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We consider a model for a Kerr medium in a planar resonator, which takes into account the vectorial
character of the radiation field. We analyze the spatial behavior of quantum fluctuations around a steady state,
with a roll-pattern configuration in the beam cross section, using a Langevin treatment based on the Wigner
representation. The spatial distribution of the quantum fluctuations around the roll pattern is dominated by the
neutral(or Goldstong mode, corresponding to rigid spatial displacements of the pattern. The spatial configu-
ration of the field immediately outside the cavity input-output mirror depends on the time window over which
fluctuations are averaged: only when the time window is on the order of the cavity lifetime the output field
fluctuations are qualitatively similar to that of the intracavity field. The quantum correlations among the fields
in play, as described by the full multimode model, turn out to be in good agreement with those predicted by a
simple three-mode model.

PACS numbgs): 42.50.Lc, 42.50.Dv, 42.50.Ct, 42.65.Sf

[. INTRODUCTION describing all the relevant spatial features on any scale of
interest.

It is by now well known[1] that nonlinear optical patterns ~ The main body of our calculations concerns the direct
display deep quantum aspects that arise essentially from trenalysis of quantum fluctuations around an inhomogeneous
guantum entanglement or quantum correlation of the spatiabll-shaped stationary state, by linearization around this
modes that generate the patt¢®]. Such quantum aspects steady state. By using the Wigner representation, we de-
are reviewed in Ref$1b, 3], and arise both above and below scribe the dynamics of quantum fluctuations by means of a
the threshold of the instability that creates the pattern. In theet of linearized Langevin equations. We also study the be-
above threshold case, the quantum features have been stdwpvior of the whole radiation field, without splitting it into
ied almost exclusively for the simplest structure, i.e., the rolithe sum of a semiclassical stationary value and of the fluc-
(or Stnpe pattern’ and using three-mode mod@_s_?] that tuations around it. This is obtained by Using, again, the
allow for an analytical calculation of the relevant spectra. AWigner representation. In this case the time evolution equa-
more extended literature concerns the below threshold casion for the Wigner functional of the radiation field also in-
basically devoted to the analysis of theantum imagegen- (;IUQes terms with third-order derivatives; however, in the
erated by quantum fluctuatiotisee, e.g., Ref§2,8—19). In limit of large photon numbers one can argue that these.terms
these papers the treatment is carried out analytically by ta can be neglected, a_md one 1S Ieft_ W'th an approximate
ing into account the whole infinite set of transverse cavity okker-Planck equation with a positive-definite diffusion

modes or, equivalently, by using models in which the radia_mqehtgg,onesquwalent to a set of classical-looking Langevin

tion_ field_displays full dependence on the continuous .spat.ia? The continuous model offers the possibility of studying
variable in the planes transverse with respect to the dlrect|oging|e stochastic realizatiorisnapshotsof the dynamics of
of propagation. Also cavityless configurations have beefne”fictuations of the entire field, while the three-mode
consideredsee, e.g., Ref§13-18). ~ model provides a crudely simplified description to this pur-
In this paper we will treat the above threshold case usingose. For example, the three-mode model predicts that, under
a continuous model, i.e., avoiding any restriction to a re-conditions of translational symmetry, the stripe pattern un-
duced number of spatial modes. This can be done by adapgergoes random rigid displacements to the left or to the right
ing the Langevin treatment of quantum fluctuations and opin the direction orthogonal to the stripes. The pattern main-
tical patterns introduced in Ref10]. A first advantage of tains a precise orientation, which is determined by an initial
this treatment is the possibility of testing the limit of validity fluctuation, but has no definite equilibrium position in the
of the three-mode model, by using a model that is capable dfansverse plane, which gives rise to the random rigid dis-
placements, in which the roll position is governed by a dif-
fusive motion([5], see also Ref[19]). The result of this
*Permanent address: Departamento tgic) Facultad de Cien- process is to wash out the roll pattern itself, if it is observed
cias Exactas y Naturales, Universidad Nacional de Mar del Platapn a time scale much longer than the diffusion time. The
Funes 3350, 7600 Mar del Plata, Argentina. continuous model allows us for investigating the dynamics
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of the roll pattern without introducing the oversimplification W,
of the three-mode theory. However, the drawback is that we
have to numerically simulate the Langevin equations, even in
the linearized case, because the coefficients of the linearize
equations are space dependent since the stationary sta
around which linearization is performed is inhomogeneous.
Another goal of this paper is to describe the configuration "
of the field outside the cavity. In all the previous wddee,
e.g., Ref[10]) the Langevin equations were used to simulate
the behavior of the intracavity field only. Here we focus,
instead, on the output field, immediately beyond the input- /
output mirror of the cavity. The output field arises from the /' 3
interference of the intracavity field transmitted by the cavity
input-output mirror and the input field reflected by the input-  FIG. 1. Ring cavity with a Kerr medium. Mirror 1 partially
output mirror. Since the input field is assumed to have whitetransmits the input beam with frequeney. Mirrors 2, 3, and 4 are
noise fluctuations, while the spectral bandwidithtemporal ~ completely reflecting.
frequenciesof the intracavity field is determined by the cav-
ity linewidth, the configuration of the output field depends on Il. QUANTUM FORMULATION OF A VECTORIAL
the time scale over which it is observed. KERR RESONATOR
The system studied in this paper consists of a cavity con- ) S ) o )
taining a Kerr medium and driven by a coherent, monochro- We consider a one-directional ring cavitig. 1) with
matic, and linearly polarized plane-wave field. The modelfour flat mirrors, one of which has a high, but finite reflec-
[20,21] includes the vectorial character of the field, general-iVity, and the others are fully (eflectlng. In.S|de the cavity is
izing the scalar model of Refl22]. Our analysis concerns the placed a sample of an isotropic Kerr medium, characterized
self-defocusing case, in which one has the formation of a rolpy a third-order susceptibility tensog(} . The cavity is
pattern orthogonally polarized to the pump at the instabilitydriven by a coherent, plane-wave, monochromatic and sta-
threshold[7,21]. In Ref.[7], by using a three-mode model tionary field, with a uniform distribution in the transverse
the anticorrelation between the quantum fluctuations of th@lane and frequency,. The input field is linearly polarized,
intensity of the plane-wave pump and the sum of the intenfor definiteness along the direction, so that its circularly
sities of the two tilted waves that generate the pattern wapolarized components are equl = E,_ = E,.
analyzed. More precisely, a quantum-nondemolii@ND) We consider the slowly varying envelope and paraxial
scheme that uses the tilted waves aseterto measure the approximation, and the cavity mean-field ling3], that al-
intensity fluctuation of the pump, was formulated. In thislows to neglect the dependence of the field on the longitudi-
paper we will compare the prediction of the three-modenal coordinatez along the sample. Under these conditions
model for the QND coefficients, with those of the completeonly one longitudinal cavity mode is relevant, precisely the
multimode model. We will show the comparison also for theone corresponding to the longitudinal cavity resonamge
correlation between the two meter beafns., the two twin  closest towo. We denote byA, (x,t) andA_(x,t) the intra-
tilted waves. cavity field envelope operators corresponding to the right
The paper is organized as follows: In Sec. Il we describeand left circularly polarized components. These operators de-
the quantum model and the evolution equation for the quapend on the transverse space coordixatéx,y) and timet,

