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We consider a semiconductor microcavity etched into a small post structure in which the polariton modes
become quantized. When moderate amounts of excitons are injected, large gain for the lowest confined
polariton results from exciton-exciton scattering. We show that gain is sufficient to compensate for typical
losses of GaAs structures, and stimulated emission of the confined polariton is eventually achieved at an
exciton density below that where Rabi splitting collapses. We study the dependence of the threshold exciton
density on post size, polariton loss rate and lattice temperature. We study the polariton statistics, and show that
far above threshold, typical transition from super-Poissonian to Poissonian statistics is preserved. Exciton-
exciton interaction produces a self-phase modulation, resulting in enhanced frequency noise, and into a net
increase of the emission linewidth far above threshold. We show how to produce a number-squeezed state
using correlation between frequency and number noise. A numerical example of a realistic structure is also
analyzed in detail.

PACS numbes): 42.50—p, 42.55.Sa, 03.75.Fi, 71.35.Lk

[. INTRODUCTION neck in the dynamicfs]. Here we show that exciton-exciton
scattering at large density provides significant gain for po-
The elementary excitation of a semicondudixciton is laritons, and eventually, stimulated emission sets in, when
a bound pair of two fermions, the electron and the hole. It igshe polariton lifetime is sufficiently long. We further con-
the analog of the hydrogen atom, and characterized by sider an etched microcavity po@tig. 1 righy in which the
binding energyEg and a Bohr radiusg. Therefore, it is a polaritons become quantized, in order to isolate the lasing
composite boson. In particular, when the system is dilutemode, and simplify the analysis of the statistical properties.
i.e., whenng,a3<1, wheren,,. is the excitation density, a  In the planar cavity, the cavity photon, the exciton, and
bosonic description of the system is convenient. Conceptupolaritons have an in-plane dispersion, labeled by a wave
ally, stimulated emission of composite bosons should be revectork. The cavity photon effective mass),,=Eq, /v?,
alizable, and has been proposed both in the context of thewith E.,, the cavity resonance energy, andhe speed of
mal equilibrium (condensation and in the context of light in the material, is almost four orders of magnitude
nonequilibrium (dynamical condensation or lasingRe- smaller than the exciton mass in GaAs. As a consequence,
newed interest in this subject followed the realization of two-exciton-photon mixing and splitting is relevant fdk
dimensional polaritons in semiconductor microcavifie®]. ~ <0.1ky=0.1E.,, /fiv~3x10° cm™*, as shown in Fig. (b),
Polaritons are the mixed modes of a quantum-w&W) Dby a continuous line, computed for a GaAs cavity. Fkor
exciton and a cavity photon. Mixin@r strong couplingisa  >0.1k, the lower polariton becomes excitonliKbereafter
coherent process where energy is periodically exchanged bsimply exciton, and the upper polaritons, photon like. In the
tween a material degree of freeddexciton and the elec- micropost here considered, depicted in Fig)1the in-plane
tromagnetic modecavity photon, characterized by a Rabi translational symmetry is lifted. The semiconductor and air
oscillation period or equivalently by a Rabi splittirfgf}. refraction indexes are largely different and the post effi-
Preservation of coherence in the oscillation demands microsiently confines the cavity photon in the lateral directions.
cavities with high quality factors, showing relatively long We will consider posts of square cross section witks4
photon lifetimes of few ps. Clearly, polaritons are alsoum, and assume the in-plakeguantized tdk,=n,7/D and
bosons at low density. Their extremely small mass was sugk, = ny /D, respectively, with integem, ,n, . For good pho-
gested to ease their dynamical condensation at low densitgpn confinement, the energies of the micropost polariton
and relatively large temperaturgd. We note that stimulated modes are those of the planar microcavity polaritons at the
emission of polaritons is conceptually different from that of quantized in-plane moment&,(,k,). The micropost polar-
cavity photons, as polaritons bear a substantial excitonidon modes are also shown schematically in Fig)1The
component. Moreover, this material component is the origirpolariton energies are discrete, and those With0.1k, are
of the gain. Thus, stimulated emission of polaritons is analowell separated. On the contrary, quantized exciton energies
gous to that of bosonic atoms inside a tfdp First attempts  still form a quasicontinuum, as the exciton mass is much
to observe stimulated emission of cavity polaritons were unfarger. Therefore, the small micropost system is constituted
successfu[5], because the quasithermalization assumptiondy a large exciton reservoir, and basically one discrete po-
cannot be fulfilled at low densities, due to a relaxation bottledariton mode at lower energy.
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ferences with the bosonic atom laser, and explain what dis-
tinguishes polariton lasing from cavity photon lasing.

II. MODEL AND RATE EQUATIONS

Two scattering mechanisms redistribute energy in the sys-
tem: scattering with phonons and exciton-exciton scattering.
Scatterings within the exciton reservoir are much faster than
scattering from excitons to the polariton, as quantitatively
assessed later. Therefore, excitons are in a quasithermal dis-
tribution, whose temperaturg,, is fixed by the interplay of
heating and cooling processes involving phonon emission
and absorption. We could well describe the reservoir and its
dynamics with two macroscopic numbers only, an exciton
density and an exciton temperature. However, it is easier to
3 / ' ' ' ' model the intrareservoir dynamics and the reservoir-

ky=0, planar cavity polariton dynamics together within a common framework.
. ky=1t/D _ We describe the dynamics of populations with rate equa-
o k,=2n/D tions, in which scattering rates are calculated within a Mar-
o k =31/D kpv approximation(Fermi golden rulg The resulting equa-
» K =4n/D 1 tions are commonly named quantum Boltzmann equations
because final-state stimulation is also included. Validity of
ol i this approach has been discussed at length in [Réfand
48 will not be repeated here. Further concerns regarding the
. application of the Markov approximation to this laser system
-1}t 1 will be addressed in Sec. IV. Here we only note that we
completely ignore renormalization of excitation energies,
5 , ) , and in particular, collapse of the Rabi splitting. At large ex-
0 1 2 3 4 5 citon densitiesng,., dephasing related to exciton-exciton
Kk (1050m'1) scattering is large enough to destroy exciton-photon coher-
X ence. Eventually at even larger densities, the concept of ex-

FIG. 1. (@ The micropost structure. The distributed Bragg re- Citon as a boson becomes meaninglédstt density. Col-
flectors are also depictetb) The dispersion relation of the micro- lapse of the Rabi splitting has been observed in various
cavity polaritons, in the planar cavity, and the quantized energyexperimental conditions, and estimated to occur at a density
momenta for a &zm X 2um post structure. The lowest mode is the of carriers of 4x 10'° cm™2 in GaAs sampleg8—10] which
confined polariton mode, while other modes, closely packed on theoincides with our estimate based on exciton-exciton colli-
energy axis, form the exciton reservoir. sion rates. In the following, we restrict our analysisng,

