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Quantized mode of a leaky cavity
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We use Thomson's classical concept of mode of a leaky cavity to develop a quantum theory of cavity
damping. This theory generalizes the conventional system-reservoir theory dhighiity damping to arbi-
trary Q. The small system now consists @dmpedoscillators corresponding to the natural modes of the leaky
cavity rather tharundampedbscillators associated with the normal modes of a fictitious perfect cavity. The
formalism unifies semiclassical Fox-Li modes and the normal modes traditionally used for quantization. It also
lays the foundations for a full quantum description of excess noise. The connection with Siegman’s semiclas-
sical work is straightforward. In a wider context, this theory constitutes a radical departure from present models
of dissipation in quantum mechanics: unlike conventional models, system and reservoir operators no longer
commute with each other. This noncommutability is an unavoidable consequence of having to use natural
cavity modes rather than normal modes of a fictitious perfect cavity.

PACS numbg(s): 03.65.Bz, 42.506-p, 42.50.Lc

[. INTRODUCTION sentation is a Fox-Li mod¢l2]. So the extension of the
concept of mode to a leaky cavity brings us naturally to
Cavity modes are a powerful ubiquitous concept in semi+ox-Li modes.
classical laser physics. Modes are also popular in quantum An exact quantum description of the field in a leaky cav-
optics because they simplify the quantum description of lighity has been developed using the normal modes of the closed
[1]. Yet, the concepts of mode used in quantum optics andystem formed by the cavity and the rest of the “universe”
semiclassical laser physics are intrinsically differ¢p3]. [8]. However, these modes of the “universe” often conceal
Whereas quantum optics has traditionally restricted itself tdhe essential physics because they do not single out the cav-
normal modes of closed systems, the Fox-Li cavity modedty from its environment, describing everything in terms of
[4,5] adopted in laser physics are modes of an open systeglobal universe photons. An approach involving normal cav-
and do not even have to be orthogof@b]. From the point ity modes[13], where the damping is modeled by coupling
of view of a laser physicist, the quantum optics notion ofthese normal modes to the normal modes of a reservoir, has
mode is rather limited. The aim of this paper is to set downbeen adopted since the early days of the laser. However, this
an exact framework to describe the quantum dynamics of th&enitzky-Gardiner-Collett Hamiltonian is a good approxima-
radiation field in a leaky cavity using Fox-Li modes. The tion only when the cavity quality factd®) is high[8,14,15.
main result is a Hamiltonian, derived from first principles, For arbitraryQ, the usual quantum optics treatment involves
involving “creation” and “annihilation” operators for cav- either the modes of the universe or abandoning the idea of a
ity and external(a concept introduced her&ox-Li modes mode expansion altogethiel6]. The quantum formulation in
that, together with the commutation rules for these operatorsgrms of Fox-Li modes that we present here has three main
provides such a framework. We also develop a unifying for-advantages over this usual treatment. First, as a generaliza-
malism where Fox-Li modes are shown to follow from thetion to arbitraryQ of the Senitzky-Gardiner-Collett Hamil-
same Sturm-Liouville treatmen®] that is used for normal tonian, it is much more intuitively appealing than a modes-
modes. of-the-universe formulation. Second, it connects in a
In guantum optics there are a plethora of alternative defistraightforward way to the semiclassical theories widely
nitions of what a quantized mode of a leaky cavity, oftenadopted in laser physics, allowing laser physicists and quan-
called a quasimode, should b&,9]. Most of them seem to tum opticians to finally “speak the same language.” Third,
completely ignore the ideas that were already developed ifrox-Li modes acquired a new significance in the late eighties
classical resonator theory. We argue in Sec. V that the propavhen they were used by Siegm8B,17] as the basis of a
generalization of the concept of mode for leaky cavities isunifying semiclassical theory of excess noise. Excess noise is
the notion of natural modes of oscillation. Natural modesa curious effect, which was first predicted by Petermann
were introduced in standard resonator theory bynghatén [18], where the usual Schawlow-Townes linewidth of a laser
[10], but they can be traced back to Thomson's investigations enhanced by a multiplicative factor. This factor can be
of a simple model of an electromagnetic oscillafdrl].  quite large, with measured values of the order of 60, a few
These are the modes in which the leaky cavity will oscillatehundreds, and even as high as’ f6r some laser$19]. In
naturally after an initial excitation is withdrawn, just as a Siegman’s unifying theory, excess noise is a consequence of
glass of wine vibrates in its own natural frequencies aftermode nonorthogonality. An approximate description in terms
being hit with a spoon. Applying the same Sturm-Liouville of normal cavity modes, such as the Senitzky-Gardiner-
treatment used for normal modes, we show that the introdudzollett Hamiltonian[13], cannot describe excess noise be-
tion of an inner product for natural mode expansions leads tecause these modes are always orthogp2@al.
a traveling-wave representation of such a mode. This repre- Recently, Lamprecht and Ritsch proposed a quantum
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theory of excess noise involving quantized Fox-Li modes Il. A SIMPLE MODEL OF A LEAKY CAVITY
[21]. In this theory, the cavity dampin@ necessary ingre-

dient .to have excess ”OD?‘-” deSCr'bed °”'¥ at a master transmissivity and diffraction losses. Diffraction requires a

equation level by thad hocintroduction of a Lindblad term. 00 _gimensional treatment. However, the key feature of a

This phenomenological approach is very similar to the on§eayy cavity for the purposes of a quantum description is that

that is usually adopted for higQ- cavities[13]. A master i s an open system. This feature can be captured already in

equation treatment is valid, however, only when the correlay simple one-dimensional model, where leakage is entirely

tion time of the reservoir is much shorter than the dampingyue to a nonvanishing transmissivity. In quantum optics, in

time, which is usually not the case for cavities showing exact, the vast majority of treatments of leaky cavities is one-

cess noise. For example, longitudinal excess np2& is  dimensional8,9,13,14. Our model is a modified version of

only non-negligible if the cavity-damping time is of the order a simple model of a one-dimensional ca\i8] introduced

of the roundtrip time, which is roughly the correlation time by Ujihara [8] who analyzed it using a modes-of-the-

of the reservoir. The approach presented here avoids thisniverse approach. In our model, the cavity is formed by a

problem because it is developed at the level of a fundamentaglerfect mirror atx= —L and a nonabsorptive and nondisper-

Hamiltonian description. sive dielectric extending all the way from=0 to infinity
Another recent theory involving modes of a leaky cavity and described by the permittivity

is the very interesting toy-model proposed by Grangier and

Poizat[23]. They assume that the modes of the universe can €(X)=0(—x)+0(x)n3, 1)

be divided into two parts: cavity modes and loss modes.

