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Quantized mode of a leaky cavity

S. M. Dutra and G. Nienhuis
Huygens Laboratory, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands

~Received 14 July 2000; published 6 November 2000!

We use Thomson’s classical concept of mode of a leaky cavity to develop a quantum theory of cavity
damping. This theory generalizes the conventional system-reservoir theory of high-Q cavity damping to arbi-
trary Q. The small system now consists ofdampedoscillators corresponding to the natural modes of the leaky
cavity rather thanundampedoscillators associated with the normal modes of a fictitious perfect cavity. The
formalism unifies semiclassical Fox-Li modes and the normal modes traditionally used for quantization. It also
lays the foundations for a full quantum description of excess noise. The connection with Siegman’s semiclas-
sical work is straightforward. In a wider context, this theory constitutes a radical departure from present models
of dissipation in quantum mechanics: unlike conventional models, system and reservoir operators no longer
commute with each other. This noncommutability is an unavoidable consequence of having to use natural
cavity modes rather than normal modes of a fictitious perfect cavity.

PACS number~s!: 03.65.Bz, 42.50.2p, 42.50.Lc
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I. INTRODUCTION

Cavity modes are a powerful ubiquitous concept in se
classical laser physics. Modes are also popular in quan
optics because they simplify the quantum description of li
@1#. Yet, the concepts of mode used in quantum optics
semiclassical laser physics are intrinsically different@2,3#.
Whereas quantum optics has traditionally restricted itsel
normal modes of closed systems, the Fox-Li cavity mo
@4,5# adopted in laser physics are modes of an open sys
and do not even have to be orthogonal@3,6#. From the point
of view of a laser physicist, the quantum optics notion
mode is rather limited. The aim of this paper is to set do
an exact framework to describe the quantum dynamics of
radiation field in a leaky cavity using Fox-Li modes. Th
main result is a Hamiltonian, derived from first principle
involving ‘‘creation’’ and ‘‘annihilation’’ operators for cav-
ity and external~a concept introduced here! Fox-Li modes
that, together with the commutation rules for these operat
provides such a framework. We also develop a unifying f
malism where Fox-Li modes are shown to follow from t
same Sturm-Liouville treatment@7# that is used for norma
modes.

In quantum optics there are a plethora of alternative d
nitions of what a quantized mode of a leaky cavity, oft
called a quasimode, should be@8,9#. Most of them seem to
completely ignore the ideas that were already develope
classical resonator theory. We argue in Sec. V that the pro
generalization of the concept of mode for leaky cavities
the notion of natural modes of oscillation. Natural mod
were introduced in standard resonator theory by Va�nshte�n
@10#, but they can be traced back to Thomson’s investigat
of a simple model of an electromagnetic oscillator@11#.
These are the modes in which the leaky cavity will oscilla
naturally after an initial excitation is withdrawn, just as
glass of wine vibrates in its own natural frequencies a
being hit with a spoon. Applying the same Sturm-Liouvil
treatment used for normal modes, we show that the introd
tion of an inner product for natural mode expansions lead
a traveling-wave representation of such a mode. This re
1050-2947/2000/62~6!/063805~13!/$15.00 62 0638
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sentation is a Fox-Li mode@12#. So the extension of the
concept of mode to a leaky cavity brings us naturally
Fox-Li modes.

An exact quantum description of the field in a leaky ca
ity has been developed using the normal modes of the clo
system formed by the cavity and the rest of the ‘‘univers
@8#. However, these modes of the ‘‘universe’’ often conce
the essential physics because they do not single out the
ity from its environment, describing everything in terms
global universe photons. An approach involving normal ca
ity modes@13#, where the damping is modeled by couplin
these normal modes to the normal modes of a reservoir,
been adopted since the early days of the laser. However,
Senitzky-Gardiner-Collett Hamiltonian is a good approxim
tion only when the cavity quality factor~Q! is high@8,14,15#.
For arbitraryQ, the usual quantum optics treatment involv
either the modes of the universe or abandoning the idea
mode expansion altogether@16#. The quantum formulation in
terms of Fox-Li modes that we present here has three m
advantages over this usual treatment. First, as a genera
tion to arbitraryQ of the Senitzky-Gardiner-Collett Hamil
tonian, it is much more intuitively appealing than a mode
of-the-universe formulation. Second, it connects in
straightforward way to the semiclassical theories wid
adopted in laser physics, allowing laser physicists and qu
tum opticians to finally ‘‘speak the same language.’’ Thir
Fox-Li modes acquired a new significance in the late eigh
when they were used by Siegman@3,17# as the basis of a
unifying semiclassical theory of excess noise. Excess nois
a curious effect, which was first predicted by Peterma
@18#, where the usual Schawlow-Townes linewidth of a las
is enhanced by a multiplicative factor. This factor can
quite large, with measured values of the order of 60, a f
hundreds, and even as high as 103 for some lasers@19#. In
Siegman’s unifying theory, excess noise is a consequenc
mode nonorthogonality. An approximate description in ter
of normal cavity modes, such as the Senitzky-Gardin
Collett Hamiltonian@13#, cannot describe excess noise b
cause these modes are always orthogonal@20#.

Recently, Lamprecht and Ritsch proposed a quant
©2000 The American Physical Society05-1
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S. M. DUTRA AND G. NIENHUIS PHYSICAL REVIEW A62 063805
theory of excess noise involving quantized Fox-Li mod
@21#. In this theory, the cavity damping~a necessary ingre
dient to have excess noise! is described only at a maste
equation level by thead hocintroduction of a Lindblad term.
This phenomenological approach is very similar to the o
that is usually adopted for high-Q cavities @13#. A master
equation treatment is valid, however, only when the corre
tion time of the reservoir is much shorter than the damp
time, which is usually not the case for cavities showing e
cess noise. For example, longitudinal excess noise@22# is
only non-negligible if the cavity-damping time is of the ord
of the roundtrip time, which is roughly the correlation tim
of the reservoir. The approach presented here avoids
problem because it is developed at the level of a fundame
Hamiltonian description.

Another recent theory involving modes of a leaky cav
is the very interesting toy-model proposed by Grangier a
Poizat@23#. They assume that the modes of the universe
be divided into two parts: cavity modes and loss mod
Excess noise appears because different cavity modes co
to thesameloss mode. However, keeping with the spirit of
toy model, they do not specify how the modes of the u
verse can be split into these two parts nor how their ca
modes relate to Fox-Li modes.