<4x10' cm™ 2. As the collapse of the Rabi splitting is

In this paper, we first study in Sec. Il the dynamics of thisr,ather abrupt, we expect our results to hold at least qualita-

open system using rate equations that describe gain, spontté\filyralscr’ndoﬁit?] trlns l;m't' we discretize th ntin
neous emission, and recombination for the polariton, and or computational purposes, we discretize the continuous

also the dynamics within the exciton reservoir. We calculaté™XC1lON TE€Servoir, using an uniform energy geg=IiAE, |

in Sec. lll the threshold properties of this system. In Sec. IV:fl’tz’t' ) 'bv(;gChv\'/S convNent|enIt Lorl ttf;]e flat ?[xcnon d?ntgty-
we extend the rate equations into Langevin equations anfl' > ates( ). We useN; to label the exciton population

calculate noise characteristics of this laser system. We calcu®i — N(Ei)' We use the _|ndex=0 as a special label fqr the
late polariton number fluctuations, power and frequenc;Pc’la”ton throughout th|s paper, witBy<<0 the polariton
noise spectra, and the emission linewidth. We find thaf"€rgy- The rate equations read:

exciton-exciton scattering results in cross- and self-phase-

modulation. The former produces an enhancement of th‘Ni:Pi—FiNi—E (Wi Ni(Np +1) = Wi, N (N + 1)}
Schawlow-Townes frequency noise spectrum, and the latter i’

a peculiar correlation with number fluctuations. We show

E (meV)

that this correlation produces a significant increase of the  — 2 {Yi i NiNG (NG + 1) (N + 1)

emission linewidth far above threshold, and that it can be PRENH vt ' !

used to completely suppress number fluctuations of the inter-

nal polariton field, or to partially suppress number fluctua- ~ — Yiij—ii,Ni'Niz(Ni+1)(N +1)}. Y

tions in the extracavity photon field by a factor 1/2. A real-

istic numerical example is also analyzed. Finally in Sec. VHere P; is the pump rate[’; the radiative recombination
we discuss results and their relevance to currently availableates plus other losse8V;_,;; the scattering rate with the
systems. We also discuss the quantitative and conceptual dithonons, and{“ﬁi,ii the exciton-exciton scattering rates.
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A effective polariton DOS results into faster relaxation times,
typically in the range of hundreds of ps for the structures
AE considered in this paper.
Exciton-exciton scattering can be characterized by an out-
Y scattering rate frofk=0 excitons, which is largely indepen-

dent of Ty, and linearly dependent on the exciton density
Neye- FOr typical GaAs parameters, the ratd oyc exc
~(7?ESI2E ) (Nex@3)~1 meV when ng,=10° cm 2.
Here ELzﬁzlmexdaé. The same values were also indepen-
. dently calculated in Ref.14]. Experimentally, this rate has
A been measured with four-wave mixing experimdits], and
1 by direct measurement of the absorption linewidth]. Re-
-IE | _— Fo cently, this rate has been directly measured in microcavities
? polariton “A by upper polariton emissiofi7,18. While absorption mea-
surements and the microcavity experiment give consistent
FIG. 2. Left, schematic representation of the microcavity posthumbers with theory, Honolét al. measured smaller scat-
system, with the exciton reservoir shaded and the single polaritotering rates by a factor of 5. Discrepancies can be traced back
level. Right, the discretized reservoir and schematics of all pumpto difficulties in a precise measurementf,.. The exciton-
ing, decay, and scattering processes included in(Bq. exciton scattering matrix element is relatively flatkispace
for k< agl, or as a function of energy within an energy span

This process conserves energy. A schematic picture of thigt - AS EL>ksT throughout this paper, we neglect these
etails. Relaxation of reservoir excitons into polaritons

system and the typical scattering processes is depicted o ,gh exciton-exciton scattering is not suppressed as it is

Fig. 2. ) . for the phonon emission process. This relaxation takes place
Rate Eq(1) includes both the spontaneous and the stimutnrough scattering of two excitons into a polariton and a

lated processes. Indeed, stimulated scattering to the polaritaibtter exciton: the final DOS for this scattering process is the
mode and its inverse process—scattering from the polaritoexciton DOS, and not the much smaller polariton DOS, as it
to the exciton reservoir—describes the gain and loss prois for phonon scattering. An approximate estimate of this
cesses, respectively, in the traditional laser terminology, ascattering rate is useful and straightforward. The final polar-
explicitly shown in the Appendix. The expressions and cal-iton has an energy- |Eo| and zero momentum, thus, at least
culation of the various scattering rates in the planar micro@an energy|Ey| is released in the scattering to the excitonic
cavity have been reported in detail in Ref6,7]. We only ~ reservoir. Considering thermal excitons, the optimal initial
remark that scattering rates within the exciton reservoir aréondition gives two excitons of energl,|/2, and using the
not significantly changed with respect to the planar case. Iffoltzmann distribution, we find a typical scattering rate of
particular, we may still use conservation of momentum forFegc—exce_lE"l/kBT' apart from Hopfield factors of order
scattering among the excitons, as they have a thermal wav&ity. Therefore, this relaxation rate is in the range of few
length much smaller than the post size. In other words, théPS) ~ for keT~|E| already at moderatg,,.. As this re-
thermal distribution of excitons spans a large number of thd@xation is a gain process for the polariton, we understand
closely spaced confined states. For the same reason we m t relevant recomplnatlon losses can be compensated at
assume the polariton modes to have zero momentum wh oderaten,,.. The inverse processes of scattering of the

calculating the scattering matrix elements. In order to calcupOIariton to other states also effectively contribute to polar-

: . . iton loss. These processes are of course also included in Egs.
late scattering to and from the confined polariton, we use th?l) and we usually speak of net gain as the difference of
same expressions for the planar case given in REf.in y y 9

. o . 2 gain and these losses, excluding recombination. In planar
which a fictitious polariton DOSJE(k)/ok"=AES (4), cavities, scattering out &= 0 polaritons to other polaritons,

S.:D'2 the post surface, is mtrodgced. It can be shown thajg largely suppressed by the low final DOS. In the micro-

this is exact for the lowest confined mode, having=k,  nost, it is instead trivially suppressed by confinement. On the

=m/D. contrary, scattering to excitons has a relevant final DOS.
We discuss some properties of the processes described ffowever, this channel is cutoff at low lattice and exciton

the rate Eq(1). The exciton-phonon scattering strength cantemperatureskg T<Q/2 (or kgT<|Eo| in the post case

be characterized by the phonon absorption ratk-eD ex-  This sets an upper bound for temperatures at which any gain

citons, which is linear in temperature with a coefficiegnt mechanism is relevant, and is essentially a material property

=5u eV/K for a typical GaAs QW, 100 A widgl1], and by  related toQ. In particular, net gain resulting from exciton-

a relaxation rate of hot excitons at=D, of the order of tens exciton scattering at a given,,. is small both at lowT,

of ps[12]. Typical scattering matrix elements span a rangewhere gain is small, and at lare when loss is large. Thus,

(i—i")AE of about 1 meV, depending on the QW width. In an optimal operation temperatukgT~7% ) exists.

the planar cavity, relaxation of excitons into polaritonsat The radiative recombination ratés in principle depend

<0 is suppressed because of the small polariton DI3%5], on the structure of the post, but to lowest order they can be

bringing these relaxation times well above a ns. For the smaltalculated from the planar cavity case, as for the dispersion.

micropost case, the finite confinement energy and a largeafor the lowest confined mode, latefpbs) confinement re-

energy

(=)
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sults in|Eq|<#AQ/2, and a reduced photon content. The re-  1o"
sulting radiative Iifetimero=l“a1 is expected to be longer

than twice the cavity photon lifetime. In particular, in the
structures considered, photon lifetime~4 ps, and the cal-

culated confined polariton lifetime exceeds 10 ps. Thisis still 10"
a very short lifetime. Presumably, other loss processes—
finite leakage through the side walls due to surface rough-
ness, and nonradiative exciton recombination introduced by
the etching process—do not lower it significantly. However, < g
in view of the realization of better cavities showing longer
photon lifetimes in the near future, in place of the calculated
recombination rate, we use an effective polariton loss rate in
a range of reasonable values, 10 ps—100 ps. As for the ra-

-2,
exXC (Cm )

diative lifetime of excitond”;-, related to the leaky modes 10 10 100 1000
of the dielectric mirrors[19] we use the calculated values. (a) PITs

Slightly modified structure of the leaky modes due to lateral 10

confinement does not drastically change any result presentec ol

in this paper, and in particular, the exciton density at thresh-
old.