Excess noise appears because different cavity modes coupereny is the refractive index of the dielectric af¥{(x) is

to thesameloss mode. However, keeping with the spirit of a Heavyside’s step function, which is unity for positixeand

toy model, they do not specify how the modes of the uni-vanishes for negative. The reason we have chosen to have

verse can be split into these two parts nor how their Cavit%he_dlelectnc filling the extern_al region rather than the cavity

modes relate to Fox-Li modes. is simply a pedagogic one: this way, we can recover the case

There are also quantum theories of leaky cavities involv-2f @ Perfect cavity by making the permittivity of the dielec-

ing Thomson's natural modes in their plain standing-wavelIC Very large so that it becomes a perfect mirroixat0.

form rather than e FoxL representaon. Ujhiszq "€, 10r fealislc case of  dectic fing e cavty car
constructs a theory based entirely on a modes-of-the; y . y 9
universe description, but he uses the notion of natural modeds0 not affect the main results presented hgre. .

' In our one-dimensional model, we consider only linearly

to identify the cavity resonances. Leung and ConaboraForr%olarized electromagnetic waves propagating inxiirec-
[251’ on the other hand, do construct a quantum for_mah_s ion. The polarization of the electric field defines thexis
entirely based on Thomson modes. To expand the field intg 4 that of the magnetic field, theaxis. For simplicity, we
these modes, they adopt a bilinear f_o(mnt an nner prod- rescale the fields multiplying them by the square root of the
uct) based on the norm of a decaying state introduced b¥ransverse area in thgz plane as in the paper by Lang,

Zgl’dovich [26]. This bilinear for”.‘- though, is (_:ompletely. Scully, and Lamb and the one by Baseia and Nussenzveig
different from the inner product widely adopted in the semi- 8]. Then, Maxwell's equations take the following simple
classical theory by Siegman and others. The connection be-" . '

tween their work and the semiclassical theory is still un-
known. Our approach has the advantage of being a direct P P
guantum-optics implementation of those semiclassical con- —E(x,t)=— =B(x,t), (28
cepts using a familiar inner product. Ix at

In the next section, we describe a simple model of a leaky
cavity and set the stage for the introduction of modes. Sec- d €(x) 9
tions Il and 1V briefly review the exact normal modes ap- g_XB(X't): e EE(X'U' (2b)
proach to a leaky cavitymodes of the univergseand the
usual intuitive idea of Fox-Li modes, respectively. In Sec. V,From Egs.(2), we obtain the following wave equation:
we introduce the natural modes and develop a unifying for-
malism for Fox-Li and normal modes. In Sec. VI, we derive 52 e(x) &
the Hamiltonian describing the cavity and outside in terms of —E(X,t)—— =5 E(X,1)=0. 3
these Fox-Li modes. Section VII makes the connection with X ¢ at
Siegman’s formulation explicit and also discusses the rela- ) .
tion between natural modes and an alternative formulation of "€n the standard method of separation of variahis
cavity modes in terms of scatteriig7]. Section VIII sum- shows that any solution of this equation can be written as a

marizes our main results and discusses the path that th%‘ear combination of the solutiong(w,x) of the associated

suggest for further research. In the appendix, we derive Ai€/mholtz equation:
physical picture for the modes of a lossy cavity, and demon-
strate that the set of all cavity and external modes together
with their adjoints is complete.

A typical laser cavity is leaky mainly because of mirror

92 ?
S X(@X)+ 7 e x(0,0)=0, 4
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with time-dependent coefficientf w,t) that obey a simple where 4 and ¢ are two members of the abstract space
harmonic oscillator equation formed by the solutions of E@4) that satisfy these boundary
conditions. It is convenient to normalize theas follows:

d—l— w?q=0. (5) -
J dxU* (0" ,X)U(w,X)e(X)=(w—w"). 9
Usually, x is defined in the whole space and has to satisfy -t
the physical boundary conditions at —L and at infinity.
The functionsy then form a basis set that can represent an%rr?goig[(?g)zg]we can derive the closure relation for these
physical field configuration: the modes of the universe re-
viewed in the next section. In Sec. V, we show that a differ-
ent class of solutiong of Eq. (4) can also be used as a f do'U (o' XU’ X' )=
complete basis set. These are the solutions that satisfy either’ ©
the boundary conditions at the interface ancat—L only (10

or at the interface and at infinity only. They correspond to .
the Fox-Li modes of the cavity and outside, respectively. where the second delta function appears because of the per-

fect mirror atx=—L [30]. The delta functions on the right-
hand side of(10) are defined in the space of functions that
lll. MODES-OF-THE-UNIVERSE DESCRIPTION are continuous at the origitsee Ujihard8]). As any physi-

cal electric field will vanish at the perfect mirror and will be
‘continuous across the dielectric interface, Et0) shows
that the modes of the “universe” form a complete set. Com-
pleteness guarantees that any arbitrary physical field can in-
deed be represented by a modes-of-the-universe expansion.
The modes of the universe are given by

S(x—x")—8(x+x"+2L)
e(X)

To represent an arbitrary spatial configuration of the field,
i.e., a given solution of Eq4), by a mode expansion, it is
convenient to introduce an inner product. The most conve-
nient inner product is one for which the modes are orthogo!
nal or, if this is not possible, at least biorthogohd. We
can arrive at such an inner product by first deriving a so-
called orthogonality relation for the mode functions. Let us
call the modes of the univerg w,x), to distinguish them Ulw,X)=—i\/ l(w/c>L£( )
from a generaly. For our model, the boundary conditions

demand that{ vanish at the perfect mirror and at infinity, X —L=x<0
and that bothi/ and di//9x be continuous ak=0. With [%a‘xw ) (11)
these boundary conditions, the eigenvahfeassociated with Jou@,X), x>0,
each of these modes is always rgd], its positive root can
be interpreted as the frequency of a modez@aalso obeys Where
Eq. (4). Then the standard Sturm-Liouville procedyrg ©
yields Tead @,X) = sin( [x+ L]E) : (12)
wz_w,zfxd u* ’ U 1-n [
_— d .
Cz L X (CO .X) (w,X)G(X) jout(wax): an SIn([ndx_L]E)
' J 1+n [0
=[Z/{*(w ,x)au(w,x) + dsin([ndx+L]—), (13
2ny c
& X— 00
—Uw,X) —U" (0’ ,X) : (6) - _
X x=-L E(k):(1+r)|20 (—rei2kb)!, (14)