There are also quantum theories of leaky cavities invo
ing Thomson’s natural modes in their plain standing-wa
form rather than their Fox-Li representation. Ujihara@8,24#
constructs a theory based entirely on a modes-of-
universe description, but he uses the notion of natural mo
to identify the cavity resonances. Leung and collaborat
@25#, on the other hand, do construct a quantum formal
entirely based on Thomson modes. To expand the field
these modes, they adopt a bilinear form~not an inner prod-
uct! based on the norm of a decaying state introduced
Zel’dovich @26#. This bilinear form, though, is completel
different from the inner product widely adopted in the sem
classical theory by Siegman and others. The connection
tween their work and the semiclassical theory is still u
known. Our approach has the advantage of being a di
quantum-optics implementation of those semiclassical c
cepts using a familiar inner product.

In the next section, we describe a simple model of a le
cavity and set the stage for the introduction of modes. S
tions III and IV briefly review the exact normal modes a
proach to a leaky cavity~modes of the universe! and the
usual intuitive idea of Fox-Li modes, respectively. In Sec.
we introduce the natural modes and develop a unifying
malism for Fox-Li and normal modes. In Sec. VI, we deri
the Hamiltonian describing the cavity and outside in terms
these Fox-Li modes. Section VII makes the connection w
Siegman’s formulation explicit and also discusses the r
tion between natural modes and an alternative formulatio
cavity modes in terms of scattering@27#. Section VIII sum-
marizes our main results and discusses the path that
suggest for further research. In the appendix, we deriv
physical picture for the modes of a lossy cavity, and dem
strate that the set of all cavity and external modes toge
with their adjoints is complete.
06380
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II. A SIMPLE MODEL OF A LEAKY CAVITY

A typical laser cavity is leaky mainly because of mirr
transmissivity and diffraction losses. Diffraction requires
three-dimensional treatment. However, the key feature o
leaky cavity for the purposes of a quantum description is t
it is an open system. This feature can be captured alread
a simple one-dimensional model, where leakage is enti
due to a nonvanishing transmissivity. In quantum optics,
fact, the vast majority of treatments of leaky cavities is on
dimensional@8,9,13,14#. Our model is a modified version o
a simple model of a one-dimensional cavity@28# introduced
by Ujihara @8# who analyzed it using a modes-of-the
universe approach. In our model, the cavity is formed b
perfect mirror atx52L and a nonabsorptive and nondispe
sive dielectric extending all the way fromx50 to infinity
and described by the permittivity

e~x!5Q~2x!1Q~x!nd
2 , ~1!

wherend is the refractive index of the dielectric andQ(x) is
Heavyside’s step function, which is unity for positivex and
vanishes for negativex. The reason we have chosen to ha
the dielectric filling the external region rather than the cav
is simply a pedagogic one: this way, we can recover the c
of a perfect cavity by making the permittivity of the diele
tric very large so that it becomes a perfect mirror atx50.
The more realistic case of a dielectric filling the cavity c
easily be accounted for with only a few minor changes t
do not affect the main results presented here.

In our one-dimensional model, we consider only linea
polarized electromagnetic waves propagating in thex direc-
tion. The polarization of the electric field defines they axis
and that of the magnetic field, thez axis. For simplicity, we
rescale the fields multiplying them by the square root of
transverse area in theyz plane as in the paper by Lang
Scully, and Lamb and the one by Baseia and Nussenz
@8#. Then, Maxwell’s equations take the following simp
form:

]

]x
E~x,t !52

]

]t
B~x,t !, ~2a!

]

]x
B~x,t !52

e~x!

c2

]

]t
E~x,t !. ~2b!

From Eqs.~2!, we obtain the following wave equation:

]2

]x2 E~x,t !2
e~x!

c2

]2

]t2 E~x,t !50. ~3!

Then the standard method of separation of variables@7#
shows that any solution of this equation can be written a
linear combination of the solutionsx(v,x) of the associated
Helmholtz equation:

]2

]x2 x~v,x!1
v2

c2 e~x!x~v,x!50, ~4!
5-2
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QUANTIZED MODE OF A LEAKY CAVITY PHYSICAL REVIEW A 62 063805
with time-dependent coefficientsq(v,t) that obey a simple
harmonic oscillator equation

q̈1v2q50. ~5!

Usually,x is defined in the whole space and has to sati
the physical boundary conditions atx52L and at infinity.
The functionsx then form a basis set that can represent a
physical field configuration: the modes of the universe
viewed in the next section. In Sec. V, we show that a diff
ent class of solutionsx of Eq. ~4! can also be used as
complete basis set. These are the solutions that satisfy e
the boundary conditions at the interface and atx52L only
or at the interface and at infinity only. They correspond
the Fox-Li modes of the cavity and outside, respectively.

III. MODES-OF-THE-UNIVERSE DESCRIPTION

To represent an arbitrary spatial configuration of the fie
i.e., a given solution of Eq.~4!, by a mode expansion, it i
convenient to introduce an inner product. The most con
nient inner product is one for which the modes are ortho
nal or, if this is not possible, at least biorthogonal@7#. We
can arrive at such an inner product by first deriving a
called orthogonality relation for the mode functions. Let
call the modes of the universeU(v,x), to distinguish them
from a generalx. For our model, the boundary condition
demand thatU vanish at the perfect mirror and at infinity
and that bothU and ]U /]x be continuous atx50. With
these boundary conditions, the eigenvaluev2 associated with
each of these modes is always real@7#, its positive root can
be interpreted as the frequency of a mode. SoU* also obeys
Eq. ~4!. Then the standard Sturm-Liouville procedure@7#
yields

v22v82

c2 E
2L

`

dxU* ~v8,x!U~v,x!e~x!

5HU* ~v8,x!
]

]x
U~v,x!

2U~v,x!
]

]x
U* ~v8,x!J

x52L

x→`

. ~6!

As bothU andU* vanish atx52L and at infinity, Eq.~6!
leads to the following orthogonality relation for the modes
the universe:

v22v82

c2 E
2L

`

dxU* ~v8,x!U~v,x!e~x!50. ~7!

This relation tells us that the modes of the universe are
thogonal to each other under the inner product:

~c,f!5E
2L

`

dxc* ~x!f~x!e~x!, ~8!
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where c and f are two members of the abstract spa
formed by the solutions of Eq.~4! that satisfy these boundar
conditions. It is convenient to normalize theU as follows:

E
2L

`

dxU* ~v8,x!U~v,x!e~x!5d~v2v8!. ~9!

From Eq. ~9!, we can derive the closure relation for the
functions@7,29#:

E
0

`

dv8U* ~v8,x!U~v8,x8!5
d~x2x8!2d~x1x812L !

e~x!
,

~10!

where the second delta function appears because of the
fect mirror atx52L @30#. The delta functions on the right
hand side of~10! are defined in the space of functions th
are continuous at the origin~see Ujihara@8#!. As any physi-
cal electric field will vanish at the perfect mirror and will b
continuous across the dielectric interface, Eq.~10! shows
that the modes of the ‘‘universe’’ form a complete set. Co
pleteness guarantees that any arbitrary physical field can
deed be represented by a modes-of-the-universe expans

The modes of the universe are given by

U~v,x!52 iA 2

pc
ei ~v/c! LLS v

c D
3HJcav~v,x!, 2L<x,0

Jout~v,x!, x.0,
~11!

where

Jcav~v,x!5sinS @x1L#
v

c D , ~12!

