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Quasiperiodic route to chaos in the Kerr-lens mode-locked Ti:sapphire laser

S. R. Bolton and M. R. Acton
Physics Department, Williams College, Williamstown, Massachusetts 01267

~Received 25 June 2000; published 3 November 2000!

We have performed an experimental study of the nonlinear dynamics in a Kerr-lens mode-locked Ti:sap-
phire laser producing'25 fs pulses. Grassberger-Procaccia and false nearest-neighbor analyses indicate that
the pulse trains follow a quasiperiodic route to low-dimensional chaos. The experimental results agree quite
well with a simulation based on the Gaussian four-by-four matrix formalism. Pulse-resolved measurements
show that the instability in pulse energy is associated with instabilities in the pulse spectral and spatial profile.

PACS number~s!: 42.65.Sf, 42.65.Re
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I. INTRODUCTION

Femtosecond lasers are becoming increasingly impor
in science and technology. Fiber lasers hold great promis
optical communications, while high power solid state las
now generate pulses of only a few optical cycles. Seve
distinct laser mechanisms have been discovered which
erate,100 fs pulses, but all have in common the requi
ment of an optical nonlinearity to lock the phases of tho
sands of longitudinal modes. The nonlinearity which enab
this mode locking, however, also makes short pulse la
susceptible to a variety of dynamic instabilities, includi
chaos. Because nonlinearities are an inevitable part of
short-pulse system, it is important to understand the resul
dynamics in some detail. Furthermore, the nascent stud
nonlinear dynamics in ultrafast lasers has revealed thes
sers to be fruitful as model nonlinear systems.

Two of the most promising mode-locking mechanisms
present are coupled cavity and Kerr-lens mode lock
~KLM !. Coupled cavity configurations, such as additi
pulse mode locking~APM! and the nonlinear optical loop
mirror, are commonly used in short-pulse fiber lasers. AP
is a passive mode-locking technique, in which a pair of o
tical cavities are precisely matched in length and coup
through a partial reflector. The main cavity contains the ga
while the control cavity contains a medium with an intensi
dependent refractive index—typically an optical fiber.
pulse traveling through the control cavity undergoes
intensity-dependent phase shift in the fiber, then return
the partial reflector where it recombines interferometrica
with the next pulse coming from the main cavity. This s
perposition creates a new, reshaped pulse, and can res
pulse shortening if the nonlinear phase in the control ca
is correct. APM lasers have produced pulses as short a
fs, using a variety of different gain media. There has be
substantial recent work on the nonlinear dynamics of th
ultrafast coupled cavity lasers. In picosecond Nd:YAG AP
lasers period doubling, quasiperiodicity, and hig
dimensional chaos have been both observed and mod
theoretically @1,2#. Observations of dynamic instabilitie
have also been made in fs NaCl:OH APM lasers@3–5#. In
addition to period doubling, fs APM lasers display determ
istic noise amplification, ‘‘wiggly’’ bifurcation phenomena
and a strong dependence of dynamics on cavity topol
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@4–6#. A number of common features are evident in the e
periments and models of APM laser dynamics. First,
single mode optical fiber eliminates the possibility of tran
verse spatial dynamics, restricting instablilities to the tem
ral domain. Furthermore, the gain media in the APM las
studied thus far~Nd:YAG and NaCl:OH! are strongly satu-
rated by the passage of a single pulse. This gain satura
combines with the additive pulse mechanism to give sign
cant temporal reshaping of the pulses. Theoretical work
the APM laser predicts that the pulses can have highly n
Gaussian, multi-peaked temporal profiles, which vary fro
pulse to pulse. Evidence for such pulse-reshaping has b
found in the high dimensional dynamics of the Nd:YA
APM @1# which must originate in the degrees of freedo
provided by changes in temporal pulse profile. Finally, t
importance of group velocity dispersion~GVD! in coupled
cavity optical systems has been clearly demonstrated,
both the case of passive ring resonators and active A
lasers. A very elegant demonstration of optical turbulence
a passive nonlinear fiber ring resonator driven by a serie
ps pulses was performed by Steinmeyeret al. @7#. In this
case the GVD of the system was the dominant variable c
trolling the degree of complexity.

