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Lasing and squeezing of composite bosons in a semiconductor microcavity
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We consider a semiconductor microcavity etched into a small post structure in which the polariton modes
become quantized. When moderate amounts of excitons are injected, large gain for the lowest confined
polariton results from exciton-exciton scattering. We show that gain is sufficient to compensate for typical
losses of GaAs structures, and stimulated emission of the confined polariton is eventually achieved at an
exciton density below that where Rabi splitting collapses. We study the dependence of the threshold exciton
density on post size, polariton loss rate and lattice temperature. We study the polariton statistics, and show that
far above threshold, typical transition from super-Poissonian to Poissonian statistics is preserved. Exciton-
exciton interaction produces a self-phase modulation, resulting in enhanced frequency noise, and into a net
increase of the emission linewidth far above threshold. We show how to produce a number-squeezed state
using correlation between frequency and number noise. A numerical example of a realistic structure is also
analyzed in detail.

PACS number~s!: 42.50.2p, 42.55.Sa, 03.75.Fi, 71.35.Lk
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I. INTRODUCTION

The elementary excitation of a semiconductor~exciton! is
a bound pair of two fermions, the electron and the hole. I
the analog of the hydrogen atom, and characterized b
binding energyEB and a Bohr radiusaB . Therefore, it is a
composite boson. In particular, when the system is dilu
i.e., whennexcaB

2!1, wherenexc is the excitation density, a
bosonic description of the system is convenient. Conce
ally, stimulated emission of composite bosons should be
alizable, and has been proposed both in the context of t
mal equilibrium ~condensation! and in the context of
nonequilibrium ~dynamical condensation or lasing!. Re-
newed interest in this subject followed the realization of tw
dimensional polaritons in semiconductor microcavities@1,2#.
Polaritons are the mixed modes of a quantum-well~QW!
exciton and a cavity photon. Mixing~or strong coupling! is a
coherent process where energy is periodically exchanged
tween a material degree of freedom~exciton! and the elec-
tromagnetic mode~cavity photon!, characterized by a Rab
oscillation period or equivalently by a Rabi splitting\V.
Preservation of coherence in the oscillation demands mi
cavities with high quality factors, showing relatively lon
photon lifetimes of few ps. Clearly, polaritons are al
bosons at low density. Their extremely small mass was s
gested to ease their dynamical condensation at low den
and relatively large temperatures@3#. We note that stimulated
emission of polaritons is conceptually different from that
cavity photons, as polaritons bear a substantial excito
component. Moreover, this material component is the ori
of the gain. Thus, stimulated emission of polaritons is ana
gous to that of bosonic atoms inside a trap@4#. First attempts
to observe stimulated emission of cavity polaritons were
successful@5#, because the quasithermalization assumpti
cannot be fulfilled at low densities, due to a relaxation bot
1050-2947/2000/62~6!/063809~14!/$15.00 62 0638
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neck in the dynamics@6#. Here we show that exciton-excito
scattering at large density provides significant gain for p
laritons, and eventually, stimulated emission sets in, wh
the polariton lifetime is sufficiently long. We further con
sider an etched microcavity post~Fig. 1 right! in which the
polaritons become quantized, in order to isolate the las
mode, and simplify the analysis of the statistical properti

In the planar cavity, the cavity photon, the exciton, a
polaritons have an in-plane dispersion, labeled by a w
vector k. The cavity photon effective mass,mph5Ecav /v2,
with Ecav the cavity resonance energy, andv the speed of
light in the material, is almost four orders of magnitud
smaller than the exciton mass in GaAs. As a conseque
exciton-photon mixing and splitting is relevant fork
,0.1k050.1Ecav /\v;33105 cm21, as shown in Fig. 1~b!,
by a continuous line, computed for a GaAs cavity. Fork
.0.1k0 the lower polariton becomes excitonlike~hereafter
simply exciton!, and the upper polaritons, photon like. In th
micropost here considered, depicted in Fig. 1~a!, the in-plane
translational symmetry is lifted. The semiconductor and
refraction indexes are largely different and the post e
ciently confines the cavity photon in the lateral direction
We will consider posts of square cross section withD<4
mm, and assume the in-planek quantized tokx5nxp/D and
ky5nyp/D, respectively, with integernx ,ny . For good pho-
ton confinement, the energies of the micropost polari
modes are those of the planar microcavity polaritons at
quantized in-plane momenta (kx ,ky). The micropost polar-
iton modes are also shown schematically in Fig. 1~b!. The
polariton energies are discrete, and those withk,0.1k0 are
well separated. On the contrary, quantized exciton ener
still form a quasicontinuum, as the exciton mass is mu
larger. Therefore, the small micropost system is constitu
by a large exciton reservoir, and basically one discrete
lariton mode at lower energy.
©2000 The American Physical Society09-1
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F. TASSONE AND Y. YAMAMOTO PHYSICAL REVIEW A 62 063809
In this paper, we first study in Sec. II the dynamics of th
open system using rate equations that describe gain, sp
neous emission, and recombination for the polariton,
also the dynamics within the exciton reservoir. We calcul
in Sec. III the threshold properties of this system. In Sec.
we extend the rate equations into Langevin equations
calculate noise characteristics of this laser system. We ca
late polariton number fluctuations, power and frequen
noise spectra, and the emission linewidth. We find t
exciton-exciton scattering results in cross- and self-pha
modulation. The former produces an enhancement of
Schawlow-Townes frequency noise spectrum, and the la
a peculiar correlation with number fluctuations. We sh
that this correlation produces a significant increase of
emission linewidth far above threshold, and that it can
used to completely suppress number fluctuations of the in
nal polariton field, or to partially suppress number fluctu
tions in the extracavity photon field by a factor 1/2. A rea
istic numerical example is also analyzed. Finally in Sec
we discuss results and their relevance to currently availa
systems. We also discuss the quantitative and conceptua

FIG. 1. ~a! The micropost structure. The distributed Bragg r
flectors are also depicted.~b! The dispersion relation of the micro
cavity polaritons, in the planar cavity, and the quantized ene
momenta for a 2mm 3 2mm post structure. The lowest mode is th
confined polariton mode, while other modes, closely packed on
energy axis, form the exciton reservoir.
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ferences with the bosonic atom laser, and explain what
tinguishes polariton lasing from cavity photon lasing.

II. MODEL AND RATE EQUATIONS

Two scattering mechanisms redistribute energy in the s
tem: scattering with phonons and exciton-exciton scatter
Scatterings within the exciton reservoir are much faster t
scattering from excitons to the polariton, as quantitativ
assessed later. Therefore, excitons are in a quasitherma
tribution, whose temperatureTexc is fixed by the interplay of
heating and cooling processes involving phonon emiss
and absorption. We could well describe the reservoir and
dynamics with two macroscopic numbers only, an excit
density and an exciton temperature. However, it is easie
model the intrareservoir dynamics and the reservo
polariton dynamics together within a common framewo
We describe the dynamics of populations with rate eq
tions, in which scattering rates are calculated within a M
kov approximation~Fermi golden rule!. The resulting equa-
tions are commonly named quantum Boltzmann equati
because final-state stimulation is also included. Validity
this approach has been discussed at length in Ref.@7# and
will not be repeated here. Further concerns regarding
application of the Markov approximation to this laser syste
will be addressed in Sec. IV. Here we only note that
completely ignore renormalization of excitation energie
and in particular, collapse of the Rabi splitting. At large e
citon densitiesnexc, dephasing related to exciton-excito
scattering is large enough to destroy exciton-photon coh
ence. Eventually at even larger densities, the concept of
citon as a boson becomes meaningless~Mott density!. Col-
lapse of the Rabi splitting has been observed in vari
experimental conditions, and estimated to occur at a den
of carriers of 431010 cm22 in GaAs samples,@8–10# which
coincides with our estimate based on exciton-exciton co
sion rates. In the following, we restrict our analysis tonexc
,431010 cm22. As the collapse of the Rabi splitting i
rather abrupt, we expect our results to hold at least qua
tively also close to this limit.