As bothi{ andif* vanish atx=—L and at infinity, Eq.(6)
leads to the following orthogonality relation for the modes of
the universe:

andr=(1—ngy)/(nyg+1) is the reflectivity of the left side of
the interface. Introducing now the continuous annihilation

and creation operatoe{ ) anda’(w) associated with each
mode U(X,w), the quantized field operators are given by

f AXU* (" X)U(w,x)e(x)=0. 7 (829
E —de V2 w0 x)i(w) +H (153
This relation tells us that the modes of the universe are or- (x)= 0 € (@ x)a(w)+H.c.,

thogonal to each other under the inner product:
hol
B(x)= —|J \/———L{(w x)a(w)+H.c.

(15b

C!)_(U

(= axit (0 60€) ®)
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From Egs.(10) and(15), we recover the ordinary commuta- [22] to the nonorthogonality of these longitudinal modes.
tion relation between the fields in the presence of a perfecthe same definition of longitudinal Fox-Li mode is also im-
mirror atx= —L [30], plicit in an earlier paper by Lugiato and Nardu¢s#].
In the Hamel-Woerdman one-dimensional treatment, the
. . 0 solution to the propagation problem, which is given by the
[D(x),B(x’)]=|ﬁ§{5(x—x’)—5(x+x’+2L)}, Huygens’s integral in three dimensions, reduces to one
(16) simple exponential E, exp(kx) representing a forward
propagating wave and another exponental exp(—ikx)
corresponding to a backward propagating wave. The con-
stantsE.. are not independent. Their mutual relation is de-
termined by the boundary condition at the perfect mirror,
E_ exp(—ikL)=—E_exp(kL). The self-repeating condition

whereD (x) = e5e(X) E(x) is the electric displacement opera-
tor. The Hamiltonian, derived by substituting Ed5) in the
expression for the total energy,

.~ €[ . . is given then by the boundary condition at the leaky inter-
H= §J7LdX{E(X)E (X)+cB(x)}, (A7) face, expf-i2kL)=—r, which yields the allowed values &f
is given by k=kn=1y=rn, (19
. wherek,=(#/L)n, with n=0,=1,+2, ..., are thecavity
g:_f dola’(w)a(w)+a(w)al(w)}o, (1s)  resonances, ar_1¢=—_|n|r|/(2L) is the width of the reso-
2Jo nances. To distinguish between forward and backward

o . propagating components, Hamel and Woerdman adopt a spi-
which is analogous to a continuum of uncoupled quantunhor notation instead of the transmission medium analog
harmonic oscillators, one oscillator associated with eachiSiegman’s lens-guide pictuf&]) introduced by Fox and Li

mode. [4]. Despite this minor formal difference, the Hamel-
Woerdman modes are indeed the appropriate version of
IV. FOX-LI MODES AS SELF-REPEATING Fox-Li modes for the case of a one-dimensional leaky cavity.
TRAVELING WAVES In their spinor notation, the inner product between two fields

. . . E; andE, is given by
The problem of what is a mode of a leaky cavity gained

prominence when the Fabry-Perot interferometer was sug- 0 +

gested as a cavity for the first lag&1]. Because the Fabry- (E1,Ex)= f_LdX E1(X)- Ea(X). (20)
Perot is not enclosed by reflecting side walls, it should have

a continuum of modes. In fact, as its name says, before thghe modes are given by
advent of the laser, it had been traditionally used as an inter-

ferometer rather than a resonator. The essential point is that 1
Fabry-Perot rings exist for any frequency, whereas a resona- Un(X) = —==
tor is expected to have a large response only for a discrete VoL
spectrum of frequencigS2]. Fox and Li[4] addressed this where the factor of /2L is introduced so that the inner
problem and showed that the diffraction losses, due to thBroduct between a mode and its adjdiag]

finite surface area of the end mirrors, effectively turn the

el xnX

: 21

re—iKnX

continuum into a discrete set of modes of unexpectedly high QirEx
Q (i.e., with low diffraction losses They considered a 1
propagating wave that was reflected back and forth by the Wn(X) = ﬁ 1o (22)

two end mirrors of the Fabry-Perot. These mirrors were as-

sumed to be perfect reflectors but of finite area. The propa-

gated wave was calculated using the scalar formulation dbe given by Wy, ,up)=p .
Huygens’s principle. Then they looked for field distributions  To construct a quantum theory based on the one-
whose profile was self-repeatirigpart from a decay factpr dimensional Fox-Li modes introduced by Hamel and

in a complete round trip of the leaky cavity, i.e., eigenfunc-Woerdman, we must first make their intuitive approach more
tions of the Huygens's propagation integral. This is theirrigorous and answer some lingering questions. The inner
most natural and intuitive definition of mode. product given by Eq(20), for instance, is completely differ-

Fox and Li considered only diffraction lossg$]. In the  ent from that adopted in normal mode expansions, e.g., Eq.
jargon of laser physics, their “leaky” modes were trans- (8), where there are additional cross terms mixing forward
verse, not longitudinal. But their intuitive concept of mode asand backward propagating components in the integrand.
a self-repeating field distribution, which is the essence oHow can this inner product be introduced from a standard
their approach, can be generalized to semitransparent mirro&urm-Liouville treatment as that of Sec. Il for the modes of
and even to closecbut leaky cavities. In fact, Hamel and the universe? Can these modes be used to construct any pos-
Woerdman[33] have used this intuitive concept to define sible realization of the field in the cavity? Why do we have
longitudinal Fox-Li modes in one-dimensional leaky cavitiesto keep track of forward and backward propagating compo-
relating, semiclassically, the excess noise in these cavitiesents separately? How do we calculate what are the forward
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and backward propagating components of the total fieldtfinity. As g andG only satisfy two of these boundary con-
Moreover as Leung and collaborat§25] point out, because ditions each, neither of these new sets of modes obeys the
the wave equation is a second-order differential equation, therthogonality relation(7).

