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Dynamics of a vortex in a trapped Bose-Einstein condensate

Anatoly A. Svidzinsky and Alexander L. Fetter
Department of Physics, Stanford University, Stanford, California 94305-4060

~Received 10 July 2000; published 15 November 2000!

We consider a large condensate in a rotating anisotropic harmonic trap. Using the method of matched
asymptotic expansions, we derive the velocity of an element of a vortex line as a function of the local gradient
of the trap potential, the line curvature, and the angular velocity of the trap rotation. This velocity yields
small-amplitude normal modes of the vortex for two-dimensional~2D! and 3D condensates. For an axisym-
metric trap, the motion of the vortex line is a superposition of plane-polarized standing-wave modes. In a 2D
condensate, the planar normal modes are degenerate, and their superposition can result in helical traveling
waves, which differs from a 3D condensate. Including the effects of trap rotation allows us to find the angular
velocity that makes the vortex locally stable. For a cigar-shaped condensate, the vortex curvature makes a
significant contribution to the frequency of the lowest unstable normal mode; furthermore, additional modes
with negative frequencies appear. As a result, it is considerably more difficult to stabilize a central vortex in a
cigar-shaped condensate than in a disk-shaped one. Normal modes with imaginary frequencies can occur for a
nonaxisymmetric condensate~in both 2D and 3D!. In connection with recent JILA experiments, we consider
the motion of a straight vortex line in a slightly nonspherical condensate. The vortex line changes its orienta-
tion in space at the rate proportional to the degree of trap anisotropy and can exhibit periodic recurrences.

PACS number~s!: 03.75.Fi, 03.65.2w, 05.30.Jp, 67.40.Db
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I. INTRODUCTION

The experimental achievement of Bose-Einstein cond
sation in confined alkali-atom gases@1–3# has stimulated
great interest in the generation and observation of vortice
such systems@4–6#. Rotating a totally anisotropic harmoni
trap at an angular frequencyV can, in principle, generate
vortices; they are energetically stable forV.Vc @7–10#.
There are several other ideas to create vortices in a trap
Bose-Einstein condensate~BEC! @5,11–20#. Vortex forma-
tion in a BEC was recently observed experimentally@21–
25#.

In general, a vortex line in a trapped Bose-Einstein c
densate is nonstationary. The vortex line can move a
whole, undergo deformation of its shape, or perform osci
tory motion like helical waves@26,27#. An extensive litera-
ture exists on vortex dynamics in superfluids@28#. The non-
linear Schro¨dinger equation~Gross-Pitaevskii model! @29–
33# has served to study the dynamics and reconnection
vortices, their time evolution, and scattering interactions
superfluid vortex rings. Vortex precession in a nonunifo
light beam has recently been observed and discussed in t
of the nonlinear Schro¨dinger equation@34#.

The dynamics of a vortex line in a spatially inhomog
neous two-dimensional~2D! condensate was considered
@35,36#, while the problem of curvature-driven motion of
vortex line in a homogeneous superfluid in three dimensi
~3D! was studied in@37#. A normal mode with negative fre
quency that corresponds to a vortex precession was fo
numerically@38# and analytically for a large 3D disk-shape
BEC @9#, and for a small BEC@39#. The motion of vortex
lines and rings in Bose-Einstein condensates in harmo
traps was studied in 2D and 3D by numerical solution of
Gross-Pitaevskii equation@40#. Minimum-energy configura-
tions of vortices in a rotating trap were considered in@41#.

In a nonrotating trap, the vortex state has a higher ene
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than the ground-state Bose condensate, so that the vort
thermodynamically unstable@9#. However, the vortex~with
unit circulation quantum! is dynamically stable and can de
cay only in the presence of dissipation. Dissipative dynam
and the decay time of the vortex state~due to the interaction
of the vortex with the thermal cloud! in a trapped Bose-
condensed gas are discussed in@42#, where the friction coef-
ficient is found to be proportional to the temperature.
temperatures relevant to current experiments, one can ne
dissipation in studying the normal modes of the vortex b
cause the vortex decay rate is much smaller than the freq
cies of the normal modes.

In this paper, we consider the dynamics of a vortex line
a zero-temperature condensate in the Thomas-Fermi~TF!
limit, when the vortex core radiusj;d2/R is small com-
pared to the mean oscillator lengthd and the mean dimen
sion R of the condensate@here, d5(dxdydz)

1/3 with di

5A\/Mv i and trap frequenciesv i ( i 5x,y,z)#. We derive
a general nonlinear equation for the motion of the vortex t
includes the effects of the trap potential, the vortex cur
ture, and the angular velocity of the trap rotation@see Eq.
~38! below#. Linearization of this equation around stationa
configurations gives rise to the equation for the norm
modes of the vortex line. We investigate normal modes
the vortex in 2D and 3D condensates. For a 2D condens
there are solutions in the form of helical waves. For a no
rotating trap, some of the solutions have negative eigen
quencies~these modes are formally unstable!; furthermore,
in a nonaxisymmetric trap, some solutions can have ima
nary eigenfrequencies, implying that a straight central vor
line is unstable with respect to finite self-induced curvatu

In a 3D condensate, the spectrum of normal modes
comes discrete. For a vortex near thez axis, the number of
normal modes with negative frequency depends on the
pect ratio R' /Rz . A vortex in a disk-shaped condensa
(Rz,R') has only one mode with negative frequency. Ho
©2000 The American Physical Society17-1
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ever, if we change the aspect ratio to a cigar-shaped con
sate withR',Rz , more modes with negative frequency a
pear. Thus it is more difficult to stabilize a vortex in a ciga
shaped condensate than in a disk-shaped one.

The plan of the paper is the following. In Sec. II, w
derive a general equation of vortex dynamics using
method of matched asymptotic expansions. In Secs. III
IV, we discuss the normal modes of a vortex line for 2D a
3D condensates. In Sec. V, we investigate normal mo
with imaginary frequencies that appear for a vortex in a n
axisymmetric condensate. In the final section, we study
motion of a straight vortex line in a slightly nonspheric
trap.

II. GENERAL EQUATION OF THE VORTEX DYNAMICS

Consider a condensate in a nonaxisymmetric trap that
tates with an angular velocityV. At zero temperature in a
frame rotating with the angular velocityV, the trap potential
Vtr is time-independent, and the evolution of the condens
wave functionC is described by the time-dependent Gro
Pitaevskii~GP! equation:

S 2
\2

2M
¹21Vtr1guCu22m~V!1 i\V•~r3“ ! DC

5 i\
]C

]t
, ~1!

whereVtr5
1
2 M (vx

2x21vy
2y21vz

2z2) is the external trap po
tential, g54p\2a/M.0 is the effective interparticle inter
action strength, andm(V) is the chemical potential in the
rotating frame.