For computational purposes, we discretize the continu
exciton reservoir, using an uniform energy gridEi5 iDE, i
51,2, . . . ,which is convenient for the flat exciton density
of-states~DOS!. We useNi to label the exciton population
Ni5N(Ei). We use the indexi 50 as a special label for the
polariton throughout this paper, withE0,0 the polariton
energy. The rate equations read:

Ṅi5Pi2G iNi2(
i 8

$Wi→ i 8Ni~Ni 811!2Wi 8→ iNi 8~Ni11!%

2 (
i 1 ,i 8,i 18

$Yii 1→ i 8 i
18
NiNi 1

~Ni 811!~Ni
18
11!

2Yi 8 i
18→ i i 1

Ni 8Ni
18
~Ni11!~Ni 1

11!%. ~1!

Here Pi is the pump rate,G i the radiative recombination
rates plus other losses,Wi→ i 8 the scattering rate with the
phonons, andYii 1→ i 8 i

18
the exciton-exciton scattering rate
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LASING AND SQUEEZING OF COMPOSITE BOSONS IN . . . PHYSICAL REVIEW A62 063809
This process conserves energy. A schematic picture of
system and the typical scattering processes is depicte
Fig. 2.

Rate Eq.~1! includes both the spontaneous and the stim
lated processes. Indeed, stimulated scattering to the pola
mode and its inverse process—scattering from the polar
to the exciton reservoir—describes the gain and loss p
cesses, respectively, in the traditional laser terminology
explicitly shown in the Appendix. The expressions and c
culation of the various scattering rates in the planar mic
cavity have been reported in detail in Refs.@6,7#. We only
remark that scattering rates within the exciton reservoir
not significantly changed with respect to the planar case
particular, we may still use conservation of momentum
scattering among the excitons, as they have a thermal w
length much smaller than the post size. In other words,
thermal distribution of excitons spans a large number of
closely spaced confined states. For the same reason we
assume the polariton modes to have zero momentum w
calculating the scattering matrix elements. In order to cal
late scattering to and from the confined polariton, we use
same expressions for the planar case given in Ref.@7#, in
which a fictitious polariton DOS,]E(k)/]k25DES/(4p),
S5D2 the post surface, is introduced. It can be shown t
this is exact for the lowest confined mode, havingkx5ky

5p/D.
We discuss some properties of the processes describ

the rate Eq.~1!. The exciton-phonon scattering strength c
be characterized by the phonon absorption rate ofk50 ex-
citons, which is linear in temperature with a coefficientg
55m eV/K for a typical GaAs QW, 100 Å wide@11#, and by
a relaxation rate of hot excitons at T50, of the order of tens
of ps @12#. Typical scattering matrix elements span a ran
( i 2 i 8)DE of about 1 meV, depending on the QW width.
the planar cavity, relaxation of excitons into polaritons atE
,0 is suppressed because of the small polariton DOS@13,6#,
bringing these relaxation times well above a ns. For the sm
micropost case, the finite confinement energy and a la

FIG. 2. Left, schematic representation of the microcavity p
system, with the exciton reservoir shaded and the single polar
level. Right, the discretized reservoir and schematics of all pu
ing, decay, and scattering processes included in Eq.~1!.
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effective polariton DOS results into faster relaxation time
typically in the range of hundreds of ps for the structur
considered in this paper.

Exciton-exciton scattering can be characterized by an o
scattering rate fromk50 excitons, which is largely indepen
dent ofTexc, and linearly dependent on the exciton dens
nexc. For typical GaAs parameters, the rate\Gexc2exc
;(p2EB

2/2EL)(nexcaB
2);1 meV when nexc51010 cm22.

Here EL5\2/mexcaB
2 . The same values were also indepe

dently calculated in Ref.@14#. Experimentally, this rate ha
been measured with four-wave mixing experiments@15#, and
by direct measurement of the absorption linewidth@16#. Re-
cently, this rate has been directly measured in microcavi
by upper polariton emission@17,18#. While absorption mea-
surements and the microcavity experiment give consis
numbers with theory, Honoldet al. measured smaller sca
tering rates by a factor of 5. Discrepancies can be traced b
to difficulties in a precise measurement ofnexc. The exciton-
exciton scattering matrix element is relatively flat ink space
for k,aB

21 , or as a function of energy within an energy sp
EL . As EL@kBT throughout this paper, we neglect the
details. Relaxation of reservoir excitons into polarito
through exciton-exciton scattering is not suppressed as
for the phonon emission process. This relaxation takes p
through scattering of two excitons into a polariton and
hotter exciton: the final DOS for this scattering process is
exciton DOS, and not the much smaller polariton DOS, a
is for phonon scattering. An approximate estimate of t
scattering rate is useful and straightforward. The final po
iton has an energy2uE0u and zero momentum, thus, at lea
an energyuE0u is released in the scattering to the exciton
reservoir. Considering thermal excitons, the optimal init
condition gives two excitons of energyuE0u/2, and using the
Boltzmann distribution, we find a typical scattering rate
Gexc2exce

2uE0u/kBT, apart from Hopfield factors of orde
unity. Therefore, this relaxation rate is in the range of fe
(ps)21 for kBT;uE0u already at moderatenexc. As this re-
laxation is a gain process for the polariton, we understa
that relevant recombination losses can be compensate
moderatenexc. The inverse processes of scattering of t
polariton to other states also effectively contribute to pol
iton loss. These processes are of course also included in
~1!, and we usually speak of net gain as the difference
gain and these losses, excluding recombination. In pla
cavities, scattering out ofk50 polaritons to other polaritons
is largely suppressed by the low final DOS. In the micr
post, it is instead trivially suppressed by confinement. On
contrary, scattering to excitons has a relevant final DO
However, this channel is cutoff at low lattice and excito
temperatures,kBT,V/2 ~or kBT,uE0u in the post case!.
This sets an upper bound for temperatures at which any
mechanism is relevant, and is essentially a material prop
related toV. In particular, net gain resulting from exciton
exciton scattering at a givennexc is small both at lowT,
where gain is small, and at largeT, when loss is large. Thus
an optimal operation temperaturekBT;\V exists.

The radiative recombination ratesG i in principle depend
on the structure of the post, but to lowest order they can
calculated from the planar cavity case, as for the dispers
For the lowest confined mode, lateral~post! confinement re-
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F. TASSONE AND Y. YAMAMOTO PHYSICAL REVIEW A 62 063809
sults in uE0u,\V/2, and a reduced photon content. The
sulting radiative lifetimet05G0

21 is expected to be longe
than twice the cavity photon lifetime. In particular, in th
structures considered, photon lifetime is;1 ps, and the cal-
culated confined polariton lifetime exceeds 10 ps. This is s
a very short lifetime. Presumably, other loss processe
finite leakage through the side walls due to surface rou
ness, and nonradiative exciton recombination introduced
the etching process—do not lower it significantly. Howev
in view of the realization of better cavities showing long
photon lifetimes in the near future, in place of the calcula
recombination rate, we use an effective polariton loss rat
a range of reasonable values, 10 ps–100 ps. As for the
diative lifetime of excitonsG i .0, related to the leaky mode
of the dielectric mirrors,@19# we use the calculated value
Slightly modified structure of the leaky modes due to late
confinement does not drastically change any result prese
in this paper, and in particular, the exciton density at thre
old.

