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Dynamics of a vortex in a trapped Bose-Einstein condensate
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We consider a large condensate in a rotating anisotropic harmonic trap. Using the method of matched
asymptotic expansions, we derive the velocity of an element of a vortex line as a function of the local gradient
of the trap potential, the line curvature, and the angular velocity of the trap rotation. This velocity yields
small-amplitude normal modes of the vortex for two-dimensid@&l) and 3D condensates. For an axisym-
metric trap, the motion of the vortex line is a superposition of plane-polarized standing-wave modes. In a 2D
condensate, the planar normal modes are degenerate, and their superposition can result in helical traveling
waves, which differs from a 3D condensate. Including the effects of trap rotation allows us to find the angular
velocity that makes the vortex locally stable. For a cigar-shaped condensate, the vortex curvature makes a
significant contribution to the frequency of the lowest unstable normal mode; furthermore, additional modes
with negative frequencies appear. As a result, it is considerably more difficult to stabilize a central vortex in a
cigar-shaped condensate than in a disk-shaped one. Normal modes with imaginary frequencies can occur for a
nonaxisymmetric condensati® both 2D and 3D. In connection with recent JILA experiments, we consider
the motion of a straight vortex line in a slightly nonspherical condensate. The vortex line changes its orienta-
tion in space at the rate proportional to the degree of trap anisotropy and can exhibit periodic recurrences.

PACS numbgs): 03.75.Fi, 03.65-w, 05.30.Jp, 67.40.Db

[. INTRODUCTION than the ground-state Bose condensate, so that the vortex is
thermodynamically unstablg]. However, the vortexwith

The experimental achievement of Bose-Einstein condendnit circulation quantumis dynamically stable and can de-
sation in confined alkali-atom gas¢$—3| has stimulated cay only in the presence of dissipation. Dissipative dynamics
great interest in the generation and observation of vortices iand the decay time of the vortex stdtkie to the interaction
such system$4—6]. Rotating a totally anisotropic harmonic of the vortex with the thermal clogdn a trapped Bose-
trap at an angular frequend® can, in principle, generate condensed gas are discusse@4f], where the friction coef-
vortices; they are energetically stable for>(Q. [7-1(0. ficient is found to be proportional to the temperature. At
There are several other ideas to create vortices in a trappde@mperatures relevant to current experiments, one can neglect
Bose-Einstein condensatBEC) [5,11-20. Vortex forma-  dissipation in studying the normal modes of the vortex be-
tion in a BEC was recently observed experimentdiji—  cause the vortex decay rate is much smaller than the frequen-
25]. cies of the normal modes.

In general, a vortex line in a trapped Bose-Einstein con- In this paper, we consider the dynamics of a vortex line in
densate is nonstationary. The vortex line can move as & zero-temperature condensate in the Thomas-FéTiF)
whole, undergo deformation of its shape, or perform oscilladimit, when the vortex core radiug~d?/R is small com-
tory motion like helical wave$26,27. An extensive litera- pared to the mean oscillator lengthand the mean dimen-
ture exists on vortex dynamics in superflu[@8]. The non-  sion R of the condensatdhere, d=(d,d,d,)**® with d;
linear Schrdinger equation(Gross-Pitaevskii model[29- = A/Mw; and trap frequencies; (i=Xx,y,z)]. We derive
33] has served to study the dynamics and reconnection ad general nonlinear equation for the motion of the vortex that
vortices, their time evolution, and scattering interactions ofincludes the effects of the trap potential, the vortex curva-
superfluid vortex rings. Vortex precession in a nonuniformture, and the angular velocity of the trap rotatimee Eq.
light beam has recently been observed and discussed in terrt®8) below]. Linearization of this equation around stationary
of the nonlinear Schidinger equatior34]. configurations gives rise to the equation for the normal

The dynamics of a vortex line in a spatially inhomoge- modes of the vortex line. We investigate normal modes of
neous two-dimensionglD) condensate was considered in the vortex in 2D and 3D condensates. For a 2D condensate,
[35,36, while the problem of curvature-driven motion of a there are solutions in the form of helical waves. For a non-
vortex line in a homogeneous superfluid in three dimensionsotating trap, some of the solutions have negative eigenfre-
(3D) was studied in37]. A normal mode with negative fre- quencies(these modes are formally unstabléurthermore,
qguency that corresponds to a vortex precession was found a nonaxisymmetric trap, some solutions can have imagi-
numerically[38] and analytically for a large 3D disk-shaped nary eigenfrequencies, implying that a straight central vortex
BEC [9], and for a small BEG39]. The motion of vortex line is unstable with respect to finite self-induced curvature.
lines and rings in Bose-Einstein condensates in harmonic In a 3D condensate, the spectrum of normal modes be-
traps was studied in 2D and 3D by numerical solution of thecomes discrete. For a vortex near thaxis, the number of
Gross-Pitaevskii equatiof#0]. Minimum-energy configura- normal modes with negative frequency depends on the as-
tions of vortices in a rotating trap were considered4]. pect ratioR, /R,. A vortex in a disk-shaped condensate