Jout~v,x!5
12nd

2nd
sinS @ndx2L#

v

c D
1

11nd

2nd
sinS @ndx1L#

v

c D , ~13!

L~k!5~11r !(
l 50

`

~2rei2kL! l , ~14!

andr 5(12nd)/(nd11) is the reflectivity of the left side of
the interface. Introducing now the continuous annihilati
and creation operatorsâ(v) andâ†(v) associated with each
mode U(x,v), the quantized field operators are given
@8,29#

Ê~x!5E
0

`

dvA\v

e0
U~v,x!â~v!1H.c., ~15a!

B̂~x!52 i E
0

`

dvA\v

e0

1

v

]

]x
U~v,x!â~v!1H.c.

~15b!
5-3



-
fe

a-

um
ac

ed
u
-
av
t
te
th
n

re

th
he
ig

th
a
p

ns

c
ei

s-
a
o

rro

e
es
iti

s.
-

the
he
ne

on-
e-
or,

er-

ard
spi-
log

l-
of

ity.
lds

r

ne-
nd
ore
ner
-
Eq.
rd
nd.

ard
of
pos-

ve
po-
ard

S. M. DUTRA AND G. NIENHUIS PHYSICAL REVIEW A62 063805
From Eqs.~10! and~15!, we recover the ordinary commuta
tion relation between the fields in the presence of a per
mirror at x52L @30#,

@D̂~x!,B̂~x8!#5 i\
]

]x8
$d~x2x8!2d~x1x812L !%,

~16!

whereD̂(x)5e0e(x)Ê(x) is the electric displacement oper
tor. The Hamiltonian, derived by substituting Eq.~15! in the
expression for the total energy,

Ĥ5
e0

2 E2L

`

dx$e~x!Ê2~x!1c2B̂2~x!%, ~17!

is given by

Ĥ5
\

2E0

`

dv$â†~v!â~v!1â~v!â†~v!%v, ~18!

which is analogous to a continuum of uncoupled quant
harmonic oscillators, one oscillator associated with e
mode.

IV. FOX-LI MODES AS SELF-REPEATING
TRAVELING WAVES

The problem of what is a mode of a leaky cavity gain
prominence when the Fabry-Perot interferometer was s
gested as a cavity for the first laser@31#. Because the Fabry
Perot is not enclosed by reflecting side walls, it should h
a continuum of modes. In fact, as its name says, before
advent of the laser, it had been traditionally used as an in
ferometer rather than a resonator. The essential point is
Fabry-Perot rings exist for any frequency, whereas a reso
tor is expected to have a large response only for a disc
spectrum of frequencies@32#. Fox and Li@4# addressed this
problem and showed that the diffraction losses, due to
finite surface area of the end mirrors, effectively turn t
continuum into a discrete set of modes of unexpectedly h
Q ~i.e., with low diffraction losses!. They considered a
propagating wave that was reflected back and forth by
two end mirrors of the Fabry-Perot. These mirrors were
sumed to be perfect reflectors but of finite area. The pro
gated wave was calculated using the scalar formulation
Huygens’s principle. Then they looked for field distributio
whose profile was self-repeating~apart from a decay factor!
in a complete round trip of the leaky cavity, i.e., eigenfun
tions of the Huygens’s propagation integral. This is th
most natural and intuitive definition of mode.

Fox and Li considered only diffraction losses@4#. In the
jargon of laser physics, their ‘‘leaky’’ modes were tran
verse, not longitudinal. But their intuitive concept of mode
a self-repeating field distribution, which is the essence
their approach, can be generalized to semitransparent mi
and even to closed~but leaky! cavities. In fact, Hamel and
Woerdman@33# have used this intuitive concept to defin
longitudinal Fox-Li modes in one-dimensional leaky caviti
relating, semiclassically, the excess noise in these cav
06380
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@22# to the nonorthogonality of these longitudinal mode
The same definition of longitudinal Fox-Li mode is also im
plicit in an earlier paper by Lugiato and Narducci@34#.

In the Hamel-Woerdman one-dimensional treatment,
solution to the propagation problem, which is given by t
Huygens’s integral in three dimensions, reduces to o
simple exponentialE1 exp(ikx) representing a forward
propagating wave and another exponentialE2 exp(2ikx)
corresponding to a backward propagating wave. The c
stantsE6 are not independent. Their mutual relation is d
termined by the boundary condition at the perfect mirr
E1exp(2ikL)52E2 exp(ikL). The self-repeating condition
is given then by the boundary condition at the leaky int
face, exp(2i2kL)52r, which yields the allowed values ofk:

k5kn2 ig[kn , ~19!

where kn5(p/L)n, with n50,61,62, . . . , are thecavity
resonances, andg52 lnuru/(2L) is the width of the reso-
nances. To distinguish between forward and backw
propagating components, Hamel and Woerdman adopt a
nor notation instead of the transmission medium ana
~Siegman’s lens-guide picture@3#! introduced by Fox and Li
@4#. Despite this minor formal difference, the Hame
Woerdman modes are indeed the appropriate version
Fox-Li modes for the case of a one-dimensional leaky cav
In their spinor notation, the inner product between two fie
E1 andE2 is given by

~E1 ,E2!5E
2L

0

dx E1
†~x!•E2~x!. ~20!

The modes are given by

un~x!5
1

A2L
F eiknx

re2 iknxG , ~21!

where the factor of 1/A2L is introduced so that the inne
product between a mode and its adjoint@33#

wn~x!5
1

A2L F eikn* x

1

r
e2 ikn* xG ~22!

be given by (wm ,un)5dn,m .
To construct a quantum theory based on the o

dimensional Fox-Li modes introduced by Hamel a
Woerdman, we must first make their intuitive approach m
rigorous and answer some lingering questions. The in
product given by Eq.~20!, for instance, is completely differ
ent from that adopted in normal mode expansions, e.g.,
~8!, where there are additional cross terms mixing forwa
and backward propagating components in the integra
How can this inner product be introduced from a stand
Sturm-Liouville treatment as that of Sec. III for the modes
the universe? Can these modes be used to construct any
sible realization of the field in the cavity? Why do we ha
to keep track of forward and backward propagating com
nents separately? How do we calculate what are the forw
5-4
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QUANTIZED MODE OF A LEAKY CAVITY PHYSICAL REVIEW A 62 063805
and backward propagating components of the total fie
Moreover as Leung and collaborators@25# point out, because
the wave equation is a second-order differential equation,
dynamics cannot be specified by knowing the initial elec
field alone but requires its time derivative, or the magne
field, as well. Where is the magnetic field in the Hamel a
Woerdman formulation? We answer these questions n
with a rigorous formulation in terms of the general theo
presented in Sec. II.