dynamics cannot be specified by knowing the initial electric

field alone but requires its time derivative, or the magnetic Unifying formalism for Fox-Li modes

field, as well. Where is the magnetic field in the Hamel and

Woerdman formulation? We answer these questions n0\4[\1 T?. t|)§ able to Lt’?]e naturgl mOdeS;S ? b::ljsshfor :ﬂetrad'?]'
with a rigorous formulation in terms of the general theory lon Ti€ld, we must have an innér proguct and snow that suc

presented in Sec. Il. a basjs is complgte. We can proceed as in Sec_. I, except for
one important difference. The outgoing requirement turns
what was previously a Hermitian eigenproblem giving rise to
V. NATURAL MODES DESCRIPTION modes of the “universe” into a non-Hermitian one. It is

The obvious requirement that any definition of cavity well-known that non-Hermitian eigenproblgms do not yield

mode has to meet is that such a mode must correspond to%thogonal eigenmodds]. Instead, these eigenmodes obey

field configuration determined by the cavity alone, regardlesé biorthogonality relation, which is an orthogonality relation

of what might lie outside. This requirement automatically P&fween modes and their adjoints. So now the most conve-

leads us to Thomson’s definition of cavity modes as the fieldi€nt inner product is one for which the mode functions and

configurations that will oscillate naturally in the cavity, after their adjoints areviorthogonal It is this inner product that

an initial excitation is withdrawiil1]. Mathematically, these Will lead us naturally to the Fox-Li traveling-wave represen-

modes are solutions of Helmholtz equations that satisfy th&ation of Thomson’s natural modes. o

boundary conditions at the cavity and contain only outgoing Analogously to Sec. Ill, we obtain the appropriate inner

waves outside. They are analogous to decaying states in tigoduct by first deriving a biorthogonality relation. To find

Gamow-Condon-Gurney theory of decay[35,36]. this blorj[hogonal relation, consider the .followmg function
The Thomson modes for our one-dimensional cavity ardhat vanishes at the borders of our cavite., both atx=

solutions of Eq.(4) that satisfy the boundary conditions at —L andx=0):

x=—L andx=0, but that contain only outgoing waves for 1 4

x>0 (so they cannot satisfy the boundary condition at infin- Lnm(X)=0(Ckp,X) — — g* (CKF ,X)

ity). They are given by Km 0X

i ik ~ 1 9
(k0 g ”X+r¢ IknX for —L<x<0 23 _g*(CKrn’X)K_&_Xg(CKan)a (25
n (1+r)e' <X for x>0 .
where
where, unlike the modes of the universe, the “frequency”
Ck, is complex now and can no longer be interpreted as a L e
physical frequency. Because these modes are purely outgo- e'fm*+ for —L=x<0
ing, they have to decay in time. Thus they are associated 9(ck x)= (26)
with the time dependence expick.t) rather than with e
exp(—ick.t) as an ordinary plane would. — e me for x>0

As these natural cavity modes diverge at infinity, we want
to use them to represent the radiation field only in the cavityis the adjoint ofg(cky,,X), i.e., the solution of Eq(4) of
[37]. Then to cover the whole of space, we have to use exfrequencyck}, that satisfies the boundary conditions at the
ternal natural modes for the region outside the cavity. Theseavity and contains only incoming waves at infinft,38].
modes are solutions of E@) that satisfy the boundary con- Differentiating Eq.(25) with respect toa, using Eq.(4), and
dition at infinity andx=0, but that contain only outgoing then integrating the result over the cavity, we find
waves forx<<0 (so they cannot satisfy the boundary condi-
tion on the perfect mirror ak=—L, as that implies a re-

0
— 20\ y* *
flected incoming wave These solutions of Eq4) are given (0= Kim) f_de[ N“00g” (Cxm.X)g(Crn,X)

by
1 9~ 19
(1-r)e * for x<0 +o ) 9 (Cxm X) = = g(Ckin X) 1 =0, (27)
G(CKX)=1 “ikngx_ - aikngx (24 m .
e "MNdX—re"Nd* for x>0, . o _ _
wheren(x) = \/e(x) is the refractive index. Equatiof27) is
wherek is real. analogous to the orthogonality relati¢r) but there are two

Neitherg nor G form an orthogonal set with respect to the important differences. First, it is restricted to the space inside
inner product8) that we have introduced in Sec. IIl. But this the cavity, while Eq(7) is an orthogonality relation for func-
should not be a surprise, because that inner product is basé@ns defined in the whole of space. Second, unlike E&g.
on the orthogonality relatiofi7) that assumes that the mode EQ- (27) involves the derivatives of the mode functions. The
functions satisfyall the physical boundary conditions in the restriction to the cavity is not a problem because, from the
entire space, i.e., the conditions @t —L, x=0, and at start, we only intended to usgck,,x) andg(ck}y,,X) to
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describe the cavity field anyway. The second difference,
however, is apparently an obstacle to the introduction of an

inner product based on ER7).
To understand how Ed27) can be used to introduce an

inner product appropriate to expansions in these modes, con-

sider first what the spatial derivatives in EQ7) mean. The
general mode functiong(x,w), of which the present ones

are a special case, were originated from a separation of vari-

ables of the wave equation for the electric fi€®l that gave
rise to Helmholtz equatiofd). Sog(cxy,X) and@(chn,x)

PHYSICAL REVIEW A62 063805

anT(CK:;\vX)g(CKnux)nz(x):5n,m- (32

JO
-L
Thus the proper inner product under which the mogdese
orthogonal to their adjoint§ is
0
(Fl,Fz)zf dxF](x) - Fo(x)n?(x), (33
—-L

whereF; andF, are two “spinor fields.” Associatindt to g

are related to the electric field. To find out what andcB to —(i/«,)dg/dx in Eq. (30), we construct a spinor

