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Accurate and efficient evolution of nonlinear Schralinger equations
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A numerical method is given for affecting nonlinear Salinger evolution on an initial wave function,
applicable to a wide range of problems, such as time-dependent Hartree, Hartree-Fock, density-functional, and
Gross-Pitaevskii theories. The method samples the evolving wave function at Chebyshev quadrature points of
a given time interval. This achieves an optimal degree of representation. At these sampling points, an implicit
equation, representing an integral Salinger equation, is given for the sampled wave function. Principles and
application details are described, and several examples and demonstrations of the method and its numerical
evaluation on the Gross-Pitaevskii equation for a Bose-Einstein condensate are shown.

PACS numbgs): 03.75.Fi, 31.15-p, 42.65-k

[. INTRODUCTION as we plan to do in this paper, such a choice of temporal
method yields an unbalanced overall treatment.

Nonlinear Hamiltonians and Schiimger equations often The widely used evolution method of Kosloff and co-
arise when many-particle quantum dynamics are reduced toorkers[10—12 applicable only to thdinear Schralinger
effective one-particle quantum motion. Typical examples areequation, should set the standard for nonlinear evolution.
the time-dependent Hartree-FodKkl], Hartree [2], and  Only a global evolution approach of this kind can match the
density-functional theoried3], as well as the Gross- high-quality spatial representation of the Fourier ¢fig]. It
Pitaevskii[4] equation for the dynamics of a Bose-Einsteinis the purpose of this paper to show that this can be done.
condensatgBEC). Typically, an initial value propagation The Kosloff method exploits the existence of a closed form
problem[with (r,t=0)= ¢(r)] is encountered, for the evolution operator of the linear Schioger equation,

) , Y(t)=e (/MHIt 4 \which is expanded by a series of Cheby-
0 shev polynomials. The resulting method is highly efficient
'hﬁz B EVZWrV(r)¢+W(r,t,{¢/x(t)})¢, @) and accurate. However, it cannot be used to treat explicitly

time-dependent and nonlinear Hamiltonians.

wheres(t) = (r,t) is the time-dependent wave function for ~ Extension of the Kosloff method to time-dependent Ham-
an effective particle in am-dimensional spatial vector iltonians has been made possible using-a’ formalism
(typically, n=1, 2, or 3; 4 =h/2m, whereh is Planck’s con- [14-16 or a Lanczos subspace propagat|di,1§. How-
stant; andu is the effective particle mass. The linear operatorever, these methods are expensive because physical time is
V(r) represents an external potential usually a trap for contreated on an equal global footing as the space degrees of
fining the particles, whileV({(t)},r,t) is the term, which freedom and auxiliary timet() must be introduced to affect
includes the nonlinear potential, resulting from the originalthe propagation.
particle-particle interactions, and any explicit time- In this paper, we present an evolution method which also
dependent field applied on the system. exploits the power of the Chebyshev interpolation. However,

A numerical scheme for solving the nonlinear Sehro this is done in such a way that a closed form for the evolu-
dinger equation must address the method of affecting tim&on operator is no longer needed, so that nonlinear and ex-
evolution and the spatial representation of the wave functiomlicitly time-dependent Hamiltonians can be treated. We
and differential operators. These two topics are interrelatedachieve this by performing the Chebyshev interpolation
and should be applied in a balanced way. Spatial representthe time domainnstead of the energy domain, as effectively
tions usually consist of equally spaced grid with finite- done in the Kosloff metho@12]. This alternative treatment
difference approximations of differential operatpsg. Add-  is flexible enough to treat both time-dependent and nonlinear
ing grid points is inefficient if high precision is needed. Hamiltonians. We describe the method in Sec. I, and then,
Instead, a global method, such as the Fourier-grid methoth Sec. Ill, show several examples of its use in the context of
[6], needs to be applied. A matching high-precision timeBose-Einstein condensation, since this admits the simplest
evolution method must now follow. archetype of nonlinear Schitimger equations.