Ultrafast lasers based on KLM are physically quite d
tinct from their APM counterparts. In KLM, the intensity
dependent index of refraction in the gain medium results
self-focusing of the fs pulses. This intensity-dependent,
Kerr, lens can be combined with either a physical apert
~hard aperturing! or with a spatially narrow gain profile~soft
aperturing! to yield higher net gain for fs pulses than for c
light. The resulting energetic advantage for ultrashort pul
is combined with solitonic pulse shaping to give a ve
stable and flexible laser which produces pulses of,30 fs.
GVD must be carefully managed in order to obtain sh
pulses from KLM lasers. Since the gain medium has sign
cant positive GVD and self-phase modulation further chi
the pulses, an element withnegativeGVD is necessary in
order to keep the pulses short and take advantage of solit
pulse shaping. Such GVD compensation is typically p
vided by a prism pair~as shown in Fig. 1!, which creates, via
angular dispersion, a negative GVD proportional to the d
tance between the prisms. The prism glass itself has pos
GVD; thus the total GVD provided by the prism pair can
controlled by varying the prism insertion. The total GVD
©2000 The American Physical Society03-1
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most negative if the beam passes through just the tips of
prisms, and becomes less negative as the prism insertio
increased.

The gain medium most frequently used in KLM is Ti:sa
phire, which has a gain spectrum centered at 800 nm
sufficient bandwidth to support a 3-fs pulse. The nonlin
dynamics of the KLM Ti:sapphire differ from that of th
APM laser in several respects. First, the KLM mechani
couples the temporal and spatial evolution of pulses thro
the intensity-dependent lens, allowing the possibility of s
tiotemporal dynamics. In addition, the KLM laser can su
port a small proportion of its energy lasing in higher ord
transverse modes. Spatiotemporal dynamics associated
coupling between multiple transverse modes has been
served by several groups, and can be associated with a t
verse sweeping of the beam at tens of MHz@8,9#. Finally,
Ti:sapphire has a very high saturation intensi
'100 kW/cm2; thus the gain is not significantly saturatat
by a single pulse. Thus, in the KLM Ti:sapphire, significa
deviations of the pulse temporal profiles from Gaussian
(sech)2 are not expected.

There have been several theoretical studies of dynam
instabilities in KLM Ti:sapphire lasers@10,11#. All of the
studies predict chaotic dynamics, although the physical
gins of the chaos differ. There have also been two rec
experimental observations of instability in the pulse train
the Ti:sapphire laser@12,13#. A careful experimental charac
terization of the route to chaos in a KLM Ti:sapphire las
however, has not previously been performed. In the pre
paper we provide such a characterization, including test
the determinism of the observed instabilities and a dem
stration that these indeed indicate low-dimensional spa
temporal chaos.

II. EXPERIMENTAL SETUP

Experiments are performed on a KLM Ti:sapphire las
pumped by a frequency-doubled cw Nd:YVO4 laser which
produces 5.5 W at 514 nm. The cavity, shown in Fig. 1
configured in an asymmetric ‘‘X,’’ with a 4.75-mm-gai
crystal and 12% output coupler M1. The two 10-cm radius
curvature mirrors, M2 and M3, are 5.0 and 5.3 cm from
center of the gain crystal. The prism dispersion arm of
cavity, from M3 to M4, is 89.5 cm, while the distance fro
M2 to M1 is 61.5 cm. Two Brewster angle fused silic

FIG. 1. Laser cavity schematic. M1 is a 12% output coupler,
and M3 are 10 cm radius of curvature high reflectors, and M4
flat high reflector. P1 and P2 are fused silica prisms.
06380
he
is

nd
r

h
-
-
r
ith
b-
ns-

,

t
r

al

i-
nt
f

,
nt
of
n-
-

r

s

f
e
e

prisms are set 62 cm apart for dispersion compensation.
prism P2 is mounted on a computer-controlled translat
stage to allow controlled insertion in 12.5-mm steps. The
total length of the cavity is 166 cm, giving a pulse repetiti
rate of 90.3 MHz~a pulse separation of 11 ns!. No hard
aperture is used to mode lock the laser. A soft gain aper
is provided by the 20-mm pump spot in the
Ti:sapphire crystal. In this configuration the laser is observ
to mode lock extremely robustly. Bandwidth-limited puls
of approximately 25 fs are produced.