III. THRESHOLD BEHAVIOR

In this section we present numerical results from the
tegration of the rate Eq.~1! in stationary conditions,d/dt
50. We model an optical pump injecting cold excitons clo
to E50, having a Gaussian distribution in energyPi

}e2Ei
2/s2

P, with s50.25 meV. We also useDE50.1 meV.
Choice of this parameter is discussed in detail in Ref.@7#. In
stationary conditions we find that the excitons thermalize t
temperatureTexc, which is close to the lattice temperatureT.
We first considerD52 mm. The polariton has an energ
E0520.7 meV, as shown in Fig. 1. We fix the recombin
tion rate of the confined polariton tot05G0

21510 ps.
We plot in Fig. 3~a! the population of the confined pola

iton and the exciton density on a double-logarithmic sc
and~b! Texc as a function of the pump intensity, and for thr
different lattice temperaturesT. As expected, we notice
clear threshold behavior in the population, and clamping
the exciton density when stimulated emission sets in. In
double-logarithmic plot of Fig. 3~a! the threshold clearly ap
pears at a population ofN051 ~later adopted as a definitio
of threshold!, proving its origin in stimulated emission. W
notice that clamping of the exciton density is moderate, a
that a sizeable heating of excitons appears above thres
especially forT52 K. A hysteresis is also found forT52 K,
which is related to an abrupt change ofTexc as stimulated
emission sets in. The hysteresis is related to the pump
efficiency: the average exciton radiative lifetimetexc
5((G iNi /(Ni)

21 is in fact linearly dependent onTexc, as
only excitons of small wave vectork,k0 radiatively recom-
bine @20#. For T52 K, Texc doubles across threshold, Fi
3~b!, and so doestexc. The exciton pumping efficiency als
doubles, as below or around threshold it is proportiona
Ptexc. This positive feedback makes the system unsta
and results in hysteresis. Experimentally,texc}Texc is ob-
served only forTexc.10 K. Both nonequilibrium@12# and
exciton localization@21# effects contribute to a flattening o
this dependence at low temperature. Localization effects
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clearly not accounted for in our approach, and we thus
pect observation of hysteresis in highest quality samp
only.

Clearly, exciton heating proves that exciton-exciton sc
tering is the basis of gain. Indeed, we remarked before tha
least an energyuE0u is released to the reservoir for eve
exciton scattering into the polariton. The reservoir dissipa
the excess energy only through phonon emission event
givenTexc results from the balance between in-flow and o
flow energy rates. Phonon absorption and emission rates
balanced whenTexc5T, and energy dissipation is roughl
proportional to (Texc2T). The net inflow from the gain pro-
cess is instead proportional toN0, thus (Texc2T)}N0. Heat-
ing of the reservoir is an essential aspect of gain resul
from exciton-exciton collisions, and its experimental obs
vation would provide a strong evidence for this origin. W
finally remark that increase ofTexc above threshold de
creases exciton-exciton scattering efficiency as explaine
Sec. II, and results in incomplete clamping ofnexc.

We plot in Fig. 4 the exciton density at threshold as
function ofT, using otherwise the same parameters as bef
We note that the lowest threshold is obtained forkBT50.3
meV, which is of the order ofuE0u50.7 meV, as expected. In
Fig. 5 we report the dependence ofnexc at threshold, forT

FIG. 3. ~a! Exciton density, left, and polariton population, righ
and~b! exciton temperatureTexc vs pump intensity for three differ-
ent temperatures.t0510 ps and a 232 mm post structure was con
sidered. Other parameters are given in the text.
9-4
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LASING AND SQUEEZING OF COMPOSITE BOSONS IN . . . PHYSICAL REVIEW A62 063809
56 K, as a function oft0, for bothD52 mm andD54 mm.
As expected,nexc is a decreasing function oft0. The thresh-
old density shows an asymptotic value fort0→`, which is
close for both post sizes.

In order to simplify the analysis of threshold, we negle
the difference betweenT andTexc and bosonic degeneracy i
the reservoir, and retain only the rate equation for the po
iton mode:

dN0

dt
5Rin~11N0!2RoutN05Rsp1GN0 . ~2!

HereRsp andG are the spontaneous emission and net g
We defineNexc5nexcl th

2 , wherel th
2 52p\2/mexckBT is the

squared thermal wavelength of excitons. The rates are
given by

Rin5Gph8 Nexc1Ge2e8 Nexc
2 , ~3!

FIG. 4. Exciton density at threshold vs the lattice temperatu
for t0510 ps and a 232 mm post structure. Other parameters a
given in the text.

FIG. 5. Exciton density at threshold vs the total polariton lif
time, for two different post structures. Other parameters for
Group-III–V system are given in the text.
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Rout5G01Gph1Ge2eNexc. ~4!

Here Gph ,Gph8 are total phonon absorption and emissi
rates, andGe2e ,Ge2e8 the exciton-exciton collision rates
Thermal equilibrium within the reservoir imposes the d
tailed balance of all scattering processes:

Gph5e2buE0uGph8 , Ge2e5e2buE0uGe2e8 . ~5!

Hereb51/(kBTexc). At threshold,N051, then Eq.~2! may
be solved for Nexc in stationary conditions. When als
Ge2e@Gph8

Nexc5
Ge2e1AGe2e

2 18Ge2e8 G0

4Ge2e8
. ~6!

It shows a minimum threshold densityNexc51/
2exp(2buE0u) when G0!Ge2e . This is clearly the therma
equilibrium condition between the polariton and exciton
with a chemical potentialm;2uE0u. The calculated
asymptotic density at T56 K is nexc55.53109 cm22, while
that fitted from the results in Fig. 5 isnexc54.53109 cm22,
showing good agreement. The fit also givesGe2e53.0
31011 s21 for D52 mm. It should also be noted that th
very same functional form for the threshold density Eq.~6! is
obtained whenGph@Ge2e . Therefore, heating effects are
clear and unique fingerprint of exciton-exciton scattering
the origin of gain. We have also numerically separated
two contributions to gain, forD52 mm, T56 K, and found
Ge2e8 ;3Gph8 . The rateGph8 is somewhat larger than in plana
microcavities because of polariton confinement. Moreov
we note it is a rapidly decreasing function of the QW wid
~here we used 100 Å!, as described in detail in Ref.@7#,
whereas exciton-exciton scattering has a weaker depend
on it through the exciton binding energy.

The maximum gain that can be expected from excito
exciton scattering in a given material may be roughly e
mated using the results of Ref.@7#:

\Ge2e8 5p3uXu2
EB

2

kBT

aB
4

l th
4

e2buE0u . ~7!

Here uXu2 is the exciton content of the polariton mode, th
exciton thermal wavelengthl th has been introduced before
as well as the other quantities. UsingkBT;uE0u, close to the
optimal value, gain becomes proportional tonexc

2 EB
2/uE0u.

The maximum allowednexc,max is found at Rabi splitting
collapse, and given by the condition\Gexc2exc;\V. Then,
nexc,max}\VEL /EB

2 , with EL introduced before. Thus, th
maximum gain is

Gmax}\2V2EL
2/~EB

2 uE0u!.