The usual differential equation methods, such as adaptive
Runge-Kutta, and Adams-Bashforth-Moulton predictor- II. METHOD
corrector schemestsee Ref.[5] for references as well as o o )
more recent and specialized techniq{igs9] are low order The following integral equation is equivalent to the
in time steps. If one is going to use a Fourier representation>chrainger equation:

it
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whereH = — (42/2) V2+V+W. The crux of the method is Where the points, are theN roots of theNth Chebyshev

to perform the time evolution within an interv0,T], on  PolynomialCy(x):

Chebyshev sampling points. In order to understand what this

means and why it is important, let us briefly outline the prin-

ciples of Chebyshev. aBproxma"uon theory. ' . %= €0  n=01..N-L1. ®)
Suppose a functiorf(t), defined in the time interval N

[0,T], is given, and we wish to construct a polynomfig(t)

of a given degre& — 1, which is best in some sense over the

interval [ 0,T]. For this purpose, we first transform the func-

tion to an equivalent function defined in the interval N-1

xe[—1,1]. This is done by the linear mapping=(2t/T) N > Ca(XW) Cin(Xk) = Sam( 1+ S0)- 9)

—1 and f(x)=T[1/2T(1+x)]. We now introduce the k=0

Chebyshev polynomiald19] defined asC,(x)=cosné,

wherex=cos#, forming a family of orthogonal polynomials

Applying the Gaussian quadrature to the orthogonal relations
of the Chebyshev polynomial&qg. (3)] of ordern<N shows

Thus the following reciprocal relations concernif@) are

: valid:
over the interval:
N—1
1 Cu(x X f(x)=~ FLCh(Xx), 10
“(_1 :( ) dx X= Snm( 1+ o). &) (0= 2 FrCol) 10
N—1
We use Chebyshev polynomials to approximate the function F= 2~ %0 z f(X,) Ci(Xy,).- (11)
by a truncated expansion &f terms, forming a polynomial
of degreeN—1.: o )
We already noted that the Chebyshev approximation enjoys
N—-1 the flavor of a best fit. Using E|9), it is now evident that
f(x)=fy(X)= E FrCr(X). (4) simultaneously it is also aimterpolation since it isexact on
k=0 the sampling points
The expansion coefficients are defined as follows: N—1
f(x0)= 2, FiCi(Xp)- (12
2= 6o (L f(X)Ck(X) k=0
K= 5) _ _ _
m 1 V1-x° In conclusion, the advantage of sampling a function at the
o ) roots of theNth Chebyshev polynomial is that the resulting
Thus, within the interval, representation is exact at the sampling poi@s with any
_ interpolation) and, concurrentlypetween the sampling points
mxa>4f(x)—fN(x)|~mxa>4fN+1(x)—fN(x)| one is assured that the truncation error is uniformly spread
(best-fit flavoy.
=|Fy|maxCy(x)|<|Ful- (6) We summarize by writing the completeness and orthogo-
x nal properties of the Chebyshev polynomials on theam-
) ) _ pling points:
The magnitude ofy approximately bounds the truncation
error of the approximation. It can be proved that this method N-1 N
of generating the coefficients leads to the best converging E Cr(Xy) Crr(Xp) = 5k K - (13
polynomial approximation in the maximum nofrh9]. This
result is closely rer\zllated to Lhelfact that of AHdegree poly- _
nomials py(X)=x"+an_1X" *+---+ay, the polynomial
27NCy(x) is the smallestmaximum normwisgin the inter- 2 CilXn) CelXn) = Onn (14
val [—1,1].

We then find that this procedure for approximating func-Once the interp_olation is implemented, integ_rals over the in-
tions is a “best-fit technique.” We now add to this fact the terpolated function can be performed analytically:
concept of the Gaussian quadrature, also called “quadrature
of the highest degree of algebraic precisiof20] This tech- e _ I ! )
. . . ; : . f(r)dr= f(x")dx
nigue is applied to the integrals that define the expansion 2]
coefficients. The Gaussian quadrature theory implies that the

following rankN quadrature rule is exact for all polynomials T Nil X
of degree A —1 [20]: =52 F k(Xx")
1 p) TS
|, oty E p(X,) @ =5 3 RS0 1s)
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[note that the transformatidn- 3 T(1+x) is used. With no-
tation x=cosé, it is straightforward to show that

cosf coskfd— 1+ ksinkd sing

(k#1),
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Algorithm

Memory The wave function atN different times ¢,
=y(t,) must be stored in RAM, anil+ 1 additional wave
functionsW¥,, and® are needed as well in RAM.