The laser exhibits a variety of dynamical regimes as
cavity parameters are varied. In order to characterize the
namics, we measure the pulse train using an extremely l
noise InGaAs photodiode with 0.5 ns response. The ph
diode is far too slow to resolve the temporal shape of the
pulses—it simply gives the integrated energy of each pu
Trains of 2000 pulses are acquired in single shot mode b
4-GHz digital oscilloscope. The raw data are downloaded
a computer, where each pulse is fit by a fourth-order po
nomial to give an accurate integrated pulse energy. Data
tained in this way have noise of less than 1%. Low-no
data are critical to a proper determination of chaotic dyna
ics, as many analysis algorithms are sensitive to noise c
tamination of otherwise deterministic data. Pulse trains fr
the same photodiode are simultaneously sent to an rf s
trum analyzer with 1-kHz resolution bandwidth.

III. PULSE TRAIN DYNAMICS

The laser dynamics depend on both pump power
prism insertion~net GVD!. At low power and small prism

FIG. 2. Data measured in a quasiperiod-3 regime.~a! Pulse
train, ~b! rf spectrum, and~c! first return map~arbitrary units!.
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QUASIPERIODIC ROUTE TO CHAOS IN THE KERR- . . . PHYSICAL REVIEW A 62 063803
insertion, the laser operates in a stable, period-1 regime
either prism insertion or pump power are increased, the p
train becomes quasiperiodic, exhibiting very regular mo
lations of pulse energy over a time scale of 400–500 ns. O
example of such a pulse train and the associated rf spec
is shown in Figs. 2~a! and 2~b!. Figure 2~c! shows the first
return map of the data~a section through the phase space
the system!. The closed loop indicates correlations of o
pulse to the next, and shows that the trajectory in ph
space moves on a torus. The precise depth and frequen
modulation vary among quasiperiodic regimes, depending
the prism insertion and pump power. As pump power a
prism insertion are further increased, the quasiperio
modulations suddenly snap into an aperiodic regime and
rf spectrum significantly broadens, indicating the possibi
of chaos~Fig. 3!. In this regime the first return map shows n
discernable structure. Finally, as the prism insertion is f
ther increased, the laser resumes quasiperiodic and
mately period-1 oscillation. A summary of the pump pow
vs prism insertion phase diagram is shown in Fig. 4.

It should be noted that the data in Figs. 2 and 3 show b
slow modulation~at 1.8 MHz in Fig. 2! and a much faste
period-3 subharmonic at 30 MHz. It is the slow modulati
which is characteristic of transitions through chaos. T
period-3 subharmonic is due to coupling of multiple tran
verse modes, and is quite independent of the slow mod
tion. It is a common feature at high pump powers, where
aperture provided by the pump beam profile is not suffici
to suppress a small amount of lasing in higher-order tra
verse modes@8,9#.