For planar cavities at zero detuning, we useuE0u5\V/2 and
Gmax}\VEL

2/EB
2 . In Group-II–VI materials such as ZnSe

Gmax is expected to be significantly larger than in GaAs,
EL /EB is similar, but\V is significantly larger. With respec
to the planar case, lasing in the micropost structure has

,

s

9-5



am
iti

a
s

ct
s

d
th
d

to

ve
i

t
h

ou
vo
l
e

in
q
n
ra
n
e
wi
h

i-

on

ci
to
t

is
o
y
n

n
m
a

nt
ha
th
e
d

e
he
ump-
x-

ise
ift
s,

ms
rs-
p-
to

ble,

in

g

III.

ier
ere
the
cy.
it

rm
e

ing

has
rela-
lso
ef.

rela-
d
fol-

F. TASSONE AND Y. YAMAMOTO PHYSICAL REVIEW A 62 063809
additional advantage of havinguE0u,\V/2, and longer po-
lariton lifetimes as remarked before. Of course, these s
advantages can be obtained in planar cavities using pos
detuning. However, in practiceuE0u cannot be made too
small: well before the lowest polariton mode of a plan
microcavity becomes significantly massive, additional lo
mechanisms beside radiative recombination can be expe
such as elastic scattering from the lowest polariton state
localized exciton states.

IV. LANGEVIN EQUATIONS AND NOISE PROPERTIES

Noise properties of polariton lasing process are relate
quantum-mechanical fluctuations of the occupation of
state around its average value. Therefore, we need to
scribe the quantum-mechanical evolution of the polari
state coupled to external reservoirs, beyond rate Eq.~1!, in
which only the average occupation is calculated. A con
nient description of this quantum-mechanical evolution
given by Langevin equations@22#. In deriving them, we trea
the exciton reservoir as ideal, and neglect any phase co
ence in it. We assume that exciton phases are instantane
washed out by fast scattering processes within the reser
This assumption needs further discussion, as it is centra
further developments of the theory of bosonic lasers. Ev
tually far above threshold, whenN0@1, this assumption
does not hold anymore because of stimulated scatter
Then, the nature of the exciton states changes. In the e
librium theory of the interacting Bose gas, it is well know
that when the macroscopic condensate forms, strong inte
tion between the condensate and bosons at long wavele
~small wave vector! renormalizes them into phononlik
quasi-particles. Technically, these new states are found
a diagonalization of the strongest interaction terms, wit
Bogolyubov transformation@23#. If we call W;6EBaB

2/S
the effective interaction between bosons@7#, modes up to an
energy WuAu2/2 are renormalized into phononlike quas
particles. HereA is the condensate amplitude, thenN0
5uAu2. Therefore, we may safely neglect renormalizati
effects whenWN0/2,uE0u. For D52 mm we obtainN0
,1.53103, and four times as much in the largerD54 mm
post case. Qualitatively, renormalization of low-energy ex
tons into phononlike modes results in a decrease of exci
exciton scattering, and therefore also gain. This adds onto
usual saturation due to population depletion@7#. The result-
ing slow down of the relaxation dynamics in the reservoir
accompanied by larger fluctuations in the reservoir, and p
sibly a qualitative change in the noise properties of the s
tem. In the following, we neglect all these effects, and co
sider results with N0.1.53103 as indicative only.
Saturation effects are instead fully addressed. We also
glect deviations of the exciton population distribution fro
the thermal one, assuming that also these fluctuations
instantaneously washed out. In principle we could take i
account temperature fluctuations, but we expect these to
a minor effect, and do not include them. Changes of
averageTexc are instead included and will be discussed lat

In the Appendix A we directly calculate the drift an
noise terms generated by exciton-exciton scattering up
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second order inW. Here we note that the real parts of th
drift terms could also have been directly read off from t
rate equations, as these are derived within the same ass
tions ~Markov approximation, unperturbed nature of the e
citon states, and scattering to second order inW), and we are
dealing with a bosonic system. The corresponding no
terms easily follow. Instead, the imaginary part of the dr
terms~frequency shifts! do not appear in the rate equation
and have to be calculated microscopically~see Appendix A!.
We also note that real and imaginary parts of the drift ter
obey the causality principle and are related by a Krame
Krönig transformation. Consistently with the above assum
tions on the exciton reservoir dynamics, we do not need
consider each individualNk5bk

†bk , wherebk is the exciton
destruction operator, as an independent dynamical varia
and the Langevin equations finally read:

Ḃ05
G2G0

2
B02 i FW2 uX0u4N01e~N!GB01FB0

1FG0
,

~8!

Ṅ5p2GN2GN02Rsp1FG1Fp1FN . ~9!

HereB0 is the destruction operator for the polariton mode,
the rotating frame~see Appendix A!, N05B0

†B0 , N5(kNk
is the total number of excitons, andp}P is the total pump-
ing rate. The gainG is the net gain, i.e., it includes scatterin
out terms, and is written as

G5z2Ge2e8 N21zGph8 N2zGe2eN2Gph , ~10!

whereas the spontaneous emission terms are

Rsp5z2Ge2e8 N21zGph8 N. ~11!

z5l th
2 /S and the scattering rates were introduced in Sec.

G is the average of the exciton recombination rateG i over a
thermal distribution. The imaginary terms in Eq.~8! are the
self-energy shifts up to second order inW. In particular,
e(N) is the polariton-energy modulation by change of carr
density, analogous to that in conventional lasers, wh
modulation of the carrier density results in a change of
index of refraction, and a change of the lasing frequen
The uX0u4WN0/2 term is instead unique to this system, as
is generated by the microscopic Hamiltonian te
\WuX0u4b0

†b0
†b0b0/4. Such an interaction is missing in th

conventional photon laser, where the modeb0 is a photon.
This type of interaction is also found for photons propagat
in a Kerr medium@22#. The effect of this interaction is to
modulate the phase of the lasing mode, and therefore
been named self-phase modulation. A phase-number cor
tion results from this self-phase modulation, which was a
discussed for light passing through a Kerr medium in R
@24#.

The noise sourcesF(t) in Eq. ~8! are approximated with
white-noise sources, so as to preserve the commutation
tion of B0. They originate in the coupling to the exciton an
the external photon reservoirs, respectively, and have the
lowing statistical properties:
9-6
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^FB0

† ~ t !FB0
~ t8!&5^Rsp&d~ t2t8!, ~12!

^FB0
~ t !FB0

† ~ t8!&5^Rsp2G&d~ t2t8!, ~13!

^FG0

† ~ t !FG0
~ t8!&50, ~14!

^FG0
~ t !FG0

† ~ t8!&5G0d~ t2t8!. ~15!

The other noise sources in Eq.~9! are also approximated
with white-noise sources, and are related to the radiative
cay process, the pump process, and exciton-exciton sca
ing processes, respectively. They have the following prop
ties:

^Fp~ t !Fp~ t8!&5pd~ t2t8!, ~16!

^FN~ t !FN~ t8!&5@^Rsp2G&^N0&1^Rsp&~11^N0&!#

3d~ t2t8!, ~17!

^FG~ t !FG~ t8!&5G^N&d~ t2t8!. ~18!