In a nonrotating trap, the vortex state has a higher energgR,<R,) has only one mode with negative frequency. How-
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ever, if we change the aspect ratio to a cigar-shaped conden- vortex line axis of trap rotation
sate withR, <R,, more modes with negative frequency ap- ;

pear. Thus it is more difficult to stabilize a vortex in a cigar- S~—
shaped condensate than in a disk-shaped one.

The plan of the paper is the following. In Sec. I, we
derive a general equation of vortex dynamics using the
method of matched asymptotic expansions. In Secs. Il and
IV, we discuss the normal modes of a vortex line for 2D and
3D condensates. In Sec. V, we investigate normal modes
with imaginary frequencies that appear for a vortex in a non-
axisymmetric condensate. In the final section, we study the
motion of a straight vortex line in a slightly nonspherical
trap.

Q

Il. GENERAL EQUATION OF THE VORTEX DYNAMICS

Consider a condensate in a nonaxisymmetric trap that ro-
tates with an angular velocit§2. At zero temperature in a
frame rotating with the angular velocif, the trap potential
V, is time-independent, and the evolution of the condensate
wave functionV is described by the time-dependent Gross-
Pitaevskii(GP) equation:

FIG. 1. Local coordinate system associated with the vortex line.

hZ
—mV2+Vtr+g|\If|2—,u(Q)+ihﬂ-(rXV) v 52
— o (V2 k) +Vi(ro) +g ¥ 2= ()
Jv
—if—, (1)
dt Fif(QXrg) -V |V =—ikV. VI, (2)

whereV, = ;M (wix?+ wjy?+ w37?) is the external trap po-
tential, g=4=#2a/M >0 is the effective interparticle inter-
action strength, ang(Q) is the chemical potential in the

rotating frame. : :
_ —(QXry). In the vortex core region, we may seek a solution
We assume that the condensate contairsfeld quan- in the form of an expansion in the small paramet&i®,

tized vortex with the position vectay(z,t). In this section andkeé:

we use thamethod of matched asymptotic expansitmsde- '

termine the vortex yelocity as a function of the local gradientq,:q,o(p) +W,=[|Wo(p)] —X(p,z)cos¢]e‘q‘f”i 7(p.2)sing

of the trap potentialV, the vortex curvature, and the (3)

angular velocity(2, generalizing the two-dimensional results

obtained by Rubinstein and PismE36,37] to the case of a whereWV is the condensate wave function wify replaced

three-dimensional rotating potential. The method applieby V(r); it satisfies a zero-order equation

when the external potential does not change significantly on

distances comparable with the core digiE<R, (this is the

TF limit) and when the curvature is not too largé& (

<1/|qlé); it matches the outer asymptotic form of the solu-

tion of Eq.(1) in the vortex-core region| p— po|<|q|£) with  and x, » characterize the perturbation in the absolute value

the short-distance behavior of the solution in the region faand phase. Physicall$l, is the analogous wave function for

from the vortex core |[p— po|>|q|€). a laterally unbounded condensate with chemical potential
To find the solution in the vortex-core region, one may u©(Q)—Vy(po). The polar anglep is measured from the

consider Eq(1) in a local coordinate frame centered at the direction of the vortex normalfﬂ|§<) andp is the radial cy-

pointry of the vortex line that moves with the vortex velocity lindrical coordinate in the local frame.