FIG. 3. Data measured in the chaotic regime.~a! Pulse train,~b!
rf spectrum, and~c! first return map~arbitrary units!.
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Although a broadened rf spectrum and aperiodic osci
scope trace are necessary for chaos, they are not suffic
Stochastic noise also has both of these features, and a ca
analysis of the data is nesessary to determine whether d
ministic chaos is, in fact, present. Our analysis starts with
reconstruction of a pseudo phase space from the o
dimensional time series data via the delay-coordinate te
nique@14#. The choice of delay coordinate is made using t
linear and nonlinear correlation functions. We then use
combination of Grassberger-Procaccia analysis~GPA! and
false nearest-neighbors~FNN! analysis to obtain the correla
tion and embedding dimensions for the data. These
analyses distinguish clearly between random noise~which is
very high dimensional! and low-dimensional, deterministi
chaos. In the GPA the correlation dimensionD2 is calculated
as a function of the embedding dimensionE. It is expected
that, for low-dimensional chaotic data,D2(E) converges to
D2 of the underlying attractor, while for white noiseD2 in-
creases linearly with unity slope. Figure 5~a! shows the re-
sults of a GPA of the aperiodic pulse train shown in Fig.
Here D2(E) clearly converges, indicating that the data a
not merely white noise. However, the GPA is sensitive
linear as well as nonlinear correlations; thus a further ch
must be performed to ensure that colored noise is not res
sible for the aperiodicity. It was pointed out in@15# that a
comparison with so-called ‘‘surrogate’’ data, which have t
same linear correlations as the measured data, can pro
such a check. The surrogate data are produced by Fo
transforming the original data, randomizing the phases,
then reversing the Fourier transform. A comparison of
GPA analysis of the surrogate data with the original@Fig.
5~a!# clearly shows convergence in the experimental d
which is absent in the surrogate. Thus we confirm that
data are indeed generated by a nonlinear, low dimensio
deterministic chaos. The embedding dimension of the att
tor can be estimated using the FNN technique, in which
number of neighbors in anE-dimensional reconstructe
phase space is compared with that inE11 dimensions. For
low-dimensional, deterministic chaos the number of fa

FIG. 4. Phase plot of period-1~white!, quasiperiodic~grey!, and
chaotic~black! regimes as a function of pump power and inserti
of prism 2. Lines within quasiperiodic region indicate transitio
between different modulation frequencies.
3-3
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S. R. BOLTON AND M. R. ACTON PHYSICAL REVIEW A62 063803
neighbors should fall rapidly to zero at a relatively sm
value ofE. For high-dimensional chaos and for random no
the FNN will level off at a nonzero value, and may even r
again as E is increased. As shown in Fig. 5~b!, the FNN
analysis of our chaotic data set gives an embedding dim
sion of approximately 4.

Our analysis of the time series data indicates that the l
is undergoing a quasiperiodic route to low-dimensio
chaos. To further understand the physics driving these
namics, we study the optical spectrum and temporal auto
relation of the pulses, using both time-averaged and pu
resolved techniques, and compare these with the results
simulation. These results are presented in the next two
tions.

IV. TEMPORAL AND SPECTRAL MEASUREMENTS

Autocorrelations were performed to measure the chan
in average pulsewidth as the laser moved from period
through quasiperiodicity and chaos. As shown in Fig.
these indicate a decrease in pulse width as the prism inse
is increased and the laser moves through quasiperiodi

FIG. 5. Statistical analysis of chaotic data set shown in Fig
~a! Grassberger-Procaccia analysis of true data~squares! and surro-
gate data~circles!. ~b! False nearest-neighbor analysis.
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and a minimum pulse width in the chaotic regime. As t
prism insertion is further increased and the chaos gives
to quasiperiodicity and then P1, the pulses lengthen rapi
Further increasing the prism insertion causes the laser to
mode locking.

The decrease in pulse width with increasing prism ins
tion can be understood from solitonic pulse shaping,
which the positive chirp generated by self-phase modula
is compensated by a negative chirp from negative GVD. I
tially, as the prism insertion is increased, the net nega
GVD of the cavity is decreased, and the total cavity GV
goes toward zero. The solitonic model gives for the pu
width ts of an ideal soliton

ts5
3.53uDu

fU
, ~1!

HereuDu is the GVD in fs2 andf gives the round trip phase
shift per unit power (W21) in the Kerr medium@16#. In real
lasers this expression becomes inaccurate asuDu goes to
zero, as factors not included in the solitonic approximat
become significant.