siprobability distributions of the-number fields associated and opey standard equal-time commutation relations
with the quantum operators. In Sec. lll we derive both the

nonlinear Langevin equations for the dynamical evolution of

the intracavity fields, and the linearized equations for the [AX,1),Al (X", 1)]=8:8(x—X") 1)
dynamics of the quantum fluctuations around the inhomoge- R b '

neous steady state. The result of the numerical integration of

these equations is discussed in Sec. IV. The relation betwegghere the indexek j stand for+,—. By adopting a picture

the field inside the cavity and the output field is addressed ify, which the fast oscillation at the carrier frequeney is

Sec. V, where we introduce a way to avoid instantaneougliminated, the reversible part of the dynamics of the intra-
divergences of th_e output field. In Sec._VI we calculate th%avity field is described by the following Hamiltonidi],
quantum correlation between thepolarized homogeneus that represents a generalization to the vectorial case of the

mode and they-polarized tilted wave modes in the output pne introduced in Ref4] for a scalar Kerr medium:
field as well as the correlation between the two tilted waves

and we discuss the applicability of this scheme for QND

measurements. We also present the comparison of our results H=Hg+Heyt Hint- (2
with the simplified three-mode model used in REf]. In

Sec. VIl we give some concluding remarks. The paper also

includes two appendices, where we give several coefficientsl, describes the free propagation of the intracavity field in
corresponding to equations used in the main text. the paraxial approximation:
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o a1 ) - The Liouvillian A accounts for dissipation through the par-
Ho:ﬁKf d*X[AL (X)(n6—aV)AL(x) tially reflecting mirror, and is given by

+AL(X)(n6-avA)A_(x)], (3 L . . )
Ap=K X | d3{[A(X),pAT () 1+ [A(X)p, Al (X1}

whereK=cT/(2L£) is the cavity linewidth, withc being the T )
speed of light,T the transmittivity coefficient of the input-
output mirror, andC the total cavity lengthy 6 is the cavity
detuning parametery is the sign of the Kerr nonlinearity Using the quantum-to-classical correspondef@&27], Eq.
(»=1 for the self-focusing case angl=—1 for the self- (6) can be converted into an equation of motion for qua-
defocusing case V2 is the two-dimensional transverse La- siprobability distributions in the classical phase space of the
placian that models the effect of diffraction in the paraxialsystem; these are functionals of thewumber fieldsa.. (X)
approximation; the parametaihas the dimension of an area, associated with the operatoAs(i). In order to obtai_n this
so thatlp= a~ VLA /(27 T), with X being the wavelength, equation, it is enough to formally substitute products of field
defines the length scale for transvgrse pattern for_mat|0n. operators and the density operator by suitable operations

Hex, models the coherent pumping by a classical planeger the distribution functionals according to the following
wave driving field of amplitude,: scheme of correspondence relatih6]:

o= 1K, [ A5IAL ()~ A, (0)+A (0 -A_ ()],

pAT ()Z)@ a*()Z)-Fl;S 0 W, ,a% ,a_,a*)
(4) - = 2 Sa.(x)) ° AR
where, without any loss of generalitiy has been taken real.
H;,¢ is the interaction Hamiltonian that describes the cou- A+ R pe| at () - 1+s 6 Wya, .a* a_.a*)
pling due to the Kerr nonlinearity: £\ P - 2 Sa.(x) o T TTTTn
S| & > N > >
Hine=— #iKg f dzx[g[AP(x)Ai(xHA*2<x>A2<x>] lts 5
pA+(X)<:>(a+(X)_T5a*(x))WS(a+1a+va!a)i
+B[A1<i>Ai<i>A+<i>A_<i>J], 5 )
where the coupling constagtis related to the element3), A.(X)pe a+(§)+—1_s 0 — |Wy(a, ,a% ,a_,a%).
of the susceptibility tensor. Constarisand 8 are also re- - - 2 Sa*(x)

lated to the susceptibility tensor componep2gl]. For an (8
isotropic medium they satisfg+ 8=2. We will use typical
values for a liquid Kerr medium:ia=1/4 and B=7/4

[20,21,25. Here the parameter=2s= —1 defines the choice of the rep-
The intracavity dynamics are described by a master equdesentation, namelys=+1 corresponds to the Glauber-
tion for the reduced density operatorof the system: Sudarshar® distribution;s=0 to the WigneW distribution,

and s=—1 to the HusimiQ distribution. The symbols

ol 5at(§) stand for functional derivatives.