V. In the general case, the vortex line has a curvaltutet The perturbation¥; obeys the following equation:

depends on the specific element in question. We introduce a

local coordinate systenx(y,z), so that thex axis is directed

i M
along the vortex normdl, they axis is along the binormdl, ~ L(W1,W1)=——V-VWo+ ?‘I’op' V. Vi(ro) + kW,

where the term-kd, arises from the transformation to local
coordinates.
One can remove&) from this equation by a shify —V

hZ
_WV2+Vtr(ro)+g|q’o|2_M(Q) Yo=0, (4

and thez axis is along the tangent(see Fig. 1 The solution (5)
is assumed to be stationary in the comoving frame and sat-
isfies the equatiofin the local coordinatgs where
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2

2M p
L(W,, W) =V2W, + — ([ 1(Q) = Vy(ro) — 2| Wy 2]W =V, Vy(r) |+ ——————a | W[, (12
(¥, ¥71) 1T {{ Q)= Vy(ro) —29|Wo| ] ¥, X 29|‘I’TF|| 1+ Vulro)| AN g2 ol Wol,  (
_ 2\ *
gVol} © P IC2\ AN VAL B LGN )
is a self-conjugate operator ai, is the gradient operator PO PO 2 gl Vg2 P oM gl

in a plane perpendicular to the vortex line. This equation is (13
linear in¥; and inV; it containsV |V, andk as independent

sources, so that the velocity of the vortex line is a sum of !N Ed. (13), we can omit the last term, "ZhiCh is smaller
independent contributions due ®,V, and k. Also, the With respect to the terrkqp by the factoré™ p”. As a result,

functionw, depends only on the coordinates in the directionfor »>d|¢ the perturbations have the following asymptotic
perpendicular to the vortex line: therefore, in the dot producfO'™:
V-VW¥, only the component of the velocity perpendicular to

the vortex line is relevant. We also assume thahas no 4 WH( p|n(Ap)—Mp(V+ QXry)-y,
component along the line. For simplicity, one can assume 2\ g2 h

that V, V, lies alongn and derive the vortex velocity as a (14
sum of two independent contributions. The final result writ- )

ten in vector form remains valid for arbitrary directions of |V Vy(ro)| kh

A ~ + d,|Vol. 15
V.V, and n. Under this assumption, we hawé- V¥, = 2g[W P AMg|W g2 [ Vol 19
=V, ¥o=V(sin ¢&p+p71003¢6¢)‘]§'0 in polar coordinates.

Then, writing ¥, = — (x cos¢+inWo/sin #)d?? in terms of  In terms of the phas§, the solution(14) (the inner expan-

the small perturbationg and », Eq. (5) has the form sion in the coordinate frame centered at the vortex) lhees
the form
a2+1a+a2 +2M[(Q) Vi(ro) —3g|¥o|?] |V Vi(ro)] M
- X+ 5 [u(Q)=Vy(ro) — 39 X r
A A no ° S=q¢— g(%w In(Ap)y+—(V+Qxro) .
9l Wl
g°+1 29 (16)
———x— %7 _ _
P P The parametera andV must be determined by matching the
oM 5 solution (16) with that far from the vortex core.
q To the lowest order in the small parametéR, , Eq. (1)
=—|Wol| —V—p|V Vy(r —ka | Wy, 7 Lo
52 | °|( p PIV. Vil °)|) ol ol (" far from the vortex core reduces to an equation for the con-
densate phase only,
2 - 2 _ = I M
(‘W p v e pZ) " (‘%"1’0"99’7 W 162725+ V[ Wrel? VS— 0 (1 V) [ W20,

17
o Wolayn— — __M ap|q’°|+@ i
A Woldz7 sz TR [W| p’ whereW =|¥|e'S. In the frame rotating with the trap and for
Q=07 the phase has the form

tS)
W . . . M (wz— wz)
e can remové& from these equations with the following S=G§,— — ¥ Qxy, (18)
gauge transformation: b (0f+ o]
~ M whereS, is independent of) [43]. Under a shift of coordi-
n=n= 3PV ©) natesr—rq+r, we have

Further, for large distance$g|é<p<R,, we can use M 2
9| W o|2~g| W1 >~ w(Q) — V(o) and rewrite Eqs(7) and S~Sot 7| (&Xrg)+ M(wz+wz)[VVtr(fo)Xﬂ] T
(8) as follows: oy (19

2

ki : '
29|Vl x=p|V, Vu(po)| + m&pwoh (10) Comparison of Eq9(16) and(19) allows us to find the con-

tribution to the vortex velocity due to the trap rotation,

7 +1a Ll;o x 24 _ka (11 V=V,y+ 2 [VV,(ro) X Q] (20)
—_ _—— —_—:—’ = _— r s
pt p2 7 |V el p? P ° M(wi-i—w)z,) o

equivalently, whereV,, is the velocity for a nonrotating trap.
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It is next necessary to find the asymptotic formSyffar
from the vortex core. This functio§, satisfies the following
equation(in the shifted framg

| ¥ 16|°V2Sy+ V[ Wre]?- VS, =0. (21)