(1/ky)dg(cky,x)/dx and (1kX)ag(ck? ,x)/ox are related
to, consider Maxwell’'s equatior(®) after such separation of
variables. Let&(ck,,X) and B(ck,,x) be the spatially-

dependent parts of the electric and magnetic fields, respec-

tively, then Eqs(2) take the following form:

-id

K_nag(CK”'X):CB(CKn’X)' (283
~i 9 _n?(x)
o ax Blen X) == —E(Crn X). (28b)

So according to EQ.(283, (—i/«,)dg(ck,,x)/dx and
(i/k*)ag(ck® x)/ox are related to the product of the mag-
netic field by the speed of light. Now it also follows from
Maxwell's equations(2) that E+cB is a purely forward
propagating wave in the cavity, whilE—cB is a purely
backward propagating wave. This suggests that &)
should be rewritten in the following form that is completely
analogous to Eq(7):

(Kn— Km) f_Ode?/*(CK’r; X)G(Ckp,X)N3(x)=0, (29)

where
G ) 1 g(Ckp,X)— n(X—)Kn&g(CKn,x)
CKp,X)= —
n» \/ﬁ
g(CKn X))+ n(X)Kn &Q(CKn ,X)
(30
and
~ g(ckr ,X)— mag(CK;,x)
G(ck* X)= —
m \/ﬁ 5 . _ .
g(Ckpm,X)+ OO RE 25 9(CKR )
(3D

field F from given electric and magnetic fields as follows:

c
oo 1 E(x)+—n(x) B(x) s
X)=5
2 i)
E(X)_WB(X)

where the factor 1/2 is introduced just for later convenience.
Substituting Eq(23) in Eq. (30) and comparing with Eq.
(21), we see that these new mode functions are, in fact, the
one-dimensional Fox-Li modes introduced by Hamel and
Woerdman, which we have now put in the same Sturm-
Liouville context as ordinary normal modes. The inner prod-
uct (20), which seemed to appear out of the blue before, now
follows naturally from Eq.(29). The Hamel and Woerdman
inner product is Eq(33) with nF;—E; andnF,— E,.
To expand the field outside the cavity, we introduce ex-
ternal Fox-Li modes5(ck,x) and their adjoints5(ck,x) in
an analogous way. They are defined just as Eg8). and
(31) with the discrete normalization factor 8L replaced
by the continuum one ¥Bwmng, g(ck,,X) replaced by

G(ck,x), g(ck* ,x) by G(ck,x), andx, by k. The external

Thomson adjoint mode&(ck,x) are incoming solutions of
the Helmholtz equation given by
r—1 .
Te"‘x for x<0
G(ck,x)= (35

: 1
e KneX— —glknax for x>0,
r
The external biorthogonality relation is given by
f dxG'(ck’,x)G(ck,x)n?(x)=8(k—k').  (36)
0

The origin plays a very important role in the dynamics of
the fields because it is the place where the leakage occurs.
For this reason, it is crucial that our expansions, not only
reproduce the fields for- L<x<0 andx>0, but also ai
=0 [39]. We show in the Appendix that, even though none

of the functionsg, g, G, G satisfies all the boundary condi-
tions, this strict completeness can be achieved, if we allow

are the new mode and adjoint functions, respectively. Theieach side of the interface to have contributions from both
upper components are forward propagating waves and theutgoing modes and incoming adjoints. In other words, if we

lower, backward propagating waves. The factor of/@L
was introduced so that

use all four different expansions that we can construct with
these modes and their adjoints,
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FealX)= 2 G(Cxy ,X)dex’@T(cxﬁ XF(X)N*(X)
(37)

the cavity Fox-Li mode expansion of E(34),
- o 0
Feal¥)= > Glcxy .X)f dx'G"(cky, X" )F(X )N*(X')
n=—o -L
(38)
the cavity Fox-Li adjoint-mode expansion
Fout(x)zf de(ck,x)f dx'GT(ck,x")F(x")n3(x")
—x 0
(39)
the external Fox-Li mode expansion,

Foul(X) = J:dké(ck,x) J:dx’GT(ck,x')F(x’)nz(x’)
(40)

the external Fox-Li adjoint-mode expansion, and represent

the field by

Fexﬂ<x>=1 lim  {[Fea(X) +Fea(X) 10 (£ —X)
e—0"
+[FoulX) + Fou(¥) 10 (e +x)}, (42)
thenF,(x) =F(x) at every pointx=—L.

VI. QUANTUM THEORY

To construct a quantum theory, we rewrite the expansions

(37)—(40) in the following form:

- hCkp -
2 N gg, andleknn, (42

2 ” hekr .

Fal= 5\ Gerblont 0, @3

. o [fick..

Fout(x)=j dk xaout(k)G(ck,x), (44)
e o

2 o fick.. ~

Fout(x)=f_ dk\/z—%bout(k)G(ck,x), (45

ﬁca\xx) =

PHYSICAL REVIEW A 62 063805

an=\/ 2€0 fo dx'G(cx® x")-F(x")n?(x")
n hcky J-L Kn s

-V 4Lthn | g " (e X)
i~
+K—&—g (ckph X )cB(x ), (46)

\/ﬁi"nf dx' G (cry X' - F(XIN2(X')

V 4LhCKn ‘ g (CKHIX )
i o ]

+— — 9% (Ckp X )cB(x") (47)
Kn 07

) e [+
Agu(K) = \/ﬁ—;o(fo dx' Gl(ckx')- F(x')n2(x’)
V 47-rndﬁckf [ G*(Ck X')

+'—i"é*(ck,x')cé(x')], (48)
K ox’

“ 2 ®
bou( k)= V%O(fo dx' GT(ck,x")-F(x")n?(x")

V 4wndﬁckf [ (ckx’)
i J -
+——G*(ck,x’)cB(x’)}, (49
K gx’

andF(x) is given by Eq.(34) with quantizedradiation fields
rather than classical. The Hamiltonian follows by substitut-
ing F(X) = FexfX), that is given by Eq(41) with all fields
quantized, in the expression for the total enefdjy) that can
be rewritten as

|:|=60J dxFT(x)- F(x)n?3(x). (50)