We assume that the condensate contains aq-fold quan-
tized vortex with the position vectorr0(z,t). In this section
we use themethod of matched asymptotic expansionsto de-
termine the vortex velocity as a function of the local gradie
of the trap potentialVtr , the vortex curvaturek, and the
angular velocityV, generalizing the two-dimensional resul
obtained by Rubinstein and Pismen@35,37# to the case of a
three-dimensional rotating potential. The method app
when the external potential does not change significantly
distances comparable with the core sizeuquj!R' ~this is the
TF limit! and when the curvature is not too largek
!1/uquj); it matches the outer asymptotic form of the so
tion of Eq.~1! in the vortex-core region (ur2r0u&uquj) with
the short-distance behavior of the solution in the region
from the vortex core (ur2r0u@uquj).

To find the solution in the vortex-core region, one m
consider Eq.~1! in a local coordinate frame centered at t
point r0 of the vortex line that moves with the vortex veloci
V. In the general case, the vortex line has a curvaturek that
depends on the specific element in question. We introdu
local coordinate system (x,y,z), so that thex axis is directed
along the vortex normaln̂, they axis is along the binormalb̂,
and thez axis is along the tangentt̂ ~see Fig. 1!. The solution
is assumed to be stationary in the comoving frame and
isfies the equation~in the local coordinates!
06361
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S 2
\2

2M
~¹22k]x!1Vtr~r0!1guCu22m~V!

1 i\~V3r0!•“ DC52 i\V•“C, ~2!

where the term2k]x arises from the transformation to loca
coordinates.

One can removeV from this equation by a shiftV→V
2(V3r0). In the vortex core region, we may seek a soluti
in the form of an expansion in the small parametersj/R'

andkj:

C5C0~r!1C15@ uC0~r!u2x~r,z!cosf#eiqf2 ih(r,z)sin f,
~3!

whereC0 is the condensate wave function withVtr replaced
by Vtr(r0); it satisfies a zero-order equation

S 2
\2

2M
¹21Vtr~r0!1guC0u22m~V! DC050, ~4!

and x,h characterize the perturbation in the absolute va
and phase. Physically,C0 is the analogous wave function fo
a laterally unbounded condensate with chemical poten
m(V)2Vtr(r0). The polar anglef is measured from the
direction of the vortex normal (n̂i x̂) andr is the radial cy-
lindrical coordinate in the local frame.

The perturbationC1 obeys the following equation:

L~C1 ,C1* !5
2Mi

\
V•“C01

2M

\2
C0r•“'Vtr~r0!1k]xC0 ,

~5!

where

FIG. 1. Local coordinate system associated with the vortex lin
7-2
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L~C1 ,C1* ![¹2C11
2M

\2
$@m~V!2Vtr~r0!22guC0u2#C1

2gC0
2C1* % ~6!

is a self-conjugate operator and“' is the gradient operato
in a plane perpendicular to the vortex line. This equation
linear inC1 and inV; it contains“'Vtr andk as independen
sources, so that the velocity of the vortex line is a sum
independent contributions due to“'Vtr and k. Also, the
functionC0 depends only on the coordinates in the direct
perpendicular to the vortex line; therefore, in the dot prod
V•“C0 only the component of the velocity perpendicular
the vortex line is relevant. We also assume thatV has no
component along the line. For simplicity, one can assu
that “'Vtr lies alongn̂ and derive the vortex velocity as
sum of two independent contributions. The final result w
ten in vector form remains valid for arbitrary directions
“'Vtr and n̂. Under this assumption, we haveV•“C0
5V]yC05V(sinf]r1r21 cosf]f)C0 in polar coordinates.
Then, writingC152(x cosf1ihuC0usinf)eiqf in terms of
the small perturbationsx andh, Eq. ~5! has the form

S ]rr
2 1

1

r
]r1]zz

2 Dx1
2M

\2
@m~V!2Vtr~r0!23guC0u2#x

2
q211

r2
x2

2q

r2
uC0uh

5
2M

\2
uC0uS \q

r
V2ru“'Vtr~r0!u D2k]ruC0u, ~7!

S ]rr
2 1

1

r
]r1]zz

2 2
1

r2D h1
2

uC0u S ]ruC0u]rh

1]zuC0u]zh2
q

r2
x D 52

2M

\
V

]ruC0u
uC0u

1
kq

r
.

~8!

We can removeV from these equations with the followin
gauge transformation:

h5h̃2
M

\
rV. ~9!

Further, for large distancesuquj!r!R' , we can use
guC0u2'guCTFu2'm(V)2Vtr(r0) and rewrite Eqs.~7! and
~8! as follows:

2guCTFux5ru“'Vtr~r0!u1
k\2

2M uCTFu
]ruC0u, ~10!

S ]rr
2 1

1

r
]r2

1

r2D h̃2
x

uCTFu
2q

r2
5

kq

r
; ~11!

equivalently,
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2guCTFu
u“'Vtr~r0!u1

k\2

4MguCTFu2
]ruC0u, ~12!

~r2]rr
2 1r]r21!h̃2

qru“'Vtr~r0!u

guCTFu2
5kqr1

qk\2]ruC0u

2MguCTFu3
.

~13!

In Eq. ~13!, we can omit the last term, which is smalle
with respect to the termkqr by the factorj4/r4. As a result,
for r@uquj the perturbations have the following asympto
form:

h'
q

2 S u“'Vtr~r0!u

guCTFu2
1kD r ln~Ar!2

M

\
r~V1V3r0!• ŷ,

~14!

x'
u“'Vtr~r0!u

2guCTFu
r1

k\2

4MguCTFu2
]ruC0u. ~15!

In terms of the phaseS, the solution~14! ~the inner expan-
sion in the coordinate frame centered at the vortex line! has
the form

S5qf2
q

2 S u“'Vtr~r0!u

guCTFu2
1kD ln~Ar!y1

M

\
~V1V3r0!•r.

~16!

The parametersA andV must be determined by matching th
solution ~16! with that far from the vortex core.

To the lowest order in the small parameterj/R' , Eq. ~1!
far from the vortex core reduces to an equation for the c
densate phase only,

uCTFu2¹2S1“uCTFu2•“S2
M

\
V•~r3“ !uCTFu250,

~17!

whereC5uCueiS. In the frame rotating with the trap and fo
V5V ẑ, the phase has the form

S5S02
M

\

~vx
22vy

2!

~vx
21vy

2!
Vxy, ~18!

whereS0 is independent ofV @43#. Under a shift of coordi-
natesr→r01r, we have

S'S01
M

\ S ~V3r0!1
2

M ~vx
21vy

2!
@“Vtr~r0!3V# D •r.

~19!

Comparison of Eqs.~16! and~19! allows us to find the con-
tribution to the vortex velocity due to the trap rotation,

V5V01
2

M ~vx
21vy

2!
@“Vtr~r0!3V#, ~20!

whereV0 is the velocity for a nonrotating trap.
7-3
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It is next necessary to find the asymptotic form ofS0 far
from the vortex core. This functionS0 satisfies the following
equation~in the shifted frame!:

uCTFu2¹2S01“uCTFu2
•“S050. ~21!