Ill. THRESHOLD BEHAVIOR

TQKC (K)

In this section we present numerical results from the in-
tegration of the rate Eq.l) in stationary conditionsgd/dt
=0. We model an optical pump injecting cold excitons close
to E=0, having a Gaussian distribution in enerdy

xe E'7°P, with ¢=0.25 meV. We also ustE=0.1 meV. .
Choice of this parameter is discussed in detail in REf.In 10
stationary conditions we find that the excitons thermalize to a (b)
tempgraturél’e?(c, which is close to the |§tt'ce temperature FIG. 3. (a) Exciton density, left, and polariton population, right,
We first considerD =2 pm. Th.e polarlton has an €Nergy and(b) exciton temperatur@,,. vs pump intensity for three differ-
Eo=—0.7 meV, as shown in Fig. 1. We fix the recombina- ent temperatures;,= 10 ps and a 2 um post structure was con-
tion rate of the confined polariton tey=T"*=10 ps. sidered. Other parameters are given in the text.

We plot in Fig. 3a) the population of the confined polar-
iton and the exciton density on a double-logarithmic scaleclearly not accounted for in our approach, and we thus ex-
and(b) T,cas a function of the pump intensity, and for three pect observation of hysteresis in highest quality samples
different lattice temperature$. As expected, we notice a only.
clear threshold behavior in the population, and clamping of Clearly, exciton heating proves that exciton-exciton scat-
the exciton density when stimulated emission sets in. In théering is the basis of gain. Indeed, we remarked before that at
double-logarithmic plot of Fig. @) the threshold clearly ap- least an energyE,| is released to the reservoir for every
pears at a population My=1 (later adopted as a definition exciton scattering into the polariton. The reservoir dissipates
of threshold, proving its origin in stimulated emission. We the excess energy only through phonon emission events: a
notice that clamping of the exciton density is moderate, andjiven T, results from the balance between in-flow and out-
that a sizeable heating of excitons appears above thresholfipw energy rates. Phonon absorption and emission rates are
especially forT=2 K. A hysteresis is also found fdr=2 K,  balanced wherl.,.=T, and energy dissipation is roughly
which is related to an abrupt change Bf,. as stimulated proportional to T~ T). The net inflow from the gain pro-
emission sets in. The hysteresis is related to the pumpingess is instead proportional i, thus (Te,c— T) = Ng. Heat-
efficiency: the average exciton radiative lifetime,,. ing of the reservoir is an essential aspect of gain resulting
=(=I;N;/=N;) " tis in fact linearly dependent of..., as  from exciton-exciton collisions, and its experimental obser-
only excitons of small wave vectér<<k, radiatively recom-  vation would provide a strong evidence for this origin. We
bine [20]. For T=2 K, T, doubles across threshold, Fig. finally remark that increase of.,. above threshold de-
3(b), and so does,.,.. The exciton pumping efficiency also creases exciton-exciton scattering efficiency as explained in
doubles, as below or around threshold it is proportional toSec. Il, and results in incomplete clampingrgf..
P7exc- This positive feedback makes the system unstable, We plot in Fig. 4 the exciton density at threshold as a
and results in hysteresis. Experimentalty, < Teyc iS 0b-  function of T, using otherwise the same parameters as before.
served only forT¢,~>10 K. Both nonequilibriun{12] and  We note that the lowest threshold is obtained kgif =0.3
exciton localization{21] effects contribute to a flattening of meV, which is of the order dEy| =0.7 meV, as expected. In
this dependence at low temperature. Localization effects argig. 5 we report the dependence rof, . at threshold, forT

10° 10
PIT,
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14 ' ! ' ' Rout:FO+th+Fe—eNexc- (4)

- Here th,FF’)h are total phonon absorption and emission
w’E\ < rates, andl'y_.,I';_, the exciton-exciton collision rates.
.0 Thermal equilibrium within the reservoir imposes the de-
2 40t tailed balance of all scattering processes:
>
g . rphze*BIEo\rF’)h, Fefe=efﬁ‘E°|Fé7e- (5)
2 Here 8= 1/(kgTexo. At threshold,Ny=1, then Eq.2) may
i be solved forNg,. in stationary conditions. When also
£ 061 |

1_‘e—e"' \/Fg—e+ 8I16,3—el_‘0
.4 L L 1 1 —
a 2 4 6 8 10 Nexe ar! ' ©®
e—e

FIG. 4. Exciton density at threshold vs the lattice temperature,lzt Showé a h ml?‘lmulin th_rrehs_hqld | de?SItzNe’ﬁ: 1 |
for 7o=10 ps and a 2 um post structure. Other parameters are eXP,(__ﬁ| o) W en 0<lee- ISIS € e?ry the t erma
given in the text. equilibrium condition between the polariton and excitons,

with a chemical potentialu~—|Ey|. The calculated
—6 K, as a function ofrg, for bothD=2 um andD=4 xm. ~ asymptotic density at ¥6 K is nex=5.5x10° cm 2, while
As expectedn,,. is a decreasing function of,. The thresh-  that fitted from the results in Fig. 5 f,=4.5x< 10° cm™?,
old density shows an asymptotic value fay—c, which is ~ Showing good agreement. The fit also givEg_.=3.0
close for both post sizes. X 10" s71 for D=2 um. It should also be noted that the
In order to simplify the analysis of threshold, we neglectVery same functional form for the threshold_ density E&j.is
the difference betweefiandT,,.and bosonic degeneracy in Obtained whed’p,>T._.. Therefore, heating effects are a

the reservoir, and retain only the rate equation for the polarcléar and unique fingerprint of exciton-exciton scattering as
iton mode: the origin of gain. We have also numerically separated the

two contributions to gain, fob =2 um, T=6 K, and found
Ie_e~3I' ). The ratel’ ,,, is somewhat larger than in planar
microcavities because of polariton confinement. Moreover,
we note it is a rapidly decreasing function of the QW width
HereRs, and G are the spontaneous emission and net gain(here we used 100 YA as described in detail in Ref7],

We defineNgy = Neyh 2, wheren?,=27%2/m,,ksT isthe ~ whereas exciton-exciton scattering has a weaker dependence
squared thermal wavelength of excitons. The rates are the®n it through the exciton binding energy.

dN,
W:Rin(1+NO)_RoutNO:Rsp+GNO- 2

given by The maximum gain that can be expected from exciton-
exciton scattering in a given material may be roughly esti-
Rin=T"pnNexct To-eNoye, (3)  mated using the results of Ré]:
15 ; ; - - EZ ap
AL =m3|X|2—= —e AlEd 7
T=6K e-e=TIX| keT N &

Here|X|? is the exciton content of the polariton mode, the
& —-@ 2pmx2pm

1.0 + . exciton thermal wavelength,, has been introduced before,
——a 4pmx4pum

as well as the other quantities. UsikgT ~|Ey|, close to the
optimal value, gain becomes proportional nd, E2/|Eo|.