—-L

Noting that

0 ~ ~
f dxG'(cl ,x)G(ck), ,x)n?(x)
—L

1 (0
:r_zf ngT(CKn’1X)g(CKnaX)n2(X)
—-L

i r2-1

where the non-Hermitean operators introduced above are =, (51)

given by

2 * 1
2Lr Kn= Kp/
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fdeT(ckx) G(ck’,x)n?( 7f dxG'(ck’,x)- G(ck,x)n?(x)

—1+r25k k' | 1-r?)P ! 52
=52 (k= )—27_”2( —r°) K (52
where P stands for Cauchy’s principal pgft, we find
VKR Kt aon ific
A= E {knb an+K*aTbn}+ (r 2_1) > n aTan,+ 5(r2—1)
Ky — 16Lr
VK Ky AcC (= N - - . hc
xE ” ”K*” biby +5- f_mdk k{bgut(k)aom(k)+agut(k)b0ut(k)}+E(1+r2)
1-r , hc
Xf_ dkkaout(k)aout(k)Jrl j dkf dk’'P Out(k)aout(k )+ 16r2(1+r )
o - - 1—r2 (= o NI
xJ dkkbgut(k)bout(k)—lﬁz—f ko dk’P—bTut(k )boul(k'). (53)
—o N B K—
|
This Hamiltonian appears to be the sum of two uncoupled [Agu(K), boutE(k’)]zé(k—k’). (55)

Hamiltonians: a “cavity Hamiltonian,” given by the first

three terms in Eq(53), and an “external Hamiltonian,” Tpe remaining commutation rules are given by
given by the remaining five terms in Eh3). Were this the
case, the cavity and the outside would be two isolated sys- 1 i kot k* 121
tems and there would be no dissipation. There is dissipation, 3 3! == non ,
however, because the cavity resonance “frequencies, e 4L kK, Kn—K:, r2

are complex. But how can there be a coupling between the " (56)
cavity and the outside with a Hamiltonian as E§3)? The

answer is that the theoretical framework to describe the dy- R ) 1 . R

namics of the quantized fields in the leaky cavity is not com- [aou k),alut(k’)]=r—2[bou[( k),bgut(k’)]*

plete until all the commutation rules are given. In the present

case, cavity and external operators do not commute. This 1 {1“2

very unusual feature accounts for the coupling between the =— —k(k—k")

cavity and the outside. Far from being just a theoretical kk' | 2r

choice, this feature emerges as an unavoidable consequence 2

of describing an open system in terms of modes pertaining to —j - (k+k')P 1 ] (57)

that system alone rather than global modes of the universe 4mr? k—k'|’

[40].

The commutator rules for the new operators can be ob- 2ot —2ra A 1Rt 3

tained from their definition$46)—(49) in terms of the fields [8n Doy K)T=r"an 8out k) 1=[bn, Bouf k)]

and the commutator betwedh and B [Eq. (16)] that we R i 1—r2

have derived in Sec. Ill. Because of the nonorthogonality of =[by Dol KN 1=5\ ek (58
n

these modesa, and a', do not commute even when
. The same holds fdo andb . However, because of The commutation rules that we have omitted can be obtained

the biorthogonality between modes and adjoints, the commusimply by using the |dent|t|esan— —iéin, b —|b1n,
tator betweera,, andbn, takes the simple and familiar form ay(k)=—ial (—k), bou(k)=ibl(—k) in Egs. (54—

of the commutator between ordinary annihilation and cre<{58).

ation operators Recovering the Senitzky-Gardiner-Collett phenomeno-
logical Hamiltonian in the high-Q limit is a delicate problem
that we have treated already in a previous wgtk]. It is
interesting, however, to take the limit of a perfect cavity.
This is the limitr— —1. In this limit, the external region
Analogously, cannot support any fields and the cavity modes and their

[a,,b],1=6, 0 - (54)
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adjoints become ordinary sine functions. Then the distinctiorhis formulation is that it can also be applied to leaky cavities.
between modes and adjoints disappear and the only nonvat-we apply it to our one-dimensional leaky cavity, the modes
ishing commutators are lim _4[a, ,é;,]: Snnr- Noting ~ We obtain are the natural modes of oscillation of the cavity,
that G/ZL)|imr_>—1\/m(f2—1)/(Knr—K§)=5n Kkl because the adj_oTt Thom_son mod(_es_cprres_pond to an inci-
’ dent wave exptik;Xx) coming from infinity with no wave
) o ) h being reflected back from the cavity. It is true that this is not
tive vaIqu of n, and realizing that lim._ib,  an ordinary plane wavébecausec;: is compley, but Berry
=lim,_, _,a,, we find that the Hamiltoniaf53) reduces to [27] has shown that such waves can also be written as a
the usual Hamiltonian for the field in a perfect cavity. superposition of plane waves.

It is also interesting to consider how this formalism re-  Another point worth mentioning about our unifying for-
duces to the semiclassical theory developed by Siegmamalism is that, as the usual derivation of normal modes, it is
[17], when we apply it to a single mode cla&slaser and  based on a differential equation: a Helmholtz equation. This
regard the field as classical. Assuming that the lasing mode isquation is derived from the wave equation, which is Her-
resonant with the gain medium and all the nonlasing modesitian. It is only because of the boundary conditions that a
have negligible fields, we only need to modify E49) with  Hermitian equation gives rise to a non-Hermitian eigenprob-
F,=0 [41] to account for gain amplification and noise. This lem[7]. Now Siegmarni3,6,17 uses an operator formulation,
leads to the following equation: where the eigenvalue problem can be written in the standard

more transparent form

using the identities&tn:ién, 6n=i61n to eliminate nega-

an=(n—icky)a,+T,, (59
) meneen Mv=VX, (61)
where 7 is the gain coefficien{saturation effects are ne-

glected and with M being the operator, the eigenstate, and the eigen-

value. Then it is clear that, when the operaltbris not Her-
0o _ mitian, its eigenvalue&d do not have to be real and its ei-
Tn:j dxG'(cky,x)- T(x)n?(x) (600  genstatesv do not have to be orthogonal. To make the
-t connection with Siegman’s work even more explicit, we will
write now in this form the eigenproblem that determines
e Fox-Li modes of our one-dimensional cavity.
Let us consider the case of a perfect cavity first. Then the

is the ordinary spontaneous emission noise projecte
onto the lasing modé¢33]. From Eq.(59), it follows [17]