The evolution of the temporal pulse width shown in Fig
is thus consistent with a crossing of the zero GVD point in
near the chaotic regime. Beyond this point, any further
crease of the prism insertion brings the cavity into sligh
positive total GVD, as observed in the rapid increase of
pulse width measured beyond the chaotic regime. For
positive GVD solitonic pulses are not possible, as the ch
induced by self-phase modulation is uncompensated
Measurements of optical spectra are consistent with the
tocorrelations, showing strong spectral broadening of
pulses as the prism insertion is increased, with a maxim
spectral breadth ofDl'60 nm in the chaotic regime. As th
prism insertion is further increased, the spectral width
mains essentially unchanged, although the temporal widt
the pulses increases. This is consistent with the increas
chirp expected in the regime of slightly positive net cav
GVD, and is confirmed by interferometric autocorreclatio
which show a strong, nonlinear chirp for the largest pris
insertions.

.

FIG. 6. Pulse width as measured from autocorrelation, as a fu
tion of the insertion of prism 2. Cross-hatched region correspo
to chaotic dynamics.
3-4
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QUASIPERIODIC ROUTE TO CHAOS IN THE KERR- . . . PHYSICAL REVIEW A 62 063803
Although the pulse shaping associated with net nega
GVD and solitary pulses certainly gives the most stable
eration of the KLM laser@16,17#, it is also clear that, for
sufficiently strong self-amplitude modulation provided
the Kerr lens, pulsing can continue to be energetically fav
able through the zero GVD point@18#. Our data indicate tha
the laser undergoes a transition through chaos at high in
cavity powers near zero GVD, when the pulses become v
short. These circumstances combine to give high trans
intensity, and thus strong nonlinearity due to self-pha
modulation and self-focusing. Once the zero GVD point
crossed and the pulses start to lengthen again, the tran
intensity rapidly drops. The self-phase modulation and s
focusing weaken, and the laser moves out of the cha
regime@19#.

V. SIMULATIONS

We compare our data with the results of a model based
the 434 matrix formalism for temporal and spatial propag
tion of Gaussian pulses@20,21#. The technique is similar to
that used by Martinez and Chilla and by Hnilo and Mario
@10,22–24# for studies of the self-mode-locking and se
starting mechanisms in KLM lasers. Like the famili
ABCD matrices which describe spatial propagation
beams, the 434 formalism can handle up to quadratic vari
tions in phase in the spatial and temporal evolution of
fields. The model has two important limitations. First, t
formalism requires Gaussian beams. It cannot accurately
resent either spatially non-Gaussian beams~such as those
with higher-order transverse modes! or beams which are
strongly reshaped in time~such as those observed in th
APM laser!. Second, the model cannot give a full descripti
of self-phase modulation, since the approximation of
quadratic phase variation limits the formalism to linea
chirped beams. The self-phase modulation of a Gaus
beam,I 5e2gt2, yields a time-dependent frequency~chirp!
of the form

v5v01
2pn2L

l

]I ~ t !

]t
5v01

4pgn2L

l
I 0te2gt2. ~2!

Such a chirp is only linear near the peak of the pulse, wh
t2!1/g. Despite these difficulties, the formalism we ha
adopted has a number of advantages. Most important, i
lows for proper coupling of the temporal and spatial evo
tion of the pulses within a formalism simple enough to
numerically tractable. As discussed below, our experime
indicate that the approximation of Gaussian beams is ap
priate for our experimental regime. We will not repeat t
details of the matrix formalism here, as they are given
previous work@22,23#. The essentials of the model are
follows. The electric field of the pulse is described by

E~r ,t !5E0e2 ikr 2/2qe2 ikt2/2p, ~3!

where
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R
2

ihl

ps2
~4!

and

1

p
5

1

k

]2f

]t2
2

ihl

pt2
~5!

describe the spatial and temporal complex beam parame
repsectively. HereR is the phase-front radius of curvature,h
the refractive index,l the center wavelength, andk the cen-
ter wave number of the pulse.U describes the pulse energ
t the pulse width,s the beam size, and]2f/]t2 the pulse
chirp. Each optical element of the system can be written a
four-by-four matrix. In our case, each matrix separates i
232 diagonal blocks, as

M5F A B 0 0

C D 0 0

0 0 K I

0 0 J L

G . ~6!