V. NATURAL MODES DESCRIPTION

The obvious requirement that any definition of cav
mode has to meet is that such a mode must correspond
field configuration determined by the cavity alone, regardl
of what might lie outside. This requirement automatica
leads us to Thomson’s definition of cavity modes as the fi
configurations that will oscillate naturally in the cavity, aft
an initial excitation is withdrawn@11#. Mathematically, these
modes are solutions of Helmholtz equations that satisfy
boundary conditions at the cavity and contain only outgo
waves outside. They are analogous to decaying states in
Gamow-Condon-Gurney theory ofa decay@35,36#.

The Thomson modes for our one-dimensional cavity
solutions of Eq.~4! that satisfy the boundary conditions
x52L andx50, but that contain only outgoing waves fo
x.0 ~so they cannot satisfy the boundary condition at infi
ity!. They are given by

g~ckn ,x!5H eiknx1re2 iknx for 2L<x,0

~11r !eiknndx for x.0
~23!

where, unlike the modes of the universe, the ‘‘frequenc
ckn is complex now and can no longer be interpreted a
physical frequency. Because these modes are purely ou
ing, they have to decay in time. Thus they are associa
with the time dependence exp(2icknt) rather than with
exp(2icknt) as an ordinary plane would.

As these natural cavity modes diverge at infinity, we wa
to use them to represent the radiation field only in the ca
@37#. Then to cover the whole of space, we have to use
ternal natural modes for the region outside the cavity. Th
modes are solutions of Eq.~4! that satisfy the boundary con
dition at infinity andx50, but that contain only outgoing
waves forx,0 ~so they cannot satisfy the boundary con
tion on the perfect mirror atx52L, as that implies a re-
flected incoming wave!. These solutions of Eq.~4! are given
by

G~ck,x!5H ~12r !e2 ikx for x,0

e2 ikndx2reikndx for x.0,
~24!

wherek is real.
Neitherg nor G form an orthogonal set with respect to th

inner product~8! that we have introduced in Sec. III. But th
should not be a surprise, because that inner product is b
on the orthogonality relation~7! that assumes that the mod
functions satisfyall the physical boundary conditions in th
entire space, i.e., the conditions atx52L, x50, and at
06380
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infinity. As g andG only satisfy two of these boundary con
ditions each, neither of these new sets of modes obeys
orthogonality relation~7!.

Unifying formalism for Fox-Li modes

To be able to use natural modes as a basis for the ra
tion field, we must have an inner product and show that s
a basis is complete. We can proceed as in Sec. III, excep
one important difference. The outgoing requirement tu
what was previously a Hermitian eigenproblem giving rise
modes of the ‘‘universe’’ into a non-Hermitian one. It
well-known that non-Hermitian eigenproblems do not yie
orthogonal eigenmodes@7#. Instead, these eigenmodes ob
a biorthogonality relation, which is an orthogonality relatio
between modes and their adjoints. So now the most con
nient inner product is one for which the mode functions a
their adjoints arebiorthogonal. It is this inner product that
will lead us naturally to the Fox-Li traveling-wave represe
tation of Thomson’s natural modes.

Analogously to Sec. III, we obtain the appropriate inn
product by first deriving a biorthogonality relation. To fin
this biorthogonal relation, consider the following functio
that vanishes at the borders of our cavity~i.e., both atx5
2L andx50):

zn,m~x!5g~ckn ,x!
1

km

]

]x
g̃* ~ckm* ,x!

2g̃* ~ckm* ,x!
1

kn

]

]x
g~ckn ,x!, ~25!

where

g̃~ckm* ,x!55 eikm* x1
e2 ikm* x

r
for 2L<x,0

11r

r
e2 ikm* ndx for x.0

~26!

is the adjoint ofg(ckm ,x), i.e., the solution of Eq.~4! of
frequencyckm* that satisfies the boundary conditions at t
cavity and contains only incoming waves at infinity@7,38#.
Differentiating Eq.~25! with respect tox, using Eq.~4!, and
then integrating the result over the cavity, we find

~kn2km!E
2L

0

dxH n2~x!g̃* ~ckm* ,x!g~ckn ,x!

1
1

km

]

]x
g̃* ~ckm* ,x!

1

kn

]

]x
g~ckn ,x!J 50, ~27!

wheren(x)5Ae(x) is the refractive index. Equation~27! is
analogous to the orthogonality relation~7! but there are two
important differences. First, it is restricted to the space ins
the cavity, while Eq.~7! is an orthogonality relation for func
tions defined in the whole of space. Second, unlike Eq.~7!,
Eq. ~27! involves the derivatives of the mode functions. T
restriction to the cavity is not a problem because, from
start, we only intended to useg(ckm ,x) and g̃(ckm* ,x) to
5-5
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describe the cavity field anyway. The second differen
however, is apparently an obstacle to the introduction of
inner product based on Eq.~27!.

To understand how Eq.~27! can be used to introduce a
inner product appropriate to expansions in these modes,
sider first what the spatial derivatives in Eq.~27! mean. The
general mode functionsx(x,v), of which the present one
are a special case, were originated from a separation of v
ables of the wave equation for the electric field~3! that gave
rise to Helmholtz equation~4!. Sog(ckm ,x) and g̃(ckm* ,x)
are related to the electric field. To find out wh
(1/kn)]g(ckn ,x)/]x and (1/km* )]g̃(ckm* ,x)/]x are related
to, consider Maxwell’s equations~2! after such separation o
variables. LetE(ckn ,x) and B(ckn ,x) be the spatially-
dependent parts of the electric and magnetic fields, res
tively, then Eqs.~2! take the following form:

2 i

kn

]

]x
E~ckn ,x!5cB~ckn ,x!, ~28a!

2 i

kn

]

]x
B~ckn ,x!5

n2~x!

c
E~ckn ,x!. ~28b!

So according to Eq.~28a!, (2 i /kn)]g(ckn ,x)/]x and
( i /km* )]g̃(ckm* ,x)/]x are related to the product of the ma
netic field by the speed of light. Now it also follows from
Maxwell’s equations~2! that E1cB is a purely forward
propagating wave in the cavity, whileE2cB is a purely
backward propagating wave. This suggests that Eq.~27!
should be rewritten in the following form that is complete
analogous to Eq.~7!:

~kn2km!E
2L

0

dx G̃†~ckm* ,x!G~ckn ,x!n2~x!50, ~29!

where

G~ckn ,x!5
1

A8L F g~ckn ,x!2
i

n~x!kn

]

]x
g~ckn ,x!

g~ckn ,x!1
i

n~x!kn

]

]x
g~ckn ,x!