Introduce a functionF such that

S0x52q~Fy1F]y lnuCTFu2!, ~22!

S0y5q~Fx1F]x lnuCTFu2!, ~23!

whereS0x5]xS0 andS0y5]yS0. This representation satisfie
Eq. ~21! automatically. In addition, the condition

ẑ•“3~“'S!5S0yx2S0xy5“'•~S0yx̂2S0xŷ!

52pqd (2)~r! ~24!

gives an equation forF containing a point source at th
vortex location,

“'•@“'F1F“'lnuCTFu2#52pd (2)~r!. ~25!

Hence,

“'•@e2 lnuCTFu
“'~FelnuCTFu!2“'~e2 lnuCTFu!elnuCTFuF#

52pd (2)~r!, ~26!

or

e2 lnuCTFu¹'
2 ~FelnuCTFu!2¹'

2 ~e2 lnuCTFu!elnuCTFuF

52pd (2)~r!. ~27!

We can put¹'
2 (e2 lnuCTFu)'e2 lnuCTFu¹'

2 Vtr/2guCTFu2, so that
Eq. ~27! becomes

¹'
2 ~FelnuCTFu!2

¹'
2 Vtr

2guCTFu2
FelnuCTFu52pd (2)~r!elnuCTFu.

~28!

To find the solution, we rewrite Eq.~28! in the local co-
ordinate frame associated with the vortex line, taking in
account the effect of curvature:

~¹'
2 2k]x!~FelnuCTFu!2

¹'
2 Vtr

2guCTFu2
FelnuCTFu

52pd (2)~r!elnuCTFu, ~29!

or

¹'
2 ~FelnuCTFu2kx/2!2S ¹'

2 Vtr

2guCTFu2
1

k2

4 D FelnuCTFu2kx/2

52pd (2)~r!elnuCTFu. ~30!

The solution of this inhomogeneous equation is~note that an
additional solution of the homogeneous equation does
satisfy the boundary conditions at larger and should be
omitted!.
06361
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F52ekx/2K0SA ¹'
2 Vtr

2guCTFu2
1

k2

4
r D , ~31!

whereK0 is a modified Bessel function@for smallx, we have
K0'2 ln(eCx/2), whereC50.577 . . . is theEuler constant#.
Further, under the logarithm we may put¹'

2 Vtr/4guCTFu2

'1/R'
2 . HenceF ~in the local coordinate frame centered

the vortex line! has the short-distance form

F' lnS eC

A2
A 1

R'
2

1
k2

8
r D . ~32!

To make the asymptotic matching, we can express
solution ~16! in the vortex-core region in terms ofF and
then compare with the formula~32!. Using the definitions
~22! and ~23! of the functionF, one can show that the ex
pression~16! ~for V50) corresponds to the following func
tion F ~in the coordinate frame centered at the vortex lin!:

F'F11
x

2 S u“'Vtr~r0!u

guCTFu2
1kD G ln~Ar!1

MV0

\q
x. ~33!

To verify this expression, we use]x lnuCTFu2'
2u“'Vtr(r0)u/guCTFu2 and]y lnuCTFu2'0 in the local coor-
dinate frame whereFx→(]x2k)F. Substituting Eq.~33!
into Eqs.~22! and ~23!, we obtain

S0x52
qy

r2
, ~34!

S0y5
qx

r2
2

q

2 S u“'Vtr~r0!u

guCTFu2
1kD ln~Ar!1

MV0

\
. ~35!

Therefore, in the coordinate frame centered at the vor
line, the remaining contribution to the phase is

S05qf2
q

2 S u“'Vtr ~r0!u

guCTFu2
1kD ln~Ar!r sinf

1
M

\
V0r sinf, ~36!

which coincides with Eq.~16! ~for V50). Matching Eqs.
~33! and ~32! ~at r;uquj) gives an expression for the con
stantA ~with logarithmic accuracy!:

ln~Ae!5 lnA 1

R'
2

1
k2

8
, ~37!

whereR' is the mean transverse dimension of the cond
sate, and for the velocityV0.

Finally, in general vector form~in the frame rotating with
the trap!, the vortex velocity is
7-4
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V~r0!52
q\

2M S t̂3“Vtr~r0!

guCTFu2
1kb̂D lnS uqujA 1

R'
2

1
k2

8 D
1

2@“Vtr~r0!3V#

D'Vtr~r0!
, ~38!

whereb̂ is a unit vector in the direction to the vortex bino
mal, t̂ is a tangent vector to the vortex line, andD' is the
Laplacian operator in the plane perpendicular toV. This
formula is valid for arbitrary directions of the local gradie
of the trap potential, the normal to the vortex line, andV.
Near the condensate boundary, the denominator of the
term in this formula goes to zero. Therefore,t̂3“Vtr must
also vanish near the boundary, implying thatt̂ is parallel to
“Vtr ; as a result, the vortex line obeys the boundary con
tion that its axis is perpendicular to the boundary.

III. NORMAL MODES IN TWO DIMENSIONS

To understand the implications of Eq.~38!, it is valuable
to consider first the case of a 2D condensate withV5V ẑ
andvz50 ~hence no confinement in thez direction!. Let the
vectorr0(z,t)5„x(z,t),y(z,t)… describe the time-depende
position of the vortex line during its motion, andk be the
vector of the principal curvature; thenkb̂5 t̂3k and
d2r0 /ds25k, wheres is the length measured along the vo
tex line. For small displacements of the line from thez axis,
we haves'z, t̂' ẑ, andk'd2r0 /dz2. Then using

ẑ3“Vtr52Mvy
2yx̂1Mvx

2xŷ ~39!

and

kb̂5 t̂3k'2 x̂
]2y

]z2
1 ŷ

]2x

]z2
, ~40!

we obtain the following coupled differential equations f
x(z,t) andy(z,t):

]x

]t
5

q\

2M S 2y

Ry
2

1
]2y

]z2D lnS uqujA 1

R'
2

1
k2

8 D
1

4Vm

M ~vx
21vy

2!

y

Ry
2

, ~41!

]y

]t
52

q\

2M S 2x

Rx
2

1
]2x

]z2D lnS uqujA 1

R'
2

1
k2

8 D
2

4Vm

M ~vx
21vy

2!

x

Rx
2

. ~42!

These equations have solutions in the form of heli
waves,

x5«x sin~vt1kz1w0!, y5«y cos~vt1kz1w0!,
~43!
06361
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with the following dispersion relation betweenv andk ~un-
der the logarithm we takek'uku):

v56
q\

2MRxRy

A~22k2Rx
22Ṽ!~22k2Ry

22Ṽ!