The ABCD submatrix is precisely that found in the sp
tial matrix formalism for Gaussian beams. Propagation of
pulse through an optical element is achieved via the relat
ships between input and output pulse parameters,

qout5
Aqin1B

Cqin1D
, ~7!

pout5
Kpin1I /l

lJpin1L
. ~8!

The ABCD submatrix takes care of the focusing mirro
and free space propagation. In the Ti:sapphire crystal b
temporal and spatial reshaping must be considered, and
make several approximations to speed the computation. F
we neglect astigmatism and treat all elements as radi
symmetric. In addition, beam size variations within the cry
tal are taken into account by using, in the matrices for s
phase modulation and self-focusing, an effective interact
lengthz equal to the confocal parameter of the beam. W
these approximations, the Gaussian gain profile gives
imaginary part ofC,

Im~C!5
22l

psp
2 S g

11gD , ~9!

wheresp is the pump beam size in the crystal, andg is the
~saturated! gain coefficient. Self-focusing in the rod gives th
real part ofC,

Re~C!52
4n2Uz

ts4 S 2

p D 3/2

, ~10!

and self-phase modulation~SPM! gives a temporal propaga
tion coefficient
3-5
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J5
4n2Uz

lt3s2 S 2

p D 3/2

. ~11!

GVD ~found in both the gain crystal and the double pa
through the prism dispersion line! gives a temporal coeffi-
cient I 52pD. HereD gives the magnitude of the GVD,D
5]2f/]v2. Finally, although no explicit bandwidth filter i
placed in the cavity, it is appropriate to include some ba
width limitation in the model to reflect the finite bandwidth
of the gain and reflective optics. Treating these as a sin
Gaussian element colocated with the gain medium and h
ing transmission profileT(v)5e2av2/2, we obtain an imagi-
nary part ofI given by I 5 i2pa.

The procedure used in making the calculations is as
lows. For each optical element the appropriate 434 matrix
is created. A pulse with a particularq andp is seeded at the
mirror M3, and propagated one round trip through the pri
dispersion line. Before entering the gain medium the pu
parameters are recalculated and used to compute the v
of the SPM and self-focusing matrix elements. The pulse
then propagated through the gain crystal and the nondip
sive end of the cavity. This procedure is repeated for 20
iterations, with the pulse spatial and temporal parameters
plicitly recalculated before each pass through the crystal
each round trip the pulse energy, temporal and spa
widths, and chirp are saved as simulated time series dat
be compared with the experimental results. The simula
typically converges after less than 50 iterations. The par
eters used in our calculation weren251.431016 cm2/W,
a520 fs2, and D5550 fs2 per pass for the gain crysta
Pulses were seeded withU5100 nJ, t550 fs, s
51 mm, and zero chirp. Both prism GVD and gain we
varied to explore the dynamics of the system.

Results of the simulations are in good qualitative agr
ment with the experiment, showing a transition from stab
period-1 oscillation, through a series of quasiperiodic
gimes, and finally to a chaotic regime, as total cavity GV
becomes less negative. Figure 7 shows one example
quasiperiodic pulse train and the first return map of the tra
from the simulation at a pump power of 5 W and a pris
GVD of 21700 fs2. Figure 8 shows the data from a chao
regime, where the pump power is 5.5 W and the prism G
is 21200 fs2. The simulations give quasiperiodic modul
tion frequencies of the same order of magnitude
('1 –10 MHz) as those seen in experiment, and these
quencies depend on pump power and GVD as observed
perimentally.