The maximum allowedhg,:max iS found at Rabi splitting
collapse, and given by the conditiéi ¢y exc~7% . Then,

threshold density (10°cm™)

05 t . :
nexqmaxfxﬁQEL/EzB, with E, introduced before. Thus, the
maximum gain is
Gmah*QEL/(E5|Eq)).
00 0 20 40 60 80 100

For planar cavities at zero detuning, we ligg|=7%)/2 and
Gmax*WQE?/ES. In Group-ll-VI materials such as ZnSe,
FIG. 5. Exciton density at threshold vs the total polariton life- Gmax iS' eXPe_Cted to be _signifiggntly larger than.in GaAs, as
time, for two different post structures. Other parameters for thisE| /Eg is similar, butz () is significantly larger. With respect
Group-llI-V system are given in the text. to the planar case, lasing in the micropost structure has the

T, (pS)
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additional advantage of havirg,| <#/2, and longer po- second order inV. Here we note that the real parts of the
lariton lifetimes as remarked before. Of course, these samgrift terms could also have been directly read off from the
advantages can be obtained in planar cavities using positivéite equations, as these are derived within the same assump-
detuning. However, in practicéEy| cannot be made too tions (Markov approximation, unperturbed nature of the ex-
small: well before the lowest polariton mode of a planarciton states, and scattering to second ordéfin and we are
microcavity becomes significantly massive, additional lossjealing with a bosonic system. The corresponding noise
mechanisms beside radiative recombination can be expectegrms easily follow. Instead, the imaginary part of the drift
such as elastic scattering from the lowest polariton states t@rms(frequency shiftsdo not appear in the rate equations,

localized exciton states. and have to be calculated microscopicatge Appendix A
We also note that real and imaginary parts of the drift terms
IV. LANGEVIN EQUATIONS AND NOISE PROPERTIES obey the causality principle and are related by a Kramers-

Kronig transformation. Consistently with the above assump-
Noise properties of polariton lasing process are related ttions on the exciton reservoir dynamics, we do not need to
guantum-mechanical fluctuations of the occupation of theonsider each individueﬂlk=blbk, whereb, is the exciton
state around its average value. Therefore, we need to defestruction operator, as an independent dynamical variable,
scribe the quantum-mechanical evolution of the polaritorand the Langevin equations finally read:
state coupled to external reservoirs, beyond rate(Eq.in

which only the average occupation is calculated. A conve- . G-I AW

nient description of this quantum-mechanical evolution is Bo= 2 Bo—i 7|X0| No+e(N) [Bo+Fg,+Fr,,
given by Langevin equatior®2]. In deriving them, we treat (8)
the exciton reservoir as ideal, and neglect any phase coher-

ence in it. We assume that exciton phases are instantaneously N=p—TN—GN,— Rept+ Fr+Fp+Fy. (9)

washed out by fast scattering processes within the reservoir.

This assumption needs further discussion, as it is central tpiereB, is the destruction operator for the polariton mode, in
further developments of the theory of bosonic lasers. Eventhe rotating framesee Appendix A No=B£§Bo, N=3,N,
tually far above threshold, wheNoy>1, this assumption s the total number of excitons, aquP is the total pump-

does not hold anymore because of stimulated scatteringng rate. The gailG is the net gain, i.e., it includes scattering
Then, the nature of the exciton states changes. In the equjyt terms, and is written as

librium theory of the interacting Bose gas, it is well known
that when the macroscopic condensate forms, strong interac- G={T,_ N2+ éT,ShN— {Te_eN—Tpp, (10)
tion between the condensate and bosons at long wavelength
(small wave vector renormalizes them into phononlike whereas the spontaneous emission terms are
guasi-particles. Technically, these new states are found with
a diagonalization of the strongest interaction terms, with a Rsp= §2Fg_eN2+ gF,’)hN. (11
Bogolyubov transformatio23]. If we call W~ 6Ega3/S
the effective interaction between bosdi$, modes up to an {=\3/S and the scattering rates were introduced in Sec. Ill.
energy W|.A|?/2 are renormalized into phononlike quasi- I' is the average of the exciton recombination fteover a
particles. HereA is the condensate amplitude, théd, thermal distribution. The imaginary terms in E&) are the
=|A|2. Therefore, we may safely neglect renormalizationself-energy shifts up to second order M. In particular,
effects whenWNy/2<|Ey|. For D=2 um we obtainN, €(N) is the polariton-energy modulation by change of carrier
<1.5x10%, and four times as much in the larger=4 um density, analogous to that in conventional lasers, where
post case. Qualitatively, renormalization of low-energy exci-modulation of the carrier density results in a change of the
tons into phononlike modes results in a decrease of excitorindex of refraction, and a change of the lasing frequency.
exciton scattering, and therefore also gain. This adds onto thEhe | Xo| YWNo/2 term is instead unique to this system, as it
usual saturation due to population depletf@ih The result- is generated by the microscopic Hamiltonian term
ing slow down of the relaxation dynamics in the reservoir isﬁW|X0|4bgb5bobO/4. Such an interaction is missing in the
accompanied by larger fluctuations in the reservoir, and possonventional photon laser, where the mdggis a photon.
sibly a qualitative change in the noise properties of the sysThis type of interaction is also found for photons propagating
tem. In the following, we neglect all these effects, and con4in a Kerr medium[22]. The effect of this interaction is to
sider results with Np>1.5x10° as indicative only. modulate the phase of the lasing mode, and therefore has
Saturation effects are instead fully addressed. We also néseen named self-phase modulation. A phase-number correla-
glect deviations of the exciton population distribution from tion results from this self-phase modulation, which was also
the thermal one, assuming that also these fluctuations adiscussed for light passing through a Kerr medium in Ref.
instantaneously washed out. In principle we could take intd24].
account temperature fluctuations, but we expect these to have The noise sourceB(t) in Eq. (8) are approximated with
a minor effect, and do not include them. Changes of thevhite-noise sources, so as to preserve the commutation rela-
averagerl . are instead included and will be discussed latertion of By. They originate in the coupling to the exciton and
In the Appendix A we directly calculate the drift and the external photon reservoirs, respectively, and have the fol-
noise terms generated by exciton-exciton scattering up ttowing statistical properties:
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(FE(DFg,(t)=(Rep)d(t—t"), (12 o .3 0|4
¢= 5= [Fa,~ FatFr,=Fi I+ WéN,
<FBO<t>F£O(t'>>=<Rsp—6>5(t—t'>, (13) ¢
+ 9 o ey o 21)
(Fro )Fr (t)= (14 dN € 2N,
(Fry(OFF (1) =To8(t—t"). (15) SNo=(G—To)oNo+ 7N+ Fy +F, (22