(cosh) =
S K2—1 (1) Initial guess: Fom=0...N—1, = ¢.

(2) Setn’=0. Forn=0...N-1,¥V,=¢.

(3 O=H(n th) by -

(4) Forn=0...N-1: ¥, =¥ —iTXl, 0.

(5) If (n"<N), n"=n"+1; go to(3).

(6) Forn=0 toN—1, ,=V,.

With this Chebyshev expansion, we write any time integral (7) Repeat from ste§2), until converged self-consistent
directly in terms of the function values at the samplingfynctions are achieved.

points, (8) Once s, are at hand, use E22) to determiney(t)
for any desired €[ 0,T].

At this point, we should discuss how to estimate the re-
quired number of Chebyshev sampling points in the interval.
A detailed discussion appears in the Appendix.

The method works well even for relatively large intervals
T. The size of the interval cannot be increased indefinitely,

(16)

sir 6

S;(cosh)= 5

17

. N—-1 2t
jf(r)dTZT > f(xn)ln(?—1>, (18)
0 n=0

where

" 2-6 because the iterations start to converge slowly or even di-
[h(X)= go 5N C(Xpn) Si(X). (199  verge altogether. A more efficient iterative process is clearly

desirable; however, this issue will be addressed in future
. . developments of the method. In this paper, we use short
Equstlgn?(#S) a!"d (1hg) are th? cfent;al equatu;n.s of the enough interval lengths so that convergence is efficient. As
method. They give the integral of a function of time as a, i e shown in the examples, the use of short or long

linear combination of the function values at the Chebyshey,op 415 does not affect the extremely high accuracy achiev-
sampling points. We underline once again the reason thesfole with this method

expressions are essential. By increasing the number of sam-
pling points, the underlying polynomial approximation is im-
proved, not only because it is accurate on more sampling
points but equally important because it is more accuiate
betweenthem. This is not the case, for example, when
equally spaced points are used.

Using Eq.(19), we now return to the numerical solution
of the Schrdinger equation. The integral Scllinger equa-
tion [Eqg. (2)] now becomes an implicit equation fgi(t,) at
the sampling points

The cost in memory of the method depends on the length
of the interval. It is found that a reasonable small interval
includes between 3 and 5 sampling points, which means that
7-11 auxiliary copies of the wave function are needed. The
amount of numerical work can be measured by the number
of Hamiltonian operations. This equals the number of sam-
pling points times the number of iteratiorisurrently, be-
tween five and ten Thus, at present, the method is about
5-10 times more expensive than the Kosloff metlibd-
cause of nonlinearifyin terms of CPU and memory require-
ments. While this means that the Kosloff method should be
preferred for the linear Schdinger equation, this price has
to be paid for the nonlinear case, unless a substantial reduc-
tion in the number of iterations can be achieved.

where, |, n=1,(Xm). This implicit equation can be solved by

setting °(t,) =e (RIS g  and then performing the
following iteration to convergence:

N—-1

iT N
tm)=d= 5 2 ALY ]t lom, (20)

IIl. A BOSE-EINSTEIN CONDENSATE

We chose the simplest archetype of nonlinear Sdinger
equations, the Gross-Pitaevskii thegdy] of the weakly in-
teracting BEC. This theory yields a simple yet illuminating
description of a BEC, where familiar quantum effects are
distorted by nonlinear artifac{1].