Introduce a functiord such that
Sox=—G(Py+ Py In[We?), (22)
Soy=0a(Py+ Py In[¥1(]?), (23

whereSy, = d,S, andSy, = d,Sy. This representation satisfies
Eq. (21) automatically. In addition, the condition

2 VX(V, S)=Spy— Souy= V. - (SoyX— Sp,y)
=2mq6®)(p) (24)

gives an equation fod containing a point source at the
vortex location,

V, [V, O+DV, In|V?]=2763(p). (25)
Hence,

VL [e” |n“I’TF|VL((I)e|n|\PTF|) _ Vl(e_ |n|q’TF‘)e|n|‘I’TF|(I)]

=275%)(p), (26)
or
e m‘\yTFlVE ( @elnlq’TF‘) — VJZ_ ( e In|¥ 7] ) elnleF‘Q
=2m5%(p). (27)

We can putV2 (e~ ")~ e~ MVre 2y, /29| ¥ 12, so that
Eq. (27) becomes
ViV

V2(Ppehl¥rey —
B : 29| W16

PV =2 775(2)(1)) e ¥rel
(28)

To find the solution, we rewrite Eq28) in the local co-

ordinate frame associated with the vortex line, taking into

account the effect of curvature:

vatr

5 |q, |2®eln|WTF‘
9l 1e

(V2 —kay) (De V1) —

=278@)(p)e Ve, (29

or

k2

2
ViV . Z) MW rel —kxi2

29| Ve
= 2775(2)(p)eln|‘I’TF|_

Vi ( (I)eln\\l'-”j - kx/2) _

(30

The solution of this inhomogeneous equatiofiriste that an

PHYSICAL REVIEW A 62063617

V2V k2
(I):_ekxIZKO( N vy ) (32)
29|V ¢l

whereK is a modified Bessel functidiior smallx, we have
Ko~ —In(e“x/2), whereC=0.577 . . . is theEuler constanit
Further, under the logarithm we may puE V,/4g|W |2
~1/R? . Hence® (in the local coordinate frame centered at
the vortex ling has the short-distance form

k2
—+—p].
2 VR 8°

To make the asymptotic matching, we can express the
solution (16) in the vortex-core region in terms @b and
then compare with the formulé32). Using the definitions
(22) and (23) of the function®, one can show that the ex-
pression(16) (for 1 =0) corresponds to the following func-
tion @ (in the coordinate frame centered at the vortex)tine

e® 1

d~In (32

X[ |V Vi(r MV
O~ 1+—(M+k In(Ap)+ ——x. (33
2 9| W e hq
To verify this expression, we used, In|Wg?~

— |V, Vi(ro)|/9|¥1? and dy In[¥1[?~0 in the local coor-
dinate frame whereb,— (9,—k)d. Substituting Eq.(33)
into Egs.(22) and(23), we obtain

qy
SOx:__z' (34)
p
ax g |V Vy(ro)l MV,
=— — | ————+k]|In(Ap)+ ——. (35
Y p? 2 g|‘I'TF|2 g

Therefore, in the coordinate frame centered at the vortex
line, the remaining contribution to the phase is

|V, Vi (ro)]

+k
g|\I’TF|2

In(Ap)p sing

q
So=Q¢—§(

M :
+ —Vypsing,

7 (36)

which coincides with Eq(16) (for 0=0). Matching Egs.

(33) and(32) (at p~|q|&) gives an expression for the con-
stantA (with logarithmic accuracy

k2
+

In(Ae)=1In R_f Y (37)

whereR, is the mean transverse dimension of the conden-

additional solution of the homogeneous equation does natate, and for the velocity.

satisfy the boundary conditions at largeand should be
omitted.

Finally, in general vector fornin the frame rotating with

the trap, the vortex velocity is

063617-4
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O gh [EXVWVy(rg) o [1 K2
V(ro)—_m gl\II—TF|2+kb In |Q|§ R_E+§
2[VV(rg) X Q
[ tr( 0) ], (38)
A Vi(ro)

whereb is a unit vector in the direction to the vortex binor-

mal, t is a tangent vector to the vortex line, aAd is the
Laplacian operator in the plane perpendicular®o This
formula is valid for arbitrary directions of the local gradient
of the trap potential, the normal to the vortex line, afd

Near the condensate boundary, the denominator of the first

term in this formula goes to zero. Therefotes VV,, must
also vanish near the boundary, implying e parallel to

PHYSICAL REVIEW A 62 063617

with the following dispersion relation betwe@anand « (un-
der the logarithm we takk~|«|):

ah
w=Fr———
2M RXRy

[1 |«[?
lg|& ¥+?