These last sources do not have cross correlations, and
with the previous one in Eq.~14!. Instead the real part ofFB0

is correlated toFN as they both originate from the sam
interaction Hamiltonian. In particular, the operatorN1N0
commutes with the exciton-exciton interaction Hamiltonia
as this interaction conserves the number of bosons. When
Langevin equation forṄ0 is derived from Eq.~8!, the drift
terms originating from exciton-exciton scattering are exac
opposite to those in Eq.~9!. Therefore,FN1FN0

50 exactly,
and

^FN0
FN0

&5^FNFN&52^FNFN0
&. ~19!

We also note that in the Langevin Eq.~8!, N, G, andRsp are
operators.

The Langevin equations written above are similar to th
of a conventional laser@25,26# with the exception of the
different gain mechanism, and the new self-phase mod
tion term. As customary in laser theory, the above equati
are studied below or about threshold, when^N0&;1, and
very much above threshold, when^N0&@1. In the first case,
we neglect the coupling of fluctuations ofN to N0 as the
fluctuations are small, and substitute forG its averageḠ
5^G&. Number fluctuations are easily derived from

Ṅ05~Ḡ2G0!N01R̄sp1FN0
, ~20!

and result in super-Poissonian noise near the threshold
above threshold, we introduce Hermitian amplitude a
phase operators,dB0 andf, respectively, by

B0[~B̄01dB0!e2 if,

with B̄05(^B01B0
†&)/2. We also introduceN5N̄1dN and

dN052B̄0dB0. We obtain to lowest order indN0 ,dN
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ḟ5
i

2B̄0

@FB0
2FB

0
†1FG0

2FG0

† #1
3uX0u4

4
WdN0

1
de~N̄!

dN̄
dN1e~N̄!

dN0

2N̄0

, ~21!

d˙N05~Ḡ2G0!dN01hdN1FN0
1FG0

8 , ~22!

d˙N52ḠdN02~G1h1h8!dN1FG1Fp1FN . ~23!

Here h5N̄0dḠ/dN̄, h85dR̄sp /dN̄, and FG0
8 5B̄0@FG0

1FG0

† #/2. We note that we neglect the average energy-le

shifts, which appear in the phase equations and typic
amount to fractions of a meV in the considered cases. Th
average shifts represent a change of lasing frequency
carrier density, and are part of the renormalization effe
discussed before. We also neglected phase operators in
number equations, as the phase is slowly fluctuat
and decouples from the faster number fluctuations,
above threshold. The self-phase modulation term
3/43uX0u4WdN0. The other terms (de/dN̄)dN and
e(N̄)dN0/2N̄0 are conventional amplitude to phase coupli
terms.

A. Number fluctuation and Poisson limit

Equations~22! and ~23! are solved by standard Fourie
transform techniques, and the power spectra are calcul
taking into account the auto and cross correlations of
noise sources. We define the Fourier transform of an oper
as

F̃~v!5 lim
T→`

A2

T E
2T/2

T/2

dt eivtF~ t !.

We Fourier transform Eqs.~22! and ~23! and obtain the lin-
ear system:

~G02Ḡ1 iv!d̃ N02hd̃N5F̃N0
1F̃G0

8

Ḡd̃ N01~ iv1G1h1h8!d̃ N5F̃G1F̃p1F̃N . ~24!

The solutions are explicitly worked out in Appendix B
where also the noise power spectra are calculated.

Here, we consider the limit case of the system very
above threshold, defined asN̄0@N̄. Then, Ḡ;G0 and h
@G0 ,G,h8, ash}N̄0. The Fourier transform ofdN0 reads,
with v,h:

d̃ N0~v!;
F̃N1F̃N0

1F̃G0
8 1F̃p1F̃G

iv1G0
. ~25!

The power spectrum ofd̃N0(v) is clearly Lorentzian of
width G0. We recall thatFN1FN0

50 from Eq.~19!, and we
are left with the noise contributions of the pump and reco
bination processes only. Eventually, the noise contribut
9-7
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from FG becomes also negligible whenGN̄!G0N̄0. Then,
the total noise power̂dN0

2&;N̄0, and the usual Poissonia
fluctuations are recovered. In this limit, the autocorrelat
of dN becomes also Lorentzian, of widthh, and total power
N̄0R̄sp /h. The cross correlation ofdN and dN0 has two
Lorentzian contributions, one of widthh, the other of width
G0, the first contributing a total noise power2(2R̄sp

2G0)N̄0 /h, the second2N̄0G0 /h.
As an example, we consider theD52 mm micropost, at

T56 K. From Fig. 3, we readnexc5231010 cm22, and
deduceN̄;800 above threshold. Clamping of the reserv
number is far from ideal, due to exciton heating effects. A
when N̄0.800, the Rabi splitting collapses. Therefore,
this structure it is not possible to reach the far-abo
threshold regime. The situation is only slightly better forT
53 K, where the threshold density is almost halved. Still,
calculated thatN̄0;N̄ when Rabi splitting collapses, becau
of exciton heating effects. We report in Fig. 6 the total no
power as a function ofN̄0. We note that the total noise powe
for N0 is significantly smaller than super-PoissonianN̄0(N̄0
11), related to stimulated emission, yet the Poissonian li
is still not attained even at the largestN̄0 allowed.

B. Polariton squeezing

We next calculate the frequency noise spectrum, wh
easily follows from Eq.~21!. We obtain

Pḟ†ḟ5
2R̄sp2Ḡ1G0

4N̄0

1S 3

4
WuXu41

e~N̄!

2N̄0
D 2

3PdN
0
†dN0

1S de

dN̄
D 2

PdN†dN

1
de

dN̄
S 3

4
WuXu41

e~N̄!

2N̄0
D

3PdN†dN01dN
0
†dN . ~26!

The power noise spectra are explicitly given in Eqs.~B3!–
~B5!. The first term in Eq.~26! is the usual phase diffusio
resulting from the spontaneous emission, which gives ris
the Schawlow-Townes linewidth of the laser. We recall th
the 3WuX0u4/4 is the self-phase modulation contribution
while the other contributions originate from the usual pha
modulation through the carrier population. We noted abo
that far above threshold, the fluctuations ofN0 dominate over
those ofN. In this case, the self-phase modulation domina
over the other phase-diffusion mechanisms discussed be
Then, we may write

Pḟ†ḟ~v!;S 3

4
WuXu4D 2

PdN
0
†dN0

~v!.

At low frequency,v,G0 , PdN
0
†dN0

(v);4N̄0 /G0. We show

that this strong phase noise can be used to reduce the p
iton number fluctuations. We consider a new operator:
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S5dB01c
B̄0ḟ

G0
5

dN0

2B̄0

1c
B̄0ḟ

G0
, ~27!

wherec!1 is an arbitrary real number. In practice, the we
mixing beam can be generated by simply delaying a wea
reflected beam, and the whole operator generated in
Mach-Zender interferometer configuration. The power sp
trum of S is calculated inserting Eq.~21! in the above equa-
tion:

PS†S~v!;
1

4N̄0
S 11

3W
2G0

N̄0uXu4cD PdN
0
†dN0

~v!. ~28!

Then, choosingc;23W/2G0N̄0uXu4, perfect squeezing is
achieved~neglecting the background phase-diffusion pr
cesses, giving a small contribution}c2 only!. It is not obvi-
ous how to observe this strong internal squeezing, as inte
polariton detection would be required. The result has, ho
ever, a deep physical significance. Far above threshold,
frequency carries all the information on the polariton numb
fluctuations. This information is retrieved through the mixin
process of Eq.~27!, which generates a noiseless polarit
state in the microcavity.