Once the self-consistent solution is obtained, the entire time The energy functional of an interacting Bose-Einstein
dependence within the interval is determined by the Chebyeondensate within the Gross-Pitaevskii mean-field theory is
shev interpolation:

.~ N-1

T N
PNt = b= 3 ALl () . (2D

N-1
2— Sy 2t,
N nZO lﬂ(tn)ck(T—l),

p? 1 )
EW)={ ¥ g, tVO+ZAMITY), (23

Wk:

where ¢(r) is the macroscopic coherent wave function, and

V(r) is an effective trap confining the condensate. We take
the condensate wave function normalized to 1.0, while the
condensate particle number, as well as the two-body interac-

(22

N—-1 2t
O \Ifkck(7—1).
k=0
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tion strength(derived from the scattering lengttare ab- 8 T
sorbed in the nonlinear constaft Harmonic
The Hamiltonian operator corresponding to this energy ér ]
functional is obtained from the functional gradient . Anharmonic
SE P2 >
H(w)o(r) = (wf(‘l?) - ﬂ+V<r>+Alw<r>|2} ). 5 2| :
(24 wost ]
n
For the purpose of demonstrating the time evolution method, © oL h
here we study the ground state, the low-lying excitations, and ]
the aperture leakage of a one-dimensioiid) BEC. 4 ]
A. 1D BEC ground state %20 0 20 40 60 8 100 120 140
The BEC is cooled to its ground state by evolving it in A

imaginary time. We start from an arbitrary statér) and

propagate the equation, FIG. 1. The ground-state energy of a BEC for harmonic and

anharmonic potentials.

h__['“ H@O)(), ¥(0)=4, (25 relative error grows. However, wheh is negative, the re-
quired grid spacing is much smaller.

where u, the norm conservation Lagrange multiplier, is ad-
justeq so as to keep the norm zpiaqual'to 1(since the exaqt B. Low-lying dipole excitations of BEC
imaginary time dynamics are not of interest, only the final
result is important; this needs only be strictly required to- The method of computing low-lying excitation in the
wards the last iterations BecauseH is a gradient of the BEC consists of perturbing the ground-state wave function
energy, the resulting motion leads to a steepest-descent-typs, and then measuring the time dependent response. Here
method, forcing the wave function to the minimum energywe follow Ref.[7], and apply a small momentum Kigh
E(4). We consider a harmonic trap, =fk:

V(x) =1 paw?x? (26) P(x)=e e

where we work in units of time and distance such that The response is determined by time evolution according to
=1, ©n=0.5, andw=1. We also consider an anharmonic the real-time Schidinger equation:
potential, which for definiteness we take as a Morse form,

dy

V(x)=Vo(1—e )2, 27) ih e =H@O)(),  (0) =4
and, in the same unit3/y=6.25 anda=0.2. This set of
parameters leads to the same second derivative at=tHt 10' DRI T T
well minimum as that of the harmonic potential of Eg6). [ A=-16 4
The ground-state energies we find for the 1D BEC in these & 10"
traps are shown as a function of the nonlinear constant in @ ] =0 |
Fig. 1. i r A=4

It is important to study the qualities of the global spatial £ 10°} A<8

representation, and we use the ground-state computations for § : ]
this purpose. In the linear equation, the number of spatial 5 10° A=16 3
grid points is determined by the largest potential-energy dif- @ ] |
ference[11] AV=V o Vmin- For the nonlinear case, this % 1 1
type of analysis cannot be valid in general. When the non- © 107 | 1
linearity constant is positive, however, a simple extension o
can be formulated witlAV increased by a small multiple of R ] :
the nonlinear potential. However, whehis negative, ex- 10 P '0'5' ' 1 1'5 2 25

tremely high-kinetic-energy components are important for
stabilizing the 1D BEC against collapse, and a high spatial 8x

frequency representation is required. The convergence of the F|G. 2. Convergence of the ground-state energy of a BEC with
ground-state energy with respect to the spatial grid spacingrid spacing. Shown are the relative discretization errors in the
can be studied in Fig. 2. As the nonlinearity constant growsourier spatial representation for several values of the nonlinearity
in magnitude, the grid spacing required for achieving a giverconstant.
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[ T T T T 107 1
X ” A M A A=16 1 S 10 ,
B _
S ol e,/ (N;=5)
N . £
3 ]
8 10-10 r -
= ®©
L h o
5 A=8 g 10mF 1
w Ve @ ]
| i Y 12 b -
__,L_,L _ A=4 g 107
E 1 0_13 B ez(t)/t, (N2=1 O) .
[ i o e A ANV
A=0 10.14 MR Y | IS T NS SR T S O
0 50 100 150 200 250
A =1 )
) o : : Time
0 1 2 0 8 4 5 FIG. 4. Time-propagation error accumulation. Shown is the rate

of numerical error accumulation, computed as discussed in the text.