ap 1 The evolution equation for the quasiprobability distribu-

= Hupl+ Ap. ©  fions is given by

4 4 2
oW(2y,25,23,2 - 1) o .
s(21.22,25 4):fd2xK > | —=q +%f 2% ¥ ——=———=Dy(x,x")
dt i=1 | 6z(x) i1=1 67/(x) 8z)(x")
4
+ lf dzi’f d2x” = = — T (XX X") [We(Z1,20,23,24), 9
: M;:l 5200 52,00 52,07 il ( ) [Wy(21,25,23,24) 9)

where @,,2,,23,24) = (a4 ,a% ,a_,a”). The coefficient®Q;, Dj;, andT;; are given in Appendix A.
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I1l. DERIVATION OF THE LANGEVIN EQUATIONS R Y- 1 L
The time evolution equatiof®) derived in the previous (EDE ) 2ng 8 Sx=x)8(t-t7), (12
section is of little practical use, both from an analytical and
computational point of view; for example in therepresen-
tation (s= —1) the diffusion matrix is not positive definite,
while in the Wigner representatiors€0) the third-order
derivative terms do not vanish. In order to derive a moreBY letting ns—<, and hence dropping the stochastic noise
manageable equation we have to introduce some approximirmsé;, one recovers the classical time evolutionﬁequations
tion. The standard schentgsee, e.g., Ref27], Sec. IV in-  of the model[20,21], for the macroscopic fieldg . (x,t):
volves an expansion of E¢) in terms of a parameter mea-
suring the inverssystem sizen this way one obtains at the

(E(X,DE(X',1'))=0. (13)

same time the time evolution equations for classical field a—::—(1+in0)Ei+iV2Ei+Eo
amplitudes, and those describing the dynamics of fluctua-
tions around the classical macroscopic fields. This is equiva- +in[a|E.|?+B|E|YE. . (14)

lent to the linearization procedure outlined in the second part
of this section.

In our model the parameter ! plays the role of a scaling
factor for the photon number; precisaly=ag ! represents
the intracavity saturation photon number on the characteristi

Thus Eq.(10) can be as well interpreted as the classical
nonlinear equations of the model, with a Gaussian noise term
'Eldded. The derivation of these equations from a quantum

areaa in the transverse plane, and typically is a very Iargemo.del adds to this picture the a'.“p"t“de of the Gaus_slan
noise, and allows us to interpret it as vacuum fluctuations

number. By reformulating Eq9) in terms of scaled fields, entering the input-output cavity mirror,

z=\gz, itis readily seen that the second-order derivative |, the rest of this section we will be interested in describ-
termzs scal_e ag, while th_e thlrd-order derivative terms scale ing the dynamics of small quantum fluctuations around the
asg’ (the first-order derivative has terms of orgfrandg).  ¢lassical mean value, whose dynamics are described by Eq.
In the case of the Wigner representation, It is possible 114y Rather than deriving this dynamics from the inverse
neglect the thlrd-orde_r derlvatlveéerderg_ ) resu!tlng inan  gystem size expansion of E@), we will use an equivalent
Fokker—PIanck equation that has a positive definite d'ffus"?rbrocedure, which amounts to expanding the master equation
matrix [28]. From the Fokker-Planck equation we can obtaing) in a power series of fluctuation operators. To this purpose

a equivalent set of Langevin equations. Once we have the separate the field operators into two parts
Langevin equation a further approximation is possible: the

drift Qq, in terms of the scaled fields, takes the form - - R

Qi=[—(L+in0) +ign(a+pl2)(s—1)+iaV?]z, + E, AL (XD =F.(X)+ AL(X1), (15
+inlaz1z,+ Bz324]2; where the termign(a+ B/2)(s

—1) is of higher order irg and can be neglected. ProceedingyhereF , (x) arec-number fields, representing macroscopic,

in a similar way for all the drift terms, the set of Langevin . . ' - .

equations, where we keep terms up to org¥f (the noise classical stationary fields, anth...(x,t) are fluctuation op-

terms, finally read: erators. Next, we expand both the Hamiltoni@) and the
' y ' Liouvillian operator(7) in power series of the fluctuation

dot operatorssA . (X,t):

e —(1+in0)a++iVia.+Ey+in[a|a|?
H=HO+HO+H@ 4. .. (16)
+Blaz|Pa.+2é.(x1), (10
A=AO+ADL AG) (17)
where, in order to simplify the notation, we have introduced

the scaled variables: The zero-order termd(®, A (®) do not give any contribution

to the dynamics; the first-order contributions give rise in the

x=xl\a, master equation to terms that vanish identically when the
~ c-number fieIdsF:(i) are taken as the steady-state solution
t=Kt, of the classical time evolution equatiofisd).
(12) The second-order term of the Hamiltonian is explicitly
~ iven b
Eo= \/an- g Y
a=\gq;, ng’=hKJ d?x SAT(X)(n6—aV?) sAi(X),
i=+,—
and omitted the tildes. Her&t(i,t) are complex Gaussian @
random variables of zero mean and variance given by Hexi=0,
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a . . Higher order terms in the Hamiltonian are neglected, on the
H&=—nh KQJ dZXE _72 [SAZ(X)F2(x) basis of a small quantum noise approximation, which is valid
C . e . . _ for a macroscopic system, i.e., for large saturation photon
+ SATZ(X)F2(X) +4|F; (%) [26A] (X) 5A((X) ] numberng, not too close to critical points. The expression
L BIFL (OF_ () 8AL (%) 8AT (%) for the Liouvillian A® is obtained by simply replacing
ok ant 2 - A (X) by SAL(X) in Eq. (7).
+FL(OFZ(x) AL (X)6A_(x)+H.c] Next we apply to the approximated master equation the
+ B[ F 4 (x)|25AT (X) SA_(X) correspondence relation®), with the field operators re-
- - - placed by the fluctuation operators. In the Wigner represen-
+[F_(x)[26AL(X) A, (X)]. tation we obtain the following Fokker-Planck equation:

4 2
1J d2x’ > 5—D--(§§') Wo(21,25,23,24), (18
=1 sz (x)ezy(xy O T

MWo(21,27,23,24) :
at _J {21( 9)Q'

where now ¢;,2,,25,25)=(Aa, ,Aa* ,Aa_,Aa*) are IV. INTEGRATION OF LANGEVIN EQUATIONS

the c-number fields corresponding to the fluctuation opera-
tors. The drift and diffusion term<; andD;) are given in
Appendix B. As it is well-known, for a quadratic Hamil-
tonian, the diffusion matrix of the Fokker-Planck equation in
the Wigner representation is positive definite. This condition
is not necessarily fulfilled in other representations. A positive
definite diffusion matrix allows us to interprefe, and
A« _ as classical stochastic processes, described by a set of
Langevin equations, equivalent to E@8), that are given by

We consider the situation described by the classical equa-
tions (14) in which an instability leads to the formation of a
stripe pattern in the transverse cross section of the intracavity
field. For a linearly polarized inplg,, equationg14) admit

Na stationary homogeneous solution, linearly polarized in the
same direction than the pump, and given by

Est Est Est |EO|2:|ESt|2[1+(2|ESt|2_0)2]_ (21)

A a. (X,t) In the self-defocusing case=—1, the steady staté?l)

={—(1+in®) +iV2+ig[2alF.(x)|? becomes unstable when the pump intensity is increased to a
ot - value such thatEs|?>|ES|?=1/(8— a)=2/3 [20,21]. For
2 anx-polarized pump field, and immediately above this insta-
+BIF - (X) 2t A e (X,1) bility threshold, ay-polarized stripe pattern emerges, charac-
+i n[aFi(i)Aai(it) terized by the critical transverse wave vector
+BF L (X)FE(X)Aas(X,t) ke=\0—al(1-a), (22)
+BF L (OF=(0Aak (x,H)]+ V2Aall(x1). while thex component remains basically homogenef84.
(190  This is usually called a polarization pattern since it emerges
as a consequence of a polarization instability.
In this equation the scaling is the same as in Edq), for The classical field§ . (x) describing these stripe patterns
what concerns time, space, and the stationary classical field@n be obtained by numerical integrati@i] of the dynami-
while fluctuations are scaled wit{ia. cal equation(14). The orientation of the stripes is selected by

he initial condition. We choose an initial condition that fa-
vors the formation of vertical stripes. These fields obtained
numerically enter as space-dependent coefficients in the lin-
earized Langevin equatiori$9). Fluctuations are calculated
from these stochastic equations, which are numerically inte-
o o o grated using a pseudospectral method in Fourier space with
(Aa"(x,t)Aaf (X' ,t"))= 3 & 8(x—Xx") 8(t—t"), periodic boundary conditions. The method is first-order ac-
(20) curate in time[32]. Note that Eq.(19) describes the linear-

ized fluctuations around a fixed stationary solution.

A main qualitative aspect of the fluctuations calculated

numerically in this way is the following. In a single stochas-
where the subindices,j stand for the circularly polarized tic realization of equationg19), the fluctuations of the
componentst, —. x-polarized field component appear homogeneously distrib-

The stochastic terma «'" (x t) can again be interpreted t
as vacuum fluctuations entering the cavity through the cou-
pling mirror[29], and are described by Gaussian white noise,
with zero average and correlations given by

(Aa"(x,H)Aa]"(x",1"))=0,
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FIG. 2. Upper plots: distribution in the transverse plane of the
real part of they-polarized fluctuations for two different realizations
in a stationary regimeKt~10%. For these two realizations the
patterns of fluctuations are shifted half of the wavelength one with  FIG. 3. Fluctuations ¥-polarized componehtin a 1D system.
respect to the other. Bottom plots: The solid line shows the crossiorizontal axis: transverse spatial coordinate; vertical axis: time.
section of the real part of the scalgepolarized fluctuations ay As time goes on a jump of half a period takes place in the position
=10. For comparison, the dotted line shows the real part of thef the fluctuating stripes in the left side of the figure, as evidenced
scaledy-polarized stationary solution. We note that, as explained inby the white frames. Parameters &g=0.919,0=1. The integra-
the text, the scaling of the stationary solution and the fluctuations ision time isKt=300 (60 000 integration time stépand the trans-
different. The transverse system size is in scaled uni#sl28  verse system size is=256X Ax.

X Ax where the integration discretization &x=0.6012. We have
taken#=1, E;=0.919=1.07E;.

vectorV ¢i°()2) are eigenfunctions d¥l with zero eigenvalue.

uted in space; this follows from the spatial homogeneity ofFor example, in D=2 these two eigenfunctions are
the x-polarized component of the stationary classical solu{a,43, ... .aR) and @47, ....3,43). These neutrally
tion. However, fluctuations in thg-polarized component stable modes of the linearized dynamics are the Goldstone
tend to be distributed in space with a stripe structure, similamodes. When noise is present, fluctuations around a stable
to that of the corresponding steady-state solution, but shiftegtationary solution are damped, but Goldstone modes are ex-
to the left or to the right by a quarter-period, as shown in Fig.cited without cost and they dominate the spatial structure of
2. the fluctuations. For a stripe pattern the Goldstone mode is

The spatial structure of the field fluctuations can be ungiven by the spatial gradient of the stripe pattern. This is
derstood in terms of a Goldstone md@s3] as we explain in  another stripe pattern shifted in space by a quarter of the
the following. Very generally, consider a set of fielgx,t)  spatial period. The Goldstone mode is associated with rigid

that obey dynamical equations of the form spatial displacements of the stationary pattern in the direc-
tion perpendicular to the stripes. Such rigid displacements