As in the experiment, the simulations show a decreas
average pulse width as the laser moves toward chaos
decreasing negative GVD and a minimum average pu
width in the chaotic regime nearD50. The quasiperiodic
oscillations break into chaos when the pulses start to
proach the bandwidth limita. For 5.5 W pump power, the
chaotic regime persists over a range of aboutuDu
,100 fs2. WhenD.100 fs2, the laser returns to quasiper
odic oscillations with significantly longer pulses, as seen
the experiment.
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Not every aspect of the experimental data can be rep
duced by the simulations. The experiments showed sev
regimes in which period three modulations were presen
addition to slow quasiperiodicity. Period-3 modulations we
not present in the simulations. However, previous work@8,9#
has shown that very small amplitudes of higher-order spa
modes can give rise to these subharmonic oscillations. S
non-Gaussian modes are clearly not accounted for by
theory. However, throughout the transition to chaos a ne
Gaussian beam profile is measured experimentally. Thus
more than a few percent of the energy could be in the hig
order transverse modes, and the Gaussian approximatio
the simulations is quite good. The temporal shaping of
pulses is also only approximately represented within
model. In a KLM Ti:sapphire laser, the most importa
pulse-width limiting factors near zero GVD are the fini
gain and mirror bandwidths and third order dispersi
@16,17#. Although under many circumstances it is the thir
order dispersion which provides the strongest limits to pu
shortening@16,17,25#, this effect cannot be included in ou
current model. Instead, we model the pulse-width limitati
by a spectral bandwidth filter located at the position of t
gain crystal. This certainly cannot reproduce the details
the spectral and phase profiles of the pulse, but does we
reproducing the overall dynamical regimes.

The final question to be addressed concerns the pres
of temporal and spectral instabilities which may be asso

FIG. 7. Data from simulations, taken with pump power of 5
and prism dispersion of21700 fs2. ~a! Pulse train and~b! first
return map~arbitrary units!.
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ated with the energy instability presented here. Sev
groups have developed pulse resolved techniques for ex
ining the variations in spatial and temporal profile whi
may occur between pulses in a nonperiod-1 pulse t
@9,13#. The details of such an analysis are quite lengthy a
beyond the scope of the work presented here; however
will give a brief discussion of the general trends in our
sults. By measuring the pulse train on a small-area phot
ode placed in the wing of the beam profile, we observe s
nificant spatial modulations of the beam size in t
quasiperiodic and chaotic regimes. This is in agreement w
the theoretical work of Kalashnikovet al. @11# and also with
the experiments of Kovalskiet al. performed in a laser pro
ducing somewhat longer pulses@13#. In contrast with the
work of Kovalski et al., we also observe spectral variation
between pulses. Spectral measurements were performe
ing a 0.55-m single-grating monochrometer to select a 1-
slice of the beam spectral profile and project it onto a silic
photodiode with 1 ns response. The resulting pulse tra
were analyzed using the digital oscilloscope and rf spect
analyzer. An example of spectrally resolved pulse tra
measured in a quasiperiodic regime is shown in Fig. 9. T
amplitude of intensity modulations clearly varies with wav
length, indicating that different pulses within the quasipe
odic regime possess different spectral profiles, and t
likely also have different temporal profiles. Kovalskiet al.
@13# predicted that the increasing strength of SPM with d

FIG. 8. Data from simulations in chaotic regime, taken w
pump power of 5.5 W and prism dispersion of21200 fs2. ~a!
Pulse train and~b! first return map~arbitrary units!.
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creasing pulse width would cause temporal reshaping to
come important for pulses in the sub-50-fs regime, and
results are consistent with this prediction.

VI. CONCLUSIONS

We have observed a quasiperiodic route to lo
dimensional chaos in a Kerr-lens mode-locked Ti:sapph
laser producing'25-fs pulses. The transition to chaos tak
place near the point of zero GVD, at which the laser p
duces its shortest pulses. Although previous work had no
that KLM lasers tend to be unstable near zero GVD@16#, the
nature of the instability as low-dimensional chaos was
previously recognized. Nonlinear analysis of the experim
tal chaotic pulse trains indicates that the embedding dim
sion is approximately 4. The experimental results agree q
well with a simulation assuming pulses which are Gauss
in both space and time. Pulse-resolved measurements s
that the instability in the pulse energy is associated w
instabilities in both the temporal and spatial profiles of t
pulses.

ACKNOWLEDGMENTS

This work was supported by the NSF under Grants N
ECS-9805888 and No. PHY-9724246, and by a Cottrell C
lege Science Award from the Research Corporation.

FIG. 9. Pulse trains measured over a 1-nm bandwidth in
quasiperiodic regime.~a! Centered at 790 nm and~b! centered at
770 nm.
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