3 lnS uqujA 1

R'
2

1
uku2

8 D . ~44!

The associated amplitudes obey the relation

«y56
Ry

Rx
«xA22k2Rx

22Ṽ

22k2Ry
22Ṽ

, ~45!

where

Ṽ5
4MRx

2Ry
2V

q\~Rx
21Ry

2!lnS uqujA 1

R'
2

1
uku2

8
D 21

~46!

is a dimensionless rotation speed.
For a nonaxisymmetric trap~for example,Rx.Ry), the

oscillation frequency becomes imaginary ifA(22Ṽ)/Rx

,uku,A(22Ṽ)/Ry , in which case the initial orientation o
the vortex line along thez axis is unstable with respect to th
formation of finite curvature. ForṼ.Ṽm52, however, the
oscillation frequency is real~and positive! for any k. Thus
the trap rotation stabilizes a vortex line that initially lie
along thez axis.

For a straight vortex line (k50), the frequency is always
real. This unstable normal mode has the most negative
quency@we choose the sign in Eq.~44! that corresponds to
positive-norm solution# with

v52
q\

MRxRy
F lnS R'

uquj D2
4mV

q\~vx
21vy

2!
G . ~47!

For q.0 andV50, the vortex moves~around thez axis!
counterclockwise in the positive sense. With increasing ro
tion frequencyV of the trap, the vortex velocity~as seen in
the rotating frame! decreases towards zero and vanishes
V5Vm , where the metastable angular velocityVm of trap
rotation is given by

Vm5
uqu\~vx

21vy
2!

4m
lnS R'

uquj D . ~48!

This valueVm corresponds to the angular velocity of tra
rotation at which a straight vortex line at the trap center fi
becomes a local minimum of energy@9#. For V.Vm , the
apparent motion of the vortex becomes clockwise. Fork
50, this straight vortex follows an elliptic trajectory alon
the lineVtr5const, as expected from the dissipationless ch
acter of the GP equation.
7-5
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For a uniform condensate (Rx ,Ry→`), Eq. ~44! coin-
cides with the well-known dispersion law of small oscill
tions of a straight vortex line~Kelvin modes!:

v56
q\

2M
k2 ln~ uqujk!. ~49!

Note that one can represent the helical wave solution~43!
as a sum of two plane-wave solutions:

x15«x cos~kz!sin~vt1w0!, y15«y cos~kz!cos~vt

1w0!, ~50!

x25«x sin~kz!sin~vt1w01p/2!,

y25«y sin~kz!cos~vt1w01p/2!. ~51!

One can easily see that Eqs.~50! and ~51! are indeed solu-
tions of Eqs.~41! and ~42! with the same dispersion lawv
5v(k) as the helical wave~44!. In fact, the general motion
of the vortex line can be represented as a combination
plane-wave solutions; helical waves are just one of the p
sible combinations and hence do not represent a differen
of solutions. Solutions~50! and ~51! have different parity,
but the same eigenfrequency~in 2D there is degeneracy!. In
the 3D case, the plane-wave solutions are not degene
and, therefore, in 3D it is impossible to construct a sim
analog of helical waves. The general vortex motion in 3D
a combination of plane waves~plane-wave solutions in 3D
exist, at least, for an axisymmetric trap! with different num-
bers of nodes along the symmetry axis and hence diffe
frequencies.

IV. DYNAMICS OF A VORTEX IN THREE DIMENSIONS

Let us consider small displacements of the vortex fr
the z axis andV5V ẑ. The vortex curvature is proportiona
to the vortex displacement, so one can putk'0 under the
logarithm in Eq.~38!. Further, for small displacements,

t̂3“Vtr'M @ x̂~vz
2zy82vy

2y!1 ŷ~vx
2x2vz

2zx8!#,
~52!

where a prime denotes derivative with respect toz. Then in
dimensionless coordinatesx→Rxx, y→Ryy, z→Rzz,
Eq. ~38! becomes

ẋ5
q\

2MRxRy
S 2~bzy82y!

~12z2!
2by9D lnS R'

uquj D
1

4Vm

M ~vx
21vy

2!

y

RxRy
, ~53!

ẏ52
q\

2MRxRy
S 2~azx82x!

~12z2!
2ax9D lnS R'

uquj D
2

4Vm

M ~vx
21vy

2!

x

RxRy
, ~54!
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where

a5
Rx

2

Rz
2

, b5
Ry

2

Rz
2

are parameters characterizing the trap anisotropy. One
seek solution of these equations in the form

x5x~z!sin~vt1w0!, y5y~z!cos~vt1w0!

and obtain the following ordinary differential equations f
x(z), y(z), andv:

ṽx5
2~bzy82y!

~12z2!
2by91Ṽy, ~55!

ṽy5
2~azx82x!

~12z2!
2ax91Ṽx, ~56!

where we introduce dimensionless angular velocities

ṽ5
2MRxRyv

q\ lnS R'

uquj D , Ṽ5
4MRx

2Ry
2V

q\~Rx
21Ry

2!lnS R'

uquj D . ~57!

A. Stationary configurations

Consider a nonrotating trap withṼ50. In this section, we
seek stationary configurations in which the vortex line
mains at rest~in this case, the contributions to the veloci
from the vortex curvature and the trap potential compens
each other!. To find the stationary configurations, we need
solve Eqs.~55! and ~56! with the conditionṽ50. The re-
sulting equations forx and y uncouple; for example, the
equation forx(z) has the form

~12z2!x922zx81
2

a
x50. ~58!

The general solution of Eq.~58! can be expressed in terms o
hypergeometric functions, but it is impossible to satisfy t
boundary conditions thatx(z) should be finite atz561 un-
less 2/a5n(n11), wheren is an integer (n>0). In this
case, the solutions reduce to Legendre polynomials

x}Pn~z!. ~59!

For example, the first three physical solutions are~we ignore
n50, which corresponds toa5`)

x15Cz, a51, ~60!

x25«~123z2!, a5
1

3
, ~61!

x35CS z2
5

3
z3D , a5

1

6
. ~62!
7-6
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If 2/a5” n(n11), the only possible solution of Eq.~58! is the
trivial one with x50. The equation for they coordinate has
the same solutionsy}Pm(z) if 2/b5m(m11), andy50 if
2/b5” m(m11). That is, if 2/a5” n(n11) and 2/b5” m(m
11), there are no stationary configurations of the vortex l
apart from the straight orientation along thez axis.

One should note that the integern ~or m) enumerates the
solutions not only forṽ50; in particular,n represents the
number of times that the vortex line~precessing with angula
velocity ṽn) crosses thez axis. For an axisymmetric trap
(a5b), we can considerṽn as a function ofa; the function
ṽn changes sign ata5an52/n(n11). This observation al-
lows us to find the number of normal modes with negat
frequency at a fixed value of anisotropy parametera. If a
.1, there is only one mode with negative frequency. If1

3

,a,1, there are two such normal modes. If1
6 ,a, 1

3 , there
are three modes, and so on. Ifan,a,an21, there aren
normal modes with negative frequency.