that the ordinary laser linewidth is enhanced by the i 4 uti £ Helmholt tion(4)
logitudinal excess noise factor [22] K ~ caviy modes are solutiong, of Helmnollz equatiol .
_ 0 gxCt ~ ) Incidentally. if instead satlsf_ylng Dirichlet boundary conditions at thg cavity mir-
—ff—IL XG (_(t?;n,x)_g(ckra,_x)n (X)H (Ij’lCI e Y, ed atom 1O i.e.,xp(—L,®)=xp(0,0)=0. The connection between
ofalaser with again mediumwe had a singie excited alom s (ifferential formulation and the standard matricial form
sitting inside the empty cavity, we can easily verify that its (1) is given by the Green’s function of the one-dimensional

spontaneous emission rate is not enhapceet.bynlike the  pgisson equatiofi7]. Let G(x|x') be the Green's function
prediction of Ref[21], a simple calculation reveals that for that satisfies

an atom in resonance with tith mode sitting at a crest of
this mode, the spontaneous emission rate is only enhanced 92
by the cavity quality factof42]. Further applications of this WG(XW): —d(x=x") (62
formalism will be considered elsewhere.
with the boundary conditionsG(—L|x')=G(0|x")=0.
VII. DISCUSSION Then the matricial formulatioi61) of the eigenvalue prob-

) ] lem determining the perfect modes is
Central to our approach is the view that the proper gener-

alization of the concept of mode to a leaky cavity is Thom- w\? [0

son’s idea of natural modes of oscillation. In Sec. V, we have Xp(X, )= (E) fﬁLdX’G(X|X’)Xp(X, ), (63
given a simple argument for this view, and shown that

Thomson's idea is in complete accord with the intuitive no-yhere the Green'’s functiofv]

tion of cavity modes as self-repeating field configurations

that is widely adopted in semiclassical laser physics. We 1

should also point out, however, that the same view emerges3(X|X") == T{(X+L)X" O (X" =x)+ (X" +L)xO (x—x")}

from a completely independent result. BefB7] has inves- (64)
tigated the possibility of an alternative formulation of what

constitutes a mode of a perfect cavity. He argues that eveng equivalent to the inverse & and represents a Hermitian
such confined mode would correspond to the continuation tonatrix.

the interior of the cavity of an external superposition of plane In the case of our leaky cavity we have shown that, to
waves for which the cavity is effectively transparent, i.e., forintroduce an inner product appropriate for mode expansions,
which there is no reflected wave. Berry was only concernedve must distinguish between forward and backward propa-
about closed cavities made of perfect reflectors in R&f]. gating components of the fields. To do so, we adopted the
Then he recovers the usual normal modes, but the power @pinor notation used by Hamel and Woerdni88]. How-
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ever, to make the comparison with Siegman’s work easierthat are widely adopted in laser physics.
we switch now(only in this sectionto the Fox-Li transmis- Our one-dimensional theory solves the key problem of
sion medium representation. In this representation, théow to describe the quantized radiation field in a leaky cav-
propagation inside the cavity is “unfolded” so that a round ity (open systemusing Fox-Li modes. It only deals with the
trip is replaced by forward propagation in a transmissionsimple case of leakage due to transmissivity losses, but it
medium: the backward propagation is represented by forpoints the way in which a fully three-dimensional theory,
ward propagation in the extended space from—2L to x including diffraction losses, can be developed. Three-
= —L. Within this representation, the Helmholtz equationdimensional Fox-Li modes are clearly a paraxial concept.
reduces to the following first-order differential equation The ingredient that is still missing to construct such a three-
dimensional theory is a fundamental way of describing dif-
fraction losses as a coupling of these paraxial Fox-Li modes
to nonparaxial reservoir modes. It will be analogous to the
present one-dimensional theory, where transmissivity losses
where ¥ is the cavity mode in this transmission-medium are described by the coupling between cavity and external
representation. The perfect mirror is no longer a boundaryox-Li modes that arises from the noncommutability of their
now, just an ordinary point in the transmission mediumrespective operators. This description requires space to be
where the wave is continuous. The outcoupling surface at theplit into a paraxial and a non-paraxial part, just as in our
end of the cavity is now split in two: one at= —2L and the  gne-dimensional theory it was split into a cavity and an ex-
other atx=0. The boundary condition at this surface is ternal part. Such separation carries some technical difficulties
given now byV(—2L,0)=—-r¥(0,w). [43] that are not present in our one-dimensional theory, but
As for the case of the perfect cavity, the matricial formu-the principle is the same. We are currently working on this
lation (61) of the eigenvalue problem determining the cavity problem and shall report any results in due course.
modes is given by

J W _
a—x‘lf(x,w)—lzllf(x,w)—o, (65)
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with the boundary condition  Gg (—2L|x")

= —rGg.(0[x"). This Green’s function is given by APPENDIX: PHYSICAL PICTURE

O(X—x')—1O(X'—X) AND COMPLETENESS

Gru(x|x") =~ 1+r ' (68) Completeness can be discussed by deriving a closure re-
lation. Let us consider only the cavity Fox-Li modes for the
which clearly represents a non-Hermitian matrix. moment. As we have done for the modes of the universe, a
closure relation can be obtaingd 29| from Eq.(32). But, as
VIII. CONCLUSIONS we have now a biorthogonal basis, there are two closure

» _relations: one for expansions in the modgs
We have unified the concept of normal modes used in

guantum optics and that of Fox-Li modes from semiclassical * - [(x,x")

laser physics. The key ingredient in this unification is the > Glckn X)G (ck} x')= PN (A1)
view that Thomson’s idea of natural modes of oscillation e n“(x")