Alternatively to the internal detection, we may consid
the statistical properties of polaritons extracted from the
crocavity. For example, polaritons could tunnel to an ext
nal exciton reservoir. In this paper, we consider only tunn
ing through the mirrors to external photons, which is also
reservoir of continuum modes. Using the input-output fo
malism of Gardiner and Collett@27#, we may write the ex-
ternal fieldR(t) as

R~ t !5AGeB0~ t !2Fe~ t !. ~29!

Here Ge is the input-output coupling strength, andFe is an
external white-noise source. In the micropost case, wh
most of the polariton loss is due to radiative recombinati
we may setGe5G0. We also haveFe(t)5FG0

/AGe. When

FIG. 6. Power noise spectra, as functions of the polariton po

lation N̄0, for T56 K, t0510 ps, and a 232 mm post structure.
9-8
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N̄0@1, alsoR(t) has small fluctuations around its avera
value R̄5AG0B̄0 with R5(R̄1dR)e2 ic, wheredR and c
are Hermitian number fluctuation and phase operators,
spectively. We then have

dR5AG0dB02
1

2
~Fee

if1eifFe
†!,

c5f1
1

2iR̄
~Fee

if2eifFe
†!. ~30!

A mixed external operatorSe may be introduced for the in
ternal field:

Se5dR1c
R̄ċ

G0
. ~31!

Transforming to the frequency space, and using Eq.~21!, we
have

Se~v!5
AG0

2B̄0

@11~j01j1!c#dN01cB̄0AG0j2dN

1 i
c

2AG0

@FB0
2FB0

† 1FG0
2FG0

† #2
1

2
@Fe1Fe

†#.

Here we introduced the notationj05(3WN̄0uXu4)/(2G0),
j15e(N)/G0, and j25(de/dN̄)/G0. From this expression
the noise power is easily calculated. Far above thresh
j0@j1 ,j2, and alsoh@h8,G0. Consideringv,G0 within
the cavity bandwidth, we obtain

PS
e
†Se

;~11j0c!22~11j0c!1
1

2
~11c2!.

Using alsoj0@1/2 we obtain a minimum noise power of 1/
at c521/(2j0). This is a moderate 3 dB squeezing wi
respect to the standard quantum limit~SQL! of 1/2. This
result has a simple physical interpretation. Polariton num
fluctuations result equally well from the radiative loss pr
cess, and from pump fluctuations, which we considered to
Poissonian~incoherent pumping!, in Eq. ~16!. The fluctua-
tions originating from the radiative loss process cancel o
side the cavity, within the cavity bandwidth, by beating w
the external noise sourceFe @26#. Usually, we are thus lef
with pump noise only within the cavity bandwidth. Clearl
the phase fluctuations far above threshold in the microp
system carry the information of the polariton number flu
tuations. If, through the mixing process represented in
~31!, we cancel completely the number noise fluctuati
which corresponds to usingc521/j0, we are left with the
standard noise fromFe . The best we can do is therefore
use half the latter value ofc: half of the fluctuations from the
radiative decay will be canceled in the beating withFe , and
half of the pump fluctuations will still be left. This finally
makes 1/4 of noise from the radiative recombination proce
and 1/4 of the pump noise, adding to a total noise powe
1/4.
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In the GaAs structures considered in this paper the
above-threshold condition is not reached, and we have th
fore evaluated numerically both the internal and external
timal noise powers that can be obtained through the mix
process of Eqs.~27! and ~31!, respectively. Results are pre
sented in Fig. 7. A suppression of the noise power is
tained both around threshold, and above it, for both the
ternal and external fields. The suppression is largest clos
threshold. About 8 dB of internal polariton squeezing is o
served at the largestN̄0, but barely 1 dB of squeezing i
predicted for the external field squeezing at this point w
respect to the SQL. Thus, external field squeezing is likely
be observed close to threshold only. Such an observa
would be interesting, and prove the existence of strong ph
modulation in the system. It is not self-phase modulati
which is dominant far above threshold only, as also num
cally checked. Lasing in the far-above-threshold condit
must be realized in real samples before these effects ca
detected.

C. Emission linewidth

In stationary conditions, the spectral shape of emissio
given by the following correlation function@22,25#:

I ~v!5E
2`

`

dt e2 ivt^A†~t!A~0!&. ~32!

Here A(t) is the electromagnetic field amplitude at the d
tector position, outside the cavity. As the external vacu
field fluctuations do not contribute to the above expressi
we may also substituteB0(t) for A(t) in the above, apart
from trivial delays.

Below threshold, the system behaves as a simple dam
harmonic oscillator, and the calculation of the above aver
is straightforward using the quantum regression theor
@22#. We obtain a simple Lorentzian lineshape, of widthg

FIG. 7. Power noise at zero frequency for the mixed operatoS
andSe of Eqs. ~27! and ~31!, respectively, as functions of the po

lariton populationN̄0, for T56 K, t0510 ps, and a 232 mm post
structure.
9-9
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5G02Ḡ5R̄sp/N̄0. When N̄0!1, g5G0, whereas above
threshold, asR̄sp becomes clamped andN̄0 increases lin-
early, a linewidth reduction of the Schawlow-Townes type
found. This is however only qualitative, as the above ana
sis cannot be applied beyond threshold, where the fluc
tionsdN become relevant. Far above threshold, the linesh
can be connected with the phase diffusion coefficient,@25#
giving

I ~v!}E
0

`

dt e2 ivte2^[f(t)2f(0)]2&. ~33!

In calculatinĝ @f(t)2f(0)#2&, the imaginary noise source
in Eq. ~21! decouple from the number fluctuations. We ha
two separate contributions. The first one originating from
noise terms in Eq.~21! is straightforward to calculate

^@f~t!2f~0!#2&ST5
R̄sp

2N̄0

t. ~34!

When inserted in Eq.~33!, it gives an exponential decay int
and a Lorentzian lineshape of width

DvST5
R̄sp

N̄0

. ~35!

The calculation of the contribution from the number flu
tuations to the linewidth is more involved, as these ha
colored spectrum and are correlated. The line shape ca
calculated exactly using

^@f~t!2f~0!#2&5E
0

t

dt1 dt2^ḟ~ t1!ḟ~ t2!&,

inserting Eq.~21!, passing to Fourier space, and using t
solutions fordN(v) anddN0(v) given in Eqs.~B1! in Ap-
pendix B. We first analyze different contributions separate
in the far above threshold limit,N̄0.N̄. We consider the two
terms (de/dN̄)dN1edN0/2N̄0 in Eq. ~21!. As well known
from semiconductor laser theory, they produce an enha
ment of the linewidthDvST in this regime. Using the Lorent
zian line shapes of the noise sources, discussed in Sec. I
we find

Dvenh5
8j2

2G0
2R̄sp

h2
N̄0 . ~36!

Here, j25(de/dN̄)/G0 was introduced before. In practice
j2;0.5uX0u2W/G0. The enhancement factor is

a25
Dvenh

DvST
;

8j2
2G0

2

h2
N̄0

2 . ~37!

In the typical case ofD52 mm, atT56 K, we have calcu-
lated microscopicallya2;10. These are also typical value
in semiconductor lasers.
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Next, we calculate the contribution of the self-pha
modulation term far above threshold. We find

^@f~t!2f~0!#2&SPM5
j0

2G0

N̄0
Ft2

12e2G0t

G0
G . ~38!