FIG. 3. The ground-state excitation spectrum of a BEC in anThe constant error accumulation rate is evident as is the drastic
anharmonic trap for various values of the nonlinear constant. It igeduction of the error by doubling the number of sampling points.
seen that the spectrum shifts and new lines are formed as this cohe time step iST=0.1.
stant is varied.
to a repulsive potential. Suppose the confining potential is
V(x), and the repulsive potential is an exponential potential
Ve (X)=Ke Px~*e) (K>0); then the coupling of the two
&akes the following forn{see Fig. 5

_ 2 1/2
V(x) 2vex(x>) N c2} |

During this evolution in time, the position signail(t)
=(y(t)|F|¥(t)) executes an intricate oscillatory motion, in-
volving frequencies related to excitation energies of th
BEC, which can be resolved by a Fourier analysis.

We first apply this method to a BEC in a harmonic trap V(X) + Vey(X)
[Eqg. (26)]. We found that the condensate exhibits only a Va(X)= 5
single excitation energy, with the same frequency as a har- 29
monic oscillator,w=1. This was confirmed up to a large

nonlinear constant8 A<128. Thus, in the ground state of a 1o parameters for this numerical experiment are shown in
harmonic trap, the BEC ground-state dipole excitations arggpe |.

identical to that of a simple harmonic oscillator. A negative imaginary potential is placed at the positive
Next, an anharmonic trap was examinéd). (27)]. The  4riq houndary to absorb the outgoing BEC flux. This well-
computation was performed using a spatial grid extendingy,gied technique prevents spurious edge effects such as re-
from xo=—6, to x;=10, with a grid spacingpx=1. The  fiection or wraparoundi22]. The resulting potential exhibits
frequency resolved spectra for several values afe shown 5 pigh potential barrier, so leakage through this barrier is

in Fig. 3, and the strong influence of the condensate nonling 411 The time-dependent leaking wave packets/er0
earity on the ground-state excitation spectrum is observed. ;4 4 are shown in Figs. 6 and 7. Due to the self-repulsion
In order to appreciate the magnitude of the numerical er- ’

rors incurred by evolution, we performed three computations 4
of the time dependent trajectoryt) = (¢(t)|F|¥(t)) of the
anharmonic oscillator, with=8. All three trajectories start
from the same initial kicked ground state, and are computed
using 2000 time steps of siZE=0.1, totaling to timeT;
=200. Each trajectory was computed using a different num-
ber N of sampling points of thé interval (with N=5, 10,

and 20 points used, respectivelf¥he time propagation error
incurred in the first two trajectories can be estimated by the
quantitiese,(t)=r,(t)—r3(t) (n=1 and 2. The rate of er-

ror accumulatione,(t)/t is plotted in Fig. 4. It is can be
inferred that the time propagation error is readily eliminated 0.5
by increasing the number of sampling poihtsFurthermore,
the error grows only linearly with time.

w
8]

Potential
— [\o]
Y [3,] N [6;] w

C. Aperture leakage

When a hole is made in the confining potentials of a BEC, FIG. 5. An aperture in the confining potential of the BEC, en-
the gas can flow out. We affect such an aperture by couplingbling tunneling.
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TABLE |. Parameters of the aperture.

Parameter Value
K 15 |\P|2
Xo 1
03
y 1 0.0
C 0.2
0.02
the condensate finds it easier to leak through the aperture as 0 0.01
the positive nonlinear constant becomes larger.
T 0
IV. SUMMARY By 20

We have presented a highly accurate and efficient method
for propagating the nonlinear time-dependent Sdimger FIG. 7. Same as Fig. 6, witA=4. The tunneling rate is en-
equation. The method combines an implicit approach witthanced by the interparticle repulsion.