The other noise sources in E) are also approximated
with white-noise sources, and are related to the radiative de-

cay process, the pump process, and exciton-exciton scatter, _
ing processes, respectively. They have the following propeﬁ_|ere 7=NodG/dN, 7' =dR;,/dN, and Fry= BO[FF

N=—G&No—(I'+ 7+ 7' )N+Fp+F,+Fy. (23

ties: Fo]/2. We note that we neglect the average energy-level
shifts, which appear in the phase equations and typically

(Fp(OF,(t"))y=pa(t—t"), (16)  amount to fractions of a meV in the considered cases. These

average shifts represent a change of lasing frequency with

(Fn(DFN())=[(Rsp=G){No) +(Rsp)(1+(Np))] carrier density, and are part of the renormalization effects
X S(t—t") 17 discussed before. We also neglected phase operators in the

number equations, as the phase is slowly fluctuating
Sy , and decouples from the faster number fluctuations, far
(FrOF(t")=T(N)s(t—t"). (18) above threshold. The self-phase modulation term is

\ =
These last sources do not have cross correlations, and al8§><[XolWéNo.  The gther terms de/dN)oN and_
with the previous one in Eq14). Instead the real part (szo €(N) 6Ny/2N, are conventional amplitude to phase coupling

is correlated toFy as they both originate from the same €rms.

interaction Hamiltonian. In particular, the operatsr- Ny

commutes with the exciton-exciton interaction Hamiltonian, A. Number fluctuation and Poisson limit

as this interaction conserves the number of bosons. When the Equat|ons(22) and (23) are solved by standard Fourier-
Langevin equation foN, is derived from Eq(8), the drift  transform techniques, and the power spectra are calculated
terms originating from exciton-exciton scattering are exactlytaking into account the auto and cross correlations of the
opposite to those in Eq9). ThereforeFy+Fy =0 exactly,  noise sources. We define the Fourier transform of an operator

and as
(FugFrg) = (FuFi)=—(FyFuy). (19 E (@)= lim \[f gt dtE (D)
T—o T2
We also note that in the Langevin E@), N, G, andR, are
operators. We Fourier transform Eq$22) and(23) and obtain the lin-

The Langevin equations written above are similar to thoseear system:
of a conventional lasef25,26 with the exception of the

different gain mechanism, and the new self-phase modula- (F0—§+iw)5No— 77~5N=I~ZNO+I~:’FO
tion term. As customary in laser theory, the above equations . ) e = e
are studied below or about threshold, whghg)~1, and GoNgt+(io+I'+ 5+ 7" )oN=Fr+F,+Fy. (24

very much above threshold, wh¢Ng)>1. In the first case,
we neglect the coupling of fluctuations &f to Ny as the
fluctuations are small, and substitute fGrits averageG
=(G). Number fluctuations are easily derived from

The solutions are explicitly worked out in Appendix B,
where also the noise power spectra are calculated.
Here, we consider the limit case of the system very far

above threshold, defined déo>N. Then, G~T'; and 7
Noz(g_FO)NOJrﬁ +Fy (20) >1"y,I',7", as p=Ny. The Fourier transform 06N, reads,
P ’ with o< 7:

and result in super-Poissonian noise near the threshold. Far

above threshold, we introduce Hermitian amplitude and 5N NFN+FN0+FF0+FP+FF o5
phase operator$B, and ¢, respectively, by ol@) iw+T, (25
Bo=(Bo+ 6Bg)e™'?, The power spectrum 0BNy(w) is clearly Lorentzian of

width I'y. We recall that + Frn,=0 from EqQ.(19), and we

with Bo=((Bo+Bg))/2. We also introduc=N+ 6N and  are left with the noise contributions of the pump and recom-
ONg=2B,6B,. We obtain to lowest order idNg, SN bination processes only. Eventually, the noise contribution
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from F; becomes also negligible whedAiN<T'yN,. Then,
the total noise powe¢SN3)~N,, and the usual Poissonian
fluctuations are recovered. In this limit, the autocorrelation .
of SN becomes also Lorentzian, of widty and total power 10
NoRsp/ 7. The cross correlation 06N and 6N, has two
Lorentzian contributions, one of width, the other of width
[y, the first contributing a total noise power (2Rg,
—I'g)Ng/ 7, the second-Ngyl'g/ 7.

As an example, we consider tlizz=2 pxm micropost, at
T=6 K. From Fig. 3, we read.,.=2x10 cm 2, and
deduceN~800 above threshold. Clamping of the reservoir
number is far from ideal, due to exciton heating effects. Also .
when Ny>800, the Rabi splitting collapses. Therefore, in ) e’ .
this structure it is not possible to reach the far-above- 1 10 100
threshold regime. The situation is only slightly better Tor N>
=3 K, where the threshold density is almost halved. Still, we . . )

lculated thal.—N when Rabi splii I b FIG. 6. Power noise spectra, as functions of the polariton popu-
calculate o~N when Rabi splitting collapses, because .0 N tor T=6 K. 7.=10 dag? ¢ struct
of exciton heating effects. We report in Fig. 6 the total noise - " 'O ' To= 20 PS, and & £ um post struciure.
power as a function dfly. We note that the total noise power B b ON B b
for Ny is significantly smaller than super-Poissonig(N S=6By+ CFLZTO-FCI,L, (27
+1), related to stimulated emission, yet the Poissonian limit o 2B 0
is still not attained even at the largdsg allowed.

total noise power

wherec<1 is an arbitrary real number. In practice, the weak
B. Polariton squeezing mixing beam can be generated by simply delaying a w_eakly
. _ reflected beam, and the whole operator generated in the

We next calculate the frequency noise spectrum, whichMach-zender interferometer configuration. The power spec-

easily follows from Eq.(21). We obtain trum of Sis calculated inserting Eq21) in the above equa-
o o tion:
2
2R;,—G+Ty (3 (N
P¢T¢:S’)*O+(—W|X|4+ )
4N0 4 ZNO PsTs(w)"“i—(l_i_S_W_Ol)qAC) P&NTﬁN (w) (28)
de\? 4Ng 2l o
€
X P ot + | —| Pyt N,
SNToNg dN) SNToN Then, choosingc~ —3WI2I'oNo|X|*#, perfect squeezing is

achieved (neglecting the background phase-diffusion pro-
cesses, giving a small contributiorc? only). It is not obvi-

ous how to observe this strong internal squeezing, as internal
polariton detection would be required. The result has, how-

de( 3 4 E(ﬁ)
+ — WX+ —
dN\ 4 2Ng

X P5NT5NO+5N35N. (26) ever, a deep physical significance. Far above threshold, the
_ o . . frequency carries all the information on the polariton number
The power noise spectra are explicitly given in E(3)—  fluctuations. This information is retrieved through the mixing

(B5). The first term in Eq(26) is the usual phase diffusion process of Eq(27), which generates a noiseless polariton
resulting from the spontaneous emission, which gives rise tgtate in the microcavity.