Herej05(3WN̄0uXu4)/(2G0) was introduced before. Whe
this correlation is inserted in the exponential of Eq.~33!, a
nonexponential decay is produced. We may identify two d
ferent regimes:

^@f~t!2f~0!#2&SPM;5
j0

2G0
2

2N̄0

t2, G0t!1,

j0
2G0

N̄0

t, G0t@1.

~39!

Clearly, simple exponential decay in Eq.~33! dominates
when j0

2/N̄0;W 2N̄0 /G0
2!1, otherwise, decay is of type

exp(2DvG
2t2). We thus have a Lorentzian or a Gaussian li

shape respectively, of width

DvSPM55
j0

2G0

N̄0

,
j0

2

N̄0

!1,

ln~2!j0

AN̄0

,
j0

2

N̄0

@1.

~40!

As j0}N̄0, both linewidthsincreasewith N̄0, and eventually
dominate the Schawlow-Townes contribution, which inste
decreases asN̄0

21. This linewidth increase is as peculiar t
this system as the self-phase modulation is. The relevant
ergy W is at the origin of both gain and of self-phas
modulation.

For the micropost withD52 mm andG05(10 ps)21, and
T56 K, we show in Fig. 8, the Schawlow-Townes line
width, and the linearly increasing linewidth calculated fro
the self-phase modulation in Eq.~40!. We did not include the
linewidth enhancement, as the linearization procedure of
Langevin equation is not reliable around threshold (N̄0;1).
An enhancement of about 10 should be smoothly introdu
when N̄0@1. The calculation suggests that self-phas
modulation contribution is noticeable forN̄0.80. Even tak-
ing into account the linewidth enhancementa2, the self-
phase modulation contribution would be noticeable forN̄0
.200. Therefore, we can optimistically expect that this lin
width enhancement will be eventually observed in the
structures, before Rabi splitting collapse. The expected l
width behavior as a function of emission intensity, i.e., fi
the Schawlow-Townes narrowing, then broadening, has b
actually already observed in the nonlinear emission fr
Group-II–VI microcavities@30#. It is however premature to
claim observation of the self-phase modulation effect in t
system.
9-10
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V. DISCUSSION AND CONCLUSIONS

The results of this paper are based on many assumpt
which we discuss in more detail here. Central to the mode
the bosonic representation of the system, including
boson-boson interaction. The interaction originates in the
change between the fermionic constituents of the excito
and is thus an effect of the Pauli exclusion principle, as d
cussed in detail in Ref.@7#. Calculation of higher-order in-
teraction terms between excitons~three-body interaction and
so on! is cumbersome, and to the knowledge of the auth
it has never been addressed quantitatively. In this sense
model presented here remains qualitative, and only a c
comparison to experimental results provides a reliable e
mate of its range of validity. Thus, successful fitting of sc
tering experiments up to densities of a few 109 cm22 with
this interacting boson model in Refs.@17,18# is a strong in-
dication of its reliability in this range of densities.

Next, we discuss disorder effects of real samples. Th
are related to~static! fluctuations of the large barrier poten
tial, which confines electrons and holes inside the QW. T
disorder potential for the exciton has a typical amplitu
;EB , and correlation lengths of the order ofaB . This large
amplitude is not directly observed in the optical properties
the QW ~through inhomogeneous broadening!, because of
exciton delocalization. A characteristic lengthl may be in-
troduced to characterize either the localization or diffus
length of the exciton motion. It amounts to a fewaB . The
exciton-phonon and exciton-exciton scattering rates use
this paper are calculated for free, unperturbed, exciton
tion. For thermalized excitons, this is still a reasonable
sumption if the thermal wavelengthl th, l . Thus, we expect
exciton-exciton scattering to be gradually suppressed at
temperature, and in a sample dependent way, as the exc
gradually localize. After this point, localized excitons effe
tively behave as two-level atoms, and the bosonic descrip
looses its meaning. Even in these extreme conditions, h
ing only at very lowT, the polariton of a planar cavity is

FIG. 8. Emission linewidth as a function of the polariton pop
lation, for T56 K, t0510 ps, and a 232 mm post structure. The
Schawlow-Townes linewidth and self-phase modulation linewi
are shown separately. The enhancement factor of Eq.~37! has not
been included.
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effectively delocalized, and showing bosonic properties.
deed, hundreds of localized excitons are found within
wavelength of light, and even more so in a microcavi
where the cavity photon has an enhanced lateral wavele
@28#. The polariton becomes analogous to the superrad
state ofN two-level atoms@29# and the bosonic assumptio
for the dynamics of the confined polariton is thus rath
solid. This analogy also holds in the micropost considered
this paper. We remark that experiments aimed at dire
showing the bosonic nature of polaritons produced posi
results @17,18#. Moreover, these results were also succe
fully analyzed within the exciton-exciton scattering fram
work used in this paper, giving also evidence for the dom
nance of free excitons in the dynamics of the real samp
already atT55 K. As interface quality in Group-II-VI ma-
terials is comparable or presumably better than in Gro
III–V based structures, we expect the free exciton picture
hold to even lowerkBT/EB . The larger Rabi splittings of
these materials makes them more advantageous than G
III–V materials as explained in Sec. III. It is thus possib
that in a recent observation of emission nonlinearities
Group-II–VI planar microcavities in Ref.@30#, gain related
to exciton-exciton scattering is involved. Possibly, lasi
threshold has already been reached.

We finally discuss analogies and differences between
polariton, the bosonic atom, and conventional semicondu
lasers. Most proposed schemes for bosonic atom lasers s
the same basic ingredients: stimulated emission from a c
atomic reservoir, or eventually from a few discrete leve
into the lowest mode of an atomic trap@4#. Different gain
mechanisms have been proposed, many of which incl
atomic collisions@31#. The problem of extraction of atom
from the highly populated trapped mode has also been
dressed@32#, while it is open in the polariton case. Strikin
differences are found in the lifetimes or losses—seconds
trapped atoms, but only tens of ps for polaritons—and in
trapping energies—tens of nK for atomic traps but tens o
in the polariton case. The long lifetimes favor the realizati
of stimulated emission in the atomic system, making ev
tiny gains sufficient. The small trapping energies instead
for ultracold reservoirs, and are the main technological
stacle to the realization of the atomic laser, which has b
already overcome with the use of evaporative cooling@33#.
The similarities of a micropost polariton laser with a vertic
cavity semiconductor lasers~VCSEL! is instead only struc-
tural. In these latter systems, stimulated emission of the c
fined photon modes is driven by fermionic population inve
sion. This is conceptually different from the stimulate
emission of a confined polariton, which has an exciton c
tent ;90% for D52 mm, and is thus a composite boso
Moreover, the excitation density at threshold for the VCS
is at least one order of magnitude larger. Finally, in the p
lariton laser, in complete analogy to the bosonic atom la
and in contrast to conventional photon lasers, excitation
the lasing mode is notcreatedby the gain mechanism, bu
rathertransferredfrom a reservoir.

In conclusion, we predicted and analyzed stimula
emission of reservoir excitons into the lowest confined p
lariton mode of a semiconductor microcavity post structu

h
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F. TASSONE AND Y. YAMAMOTO PHYSICAL REVIEW A 62 063809
In typical GaAs based structures, exciton-exciton scatte
provides sufficient gain to overcome large losses, up to~10
ps)21, at an exciton density below that where the Rabi sp
ting collapses. We studied the threshold behavior of
stimulated emission for different post sizes, losses, and
tice temperatures. We put into evidence heating effects in
exciton reservoir, and the existence of an optimal lattice te
perature. Statistics of the polariton becomes Poissonian
above threshold. Relevant self-phase modulation enha
phase noise, and eventually results into a net increase o
emission linewidth. We showed that strong correlation
tween frequency and number noise can be used to produ
number-squeezed polariton state. We discussed effects o
terface disorder, advantages of Group-II–VI based str
tures, and conceptual differences with a conventional la
system. We remark that these micropost lasers are also
nologically appealing as ultralow threshold sources of coh
ent light.