G
~30!

and

G̃~ckm* ,x!5
1

A8L F g̃~ckm* ,x!2
i

n~x!km*
]

]x
g̃~ckm* ,x!

g̃~ckm* ,x!1
i

n~x!km*
]

]x
g̃~ckm* ,x!

G
~31!

are the new mode and adjoint functions, respectively. Th
upper components are forward propagating waves and
lower, backward propagating waves. The factor of 1/A8L
was introduced so that
06380
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E
2L

0

dx G̃†~ckm* ,x!G~ckn ,x!n2~x!5dn,m . ~32!

Thus the proper inner product under which the modesG are
orthogonal to their adjointsG̃ is

~F1 ,F2!5E
2L

0

dx F1
†~x!•F2~x!n2~x!, ~33!

whereF1 andF2 are two ‘‘spinor fields.’’ AssociatingE to g
andcB to 2( i /kn)]g/]x in Eq. ~30!, we construct a spinor
field F from given electric and magnetic fields as follows:

F~x!5
1

2F E~x!1
c

n~x!
B~x!

E~x!2
c

n~x!
B~x!

G , ~34!

where the factor 1/2 is introduced just for later convenien
Substituting Eq.~23! in Eq. ~30! and comparing with Eq.

~21!, we see that these new mode functions are, in fact,
one-dimensional Fox-Li modes introduced by Hamel a
Woerdman, which we have now put in the same Stur
Liouville context as ordinary normal modes. The inner pro
uct ~20!, which seemed to appear out of the blue before, n
follows naturally from Eq.~29!. The Hamel and Woerdman
inner product is Eq.~33! with nF1→E1 andnF2→E2.

To expand the field outside the cavity, we introduce e
ternal Fox-Li modesG(ck,x) and their adjointsG̃(ck,x) in
an analogous way. They are defined just as Eqs.~30! and
~31! with the discrete normalization factor 1/A8L replaced
by the continuum one 1/A8pnd, g(ckn ,x) replaced by
G(ck,x), g̃(ckn* ,x) by G̃(ck,x), andkn by k. The external

Thomson adjoint modesG̃(ck,x) are incoming solutions of
the Helmholtz equation given by

G̃~ck,x!5H r 21

r
eikx for x,0

e2 ikndx2
1

r
eikndx for x.0.

~35!

The external biorthogonality relation is given by

E
0

`

dx G̃†~ck8,x!G~ck,x!n2~x!5d~k2k8!. ~36!

The origin plays a very important role in the dynamics
the fields because it is the place where the leakage occ
For this reason, it is crucial that our expansions, not o
reproduce the fields for2L<x,0 andx.0, but also atx
50 @39#. We show in the Appendix that, even though no
of the functionsg, g̃, G, G̃ satisfies all the boundary cond
tions, this strict completeness can be achieved, if we al
each side of the interface to have contributions from b
outgoing modes and incoming adjoints. In other words, if
use all four different expansions that we can construct w
these modes and their adjoints,
5-6
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Fcav~x!5 (
n52`

`

G~ckn ,x!E
2L

0

dx8G̃†~ckn* ,x8!F~x8!n2~x8!

~37!

the cavity Fox-Li mode expansion of Eq.~34!,

F̃cav~x!5 (
n52`

`

G̃~ckn* ,x!E
2L

0

dx8G †~ckn ,x8!F~x8!n2~x8!

~38!

the cavity Fox-Li adjoint-mode expansion

Fout~x!5E
2`

`

dk G~ck,x!E
0

`

dx8G̃†~ck,x8!F~x8!n2~x8!

~39!

the external Fox-Li mode expansion,

F̃out~x!5E
2`

`

dk G̃~ck,x!E
0

`

dx8G†~ck,x8!F~x8!n2~x8!

~40!

the external Fox-Li adjoint-mode expansion, and repres
the field by

Fexp~x!5
1

2
lim

«→01

$@Fcav~x!1F̃cav~x!#Q~«2x!

1@Fout~x!1F̃out~x!#Q~«1x!%, ~41!

thenFexp(x)5F(x) at every pointx>2L.

VI. QUANTUM THEORY

To construct a quantum theory, we rewrite the expansi
~37!–~40! in the following form:

F̂cav~x!5 (
n52`

` A\ckn

2e0
ânG~ckn ,x!, ~42!

F̂̃cav~x!5 (
n52`

` A\ckn*

2e0
b̂nG̃~ckn* ,x!, ~43!

F̂out~x!5E
2`

`

dkA\ck

2e0
âout~k!G~ck,x!, ~44!

F̂̃out~x!5E
2`

`

dkA\ck

2e0
b̂out~k!G̃~ck,x!, ~45!

where the non-Hermitean operators introduced above
given by
06380
nt

s

re

ân5A 2e0

\ckn
E

2L

0

dx8G̃†~ckn* ,x8!•F~x8!n2~x8!

5A e0

4L\ckn
E

2L

0

dx8H D̂~x8!

e0
g̃* ~ckn* ,x8!

1
i

kn

]

]x8
g̃* ~ckn* ,x8!cB̂~x8!J , ~46!

b̂n5A 2e0

\ckn*
E

2L

0

dx8G †~ckn ,x8!•F~x8!n2~x8!

5A e0

4L\ckn*
E

2L

0

dx8H D̂~x8!

e0
g* ~ckn ,x8!

1
i

kn*
]

]x8
g* ~ckn ,x8!cB̂~x8!J , ~47!

âout~k!5A2e0

\ck E0

`

dx8G̃†~ck,x8!•F~x8!n2~x8!

5A e0

4pnd\ck E0

`

dx8H D̂~x8!

e0
G̃* ~ck,x8!

1
i

k

]

]x8
G̃* ~ck,x8!cB̂~x8!J , ~48!

b̂out~k!5A2e0

\ck E0

`

dx8G†~ck,x8!•F~x8!n2~x8!

5A e0

4pnd\ck E0

`

dx8H D̂~x8!

e0
G* ~ck,x8!

1
i

k

]

]x8
G* ~ck,x8!cB̂~x8!J , ~49!

andF̂(x) is given by Eq.~34! with quantizedradiation fields
rather than classical. The Hamiltonian follows by substit
ing F̂(x)5F̂exp(x), that is given by Eq.~41! with all fields
quantized, in the expression for the total energy~17! that can
be rewritten as

Ĥ5e0E
2L

`

dx F̂†~x!•F̂~x!n2~x!. ~50!

Noting that

E
2L

0

dx G̃†~ckn* ,x!G̃~ckn8
* ,x!n2~x!