A (X,t) are generated by fluctuations that change the valug,ahat
—r RV, ), (23 is, homogeneous fluctuations in a global and arbitrary phase

of the stripe pattern. The spatial structure of the fluctuations

whereF; is a general functional o¥ and the fieldalxi(i,t), gszﬁsfﬁg ;2 ![:r:g é(;lzfé?g;sea;nr;\g?mum of fluctuations corre-

and such that they admit a stationary conflgurat_qk?mx). The stripe pattern of the fluctuations is shifted with re-
T_he I|n_ear_analy5|s of fluctuat|pns arou_nd this stationary CoNgpect to the underlying steady-state stripe pattern a quarter of
figuration is made by calculating the eigenvalues of the marne spatial period either to the right or to the left. Over large
trix operator time scales, fluctuations in a region of the plane can in prin-
ciple make a half-period spontaneous jump between those
= [ﬁ (24) two configurations. This implies a spontaneous change in the
J 5{/,1,

direction of displacement of the steady-state pattern, to
which fluctuations are associated. We have visualized this
- - effect in a one-dimensiondlLD) system, described by the

If the system is translationally invariant(x+Xo) is also @8  same dynamics. The 1D stationary pattern shows a regular
stationary configuration for any fixext,. From this condi- modulation along the spatial coordinate, similar to a section

tion, and in a system with spatial dimensionalidy it fol- of the two-dimensional pattern perpendicular to the direction

lows immediately that th® independent components of the of the stripes. Again, the spatial structure of the fluctuations

vi=v0
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'

as time goes on. This is precisely the diffusive motion of the
roll pattern predicted in Ref5]. The stripe on the bottom of
Fig. 4 shows the time average of the pattern, which confirms
that the roll pattern is washed out by this motion, if the
average is made over time intervals large with respect to the
diffusion time. Figure 4 confirms also that the fluctuations
associated with the Goldstone mode, and leading to rigid
spatial displacements to the left and to the right randomly,
are undamped. Being more precise, the motion of the pat-
terns is not strictly rigid. The reason for this is that in a large
continuous system there are long-wavelength and weakly
damped modes, connected with the Goldstone mode, that are
easily excited by noisésoft mode$ [33]. These continuous
band of modes do not come into play when a continuous
system is described in an approximation consisting of a few
discrete modes. These soft modes are responsible for the
local deformations of the fluctuating pattern. They are also
known to destroy long-range order in 1D systems in the limit
= of systems of infinite sizE35]. An example of this decaying
correlations in a prototype modéBwift-Hohenberg equa-
_ tions of pattern formation is discussed in RéB6]. Our
numerical simulations are made for rather large optical sys-
FIG. 4. Spatiotemporal evolution of the real part of theolar- ~ tems. Still they are far from the limit of infinite size consid-
ized component of the field, using the nonlinear Langevin equationgred from a statistical physics point of view. In order to see
(10 in a 1D system. Horizontal axis: spatial transverse coordinatehow long-range order is destroyed, we need to consider a
vertical axis: time. We show 2000 snapshots of the transverse fieldystem with a sizé& much larger than the correlation length
distribution, taken every 400 time units (80 000 integration timel. To visualize this effect, we show in Fig. 5 the result of a
steps, in a lattice of 128 points. The stripe on the bottom shows thesimulation for a system which is 64 times larger than the one
time-averaged pattern. The noise strengthJ2/%is 0.02, and the  of Fig. 4. One observes domains of the system with a size
other parameters are as in Fig. 2. given by the correlation length<L, in which the pattern
drifts as a whole in a given direction, as it was the case in
reflects the corresponding Goldstone mode with right or leftFig. 4. However, the pattern moves locally in different direc-
displacements of the stationary pattern. We have plotted thigons giving a local drifting in opposite directions for differ-
time evolution of the spatial distribution of fluctuations in ent regions of the system. The pattern is essentially coherent
Fig. 3. In this figure the two white frames evidence a portionin domains of the size df but there is no long-range order in
of the transverse section of the beam where, as time goes atle system as a whole.
a phase jump takes place. In 2D, and for relatively small systems, we observe
The random rigid motion of the stripe pattern in the 1D stripes that can be understood as a set of strongly coupled 1D
case can be shown explicitly by displaying the entire fieldpatterns. A zero wave number in the direction of the stripes
instead of the fluctuations of the field. This can be obtaineds strongly dominant. The field fluctuations are still governed
by numerically integrating the full nonlinear Langevin equa-and patterned by the Goldstone mode as shown in Fig. 2.
tions (10) for the field [34]. Figure 4 shows a stochastic However, phase jumps as the one described in Fig. 3 are very
realization, from which it can be clearly seen that the loca-unlikely during finite observation times. In addition, the
tion of the maxima and minima of the pattern move in spacdong-wavelength soft modes associated with the Goldstone

g

L7
-~ e

FIG. 5. Spatiotemporal evolution of the real part of thpolarized component of the field, in a large 1D system. The total system size
is L=8192x Ax and the total integration time is 10 000. Only one seventh of the total system is shown here. The correlation length of the
patternl is indicated. Other parameters are as in Fig. 4.
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modes are known to destroy long-range order in spatial di{
mension larger than 2. When excited by noise they soften the
order parameter, but while long-range order is completely|
lost ind=1, d=2 is the critical dimension with a logarith- |
mic divergence such that the periodicity is not totally lost §
[35].

V. FIELDS OUTSIDE THE CAVITY

In the framework of standard input-output formalism for o) & =
optical cavitied 37], the field immediately outside the cavity
coupling mirrorA%"! is linked to the intracavity field, and to FIG. 6. (a) Distribution in the transverse plane of thgolarized

the reflected input field\if by output field fluctuationgreal parj. The output field has been aver-
- aged over 0.5 time units, which corresponds to 100 integration time
Ag“t()z,t) _ \/_A ()Z t) —Ai“()_f 1), (25) steps. For comparison, the instantaneous real part of the fluctuations

of the field inside the cavity is shown {b). Parameters as in Fig. 2.