APPENDIX A: DERIVATION OF PERTURBATIVE
LANGEVIN EQUATIONS FOR EXCITON-EXCITON

SCATTERING

We consider the interaction of a confined polariton mo
with the exciton reservoir. Confinement lifts momentum co
servation. However, a quasiconservation over a momen
width of p/D is still valid. As the exciton distribution span
a much larger phase space, we may ignore such de
Moreover, the polariton mode hasukpu5p/D;0 compared
to those larger momentums. The relevant interaction Ham
tonian reads

H5
\W
4 (

k,k8,q
Xk1q* Xk82q

* Xk8Xkbk1q
† bk82q

† bk8bk ,

~A1!

wherebq are the exciton or polariton destruction operato
Xk is the Hopfield coefficient~which is 1 for excitons having
kÞ0) and \W;6EBaB

2/S @7#. We introduce the slowly
varying operators,Bk(t)5eivktbk(t), where\vk is the exci-
ton energy atk. The Heisenberg equations read

Ḃk~ t !52
i

\
@H~ t !,Bk~ t !#

52
iW
2 (

k,q
Xk1q* Xk82q

* Xk8XkBk81q
† Bk8Bk1q

3eiDvk,k8,qt. ~A2!

Here Dvk,k8,qt5vk1vk82vk1q2vk82q . We are mainly
interested in calculating the evolution ofB0. The drift terms
are calculated taking statistical averages of the Heisen
equation, and expanding them up to second order with
Markov approximation. The perturbative Langevin equatio
are finally written by substituting the remainder fluctuati
sources~with zero average! with the appropriate sources ha
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ing a white-noise spectrum@22#. In the averaged drift terms
first-order terms in the interaction Hamiltonian are usua
neglected as they do not produce any scattering. Howe
they produce energy shifts. These are simple mean-fi
terms. We want to include these shifts in the Langevin eq
tions, as they entail a coupling between amplitude and ph
and a characteristic broadening effect. Let us examine
averaged first-order terms forḂ0 in detail. Using the assump
tion that the excitons are a thermal reservoir, we have

K 2 i

\
@H~ t !,B0~ t !#L 52 i

WuX0u2

2
^B0~ t !& (

kÞ0
^Nk&

2 i
WuX0u4

2
^B0

†B0
2&. ~A3!

The first term is the energy shift of the polariton level due
population in the exciton reservoir. The other one origina
from the interaction termWuX0u4B0

†B0
†B0

2/4, and is discussed
at length in Sec. IV.

In order to derive of the second-order terms in the Mark
approximation, the reservoir coherence variab
^Bk81q

† Bk8Bq& are adiabatically eliminated, just as in th
conventional laser theory. It can be shown that this adiab
elimination is actually valid precisely when exciton spectru
renormalization is negligible, as discussed before in Sec
@34#. The resulting averaged drift terms to second order
the interactionW are given by@22#

^DB0
~ t !&52

1

\2 E0

`

dt^†H~ t1t!,@H~ t !,B0~ t !#‡&.

The commutator is given by

(
k1 ,q1 ,k2 ,q2

e2 iDvt@Bq1

† Bk12q1

† Bk1
,Bk2

† Bk22q2
Bq2

#,

where Dv5vk1v02vq2vk2q , and in the Markov ap-
proximation ~where the slowly varying operators are co
stant during the ‘‘collision times’’!, using bosonic commuta
tion relations we find

^DB0
~ t !&5

2 iW 2uX0u2

2 (
k,q

1

Dv2 i e

3~NqNk2q2Nk22NkNk2q!^B0~ t !&.

~A4!

Here e→01 is a regularization parameter. In this equati
we also havek,q,k2qÞ0. From the rate equations for th
population
9-12
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Ṅk5pW 2uX0u2(
k,q

d~Dv!@Nk2qNq~11Nk!~11N0!

2~11Nk2q!~11Nq!NkN0#

5pW 2uX0u2(
k,q

d~Dv!@Nk2qNq2Nk22NkNk2q#N0

1pW 2uX0u2(
k,q

d~Dv!Nk2qNq~11Nk!.

Thus, the real part of Eq.~A4!, the net gain for the polariton
is just half of the net gain calculated in the rate equation
the populationNk , as it should be for bosons. Concernin
the imaginary part of Eq.~A4!, it has also been included i
the Langevin Eq.~8! together with the first-order term from
Eq. ~A3!, as thee(N) term. We note that the Kramers
Krönig relation trivially hold for the real and imaginary par
of Eq. ~A4!, with the frequencyv0 as the frequency variable
because of its functional form. In the structures conside
the second-order shifts are much smaller than the first-o
ones.
si

06380
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The noise terms are easily determined from the Eins
relation between the diffusion term̂DB

0
†B0

&, and the drift

terms ofN05B0
†B0. We thus find

^DB
0
†B0

&52
2

\2E0

`

dt^@H~ t1t!,B0
†~ t1t!#@H~ t !,B0~ t !#&.

The expectation value is

(
k1 ,q1 ,k2 ,q2

e2 iDvt^Bq1

† Bk12q1

† Bk1
Bk2

† Bk22q2
Bq2

&,

i.e., just one side of the previous commutator, thus givin

^DB
0
†B0

&5pW 2uX0u2(
k,q

d~Dv!Nk2qNq~11Nk!5R̄sp .

APPENDIX B: SOLUTION OF THE LANGEVIN
EQUATIONS

The solution of the Langevin Eqs.~24! in frequency space
reads:
d̃N0~v!5
iv1G1h1h8

D
@ F̃N0

1F̃G0
8 #1

h

D
@ F̃G1F̃p1F̃N#,

d̃N~v!5
G02Ḡ1 iv

D
@ F̃G1F̃p1F̃N#2

Ḡ

D
@ F̃N0

1F̃G0
8 #, ~B1!
with

D5~G02Ḡ1 iv!~ iv1G1h1h8!1Ḡh. ~B2!

The power spectra are calculated from these solutions u
the definition of the noise sources Eqs.~12!–~19!:

1

2
PdN

0
†dN0

5
v21~G1h1h8!2

uDu2
@DN0N0

1G0N̄0#

1
h2

uDu2
@GN̄1P1DN0N0

#

22
h~G1h1h8!

uDu2
DN0N0

, ~B3!
ng

1

2
PdN†dN5

Ḡ2

uDu2
@DN0N0

1G0N̄0#1
v21~G02Ḡ!2

uDu2

3@GN̄1P1DN0N0
#22

~G02Ḡ!Ḡ

uDu2
DN0N0

,

~B4!

1

4
PdN†dN01dN

0
†dN5

~G1h1h8!Ḡ

uDu2
@DN0N0

1G0N̄0#

1
h~G02Ḡ!

uDu2
@GN̄1P1DN0N0

#

2
v21~G02Ḡ!~G1h1h8!2hḠ

uDu2

3DN0N0
. ~B5!

Here DN0N0
5(R̄sp2Ḡ)N̄01R̄sp(N̄011) is the popula-

tion drift coefficient.
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