5
1

r 2E
2L

0

dxG †~ckn8 ,x!G~ckn ,x!n2~x!

5
i

2Lr 2

r 221

kn2kn8
*

, ~51!
5-7
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E
0

`

dxG̃†~ck,x!•G̃~ck8,x!n2~x!5
1

r 2E
0

`

dxG†~ck8,x!•G~ck,x!n2~x!

5
11r 2

2r 2 d~k2k8!2
i

2pr 2 ~12r 2!P
1

k2k8
, ~52!

where P stands for Cauchy’s principal part@7#, we find

Ĥ5
\c

8 (
n

$knb̂n
†ân1kn* ân

†b̂n%1
i\c

16L
~r 221!(

n,n8

Akn* kn8

kn82kn*
ân

†ân81
i\c

16Lr 2 ~r 221!

3 (
n,n8

Akn8
* kn

kn2kn8
*

b̂n
†b̂n81

\c

8 E
2`

`

dk k$b̂out
† ~k!âout~k!1âout

† ~k!b̂out~k!%1
\c

16
~11r 2!

3E
2`

`

dkkâout
† ~k!âout~k!1 i

\c

16

12r 2

p E
2`

`

dkE
2`

`

dk8P
Akk8

k2k8
âout

† ~k!âout~k8!1
\c

16r 2 ~11r 2!

3E
2`

`

dkkb̂out
† ~k!b̂out~k!2 i

\c

16r 2

12r 2

p E
2`

`

dkE
2`

`

dk8P
Akk8

k2k8
b̂out

† ~k!b̂out~k8!. ~53!
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This Hamiltonian appears to be the sum of two uncoup
Hamiltonians: a ‘‘cavity Hamiltonian,’’ given by the firs
three terms in Eq.~53!, and an ‘‘external Hamiltonian,’’
given by the remaining five terms in Eq.~53!. Were this the
case, the cavity and the outside would be two isolated s
tems and there would be no dissipation. There is dissipat
however, because the cavity resonance ‘‘frequencies’’ckn
are complex. But how can there be a coupling between
cavity and the outside with a Hamiltonian as Eq.~53!? The
answer is that the theoretical framework to describe the
namics of the quantized fields in the leaky cavity is not co
plete until all the commutation rules are given. In the pres
case, cavity and external operators do not commute. T
very unusual feature accounts for the coupling between
cavity and the outside. Far from being just a theoreti
choice, this feature emerges as an unavoidable consequ
of describing an open system in terms of modes pertainin
that system alone rather than global modes of the univ
@40#.

The commutator rules for the new operators can be
tained from their definitions~46!–~49! in terms of the fields
and the commutator betweenD and B @Eq. ~16!# that we
have derived in Sec. III. Because of the nonorthogonality
these modes,ân and ân8

† do not commute even whenn

Þn8. The same holds forb̂n and b̂n8
† . However, because o

the biorthogonality between modes and adjoints, the com
tator betweenân and b̂n8

† takes the simple and familiar form
of the commutator between ordinary annihilation and c
ation operators

@ ân ,b̂n8
†

#5dn,n8 . ~54!

Analogously,
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@ âout~k!,b̂out
† E~k8!#5d~k2k8!. ~55!

The remaining commutation rules are given by

@ ân ,ân8
†

#5
1

r 2 @ b̂n ,b̂n8
†

#* 5
i

4LAknkn8
*

kn1kn8
*

kn2kn8
*

r 221

r 2 ,

~56!

@ âout~k!,âout
† ~k8!#5

1

r 2 @ b̂out~k!,b̂out
† ~k8!#*

5
1

Akk8
H 11r 2

2r 2 kd~k2k8!

2 i
12r 2

4pr 2 ~k1k8!P
1

k2k8
J , ~57!

@ ân ,b̂out
† ~k!#5r 2@ ân ,âout~k!#5@ b̂n

† ,âout~k!#

5@ b̂n
† ,b̂out~k!#5

i

2
A 12r 2

Lpknk
. ~58!

The commutation rules that we have omitted can be obtai
simply by using the identitiesân52 i â2n

† , b̂n5 i b̂2n
† ,

âout(k)52 i âout
† (2k), b̂out(k)5 i b̂out

† (2k) in Eqs. ~54!–
~58!.

Recovering the Senitzky-Gardiner-Collett phenomen
logical Hamiltonian in the high-Q limit is a delicate proble
that we have treated already in a previous work@15#. It is
interesting, however, to take the limit of a perfect cavi
This is the limit r→21. In this limit, the external region
cannot support any fields and the cavity modes and t
5-8
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adjoints become ordinary sine functions. Then the distinct
between modes and adjoints disappear and the only non
ishing commutators are limr→21@ ân ,ân8

†
#5dn,n8 . Noting

that (i /2L)limr→21Akn* kn8(r
221)/(kn82kn* )5dn,n8uknu,

using the identitiesâ2n
† 5 i ân , b̂n5 i b̂2n

† to eliminate nega-

tive values of n, and realizing that limr→21b̂n

5 limr→21ân , we find that the Hamiltonian~53! reduces to
the usual Hamiltonian for the field in a perfect cavity.

It is also interesting to consider how this formalism r
duces to the semiclassical theory developed by Sieg
@17#, when we apply it to a single mode class-A laser and
regard the field as classical. Assuming that the lasing mod
resonant with the gain medium and all the nonlasing mo
have negligible fields, we only need to modify Eq.~A9! with
Fn50 @41# to account for gain amplification and noise. Th
leads to the following equation:

ȧn5~h2 ickn!an1Gn , ~59!

where h is the gain coefficient~saturation effects are ne
glected! and

Gn5E
2L

0

dx G̃†~ckn ,x!•G~x!n2~x! ~60!

is the ordinary spontaneous emission noise projec
onto the lasing mode@33#. From Eq. ~59!, it follows @17#
that the ordinary laser linewidth is enhanced by t
logitudinal excess noise factor @22# K

5*2L
0 dx G̃†(ckn ,x)G̃(ckn ,x)n2(x). Incidentally, if instead

of a laser with again medium, we had a single excited atom
sitting inside the empty cavity, we can easily verify that
spontaneous emission rate is not enhanced byK. Unlike the
prediction of Ref.@21#, a simple calculation reveals that fo
an atom in resonance with thenth mode sitting at a crest o
this mode, the spontaneous emission rate is only enha
by the cavity quality factor@42#. Further applications of this
formalism will be considered elsewhere.