Chebyshev interpolation in the time domain. In combination

with a Fourier or plane-wave spatial representation it leads t&PPENDIX: DETERMINING THE REQUIRED NUMBER

an overall balanced numerical method. Although we have OF CHEBYSHEV SAMPLING POINTS

shown only examples where the spatial part is one dimen- . :
sional, theymethofjJ is straightforwa‘:dly agplicable to more .Let us Qeterm|ne the nu_mber .Of Chebyshev sampling
spatial dimensions, since there is no direct dependence of t omts.requwed for representing a.h|gh-frequency component
time evolution and sampling points on the spatial grid. In- - This can bendone by inspecting the Chebyshev coeffi-
deed, the present method was recently implemented for elegients off(t)=e'*":

tronic structurd 23], using a time-dependent formalism, and

. . . . crpe i(1/2)Q
accurate time evolution was achieved with no difficulty. szzeiu/z)m t el(M2QTxC, (x) dx
T -1 J1-x?
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e tonian with maximal eigenvaluei,,,, and minimal eigen-
N=7QT+N, (A3)  values E,,,, one can shift the HamiltonianH e~ H
—[(EmaxtEmin)/2], making the largest frequency equal to
whereN, is given in Table II. Q= (Enax Emin)/2. For a nonlinear Hamiltonian, it is more

It is now important to estimate the maximal frequency inintricate to estimate what the highest frequencies are, how-
the system. Also, it is important to arrange the Hamiltonianever, it is our experience that the nonlinearity does not build
in a balanced way so as to minimize the maximal frequencytemporal frequencies beyond the ones taken into account by
for example, for a time-independent linear Hermitian Hamil-the consideration above.

[1] W. Negele, Rev. Mod. Phy&4, 913 (1986. put. Phys.94, 59 (1991).

[2] R. B. Gerber and M. A. Ratner, Adv. Chem. Phy4€, 97 [14] P. Pfeifer and R. D. Levine, J. Chem. Phy$§, 5512(1983.
(1988. [15] U. Peskin, R. Kosloff, and N. Moiseyev, J. Chem. Phi30,

[3] E. Runge and E. K. U. Gross, Phys. Rev. LBf, 997(1984). 8849(1994.

[4] P. Nozieres and D. Pine3he Theory of Quantum Liquids [16] G. Yao and R. E. Wyatt, J. Chem. Phy€1, 1904(1994.
Vol. Il (Addison-Wesley, Redwood City, CA, 1900 [17] G. Yao and R. E. Wyatt, Chem. Phys. Le289, 207 (1995.

[S] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. [1g] C. S. Guiang and R. E. Wyatt, Int. J. Quantum Chéi.273
Flannery, Numerical Recipes in C, 2nd é@ambridge Uni- (1998.

versity Press, Cambridge, 1992
[6] D. Kosloff and R. Kosloff, J. Comput. Phy52, 35(1983.
[7] K. Yabana and G. F. Bertsch, Phys. Rev4® 4484(1996.
[8] M. D. Feit, J. A. Fleck, and A. Steiger, J. Comput. Ph¥g,
412 (1982.

[19] T. J. Rivlin, Chebyshev Polynomials: From Approximation
Theory to Algebra and Numbers Thediiley, New York,
1990.

[20] V. 1. Krylov, Approximate Calculation of Integral$ranslated

[9] H. Jiang and X. S. Zhao, Chem. Phys. L&9, 555 (2000. by A. H. Stroud(Macmillan, New York, 1962
[10] H. Tal-Ezer and R. Kosloff, J. Chem. Phyal, 3967 (1984 [21] P. A. Ruprecht, M. J. Holland, K. Burnett, and M. Edwards,

[11] R. Kosloff, J. Phys. ChenB2, 2087(1988. Phys. Rev. A51, 4704(1993.
[12] R. Kosloff, Annu. Rev. Phys. Chend5, 145 (1994). [22] D. Neuhauser and M. Baer, J. Chem. PI8@.4351(1989.

[13] C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. [23] R. Baer(unpublisheg _ ' _
Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karlein, [24] Handbook of Mathematical Functionedited by N. Abramow-

H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, J. Com- itz and I. A. Stegar(Dover, New York, 1972

063810-7