whoeirﬁ OustcalinginT[s?ne relations (11)] is such that gime t—n; where r<1 is the time step for integration.
(AZTALT) ((AZTAY)) represents the javerage number of rrom Eq.(27), the output field integrated over one time step,
photons crossing an areain a time K™~. Notice that the g

mean value of the input field is related to the pump ampli-
tude introduced in Eq4) by (A'i”):Eo/\/E. Hence, taking - (n+1)7
the mean value of Eq25) we have Aa%“,;(x)gf Aa2'(x,t)dt

nr

F(x0 = V2F (X)) ~Eo/\2. (29 -2 f " N e (R 0dt-Aa (X, (28

The same input-output relatio25) holds for the field fluc-

tuation operatorsA.. . whereAa'" (x) are the input field fluctuations, integrated
In the quasiclassical description of quantum fluctuationsyver one time step:
[29], also c-number fluctuations\ e (X,t) in the Wigner
. .. . -~ . . . N (n+1)7 o
representation have similar input-output relations: Aa'—;,n(x):f AN (K1)t 29)
nr
Aa%U(X,t)=V2A e, (X,H) — AaN(X,1), (27)
These are Gaussian random numbers of zero mean and cor-

where nowA 'f(x,t) are Gaussian stochastic processes that'ations

represent input vacuum fluctuations, and have correlations

given by Eq.(20). (Aa, (x)Aaf;“,(x ))== 5, JOX=X") B
Intracavity fluctuationsAat(i,t) can be simulated by

means of numerical integration of E¢L9). The problem (i)=(+.—)

arises with the input term a!"(x,t), because it is a Gauss- ' T

ian white noiseg correlated in time, so that its instantaneousfFrom Eq.(19) we have

value is ill defined. This implies that the instantaneous value

of the input and output fields is ill defined. A similar problem A o, (x,n7+s)=Aa. (x,n7)+ Q. (n7)s

is encountered when calculating the instantaneous frequency

during the switch on of a laser using a semiclassical model

that includes spontaneous emission white ng&3. A way

to give meaning to these fast fluctuating quantities is to av-

erage the fluctuations integrating in a time wind@®8,39. where Q. (Q_) correspond to the expressio®, (Qz)

In numerical simulations, the divergence is strictly avoidedgiven in Appendix B. Then, integrating both sides of Eq.
due to the fact that the time is discretized. However, it is(31) over a time step:

usually necessary to take very small time steps to preserve
the accuracy, so that large fluctuations will still be present. J(n+l)r 2

(30

nr+s L
+\/§f A (x,t)dt' +O(s*?), (31)
nr

This behavior can be regularized taking the average over Aa.(x,t)dt~Aa.(X,n7)7+ - Qx(n7)
several steps of integration that corresponds precisely to the

nr

integration of fluctuations in a time window. (n+1)r t L

We briefly discuss here how to perform a numerical real- + \/_f dtJ Aal(x,t")dt’.
ization of the output field. This requires the integration of
Eqg. (19) together with Eq.27). We consider a discretized (32

063801-8
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Substituting Eq(32) in Eq. (28), we have ) E R
A}’”‘(k,t)=JEe*'k'XAf”t(x,t). (37

Aa?"(x) 7+ n(X)

N T ,
—\/EAai’n(X)-l- EQi(nT)—i_ r
(33

We consider the operator

t 21 A Tout t
where terms of order higher than have been neglected. NiR (D)= f d7kA| "k, t)Aou(k v, (38)

7+ n(X) are defined as

that represents the number of photons with polarizgtiper

unit time over a regiorR of the far field. In general the

polarization could be circulafright or left) or linear (x or
(34) Y). As we did for the intracavity field&l5), we can separate

the stationary mean field from the fluctuations in the output-

As they are a linear combination of a Gaussian procgss,  cavity field,

are Gaussian random numbers with zero mean and correla- . . .

tions given by AUk, 1) =FU(Kk) + SA (K1), (39

R (n+1)7 t N X N
ni,n(x)=2f dtf Ad"(X,t)dt' —Aa? ().
nr

nr

(7 n(X) . (X)) = (373 72+ 37) 8, 8(X—X') Sy - where_F‘;Ut is given by Eq.(26). Neglecting second-order
(35)  terms in the field fluctuations

N toutpouty _ % out spout out o p Tout out o p Tout
The correlation between.. ,(x) and the input fluctuations is <AJ A ) Fi T OATH FPTOA T OATTOA T,

given by (40
we introduce the scaled photon fluctuations as,
T N
<77| n(X)Aa]*Ln, X,)>:§(T_ 1) 5ij5(x_x,)5nn’ . (36 R R R
Jdzk[FJ*O“t(k)ﬁA})”t(k,t)+H.c.]
In Fig. 6 we show a realization of the output field fluc- 5N}’F§“: R (41)
tuations averaged over 100 integration time stépss is _ -
100 out : . . d2k||:9ut(k)|2
(1/1007) 2,21 Aay ) which corresponds to a time window R j

of 0.5 time units. The output fluctuatiori§ig. 6(a)] are
qualitatively very similar to the intracavity fluctuatiofisig.  With this normalization, the squeezing spectra take the value

6(b)]. 1 for the shot-noise level.
The far-field intensity distributions are strongly peaked
VI. QUANTUM CORRELATIONS around k=0 (x-polarized componept and

Quantum fluctuations in the presence of a stripe pattern i =k (y-polarized componentWe are going to consider
they-polarized field have been already studied in this systeni1"€€ T€gionsRoy, Ry, and R,, around the homogeneous
using a three-mode approximatidi]. In this section we r_nodek 0 and the two pattern de@é_ and—K., respec-
make a comparison between the results of Ref.and the tively. When the size of each region is on the order of the
ones obtained using the continuous model presented in thiffraction lengthl, the whole peak is enclosed. We con-
paper. In particular, we want to check the conditions forsider thex-polarized photon fluctuations in the first region
using the Kerr cavity as a QND measurement device. We5N°.‘$; which for simplicity we will call SN3“*. In regions
consider arnx- polarlzed mput field that carries a S|gnal that R; and R, We consider thej po|ar|zed photon fluctuations
has to be measured with the smallest possible perturbatiogout= 5N° ! and SNSUt= 5N0ut Finally we also consider
The idea is to take advantage of the correlations between tl}ﬁ

e y- polarlzed photon fluctuatlons in the regioR,
pattern fluctuations and the homogeneous mode fluctuations out out out 5
[40] to perform an indirect measurement of the signal fluc-+ Rz, ON73,=6Nyg . . Notice that as|[Fj (ko)

tuations by measuring the fluctuations of the pattern modes- |F°u'(— ke)|? then 5N§T2—5N°“‘+ SN3''. In the QND

k. and — K, [7], which work as meter in the QND measure- measurements&NOUt is the outgoing signal while we are
ment. Herek =2m/\;, where\; is the wavelength that going to use&N‘l’itz as the meter.