the Schawlow-Townes linewidth of the laser. We recall that  Alternatively to the internal detection, we may consider
the 3| X,|*/4 is the self-phase modulation contributions, the statistical properties of polaritons extracted from the mi-
while the other contributions originate from the usual phaserocavity. For example, polaritons could tunnel to an exter-
modulation through the carrier population. We noted abovenal exciton reservoir. In this paper, we consider only tunnel-
that far above threshold, the fluctuationd\gf dominate over ing through the mirrors to external photons, which is also a
those ofN. In this case, the self-phase modulation dominateseservoir of continuum modes. Using the input-output for-
over the other phase-diffusion mechanisms discussed beformalism of Gardiner and Collef27], we may write the ex-
Then, we may write ternal fieldR(t) as

2
P¢T¢(w)~(§W|X|4) PsNgsNo(w)- R(t) = T By(t) —Fe(t). (29

_ HereT'. is the input-output coupling strength, afd is an
Atlow frequency,w<T'g, Panfsn,(@)~4No/I'o. We show  external white-noise source. In the micropost case, where
that this strong phase noise can be used to reduce the poldprost of the polariton loss is due to radiative recombination,
iton number fluctuations. We consider a new operator: we may sefl’.=1"y. We also havé:e(t)=Fr0/\/F—e. When
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ﬁ0>1, alsoR(t) has small fluctuations around its average 10° T .
value R=\T,B, with R=(R+ sR)e " '¥, where 5R and ¢ — [, Pss, minimum
are Hermitian number fluctuation and phase operators, re- o g" Pss;:;:i(;um
spectively. We then have P 0
$.5. VT
1 g 10 B
SR=1\T 0By~ 5 (Fee'?+e?Fl), 2
2
L e b givpt :
- i id_ @ B
b=+ ZiE(Fee e'’Fl). (30) g 10
A mixed external operatdb, may be introduced for the in-
ternal field:
= 107 : :
Ry 1 10 100
Se: 6R+ CI,—O. (31) <Np>
have and S, of Egs.(27) and(31), respectively, as functions of the po-
lariton populationNg, for T=6 K, 7g=10 ps, and a 2 um post
structure.

r _
Se(@)= Z—E[H<fo+§l>c]6No+cBoJF_oszaN
0 In the GaAs structures considered in this paper the far-
c 1 above-threshold condition is not reached, and we have there-
+i——=[Fg —F§ +Fp —FL ]—=[F.+F[]. fore evaluated numerically both the internal and external op-
\/F_o ° 0 ° o 2 timal noise powers that can be obtained through the mixing
_ process of Eqs(27) and(31), respectively. Results are pre-
Here we introduced the notatiogh=(3WNo|X|*)/(2T0),  sented in Fig. 7. A suppression of the noise power is ob-
& =€e(N)IT'y, and &,=(de/dN)/T"y. From this expression tained both around threshold, and above it, for both the in-
the noise power is easily calculated. Far above thresholdernal and external fields. The suppression is largest close to
o> &1,&,, and alson> 7' ,I'y. Consideringw<I"y within  threshold. About 8 dB of internal polariton squeezing is ob-
the cavity bandwidth, we obtain served at the largestl,, but barely 1 dB of squeezing is
predicted for the external field squeezing at this point with
respect to the SQL. Thus, external field squeezing is likely to
be observed close to threshold only. Such an observation
would be interesting, and prove the existence of strong phase
Using alsoéy> 1/2 we obtain a minimum noise power of 1/4, modulation in the system. It is not self-phase modulation,
at c=—1/(2¢&,). This is a moderate 3 dB squeezing with which is dominant far above threshold only, as also numeri-
respect to the standard quantum linQL) of 1/2. This  cally checked. Lasing in the far-above-threshold condition
result has a simple physical interpretation. Polariton numbemust be realized in real samples before these effects can be
fluctuations result equally well from the radiative loss pro-detected.
cess, and from pump fluctuations, which we considered to be
Poissonian(incoherent pumping in Eq. (16). The fluctua-
tions originating from the radiative loss process cancel out- ) B o
side the cavity, within the cavity bandwidth, by beating with  In stationary conditions, the spectral shape of emission is
the external noise sourde, [26]. Usually, we are thus left 9iven by the following correlation functiof22,25:
with pump noise only within the cavity bandwidth. Clearly, "
the phase fluctuations far above threshold in the micropost |(w):f dre“‘”(AT(r)A(O)). (32
system carry the information of the polariton number fluc- —
tuations. If, through the mixing process represented in Eq.
(31), we cancel completely the number noise fluctuationHere A(7) is the electromagnetic field amplitude at the de-
which corresponds to using= —1/£,, we are left with the tector position, outside the cavity. As the external vacuum
standard noise frorf,. The best we can do is therefore to field fluctuations do not contribute to the above expression,
use half the latter value af half of the fluctuations from the we may also substitutBy(7) for A(7) in the above, apart
radiative decay will be canceled in the beating with, and  from trivial delays.
half of the pump fluctuations will still be left. This finally Below threshold, the system behaves as a simple damped
makes 1/4 of noise from the radiative recombination procesdiarmonic oscillator, and the calculation of the above average
and 1/4 of the pump noise, adding to a total noise power ofs straightforward using the quantum regression theorem
1/4. [22]. We obtain a simple Lorentzian lineshape, of width

1
Psts,~ (1+£0€)? = (1+ £0C) + §(1+c2).

C. Emission linewidth
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=[y—G= Rsp/NO When No<1, y= Iy, whereas above Next, we calculate the contribution of the self-phase

threshold, asRs, becomes clamped anl, increases lin- modulation term far above threshold. We find
early, a linewidth reduction of the Schawlow-Townes type is

found. This is however only qualitative, as the above analy- 5 §c2)ro

sis cannot be applied beyond threshold, where the fluctua- ([&(7)— #(0)]%)spm= 5 |7
tions SN become relevant. Far above threshold, the lineshape 0
can be connected with the phase diffusion coefficig?f)

1— e*FoT
1)

} . (38

Here £,=(3WNg|X|*)/(2T ) was introduced before. When

gving this correlation is inserted in the exponential of E83), a
o _ ) nonexponential decay is produced. We may identify two dif-
|(w)°<j0 dreere” ([#(7 - 4017 (33 ferent regimes:
In calculating([ ¢(7) — ¢#(0)]?), the imaginary noise sources §Src2> 2 [or<l
in Eq. (21) decouple from the number fluctuations. We have ZWo T 07T
two separate contributions. The first one originating from the {[d(7)— $(0)]D)spu~ ) (39
noise terms in Eq(21) is straightforward to calculate &lo
— T, 1—‘07'> 1
No

([$(7)— $(0)]?)g7=— (34

2N,

Clearly, simple exponentlal decay in E(33) dominates
when gOINO w2 NOIF <1, otherwise, decay is of type
exp(—AwGﬁ) We thus have a Lorentzian or a Gaussian line
shape respectively, of width

o

When inserted in Eq.33), it gives an exponential decay in
and a Lorentzian lineshape of width

