is plotted in Fig. 4. It is can be
inferred that the time propagation error is readily elimina
by increasing the number of sampling pointsN. Furthermore,
the error grows only linearly with time.

C. Aperture leakage

When a hole is made in the confining potentials of a BE
the gas can flow out. We affect such an aperture by coup

FIG. 3. The ground-state excitation spectrum of a BEC in
anharmonic trap for various values of the nonlinear constant.
seen that the spectrum shifts and new lines are formed as this
stant is varied.
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to a repulsive potential. Suppose the confining potentia
V(x), and the repulsive potential is an exponential poten
Vex(x)5Ke2b(x2xe) (K.0); then the coupling of the two
takes the following form~see Fig. 5!:

VA~x!5
V~x!1Vex~x!

2 F S V~x!2Vex~x!

2 D 2

1C2G1/2

.

~28!

The parameters for this numerical experiment are shown
Table I.

A negative imaginary potential is placed at the positi
grid boundary to absorb the outgoing BEC flux. This we
studied technique prevents spurious edge effects such a
flection or wraparound@22#. The resulting potential exhibits
a high potential barrier, so leakage through this barrier
small. The time-dependent leaking wave packets forA50
and 4 are shown in Figs. 6 and 7. Due to the self-repuls

n
is
n-

FIG. 4. Time-propagation error accumulation. Shown is the r
of numerical error accumulation, computed as discussed in the
The constant error accumulation rate is evident as is the dra
reduction of the error by doubling the number of sampling poin
The time step isT50.1.

FIG. 5. An aperture in the confining potential of the BEC, e
abling tunneling.
0-5
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ROI BAER PHYSICAL REVIEW A 62 063810
the condensate finds it easier to leak through the apertur
the positive nonlinear constant becomes larger.

IV. SUMMARY

We have presented a highly accurate and efficient met
for propagating the nonlinear time-dependent Schro¨dinger
equation. The method combines an implicit approach w
Chebyshev interpolation in the time domain. In combinat
with a Fourier or plane-wave spatial representation it lead
an overall balanced numerical method. Although we ha
shown only examples where the spatial part is one dim
sional, the method is straightforwardly applicable to mo
spatial dimensions, since there is no direct dependence o
time evolution and sampling points on the spatial grid.
deed, the present method was recently implemented for e
tronic structure@23#, using a time-dependent formalism, an
accurate time evolution was achieved with no difficulty.
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FIG. 6. Tunnel leakage of a BEC with no interactions (A50).
At a time T50 a hole is made in the confining potential@see Eq.
~28!#. As a result, a small tunneling current forms, and the cond
sate leaks out.

TABLE I. Parameters of the aperture.

Parameter Value

K 15
x0 1
g 1
C 0.2
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APPENDIX: DETERMINING THE REQUIRED NUMBER
OF CHEBYSHEV SAMPLING POINTS

Let us determine the number of Chebyshev sampl
points required for representing a high-frequency compon
V. This can be done by inspecting the Chebyshev coe
cients of f̃ (t)5eiVt:

Fk5
2

p
ei ~1/2!VTE

21

t ei ~1/2!VTxCk~x!

A12x2
dx

52i kei ~1/2!VTJkS 1

2
VTD . ~A1!

The asymptotic properties of Bessel functions are w
known @24#, and it is established that, for large values ofk,

JkS 1

2
VTD2

1

A2pk
S eVT

4k D 4

~A2!

Thus, oncek.(e/4)VT, the coefficients drop off exponen
tially fast, becoming zero to machine accuracy after a sm
number of additional termsNr . Thus the number of sam
pling points is

-

FIG. 7. Same as Fig. 6, withA54. The tunneling rate is en
hanced by the interparticle repulsion.

TABLE II. Values of Nr leading to maximum norm precision
of 1024 and 1028 in the Chebyshev approximation off (x)
5ei (1/2)VTx.

1
2 VT Nr ~units of 1024! Nr ~units of 1028!

1 5 8
2 5 9
4 6 11
8 6 12

16 6 13
32 6 14
64 6 15

128 6 15
256 6 15
0-6
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N5
e

4
VT1Nr ~A3!

whereNr is given in Table II.
It is now important to estimate the maximal frequency

the system. Also, it is important to arrange the Hamilton
in a balanced way so as to minimize the maximal frequen
for example, for a time-independent linear Hermitian Ham
P.

.
in,
-

06381
n
y,
-

tonian with maximal eigenvaluesEmax and minimal eigen-
values Emin one can shift the Hamiltonian:Hshifted5H
2@(Emax1Emin)/2#, making the largest frequency equal
V5(Emax2Emin)/2. For a nonlinear Hamiltonian, it is mor
intricate to estimate what the highest frequencies are, h
ever, it is our experience that the nonlinearity does not bu
temporal frequencies beyond the ones taken into accoun
the consideration above.
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