VII. DISCUSSION

Central to our approach is the view that the proper gen
alization of the concept of mode to a leaky cavity is Tho
son’s idea of natural modes of oscillation. In Sec. V, we ha
given a simple argument for this view, and shown th
Thomson’s idea is in complete accord with the intuitive n
tion of cavity modes as self-repeating field configuratio
that is widely adopted in semiclassical laser physics.
should also point out, however, that the same view eme
from a completely independent result. Berry@27# has inves-
tigated the possibility of an alternative formulation of wh
constitutes a mode of a perfect cavity. He argues that ev
such confined mode would correspond to the continuatio
the interior of the cavity of an external superposition of pla
waves for which the cavity is effectively transparent, i.e.,
which there is no reflected wave. Berry was only concern
about closed cavities made of perfect reflectors in Ref.@27#.
Then he recovers the usual normal modes, but the powe
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his formulation is that it can also be applied to leaky caviti
If we apply it to our one-dimensional leaky cavity, the mod
we obtain are the natural modes of oscillation of the cav
because the adjoint Thomson modes correspond to an
dent wave exp(2ikn*x) coming from infinity with no wave
being reflected back from the cavity. It is true that this is n
an ordinary plane wave~becausekn* is complex!, but Berry
@27# has shown that such waves can also be written a
superposition of plane waves.

Another point worth mentioning about our unifying fo
malism is that, as the usual derivation of normal modes, i
based on a differential equation: a Helmholtz equation. T
equation is derived from the wave equation, which is H
mitian. It is only because of the boundary conditions tha
Hermitian equation gives rise to a non-Hermitian eigenpr
lem @7#. Now Siegman@3,6,17# uses an operator formulation
where the eigenvalue problem can be written in the stand
more transparent form

Mv5vl, ~61!

with M being the operator,v the eigenstate, andl the eigen-
value. Then it is clear that, when the operatorM is not Her-
mitian, its eigenvaluesl do not have to be real and its e
genstatesv do not have to be orthogonal. To make th
connection with Siegman’s work even more explicit, we w
rewrite now in this form the eigenproblem that determin
the Fox-Li modes of our one-dimensional cavity.

Let us consider the case of a perfect cavity first. Then
cavity modes are solutionsxp of Helmholtz equation~4!
satisfying Dirichlet boundary conditions at the cavity m
rors, i.e.,xp(2L,v)5xp(0,v)50. The connection betwee
this differential formulation and the standard matricial for
~61! is given by the Green’s function of the one-dimension
Poisson equation@7#. Let G(xux8) be the Green’s function
that satisfies

]2

]x2 G~xux8!52d~x2x8! ~62!

with the boundary conditionsG(2Lux8)5G(0ux8)50.
Then the matricial formulation~61! of the eigenvalue prob-
lem determining the perfect modes is

xp~x,v!5S v

c D 2E
2L

0

dx8G~xux8!xp~x8,v!, ~63!

where the Green’s function@7#

G~xux8!52
1

L
$~x1L !x8Q~x82x!1~x81L !xQ~x2x8!%

~64!

is equivalent to the inverse ofM and represents a Hermitia
matrix.

In the case of our leaky cavity we have shown that,
introduce an inner product appropriate for mode expansio
we must distinguish between forward and backward pro
gating components of the fields. To do so, we adopted
spinor notation used by Hamel and Woerdman@33#. How-
5-9
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ever, to make the comparison with Siegman’s work eas
we switch now~only in this section! to the Fox-Li transmis-
sion medium representation. In this representation,
propagation inside the cavity is ‘‘unfolded’’ so that a roun
trip is replaced by forward propagation in a transmiss
medium: the backward propagation is represented by
ward propagation in the extended space fromx522L to x
52L. Within this representation, the Helmholtz equati
reduces to the following first-order differential equation

]

]x
C~x,v!2 i

v

c
C~x,v!50, ~65!

where C is the cavity mode in this transmission-mediu
representation. The perfect mirror is no longer a bound
now, just an ordinary point in the transmission mediu
where the wave is continuous. The outcoupling surface at
end of the cavity is now split in two: one atx522L and the
other at x50. The boundary condition at this surface
given now byC(22L,v)52rC(0,v).

As for the case of the perfect cavity, the matricial form
lation ~61! of the eigenvalue problem determining the cav
modes is given by

C~x,v!52 i
v

c E22L

0

dx8GFL~xux8!C~x8,v!, ~66!

where the Green’s functionGFL(xux8) obeys the equation

]

]x
GFL~xux8!52d~x2x8!, ~67!

with the boundary condition GFL(22Lux8)
52rGFL(0ux8). This Green’s function is given by

GFL~xux8!52
Q~x2x8!2rQ~x82x!

11r
, ~68!

which clearly represents a non-Hermitian matrix.

VIII. CONCLUSIONS

We have unified the concept of normal modes used
quantum optics and that of Fox-Li modes from semiclass
laser physics. The key ingredient in this unification is t
view that Thomson’s idea of natural modes of oscillati
@11# is the proper generalization of the concept of mode
an open system~see Secs. V and VII!. We show that becaus
of the constant presence of vacuum fluctuations everywh
a quantum description of the radiation field in a leaky cav
requires not only cavity Fox-Li modes and their adjoints b
also external Fox-Li modes and their adjoints. Then the
sulting system-reservoir theory has unavoidably@40# a very
unusual feature: cavity and reservoir operators do not c
mute with each other. The system reservoir Hamiltonian t
we have obtained is the arbitrary-Q generalization of the
Senitzky-Gardiner-Collett Hamiltonian@13# that is ordinarily
adopted for high-Q cavities. Unlike other quantum theorie
of the radiation field in a leaky cavity, ours is both fund
mental and clearly connected to the semiclassical conc
06380
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that are widely adopted in laser physics.
Our one-dimensional theory solves the key problem

how to describe the quantized radiation field in a leaky c
ity ~open system! using Fox-Li modes. It only deals with th
simple case of leakage due to transmissivity losses, bu
points the way in which a fully three-dimensional theor
including diffraction losses, can be developed. Thre
dimensional Fox-Li modes are clearly a paraxial conce
The ingredient that is still missing to construct such a thr
dimensional theory is a fundamental way of describing d
fraction losses as a coupling of these paraxial Fox-Li mo
to nonparaxial reservoir modes. It will be analogous to
present one-dimensional theory, where transmissivity los
are described by the coupling between cavity and exte
Fox-Li modes that arises from the noncommutability of th
respective operators. This description requires space to
split into a paraxial and a non-paraxial part, just as in o
one-dimensional theory it was split into a cavity and an e
ternal part. Such separation carries some technical difficu
@43# that are not present in our one-dimensional theory,
the principle is the same. We are currently working on t
problem and shall report any results in due course.
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APPENDIX: PHYSICAL PICTURE
AND COMPLETENESS

Completeness can be discussed by deriving a closure
lation. Let us consider only the cavity Fox-Li modes for th
moment. As we have done for the modes of the univers
closure relation can be obtained@7,29# from Eq.~32!. But, as
we have now a biorthogonal basis, there are two clos
relations: one for expansions in the modesG,