O

=P 2r 2
Awst N, (35) fo_ o, i<l,
No No
The calculation of the contribution from the number fluc- Awgpy= » (40
tuations to the linewidth is more involved, as these have In(2) & §>1
colored spectrum and are correlated. The line shape can be \/ﬁ—o ' ﬁo '

calculated exactly using

. o As £, Ny, both linewidthsincreasewith Ny, and eventually
([p(1)—p(0)]?)= JO dty dtx(p(t1) S(t2)), dominate the Schawlow-Townes contribution, which instead
decreases aE(;l. This linewidth increase is as peculiar to
inserting Eq_(Z]_), passing to Fourier space, and using thethiS system as the self—phase modulation is. The relevant en-
solutions for6N(w) and 8Nqy(w) given in Eqs.(B1) in Ap-  ergy W is at the origin of both gain and of self-phase-
pendix B. We first analyze different contributions separately modulation.
in the far above threshold limily,>N. We consider the two For the micropost with =2 um andr'o=(10 ps) %,

— — T=6 K, we show in Fig. 8, the Schawlow- Townes I|ne—
terms @jel.dN) ON+€dNo/2N, in Eg. (21). As well known width, and the linearly increasing linewidth calculated from
from semiconductor laser theory, they produce an enhanc

ment of the linewidth wgyin this regime. Using the Lorent- the self- phase modulation in EG0). We did not include the

et . . ) AHEWIdth enhancement, as the linearization procedure of the
zian line shapes of the noise sources, discussed in Sec. IV
Langevin equation is not reliable around threshd\\t@,(u 1).

we find An enhancement of about 10 should be smoothly introduced
gggpgﬁsp_ when Wo>l. The calculation suggests that self-phase-

Awenn=—"——"No. (36)  modulation contribution is noticeable fo¥,>80. Even tak-

K ing into account the linewidth enhancement, the self-

phase modulation contribution would be noticeable Kby
>200. Therefore, we can optimistically expect that this line-
width enhancement will be eventually observed in these
Aw 8422 structures, b_efore Rabi splitting coII_ap_se. _The expe_cted I_ine-
ZTenh 7527 02 (37)  Wwidth behavior as a function of emission intensity, i.e., first
Awst 7? 0 the Schawlow-Townes narrowing, then broadening, has been

actually already observed in the nonlinear emission from
In the typical case oD=2 um, atT=6 K, we have calcu- Group-lI-VI microcavitieg 30]. It is however premature to
lated microscopicallyr®>~10. These are also typical values claim observation of the self-phase modulation effect in this
in semiconductor lasers. system.

Here,§2=(de/dﬁ)/1“0 was introduced before. In practice,
&,~0.59X,|2WIT . The enhancement factor is

a’=
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effectively delocalized, and showing bosonic properties. In-
deed, hundreds of localized excitons are found within the
wavelength of light, and even more so in a microcavity,
where the cavity photon has an enhanced lateral wavelength
[28]. The polariton becomes analogous to the superradiant
state ofN two-level atomg29] and the bosonic assumption
for the dynamics of the confined polariton is thus rather
solid. This analogy also holds in the micropost considered in
this paper. We remark that experiments aimed at directly
showing the bosonic nature of polaritons produced positive

results[17,18. Moreover, these results were also success-
fully analyzed within the exciton-exciton scattering frame-
. . L/ . work used in this paper, giving also evidence for the domi-
10 10'-1 10° 10 102 10° nance of free excitons in the dynamics of the real samples
<N already atT=5 K. As interface quality in Group-II-VI ma-
terials is comparable or presumably better than in Group-
FIG. 8. Emission linewidth as a function of the polariton popu- IlI-V based structures, we expect the free exciton picture to
lation, for T=6 K, 7,=10 ps, and a 2 um post structure. The hold to even lowelkgT/Eg. The larger Rabi splittings of
Schawlow-Townes linewidth and self-phase modulation linewidththese materials makes them more advantageous than Group-
are shown separately. The enhancement factor of &g.has not |l materials as explained in Sec. Ill. It is thus possible
been included. that in a recent observation of emission nonlinearities in
Group-lI-VI planar microcavities in Ref30], gain related
to exciton-exciton scattering is involved. Possibly, lasing
The results of this paper are based on many assumptionthreshold has already been reached.
which we discuss in more detail here. Central to the model is We finally discuss analogies and differences between the
the bosonic representation of the system, including theolariton, the bosonic atom, and conventional semiconductor
boson-boson interaction. The interaction originates in the exlasers. Most proposed schemes for bosonic atom lasers share
change between the fermionic constituents of the excitonghe same basic ingredients: stimulated emission from a cold
and is thus an effect of the Pauli exclusion principle, as disatomic reservoir, or eventually from a few discrete levels,
cussed in detail in Ref.7]. Calculation of higher-order in- into the lowest mode of an atomic trg@]. Different gain
teraction terms between excito(teree-body interaction and mechanisms have been proposed, many of which include
so on is cumbersome, and to the knowledge of the authorsatomic collisions[31]. The problem of extraction of atoms
it has never been addressed quantitatively. In this sense, tlim the highly populated trapped mode has also been ad-
model presented here remains qualitative, and only a closdgressed 32], while it is open in the polariton case. Striking
comparison to experimental results provides a reliable estidifferences are found in the lifetimes or losses—seconds for
mate of its range of validity. Thus, successful fitting of scat-trapped atoms, but only tens of ps for polaritons—and in the
tering experiments up to densities of a few? in 2 with  trapping energies—tens of nK for atomic traps but tens of K
this interacting boson model in Refd.7,18 is a strong in- in the polariton case. The long lifetimes favor the realization
dication of its reliability in this range of densities. of stimulated emission in the atomic system, making even
Next, we discuss disorder effects of real samples. Thestny gains sufficient. The small trapping energies instead call
are related tdstatig fluctuations of the large barrier poten- for ultracold reservoirs, and are the main technological ob-
tial, which confines electrons and holes inside the QW. Thestacle to the realization of the atomic laser, which has been
disorder potential for the exciton has a typical amplitudealready overcome with the use of evaporative cooli3g].
~Eg, and correlation lengths of the ordera$. This large  The similarities of a micropost polariton laser with a vertical
amplitude is not directly observed in the optical properties ofcavity semiconductor lasef¥CSEL) is instead only struc-
the QW (through inhomogeneous broadeningecause of tural. In these latter systems, stimulated emission of the con-
exciton delocalization. A characteristic lendttmay be in-  fined photon modes is driven by fermionic population inver-
troduced to characterize either the localization or diffusionsion. This is conceptually different from the stimulated
length of the exciton motion. It amounts to a few. The  emission of a confined polariton, which has an exciton con-
exciton-phonon and exciton-exciton scattering rates used itent ~90% for D=2 um, and is thus a composite boson.
this paper are calculated for free, unperturbed, exciton moMoreover, the excitation density at threshold for the VCSEL
tion. For thermalized excitons, this is still a reasonable asis at least one order of magnitude larger. Finally, in the po-
sumption if the thermal wavelength,<I. Thus, we expect lariton laser, in complete analogy to the bosonic atom laser
exciton-exciton scattering to be gradually suppressed at lowand in contrast to conventional photon lasers, excitation of
temperature, and in a sample dependent way, as the excitoti®e lasing mode is notreatedby the gain mechanism, but
gradually localize. After this point, localized excitons effec- rathertransferredfrom a reservoir.
tively behave as two-level atoms, and the bosonic description In conclusion, we predicted and analyzed stimulated
looses its meaning. Even in these extreme conditions, holdemission of reservoir excitons into the lowest confined po-
ing only at very lowT, the polariton of a planar cavity is lariton mode of a semiconductor microcavity post structure.