B. Dynamics of a vortex in a disk-shaped condensateRz™R� :
Investigation of unstable mode

In the limit a,b@1 the approximate solution of Eqs.~55!
and ~56! that corresponds to the unstable mode is

x5«S 11
z2

2a D , ~63!

y5«S 11
z2

2b D , ~64!

with the corresponding eigenvalue

ṽ5Ṽ232
1

10S 1

a
1

1

b D . ~65!

For Ṽ50, the excitation energy is negative and hence f
mally unstable. If the trap rotates, the solution~65! becomes
stable atuVu>Vm , where

Vm5
uqu\~vx

21vy
2!

8m F31
1

10S 1

a
1

1

b D G lnS R'

uquj D . ~66!

This expression generalizes that for the angular velocity
which a straight vortex at the center of a thin disk-shap
condensate becomes metastable@9#, including the corrections
of ordera21 andb21.

C. Dynamics of a vortex in a cigar-shaped condensate
RzšR� : Investigation of unstable modes

In the opposite limita,b!1, the lowest unstable-mod
solution of Eqs.~55! and ~56! corresponds to exponentia
growth of the vortex displacement as a function ofz. Such a
solution is possible in 3D because the condensate is bou
along thez axis.
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For simplicity, consider an axisymmetric trap, so thata
5b. In this case, we have only one equation because one
seek a solution in the formx(z)5y(z):

ṽx5
2~azx82x!

~12z2!
2ax91Ṽx. ~67!

In the limit a!1, Eq. ~67! has the following approximate
solutions:

x5y5« coshS z

a D , x5y5C sinhS z

a D , ~68!

ṽ52
1

a
1Ṽ, ~69!

so that the lowest even and odd modes have approxima
the same frequency. Equation~69! yields the metastable an
gular velocityVm in an elongated cigar-shaped condensa

Vm5
uqu\~vx

21vy
2!

8m

Rz
2

R'
2

lnS R'

uquj D . ~70!

In contrast to Eq.~66! for a flattened condensate, this expre
sion becomes very large for a highly elongated trap. Con
quently, it is significantly more difficult to stabilize a vorte
in a cigar-shaped condensate than in one with a disk sh

D. Numerical results for 3D

We have used Eq.~67! to evaluate the eigenvalues an
eigenfunctions for an axisymmetric trap (a5b). A finite

trap rotation produces only a shift of eigenvalues byṼ, so

we can setṼ50. In addition, solutions of Eq.~67! can be
classified as even or odd functions ofz. One can enumerate
the solutions by the numberm of times that the vortex line
crosses thez axis, m50,1,2, . . . . The lowest ~most nega-
tive! eigenvalue corresponds tom50.

In Fig. 2, we plot the angular velocity of the vortex pr
cessionṽ as a function of the trap anisotropya5R'

2 /Rz
2 for

m50,1,2. In appropriate limits, the numerical solutionṽ0

coincides with those found analytically:ṽ0'232 1
5 a for

a>1 andṽ0'21/a for a!1. The next two solutionsṽ1

and ṽ2 are proportional toa for large a and diverge like
21/a for small a. If a.1, only one mode has a negativ
frequency~namelyṽ0). If 1

3 ,a,1, there are two such nor
mal modes; if 1

6 ,a, 1
3 , there are three modes, etc.~these

numerical results coincide with those found analytically!.
The more elongated the trap, the larger the number

modes with negative frequencies~see also@44#!. This con-
clusion represents one of our main findings. For a di
shaped condensate, the angular velocityVm for the onset of
metastability is smaller than the thermodynamic critical a
gular velocityVc , with Vm5 3

5 Vc @9#. The situation is com-
pletely different for a cigar-shaped condensate witha
5R'

2 /Rz
2,0.26, becauseVm then becomes larger thanVc .
7-7
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For comparison, Fig. 2 includes the lineṽ52Ṽc525.
In Fig. 3, we plot the shape of the vortex line for th

lowest ~unstable! normal mode (m50) for different values
of trap anisotropya. The functionx(z) is an even function
of z without nodes and«5x(z50). In Figs. 4 and 5, we plo

FIG. 3. Shape of the vortex line for the normal mode with t
lowest frequency~the most unstable mode! for different values of
the trap anisotropya.

FIG. 2. Dimensionless frequenciesṽ @defined according to Eq
~57!# of the first three normal modes of the vortex as a function
the trap anisotropya5R'

2 /Rz
2 . The lower horizontal line represent

the dimensionless thermodynamic critical angular velocity.
06361
the shape of the vortex line for normal modes with one a
two nodes for different values of trap anisotropya. In Fig. 4,
xmax5ux(z5Rz)u.

E. Energy of a curved vortex in a trapped
Bose-Einstein condensate

Let us consider a condensate in a trap that rotates with
angular velocityV around thez axis. We assume that th
condensate contains aq-fold quantized vortex line, and the
equation of the line shape isx5x(z,t), y5y(z,t). In a frame
rotating with angular velocityV ẑ, the energy functional of
the system is

FIG. 5. Shape of the vortex line for the second even norm
mode for differenta.

f

FIG. 4. Shape of the vortex line for the first odd normal mo
for different a.
7-8
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DYNAMICS OF A VORTEX IN A TRAPPED BOSE- . . . PHYSICAL REVIEW A 62 063617
E~C!5E dVS \2

2M
u¹Cu21VtruCu21

g

2
uCu4

1C* i\V]fC D . ~71!

To find the energy of the vortex, one can first find the co
densate wave functionC and then substitute it into the func
tional ~71!. For a curved vortex line, however, this approa
is complicated. Instead, one can use Eq.~38! to find the
vortex energy directly. As we know, the stationary Gro
Pitaevskii equation can be obtained by varying the ene
functional ~71!. The dynamical equation~38! is, in fact, the
time-dependent Gross-Pitaevskii equation, written in a w
suitable to describe the vortex motion. Therefore, if we f
mally put V50 in Eq. ~38! ~that is, omit time derivatives!,
then the resulting stationary equation should follow fro
variation of the energy functionalEV ~associated with the
vortex! if we consider it as a functional of the vortex shap
EV5EV„x(z),y(z)…. An equivalent energy functional has th
form ~in the TF limit!

EV„x~z!,y~z!…5
p\2

M E dzS q2uCTFu2A11~x8!21~y8!2

3 lnS R'

uquj D2
2qM

\

guCTFu4V

D'Vtr
D , ~72!

where the prime denotes derivative with respect toz. Varia-
tion of Eq. ~72! with respect tox(z) and y(z) gives Eq.
~38! ~with V50) plus terms proportional to
xx82, xy82, yx82, yy82, xx8y8, yx8y8. Hence,
the functional~72! describes the energy associated with
vortex both for a straight vortex line and for small displac
ments of a curved vortex from thez axis ~when terms pro-
portional to the fourth power of the displacement can
omitted in the expression for the energy!. One should note
that Eq.~72! contains only a singlefold integration, which
a significant simplification of the original formula~71!. In
dimensionless lengthsx→Rxx, y→Ryy, z→Rzz, the
functional ~72! has the form

EV„x~z!,y~z!…52pmRzj
2n0~0!E dzFq2~12x22y22z2!