[11] is the proper generalization of the concept of mode for. and another for expansions in their adjoints,

an open systertsee Secs. V and VIl We show that because

of the constant presence of vacuum fluctuations everywhere, Tix,x")

a quantum description of the radiation field in a leaky cavity E g(cKn X)G ey, x')= 2 : (A2)
requires not only cavity Fox-Li modes and their adjoints but n=-o n“(x’)

also external Fox-Li modes and their adjoints. Then the re-
sulting system-reservoir theory has unavoidddg] a very ~Wherel(x,x’) is the identity in the space spanned éynd
unusual feature: cavity and reservoir operators do not comk(X.x') in the space spanned By What are the expressions
mute with each other. The system reservoir Hamiltonian thator | and1? In general, the notion that we can separate for-
we have obtained is the arbitra€y-generalization of the ward and backward propagating components breaks down at
Senitzky-Gardiner-Collett Hamiltonidrd 3] that is ordinarily ~ the origin where the refractive index is discontinugdd].
adopted for high® cavities. Unlike other quantum theories However, if we assume that the refractive index is still unity
of the radiation field in a leaky cavity, ours is both funda- at the origin(this assumption will be lifted later on in this
mental and clearly connected to the semiclassical concepisppendi®, we can state that the space spannedjby the
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space of outgoing spinorg(x) defined for—L<x=<0 by &n+27C&n+Cz(kﬁ+Yz)an=|:n(t), (A9)
Fe(—L)=—Fe(—L) and Fzg(0)=rFe(0) with the sub-

script B standing for the backward propagating lower com-where

ponent andF for the forward propagating top component.

Analogously, the space spanned 8yis then the space of
incoming spinorsA(x) defined for—L<x=<0 by Fg(—L)
= —F¢(—L) andFg(0)=F:(0)/r. This is enough to deter-

c|r—1. r+1. .
Fo(t)=— H{TE(O,t)'i‘CTB(O,t)-FC()/—Ikn)

" r—1 r+1
minel(x,x’) andl(x,x’) for —L<x,x'<0. They are given X|——E(OH)+c——B(01) ] (A10)
by
1 So we can think ofa,, as the coordinate of a damped har-
S(x_) Z8(x,)— 8(x, +2L) monic oscillator that is being driven Wy, [41]. The damp-
[(x,x")= r ing rate is just the cavity damping raje, and the frequency
ré(x,)—8(x,.+2L) S8(x_) of the oscillator is the cavity resonance frequeogy. If F

(A3) is purely outgoing, i.e.Fg(0t)=rFg(0}t), the electric and
magnetic fields at the origin are related bhy—(1)E(0;t) =
and —(r+1)cB(0,t) making the driving forc€A10) vanish. For
the coefficients of an adjoint expansion, we find a damped
_ (x-) ro(x,)=8(x,+2L) harmonic-oscillator equation with negative dampirgyc
I(x,x")=| 1 , and a driving force that only vanishes whEns purely in-
Fé(x+)—5(x++2L) d(X-) coming. As the quantum electromagnetic field will always
(A4) have both incoming and outgoing components, these driving
forces will never vanish in a full quantum theory. The driv-
with x_=x—x" and x, =x+x’, as can be verified in a ing forces are a consequence of the lack of completeness of
straightforward way by calculating the summations on thethese expansions at the origin. The constant presence of
left-hand side ofA1) and(A2) using Eqs.(23), (26), (30),  these forces in the quantum case tells us ¢hand G alone
and (31) with the refractive index always set to unity. S0 5re ot suitable for a quantum description of the field.
nglther mode nor adjoint expansions are qomplete, as they T4 show that Eq(41) reproduces an arbitrary fiek84)
I)arlilgti(r)] reproduce the correct value of an arbitréifx) at the everywhere, first we notice thifiu(X) = Fea(X) = F(x) for
It is instructive to derivate the equations of motion obeyed— L =X<0 and thatFq(X) = Fo,(x) =F(x) for x>0. It re-
by the expansion coefficients, of a mode expansion of an Mains then to show tha,,(0)=F(0). We do socalculat-

arbitrary classical field34) for —L<x<0: ing each expansion in E@41) separately. The cavity mode
expansion(A5) can be written in the following form at the
* origin:
Feal)= 2 anG(Crin,x), (A5) .
. —r
1+r+ =
where 1 n(0)
Feal0)= gL 1r | 2 6 (ALD
0 1+r— ———
a":j dxGT(ckf X)F(x)n?(x). (AB) n(0)
—-L
where

Still taking n(0)=1 and interpreting spatial derivatives at

x=0 as derivatives from the left, we find, from Maxwell 0 )
equations(2), Pn= fdex n“(x)g* (cky ,X)E(X)
190 0 i d~
J s +K—nag*(CK: ,x)cB(x)]. (A12)
5F(x)= 14 F(x) (A7)
0 oot Now, if we substitute EqA12) as it stands in EqA11) and

perform the summation oven before the integration,

and from Eq.(30), Ena*(CKn,X) will yield a combination of delta functions
that only differ from zero at the origin whem?(x) is dis-
continuous. To avoid the problem of having to integrate the
g(ckp ,X). (A8)  ambiguous combination?(x) 5(x), we use Helmholtz equa-
tion (4) to eliminate the refractive index in E¢A12) fol-
Then using Egs.(Al) and (A3), we obtain after some lowed by an integration by parts to eliminate the discontinu-
straightforward algebra ous second derivative @f*. Then,

i Kpy 0

d
5Q(CKH’X): 0 -—iky
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L Sl 1o x Cikx For Fou(0) and Fo,(0), the calculation also follows the
$n=— P E(O)++ 7de(e more same lines but we have to make explicit use of the fact@hat
_ andG vanish asc— to determine which poles are slightly
I Jd i i i
x[— —E(x)—cB(x)]. (A13) above or slightly below the real axis. The result is
Kp dX
1
Now, using Eq(A13) in Eqg. (A11) and performing the sum- 1 1- n(0)
mation overmn and then the integration, we obtain Fou(0)= —
ou 8r L 1
— + —
1 1+r+ % n(0)
Feal0)= g- 1t X{—=(1-r)?E(0)—(1+r)%cB(0)} (Al6)
14r———
n(0) and
X{(r+1)E(0)—(1-r)cB(0)}. (Al4) 1
- —-1-—
Proceeding in the same way Bt.,(0), we find ~ 1 n(0)
Foul0)= g 1
1T G
1 n(0)
Feal 0)= g~ 1t X{(1=r)?E(0)—(1+r)%cB(0)}. (A17)
1+r+—
n(0)

S0, FexX) =F(x) for any arbitraryF and regardless of the
X{(r+1)E(0)+(1-r)cB(0)}. (Al5) actual value of the refractive index at the origin.
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