V. DISCUSSION AND CONCLUSIONS
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In typical GaAs based structures, exciton-exciton scatteringng a white-noise spectrufi22]. In the averaged drift terms,
provides sufficient gain to overcome large losses, ufl@ first-order terms in the interaction Hamiltonian are usually
ps)” 1, at an exciton density below that where the Rabi split-neglected as they do not produce any scattering. However,
ting collapses. We studied the threshold behavior of thdhey produce energy shifts. These are simple mean-field
stimulated emission for different post sizes, losses, and laterms. We want to include these shifts in the Langevin equa-
tice temperatures. We put into evidence heating effects in thgons, as they entail a coupling between amplitude and phase,
exciton reservoir, and the existence of an optimal lattice temand a characteristic broadening effect. Let us examine the
perature. Statistics of the pOIariton becomes Poissonian fﬁveraged first-order terms fBrO in detalil. Using the assump-
above threshold. Relevant self-phase modulation enhancggn that the excitons are a thermal reservoir, we have
phase noise, and eventually results into a net increase of the

emission linewidth. We showed that strong correlation be-

tween frequency and number noise can be used to produce a | WIXo[2

number—squeezed polariton state. We discussed effects of in- <—[H(t),Bo(t)]> =—j 0 <Bo(t))2 (Ny)

terface disorder, advantages of Group-ll-VI based struc- h 2 k=0

tures, and conceptual differences with a conventional laser 4
system. We remark that these micropost lasers are also tech- i WXl
nologically appealing as ultralow threshold sources of coher- 2
ent light.

(BIBY). (A3)

The first term is the energy shift of the polariton level due to
population in the exciton reservoir. The other one originates
from the interaction termV| X,|*B{B{B3/4, and is discussed
at length in Sec. IV.

We consider the interaction of a confined polariton mode In order to derive of the second-order terms in the Markov
with the exciton reservoir. Confinement lifts momentum con-approximation, the reservoir coherence variables
Servation. HO_\NeV_er, a_quasiconserv_ation _OV_er a momentur{Bl,ka,Bq) are adiabatica”y eliminated, just as in the
width of 7/D is still valid. As the exciton distribution spans conventional laser theory. It can be shown that this adiabatic
a much larger phase space, we may ignore such detailgjimination is actually valid precisely when exciton spectrum
Moreover, the polariton mode hals,|=m/D~0 compared  yenormalization is negligible, as discussed before in Sec. IV
to those larger momentums. The relevant interaction Hamil;34]. The resulting averaged drift terms to second order in
tonian reads the interaction/V are given by[22]

APPENDIX A: DERIVATION OF PERTURBATIVE
LANGEVIN EQUATIONS FOR EXCITON-EXCITON
SCATTERING

mW o -
H: T k% Xk+qu,_qurxkbk+qbk;_qbkrbk, 1 "
o (A1) (De()=~-5 fo dr([H(t+7),[H(t),Bo(t) 1)

whereb, are the exciton or polariton destruction operators, o
Xy is the Hopfield coefficientwhich is 1 for excitons having The commutator is given by
k#0) and AW~6Ega3/S [7]. We introduce the slowly
varying operatorsB,(t) =e'“k'b,(t), wherei wy is the exci-

—idAw Rt BT 1
ton energy ak. The Heisenberg equations read e [BqlBkl—qlkaBszkz—quqz]'

ky.d1.K2,02

where Aw= wy+ wg— wq—wy_q, and in the Markov ap-

. i
Bi(t)=— 2 [H(1),B(1)] proximation (where the slowly varying operators are con-
stant during the “collision times), using bosonic commuta-
iw . ux t tion relations we find
=—— k}g X X X XuByr 4 BirBir g
. —iW?X,|? 1
Xe'A“’k,k’,qt_ A2 _ 0
( ) <DBO(t)> 2 ] Aw—ie
Here Awy xr qi= 0kt o — oy q— oy —q. We are mainly X (NgNy—g—Ng= 2NNy _ ) (Bo(1)).

interested in calculating the evolution Bf,. The drift terms

are calculated taking statistical averages of the Heisenberg
equation, and expanding them up to second order within a
Markov approximation. The perturbative Langevin equationsHere e—0" is a regularization parameter. In this equation
are finally written by substituting the remainder fluctuationwe also havek,q,k—q+# 0. From the rate equations for the
sourcegwith zero averagewith the appropriate sources hav- population

(A4)
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Ny = 7TW2|X0|2kE S(Aw)[Ny—Ng(1+N)(1+Np)
d
— (14N ) (1+Ng)NNo]

= wwz|xo|2§I S(A@)[ Ny gNg—Ng— 2Ny Ny _ 4 INg

+ W Xo|2 Y S(Aw)Ny_gNg(1+Ny).
k.q

Thus, the real part of EqA4), the net gain for the polariton,
is just half of the net gain calculated in the rate equation for,
the populationN,, as it should be for bosons. Concerning
the imaginary part of EqA4), it has also been included in
the Langevin Eq(8) together with the first-order term from
Eqg. (A3), as thee(N) term. We note that the Kramers-
Kronig relation trivially hold for the real and imaginary parts
of Eq. (A4), with the frequencyw as the frequency variable,

because of its functional form. In the structures considered,

PHYSICAL REVIEW &2 063809

The noise terms are easily determined from the Einstein
relation between the diffusion ten\?DBSBO), and the drift

terms ofNy=BJB,. We thus find

——f dr([H(t+7),By(t+n)I[H(t),Bo(t)]).

(D BTBO
The expectation value is

—iAwT T
<B k1 qlBleszszqu%)’
kq,07 ,kzv%

i.e., just one side of the previous commutator, thus giving

<DB$BO>: 7T)/\}2|Xo|2;1 5(Aw)Nk,qu(1+ Nk)zﬁs,)-

APPENDIX B: SOLUTION OF THE LANGEVIN
EQUATIONS

the second-order shifts are much smaller than the first-order The solution of the Langevin Eq&4) in frequency space

ones. reads:
|
~ io+T'+n+7n" o ~, N~ =
ONo(w) = ——————[Fn, T Fr ]+ g [Fr+FptFul,
~ Ip—G+iw -~ -~ - G . ~,
IN(w)=—"— e+ Pt Pl 1 1Fn +Fr L (BD)
|
i 1 G? — @’ (Ty—G)?
§P5NT(SN:W[DNONO+FON0]+T
o = _ (Fy—G)G
A=Tg—G+Hiw)(io+T'+7+7")+Gn. (B2) X[FN+P+DN0N0]_2T NoNg!
(B4)
The power spectra are calculated from these solutions usmg Tt b NG
the definition of the noise sources Eq$2)—(19): p . R :w[o + TNy ]
27 ONToNg+ aNToN A2 NoN, T 1 oNo
[o—G)
0= C) iy ]
1 0?+(T+p+7')? — |A|? oo
5 Pantong= NE [Dngn, T ToNol _ _
1] W+ (o= G)(I'+ 7+ 7')— 7G
—— A7
+——[I'N+P+Dyn,]
|Al X DNy (B5)
n(I'+n+7") - 83) Here Dy n,= (Rep=G)No+Rs(No+1) is the popula-
g oo tion drift coefficient.
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