3A11ax821by82 lnS R'

uquj D
2

2mqV~12x22y22z2!2

\~vx
21vy

2!
G , ~73!

where a5Rx
2/Rz

2 , b5Ry
2/Rz

2 , j25\2/2Mm, and n0(0)
5m/g is the density at the center of the vortex-free cond
sate. The integration overz is taken in the region 12x2

2y22z2>0.
For a straight vortex line (x5x0 , y5y0), Eq. ~73! repro-

duces the well-known result@9#
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EV~x0 ,y0!5
8p

3
mRzj

2n0~0!~12x0
22y0

2!3/2Fq2 lnS R'

uquj D
2

8qmV

5\~vx
21vy

2!
~12x0

22y0
2!G . ~74!

In the general case of a curved vortex and small displa
ments, Eq.~73! gives the following expression for the en
ergy:

EV~x,y!5
8p

3
mRzj

2n0~0!H q2 lnS R'

uquj D2
8qmV

5\~vx
21vy

2!
J

12pqmRzj
2n0~0!E

21

1

dzH q

2
~12z2!~ax82

1by82!lnS R'

uquj D1~x21y2!F4mV~12z2!

\~vx
21vy

2!

2q lnS R'

uquj D G J . ~75!

Further, for small displacements of the vortex, Eq.~38! in
terms ofx andy reduces to Eqs.~53! and ~54!. Multiplying
Eq. ~53! by (12z2)y and Eq.~54! by (12z2)x and then
integrating the difference of the resulting equations, we
tain

E
21

1

~12z2!~yẋ2xẏ!dz

5
\

MRxRy
E

21

1

dzH @2~x21y2!

1 1
2 ~12z2!~ax821by82!#q lnS R'

uquj D
1

4mV~12z2!

\~vx
21vy

2!
~x21y2!J .

Using this equation, one can rewrite Eq.~75! in the follow-
ing form:

EV~x,y!5
8p

3
mRzj

2n0~0!H q2 lnS R'

uquj D2
8qmV

5\~vx
21vy

2!
J

12pqmRzj
2n0~0!

MRxRy

\

3E
21

1

~12z2!~yẋ2xẏ!dz. ~76!

If only one normal mode is excited, then the shape of
vortex line is given by

x5xn~z!sin~vnt1w0!, y5yn~z!cos~vnt1w0!,
7-9
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wherevn5vn(V) is the normal-mode frequency in the ro
tating frame~we assumevn to be real; for imaginary value
of vn one should take sinh and cosh). For this normal mo
one can rewrite Eq.~76! as follows:

EV~x,y!5
8p

3
mRzj

2n0~0!H q2 lnS R'

uquj D2
8qmV

5\~vx
21vy

2!
J

1pq\vn~V!RxRyRzn0~0!

3E
21

1

~12z2!xn~z!yn~z!dz. ~77!

For a long axisymmetric cigar-shaped condensate (a!1),
the lowest unstable mode isxn(z)5yn(z)5« cosh(z/a), for
which *21

1 (12z2)xn(z)yn(z)dz' 1
2 a2«2 cosh(2/a).

A general vortex motion is a superposition of norm
modes with different frequencies. Applying the usual Stur
Liouville procedure to the coupled differential equations~53!
and ~54!, one can establish orthogonality of the norm
modes with different frequencies*21

1 (12z2)xm(z)yn(z)dz
}dmn . The orthogonality ensures energy conservation d
ing the vortex motion, which is a property of the tim
dependent GP equation. Thus in the general case, the en
is a sum of contributions from all excited modes:

EV~x,y!5
8p

3
mRzj

2n0~0!H q2 lnS R'

uquj D2
8qmV

5\~vx
21vy

2!
J

1
15N

8
qE

21

1

~12z2!(
n

\vn~V!xn~z!yn~z!dz,

~78!

where N58pRxRyRzn0(0)/15 is the total number of par
ticles in the condensate. Equation~78! establishes the con
nection between thermodynamic stability and dynam
~meta!stability of the vortex~the first and second terms, re
spectively!. If at least one normal mode has a negative f
quency, it follows from Eq.~78! that a straight vortex line
along thez axis does not correspond to a local minimum
energy~nor is it a local maximum!. When the trap rotates
sufficiently fast that the frequencies of all normal modes
come positive (V.Vm), the straight vortex line along thez
axis corresponds to a local minimum of energy.

One should note that for a cigar-shaped condensate
Rz*2R' , there is an interval of angular velocity of tra
rotation whenVc,V,Vm . In this interval, the frequency
of ~at least! the lowest vortex mode remains negative, b
penetration of a vortex into the condensate is energetic
favorable. Under such a condition, the vortex line can low
its energy by undergoing a finite-amplitude deformation, a
the ground state of the system corresponds to a curved vo
line displaced from the trap axis~see also@45#!.
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V. NORMAL MODES OF A VORTEX WITH IMAGINARY
FREQUENCIES FOR A NONAXISYMMETRIC

3D CONDENSATE

For an axisymmetric trap, all small-amplitude norm
modes have real frequencies. For a nonaxisymmetric
(a5” b), however, Eqs.~55!, and ~56! can have solutions
with imaginary frequencies~in certain regimes of trap anisot
ropy!. As an example, we recall that a nonrotating spheri
trap has a special normal mode withm51 andṽ50. Let us
now consider a nearly spherical trap~this geometry is rel-
evant to the JILA experiments@46#!

ua21u!1, ub21u!1.

One can rewrite Eqs.~55! and ~56! as follows:

ṽ~12z2!S x

yD 5Ĥ0S x

yD 1V̂S x

yD , ~79!

where

Ĥ052$21]z@~12z2!]z#%S 0 1

1 0D ,

V̂52]z@~12z2!]z#S 0 b21

a21 0 D 1~12z2!ṼS 0 1

1 0D ,

and V̂ is a small perturbation.
The unperturbed equation corresponds to the equation

the normal modes of a vortex in a spherical nonrotating t
and, therefore, all eigenfrequencies of the unperturbed e
tion are real. The eigenvalueṽ50 of the unperturbed equa
tion is degenerate, and there are two solutions that co
spond toṽ50:

S x1

y1
D 5S z

0D , S x2

y2
D 5S 0

zD . ~80!

The eigenfunctions ofĤ0 are Legendre polynomials, an
these eigenfunctions form a complete basis. Therefore,
can apply the usual perturbation theory to solve Eq.~79!.
The matrix elements are given by

V115V2250,

V125
4

3 S b211
1

5
Ṽ D ,

V215
4

3 S a211
1

5
Ṽ D .

To first order in the perturbation, the eigenfrequencies h
the form
7-10
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ṽ56
AV12V21

E
21

1

~12z2!z2 dz

565AS a211
1

5
Ṽ D S b211

1

5
Ṽ D . ~81!