characterizes the roll pattern near the instability threshold, The expression of the squeezing spectrum of the fluctua-
and is given by(22). In the far-field plane of thg-polarized  tions in any of these regions 42,43,

field, these two modes give rise to an intensity distribution

with two large maxima in symmetrical position. In the fol- Si(w)=(SNPUSNPYY (42
lowing we identify the far-field plane with the Fourier plane

(ky,ky) [41], and thus the field distribution in the far-field where the notatiox), means Fourier transform of the sym-
plane is given by the spatial Fourier transform of the fieldmetrized correlation, and it is defined, for some generic vari-
immediately outside the cavity: ablesW andz, as,
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1o ———————————

O
-4 -2 0 2 4 ©
w
FIG. 7. Conditional varianc¥(0|1+2) given by Eq.45). The 1.0 _ - _I_ - _ - _'_ - _ —]
solid line represents the three-modes model while the dots represent
the continuous model. Parameters= — 1 (self-defocusing cage 0.8F (b)
E,=0.919, andd=1.7.
0.6 ]
o A f
(WZ),= J_W(W(t)Z(O»Symne_""tdt, (43 0.4F ]
with 0.2¢ ]
<W(t)Z(0)>5ymm=<W(t)Z(0)+Z(0)W(t)>/2. (44) -4 =2 0 2 4
" . . w
The conditional variance dfij"' given a measurement on
NSYY, is given by, FIG. 8. Correlation<C, (a) andC,, (b) given by Eq.(47). The
solid lines represent the three-modes model while the dots represent
|<5N8“t5NgT2>w|2 the continuous model. Same parameters as in Fig. 7.
V(0|1+2)=Sy| 1— (45
SoS1+2

This is a measure of the correlations between the outgoin;_!)-he last equality comes from the fact that the input field

signal N3 and the outgoing meteKSU.,. Strong correla- Mean valuer'(k) has only contributions d=0. Since the

tions correspond to small values \6{0|1+2). input beam is in a coherent state, the fluctuations correspond
Additionally, we study how the fluctuations of the homo- 0 the shot-noise leve:dNg' oNg'),= 1. _ _

geneous mode are transferred from the input to the output of In order to perform a QND measurement of the input field

the cavity(the nondemolition character of the measurement fluctuationssNg' using the pattern fluctuationsN; >, as a

and also from the input to the pattern modascuracy of the ~meter, it is required tha?(0[1+2)<1 andCs+C,,>1.

measuremeit This information is given by the following Another quantity of intereginot related to the QND con-
normalized correlationg42], ditions), which is able to show the quantum nature of fluc-
tuations, is the correlation between the two opposite pattern
|{ SNITSNGUY |2 modesk, and —k.. In parametric down conversion it is

(46) known that the conservation of transverse momentum leads
to the emission of correlated photons that propagate in sym-
metrical directions; this implies a high correlation between

*(SNIONI,( SNSUISNGYY,,”

B (NG ONS ) |2 4 fluctuations in the two symmetric portion of the beam cross
m_<5Ni0n5Nion> (SNCUL SNOUL ' (47) section in the far field9,10]. In the process of four wave

mixing, present in ay(®> medium, the same situation ap-
pears. In this case the correlation has been studied with a
semiclassical mod¢H0]. The appropriate variable that gives
us information about the quantum correlation of the pattern

where thex-polarized input fluctuations are given by,

JR d2K[ F3 "(K) SA (K, 1)+ H.c] modes is the conditional variance Nf"' given a measure-
SNID= ment onN3S"t,
\ f A2k F (k)|
Ro

[(ONG*ONS |2

V(1)2)=S, 1- 55

=6A)(k=0)+H.c. (48) (49)
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outgoing signalCs, for high frequencies. Also the peak in
the correlation between the incoming signal and the outgoing
meter,C,,, is slightly narrower. Nevertheless, the fitting of
the curves is good and demonstrates the validity of the three
modes approximation close to the instability threshold. From
the plots it can be seen that the conditiGR+C,,>1 is
fulfilled for a range of frequencigsn|<0.3. In this range of
frequencies, all the conditions for a QND measurement of
the x-polarized input fluctuations using thepolarized pat-
tern as a meter, are satisfied.

Similar results can be obtained for other values of the
detuning, provided we are below the limit of bistability for
the homogeneous solutiod< /3). However, as the detun-
ing is decreased the QND performance is degraded, as pre-

FIG. 9. Conditional varianc&/(1|2) given by Eq.(49). The  dicted by the three-mode modél].
solid line represents the three-modes model while the dots represent Finally, in Fig. 9, we plot the conditional variance
the continuous model. Same parameters as in Fig. 7. V(1]2). The results of the two models coincide perfectly for
_ Ut eniOUD o v _ small frequencies. As predicted by the three mode model, the
If the correlation{ 5N7"'6N5™),, is big enough, we will have ., gitional variance is dramatically reduced at low frequen-
a variance below the shot-noise leval(1/2)<1, which  ¢jes |n fact it goes to zero at zero frequency, showing the
means a reduction of the fluctuations below the classicabyistence of strong quantum correlations between the two

limit. ) 2 " .
. . opposite pattern modds and —k.. For larger frequencies,
scr\ilg: dhst\)/gv:\galuﬁjﬁjertizgnCosrirrilﬁg%?]s 2(3%) \]ﬁg;'zngf dE’Ehe results form the continuous model shows a large disper-
. y nu y 9° sion, although they basically coincide with the prediction
tuning 6=1.7. For' th|§ Vflue of the detunlng., the threshOIdfrom the three mode model. The large dispersion could be
for pattern formation is£=0.869. At each time step, the reduced increasing the statistics, that is, integrating over a

fluctuations in the output field 3" have been numerically longer stochastic realization.