(
n52`

`

G~ckn ,x!G̃†~ckn* ,x8!5
I ~x,x8!

n2~x8!
, ~A1!

and another for expansions in their adjoints,

(
n52`

`

G̃~ckn* ,x!G †~ckn ,x8!5
Ĩ ~x,x8!

n2~x8!
, ~A2!

whereI (x,x8) is the identity in the space spanned byG and
Ĩ (x,x8) in the space spanned byG̃. What are the expression
for I and Ĩ ? In general, the notion that we can separate f
ward and backward propagating components breaks dow
the origin where the refractive index is discontinuous@44#.
However, if we assume that the refractive index is still un
at the origin~this assumption will be lifted later on in thi
Appendix!, we can state that the space spanned byG is the
5-10
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space of outgoing spinorsF(x) defined for2L<x<0 by
FB(2L)52FF(2L) and FB(0)5rFF(0) with the sub-
script B standing for the backward propagating lower co
ponent andF for the forward propagating top componen
Analogously, the space spanned byG̃ is then the space o
incoming spinorsF̃(x) defined for2L<x<0 by F̃B(2L)
52F̃F(2L) andF̃B(0)5F̃F(0)/r . This is enough to deter
mine I (x,x8) and Ĩ (x,x8) for 2L<x,x8<0. They are given
by

I ~x,x8!5F d~x2!
1

r
d~x1!2d~x112L !

rd~x1!2d~x112L ! d~x2!
G

~A3!

and

Ĩ ~x,x8!5F d~x2! rd~x1!2d~x112L !

1

r
d~x1!2d~x112L ! d~x2! G ,

~A4!

with x2[x2x8 and x1[x1x8, as can be verified in a
straightforward way by calculating the summations on
left-hand side of~A1! and ~A2! using Eqs.~23!, ~26!, ~30!,
and ~31! with the refractive index always set to unity. S
neither mode nor adjoint expansions are complete, as
fail to reproduce the correct value of an arbitraryF(x) at the
origin.

It is instructive to derivate the equations of motion obey
by the expansion coefficientsan of a mode expansion of a
arbitrary classical field~34! for 2L<x<0:

Fcav~x!5 (
n52`

`

anG~ckn ,x!, ~A5!

where

an5E
2L

0

dxG †~ckn* ,x!F~x!n2~x!. ~A6!

Still taking n(0)51 and interpreting spatial derivatives
x50 as derivatives from the left, we find, from Maxwe
equations~2!,

]

]x
F~x!5F 2

1

c

]

]t
0

0
1

c

]

]t

G F~x! ~A7!

and from Eq.~30!,

]

]x
G~ckn ,x!5F ikn 0

0 2 ikn
GG~ckn ,x!. ~A8!

Then using Eqs.~A1! and ~A3!, we obtain after some
straightforward algebra
06380
-

e

ey

d

än12gcȧn1c2~kn
21g2!an5Fn~ t !, ~A9!

where

Fn~ t !52
c

4LH r 21

r
Ė~0,t !1c

r 11

r
Ḃ~0,t !1c~g2 ikn!

3F r 21

r
E~0,t !1c

r 11

r
B~0,t !G J . ~A10!

So we can think ofan as the coordinate of a damped ha
monic oscillator that is being driven byFn @41#. The damp-
ing rate is just the cavity damping rategc, and the frequency
of the oscillator is the cavity resonance frequencyckn . If F
is purely outgoing, i.e.,FB(0,t)5rF F(0,t), the electric and
magnetic fields at the origin are related by (r 21)E(0,t)5
2(r 11)cB(0,t) making the driving force~A10! vanish. For
the coefficients of an adjoint expansion, we find a damp
harmonic-oscillator equation with negative damping2gc
and a driving force that only vanishes whenF is purely in-
coming. As the quantum electromagnetic field will alwa
have both incoming and outgoing components, these driv
forces will never vanish in a full quantum theory. The dri
ing forces are a consequence of the lack of completenes
these expansions at the origin. The constant presenc
these forces in the quantum case tells us thatG and G̃ alone
are not suitable for a quantum description of the field.

To show that Eq.~41! reproduces an arbitrary field~34!

everywhere, first we notice thatFcav(x)5F̃cav(x)5F(x) for
2L<x,0 and thatFout(x)5F̃out(x)5F(x) for x.0. It re-
mains then to show thatFexp(0)5F(0). We do socalculat-
ing each expansion in Eq.~41! separately. The cavity mod
expansion~A5! can be written in the following form at the
origin:

Fcav~0!5
1

8LF 11r 1
12r

n~0!

11r 2
12r

n~0!

G (
n52`

`

fn , ~A11!

where

fn5E
2L

0

dxH n2~x!g̃* ~ckn* ,x!E~x!

1
i

kn

]

]x
g̃* ~ckn* ,x!cB~x!J . ~A12!

Now, if we substitute Eq.~A12! as it stands in Eq.~A11! and
perform the summation overn before the integration,
(ng̃* (ckn ,x) will yield a combination of delta functions
that only differ from zero at the origin wheren2(x) is dis-
continuous. To avoid the problem of having to integrate
ambiguous combinationn2(x)d(x), we use Helmholtz equa
tion ~4! to eliminate the refractive index in Eq.~A12! fol-
lowed by an integration by parts to eliminate the discontin
ous second derivative ofg̃* . Then,
5-11
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fn52
i

kn

12r

r
E~0!1

1

r E2L

0

dx~eiknx2re2 iknx!

3H i

kn

]

]x
E~x!2cB~x!J . ~A13!

Now, using Eq.~A13! in Eq. ~A11! and performing the sum
mation overn and then the integration, we obtain

Fcav~0!5
1

8rF 11r 1
12r

n~0!

11r 2
12r

n~0!

G
3$~r 11!E~0!2~12r !cB~0!%. ~A14!

Proceeding in the same way forF̃cav(0), we find

Fcav~0!5
1

8rF 11r 2
12r

n~0!

11r 1
12r

n~0!

G
3$~r 11!E~0!1~12r !cB~0!%. ~A15!
,

s

,

.

n.

of
rr

06380
For Fout(0) and F̃out(0), the calculation also follows the
same lines but we have to make explicit use of the fact thaG

andG̃ vanish asx→` to determine which poles are slightl
above or slightly below the real axis. The result is

Fout~0!5
1

8rF 12
1

n~0!

11
1

n~0!

G
3$2~12r !2E~0!2~11r !2cB~0!% ~A16!

and

F̃out~0!5
1

8rF 212
1

n~0!

211
1

n~0!

G
3$~12r !2E~0!2~11r !2cB~0!%. ~A17!

So, Fexp(x)5F(x) for any arbitraryF and regardless of the
actual value of the refractive index at the origin.
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