If, for example,a,1,b ~namely Rx,Rz,Ry), then the
solutions have imaginary frequencies forṼ,5(12a):

ṽ56 ig, g55AS 12a2
1

5
Ṽ D S b211

1

5
Ṽ D.0.

~82!

Here, the imaginary frequency means a vortex line orien
along thez axis ~which is the intermediate principal axis i
our example! corresponds to an unstable equilibrium. In co
trast, a vortex line oriented along the other principal axe
stable. If the angular velocity of the trap rotation increas

however, then the solution~81! becomes real forṼ.5(1
2a) and the vortex line along thez axis becomes stabl
because of the rotation.

It is straightforward to consider a general anisotropic t
~not necessarily close to a spherical shape!. The result is the
following: if the parametersa andb satisfy the inequality

a,
2

n~n11!
,b, ~83!

wheren is a non-negative integer, then a nonrotating trap
a normal-mode solution with imaginary frequency that c
responds to thenth Legendre polynomial. Moreover, if

a,
2

n~n11!
,

2

m~m11!
,b, ~84!

then there are (n2m11) solutions with imaginary frequen
cies. Increasing the external trap rotation sequentially eli
nates such solutions.

One should note that trap rotation can also produce n
mal modes with imaginary frequencies. For an anisotro
trap with Rx5” Ry , the anomalous modeva(V) becomes
imaginary in a vicinity ofV5uva(V50)u.

VI. MOTION OF A STRAIGHT VORTEX LINE IN A
SLIGHTLY NONSPHERICAL 3D CONDENSATE

In the previous sections, we studied the motion of
vortex line for small displacements of the vortex from eq
librium position~normal modes!. In this section we solve the
general nonlinear equation of the vortex dynamics~38! for a
slightly nonspherical trap. This problem is directly related
a recent JILA experiment involving the evolution of an in
tially straight vortex line in a nearly spherical condens
@46#. In practice, the trap slightly deviates from the spheri
shape (Rx5” Ry5” Rz).

For a strictly spherical trap, Eq.~38! has a solution repre
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senting a motionless straight vortex line (t̂ i“Vtr) that passes
through the center of the trap, with the shape

x5gxs, y5gys, z5gzs. ~85!

Heres is the length measured along the vortex line start
from the trap center andgx ,gy ,gz are the direction cosine
of the angles between the vortex line and the principal a
x,y,z @so that gx

21gy
21gz

251, t̂5(gx ,gy ,gz)#. For a
slightly anisotropic trap, however, the solution has appro
mately the same form as Eq.~85!, but the coefficients
gx ,gy ,gz become time-dependent. To find a solution to fi
order in the trap anisotropy, one can omit the curvature
the vortex line and putk50 in Eq.~38!. Also we should use
the vortex-free condensate densityuCTFu2 and takeR' to be
equal to the value for a spherical trap. Using the stand
perturbation theory, we obtain the following equations f
the coefficientsgx ,gy ,gz ~here, we assume that there is n
trap rotation!:

S ġx

ġy

ġz

D 5
q\

2m

E
2R

R

s2 ds

E
2R

R

s2S 12
s2

R2D ds

lnS R

uquj D

3S gygz~vz
22vy

2!

gxgz~vx
22vz

2!

gxgy~vy
22vx

2!
D , ~86!

or, evaluating the integrals,

ġx5
5q\

4m
lnS R

uquj D ~vz
22vy

2!gygz , ~87!

ġy5
5q\

4m
lnS R

uquj D ~vx
22vz

2!gxgz , ~88!

ġz5
5q\

4m
lnS R

uquj D ~vy
22vx

2!gxgy . ~89!

Equations of this type are known in classical mechanics
Euler’s equations of rigid-body motion; they describe t
evolution of the angular velocity of free motion of a bod
with different principal moments of inertia as seen in t
body-fixed frame@47#. Equations~87!–~89! have the follow-
ing integrals of motion:

gx
21gy

21gz
251, ~90!

vx
2gx

21vy
2gy

21vz
2gz

25const. ~91!

That is, the ends of the straight vortex move along trajec
ries that correspond to the intersection of a sphere and
ellipsoid with principal axes proportional toRx ,Ry ,Rz . In
fact, Eq.~91! is the equation of energy conservation duri
the vortex motion.
7-11



e
i
to

b

n

ty
tia
-

on
.

sfy
of

t
f
he

n

ANATOLY A. SVIDZINSKY AND ALEXANDER L. FETTER PHYSICAL REVIEW A 62 063617
In the particular case of an axisymmetric trap~for ex-
ample,vx5vy5v'), Eqs.~87!–~89! have the following so-
lution:

gz5gz~0!5const, ~92!

gx5gx~0!cos~vt !1gy~0!sin~vt !, ~93!

gy5gy~0!cos~vt !2gx~0!sin~vt !, ~94!

where

v5
5q\~vz

22v'
2 !

4m
gz~0!lnS R

uquj D
5

5q\

2M S 1

Rz
2

2
1

R'
2 D gz~0!lnS R

uquj D , ~95!

and @gx(0),gy(0),gz(0)# fixes the initial orientation of the
vortex line. The line precesses around thez axis ~the axis of
symmetry! at a fixed angle of inclination with respect to th
z axis. The frequency of this precession depends on the
clination and vanishes if the vortex line is perpendicular
the z axis with gz(0)50.

We now consider a general nonaxisymmetric trap. To
specific, we assume thatvx.vy.vz and introduce new
scaled functions

dx5
5q\

4m
lnS R

uquj DA~vx
22vz

2!~vx
22vy

2!gx , ~96!

dy5
5q\

4m
lnS R

uquj DA~vy
22vz

2!~vx
22vy

2!gy , ~97!

dz5
5q\

4m
lnS R

uquj DA~vy
22vz

2!~vx
22vz

2!gz . ~98!

Then one can rewrite Eqs.~87!–~89! as follows:

ḋx52dydz , ~99!

ḋy5dxdz , ~100!

ḋz52dxdy . ~101!

These equations have the following property: ifdx ,dy ,dz is
a solution of these equations, then if we change the sig
any two functions ~for example, dx→2dx , dy→
2dy , dz→dz), we obtain another solution. This proper
can serve to construct solutions that satisfy specific ini
conditions. Equations~99!–~101! have three stationary solu
tions. Two of them~the vortex line parallel to thex or z axis!
correspond to a stable equilibrium, while the third soluti
~the vortex parallel to they axis! is an unstable equilibrium

If udx(0)u,udz(0)u, the vortex line oscillates around thez
axis ~this is one of the equilibrium orientations!, and one can
express the solution of Eqs.~99!–~101! in terms of Jacobian
elliptic functions as follows:
06361
n-

e

of

l

dx5Adx
2~0!1dy

2~0! cn„Adz
2~0!1dy

2~0!t1C,k…,
~102!

dy56Adx
2~0!1dy

2~0! sn„Adz
2~0!1dy

2~0!t1C,k…,
~103!

dz56Adz
2~0!1dy

2~0! dn„Adz
2~0!1dy

2~0!t1C,k…,
~104!

where the modulusk5Adx
2(0)1dy

2(0)/Adz
2(0)1dy

2(0) is
less than 1, andC is a constant that must be chosen to sati
the initial conditions. The solution is a periodic function
time with the period

T5
4

Adz
2~0!1dy

2~0!
E

0

p/2 dw

A12k2 sin2w

5
4

Adz
2~0!1dy

2~0!
K~k!, ~105!

where K(k) is the complete elliptical integral of the firs
kind. The solutions~102!–~104! represent a superposition o
a nonuniform circular motion in a plane perpendicular to t
z axis and oscillations along thez axis: dz oscillates within
the following segment:

Adz
2~0!2dx

2~0!<udzu<Adz
2~0!1dy

2~0!. ~106!