calculated using Eq(33) and averaging over a time 0.5,
which corresponds to 100 integration time steps. @hem-
bers corresponding to the operatd@iN3:' are calculated as
in Eq. (41) substitutingsA?" by Aaf"". The two times sym- Our analysis, based on the classical-looking set of Lange-
metrized correlation$44) are then calculated using the cor- vin equations in the Wigner representation, led to the follow-
respondingc numbers and averaging over time for a stochasing main results. The numerical solutions of the complete
tic realization of the output field. In the results shown below,nonlinear Langevin equations in the 1D spatial case have
averages have been performed over 20000 time units. Feonfirmed that the stripe pattern undergoes locally rigid ran-
nally, we fast Fourier transform these correlations to obtairdom translation to the left and to the right, as predicted by
the squeezing spectrum as well as the conditional variancethe three-mode modéb]. On the other hand, in 2D, phase
In Fig. 7 we show the results for the conditional variancejumps of the entire pattern are extremely unlikely to occur
V(0|1+2) for a pumpEy=0.919, that is quite close to during finite observation times. The underlying presence of
threshold. The symbols correspond to the results obtainesluch displacements is manifested, however, by the spatial
from the continuous model whereas the solid line representsonfiguration of the fluctuations, which is dominated by the
the three-mode approximatidi@]. The correlation between Goldstone mode. Such a mode is the eigenstate of the linear-
the outgoing signal and the outgoing meter is well below theézed problem with zero eigenvalue, and it is given by the
shot-noise levelshown as a dashed lineAs predicted by spatial gradient of the underlying stationary stripe pattern.
the three-mode model, we can use a vectorial self-defocusinghe Goldstone mode is always present in a system with bro-
Kerr medium to prepare a state of the homogeneous outplien translational symmetry, as the one that emerges in a
with known fluctuations. Comparing both models, the threepattern forming instability. It is excited, at no cost, by noise
mode model predicts slightly larger correlatidsmaller val-  and leads to rigid translations of the pattern. In a continuous
ues forV(0|1+ 2)] than the continuous model. This fact can system there are also soft modes arbitrary close to the Gold-
be explained taking into account that the correlationstone mode that produce local deformations of the pattern
(SNGU'SNSUL)Y , in Eq. (45) is smaller in the continuous case. and that would destroy long-range order in 1D systems in the
This is so because part of the energy is translated to thiémit of very large system size.
higher-order modes that were neglected in the three modes We have formulated a general description of the spatial
approximation. configuration of the output field immediately beyond the
In Fig. 8 we plot correlation€, andC,,. As before, the input-output mirror, for an arbitrary size of the time window
solid line corresponds to results from the three-mode modedver which fluctuations are averaged. We have shown that
and the symbols to the continuous model. Again there is &he spatial configuration of the output field is closely similar
small difference between the two models, which is moreto that of the intracavity field, provided that this time win-
clearly seen in the correlation between the incoming and thdow is on the order of the cavity linewid#~*, which cor-

-4 -2 0 2 4

VII. CONCLUSIONS
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responds to select a spectral bandwidth of the output fluctua- Csazi 1—-5s 82125 0
tions on the same order as that of the intracavity fluctuations. >

We analyzed on the one side the anticorrelation between . | 17S  —Csaz 0 —CsPZy24
the quantum fluctuations of the intensity of tkeolarized N CsB7123 0 CsaZ§ 1-s ’

pump field and they-polarized pattern modes, and on the

— _ _ 2
other the correlation between the intensity fluctuations of the 0 CsBZ24 1=s CsZy

two symmetrical componentsvin beams of they-polarized (A1)
field. It turns out that the predictions of the three-mode,, . _ —
model are in good agreement with the results of the multi-Wlth Cs=i7gs. The third-order terms are,
mode model. In the case of the system analyzed here, this - =, =, S S s 2y
Y ! T (XX X)) =0 5(x—X)8(x' —X"),  (A2)

agreement persists also well beyond the instability threshold
in all the regions where the roll pattern is found, because thsvh

. . ere the nonzero terms 6f;
amplitudes of the modes different from those of the three- :
mode model remain negligibly small. We believe, however, o o
that for other models such an agreement can be found, in ®[112]:i§(1—52)ngzl, ®[334]=i§(1—32) 7923,
general, only close to the instability threshold. Hence the

il are

conclusions concerning the validity of the QND scheme for-

mulated in Ref[7] are confirmed. Or2= 0712 Opag= 033,
(A3)
B B
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APPENDIX A Qi={—(1+in6) +iVZ+iy[2a|F  (X)|?

We give here the coefficients of the equation for qua-

- 1o - ) 2 > >
siprobability distribution(9). For simplicity, we use the no- T BIF-(O)I 2 (x D +inlaFi (x)Z(x.1)

tation (z,,25,23,24)= (o, ,a ,a_,a*). The dependence + BF L (X)F* (X)2a(X,1) + BF 1 (X)F _(X)za(X,1)],
on space and time of variablesis omitted to simplify the
notation. The drift terms are, Q,=Q*
2=Q1,
Qi=[—(1+inf) +ign(a+pl2)(s—1)+iaV?]z, Qs={—(1+ind) +iV3+iy[2a|F_(x)|?
Eotinglazzyt fzszlz, + BIF L ()2} za(%,t) + i 7 aF2 (X) 24(X,1)
Q,=0* + BF - ()FL ()22, + BF - (OF - (02X 1],
2o (B1)
Q4:Q§ .

Q3=0Q3(21,22,23,24) = Q1(23,24,21,25),
The diffusion terms are

=Q%. 0100
. . 1000
The diffusion terms are, Dij(xx") =1 6(x=x"),  I'= 0 00 1
o o 0 01 O

Dij(x,x")=T'j; 8(x—=x") (B2)
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