If udx(0)u.udz(0)u ~the modulusk is greater than 1!, the
vortex line oscillates around thex axis. In this case one ca
use a reciprocal modulus transformation„k sn(u,k)
5sn(ku,1/k), cn(u,k)5dn(ku,1/k), dn(u,k)5cn(ku,1/k)…
and rewrite the solutions~102!–~104! as follows:

dx56Adx
2~0!1dy

2~0! dn„Adx
2~0!1dy

2~0!t1C̃,1/k…,
~107!

dy56Adz
2~0!1dy

2~0! sn„Adx
2~0!1dy

2~0!t1C̃,1/k…,
~108!

dz5Adz
2~0!1dy

2~0! cn„Adx
2~0!1dy

2~0!t1C̃,1/k….
~109!

The solution is a periodic function of time with the period

T5
4

Adz
2~0!1dy

2~0!
E

0

p/2 dw

Ak22sin2 w

5
4

Adx
2~0!1dy

2~0!
K~1/k!. ~110!

If udx(0)u5udz(0)u (k51), the solution reduces to

dx56dz5
Adx

2~0!1dy
2~0!

cosh@Adx
2~0!1dy

2~0!t1C#
, ~111!

dy56Adx
2~0!1dy

2~0! tanh@Adx
2~0!1dy

2~0!t1C#;
~112!
7-12
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during the motion, the vortex remains on a plane through
y axis, oriented alongdx56dz ~see Fig. 6!; it eventually

FIG. 6. Typical trajectories of the end of a straight vortex li
~that passes through the condensate center! during its motion in a
slightly nonspherical trap withRx,Ry,Rz .
he
th
s

th
e

s

e
ri
th
on
ge
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e

lines up along they axis ~which is a direction of unstable
equilibrium for the geometryvx.vy.vz that we are con-
sidering!.

Finally, one can rewrite these solutions directly in term
of the parametersgx ,gy ,gz that describe the orientation o
the vortex line. For example, instead of Eqs.~102!–~105!, we
have

gx5Agx
2~0!1

~vy
22vz

2!

~vx
22vz

2!
gy

2~0!cn~vt1C,k!,

~113!

gy56Agy
2~0!1

~vx
22vz

2!

~vy
22vz

2!
gy

2~0!sn~vt1C,k!,

~114!

gz56Agz
2~0!1

~vx
22vy

2!

~vx
22vz

2!
gy

2~0!dn~vt1C,k!,

~115!

where
k5A~vx
22vy

2!

~vy
22vz

2!

@~vx
22vz

2!gx
2~0!1~vy

22vz
2!gy

2~0!#

@~vx
22vz

2!gz
2~0!1~vx

22vy
2!gy

2~0!#
, ~116!

v5
5q\Avy

22vz
2

4m
A~vx

22vz
2!gz

2~0!1~vx
22vy

2!gy
2~0! lnS R

uquj D
5

5q\

2MA 1

Ry
2

2
1

Rz
2AS 1

Rx
2

2
1

Rz
2D gz

2~0!1S 1

Rx
2

2
1

Ry
2D gy

2~0!lnS R

uquj D . ~117!
ory
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The period of the motion is given by

T5
4

vE0

p/2 dw

A12k2 sin2 w
5

4

v
K~k!. ~118!

For a nonaxisymmetric trap, we plot trajectories of t
end of the vortex line in Fig. 6. The plot corresponds to
geometry Rx,Ry,Rz . There are two stable orientation
~along thex and z axes! and one unstable one~along they
axis!. The shape of the trajectories strongly depends on
initial orientation of the vortex. For an axisymmetric trap, w
have vx5vy so that k50. Then, using the propertie
sn(z,0)5sinz, cn(z,0)5cosz, dn (z,0)51, we can re-
produce formulas~92!–~95!.

Because the motion is periodic, one can anticipate on
more revivals of the vortex image in the recent JILA expe
ments. The revival time depends on the orientation of
vortex with respect to the symmetry axes and the deviati
from sphericity. Recently, such revivals of the vortex ima
~as well as vortex precession@25#! were seen by the JILA
e

e

or
-
e
s

group, and their results agree quantitatively with our the
@46#. One should note that our analytical results for t
normal-mode frequencies are valid with the logarithmic a
curacy, namely when ln(R/uquj)@1. It is, however, straight-
forward to go beyond logarithmic accuracy and obtain
numerical correction to the logarithm~see Ref.@35#!. This
correction modifies our formulas for the normal-mode fr
quencies as follows: instead of ln(R/uquj), one should use
ln(R/uquj)10.6755 ln(1.96R/uquj). In the JILA experiments,
ln(R/j)'3.5, and the inclusion of the correction improves t
quantitative agreement with the experimental observation

VII. CONCLUSIONS

In this paper, we consider the dynamics of a vortex line
2D and 3D condensates in the TF limit. We took into a
count the nonuniform nature of the system~namely the trap
potential!, the vortex curvature, and a possible trap rotatio
We derived a general equation of vortex dynamics and
vestigated various normal modes of the vortex line. For
7-13
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axisymmetric trap, all eigenvalues are real and the motion
the vortex line can be represented as a superposition of
nar normal modes with different frequencies. In a 2D co
densate, the normal modes are degenerate, and, as a re
superposition of planar waves can produce helical waves
3D, there is no such degeneracy and there is no simple
log of the helical waves.

An externally applied trap rotationV shifts the normal-
mode frequencies and makes the vortex locally stable
sufficiently largeV. For a cigar-shaped condensate, the v
tex curvature has a significant effect on the frequency of
most unstable normal mode~that with the most negative fre
quency!, and additional modes with~less! negative frequen-
cies appear. As a result, it is more difficult to stabilize t
central vortex in a cigar-shaped condensate than in a d
shaped one.

Normal modes with imaginary frequencies can exist fo
nonaxisymmetric condensate~both in 2D and 3D!. This
means that the corresponding equilibrium orientation of
e
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ett
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vortex is unstable. As an example of the solution of the g
eral nonlinear problem of vortex dynamics, we conside
the motion of a straight vortex line in a slightly nonspheric
condensate. The vortex line changes its orientation in sp
at a rate proportional to the trap anisotropy.
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