L

V(22— k?RE-1)(2- k?R2-01)

|

The associated amplitudes obey the relation

xIn (44)

: (45

VV,: as a result, the vortex line obeys the boundary condiWhere

tion that its axis is perpendicular to the boundary.

IIl. NORMAL MODES IN TWO DIMENSIONS

To understand the implications of E8), it is valuable

to consider first the case of a 2D condensate Wtk )z
andw,= 0 (hence no confinement in tledirection. Let the
vector po(z,t) = (X(z,t),y(z,t)) describe the time-dependent
position of the vortex line during its motion, ardbe the
vector of the principal curvature; thekb=txk and
d?py/ds’=k, wheres is the length measured along the vor-
tex line. For small displacements of the line from thaxis,

we haves~z, t~z, andk~d?p,/dZz%. Then using

ZXVVy=—MolyXx+Mawixy (39)
and
I Py .9PX
kb=t><k~—x—2+y—2, (40
97> "oz

we obtain the following coupled differential equations for

X(z,t) andy(z,t):

&x_qﬁ
gt 2M

2y Py 1 K
2l glen] = + =

40 u

+ﬁl
M (wi+ wy)

21
Ry

|

(41)

2X %X

h
ah (2x o
R  97°

2™

ay
at

[1 K2
la| & ¥+§

il

40 u
M(wi-i—wf,)

R2

X

(42

Q= — (49
1 |«f?
_+_
R? 8

L

qh(RE+RY)In| q|&

is a dimensionless rotation speed.
For a nonaxisymmetric traffor example,R,>R,), the

oscillation frequency becomes imaginary 1'f(2—fl)/Rx

<|k|< \/(Z—Q)/Ry, in which case the initial orientation of
the vortex line along the axis is unstable with respect to the
formation of finite curvature. Fof)>{,,=2, however, the
oscillation frequency is redland positive for any x. Thus
the trap rotation stabilizes a vortex line that initially lies
along thez axis.

For a straight vortex line£=0), the frequency is always
real. This unstable normal mode has the most negative fre-
guency[we choose the sign in E@44) that corresponds to
positive-norm solutiohwith

R,

'(m)

For g>0 and(Q =0, the vortex movegaround thez axis)
counterclockwise in the positive sense. With increasing rota-
tion frequency() of the trap, the vortex velocityas seen in
the rotating framg decreases towards zero and vanishes at
0O =Q,,, where the metastable angular velocidy, of trap

R,

rotation is given by
In(—).
|a¢

This value(}, corresponds to the angular velocity of trap
rotation at which a straight vortex line at the trap center first

(o]/3
MR,R,

Au)

“” qﬁ(w)2<+w§)

. (47

_lalfi(wi+ o))

Qn i

(48)

These equations have solutions in the form of helicaPecomes a local minimum of energ9]. For Q>0 the

waves,

X=gySiN(wt+xz+¢q), Y=¢&ycogwt+kz+ @),

(43

apparent motion of the vortex becomes clockwise. kor
=0, this straight vortex follows an elliptic trajectory along
the lineV,= const, as expected from the dissipationless char-
acter of the GP equation.
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For a uniform condensateR(,R,— =), Eq. (44) coin-
cides with the well-known dispersion law of small oscilla-
tions of a straight vortex linéKelvin modes:

h
w=¢;—MK2|n(|q|gK). (49

Note that one can represent the helical wave solud@h
as a sum of two plane-wave solutions:

X1= &, COg kZ)SIN(wt+ ¢g), Y1= &y COY kZ)COg wt

+ @0)7 (50)
Xo= g, SiN(kZ)SiN(wt+ ¢+ 7/2),
Yo= €y Sin(kz)cog wt+ @o+ 7/2). (51

One can easily see that Eq50) and (51) are indeed solu-
tions of Egs.(41) and (42) with the same dispersion law
= w(k) as the helical wavéd4). In fact, the general motion

PHYSICAL REVIEW A 62 063617
where

RY
=

2
LA
R

are parameters characterizing the trap anisotropy. One can
seek solution of these equations in the form
Xx=X(z)sin(wt+¢q), Yy=Y(z)cogwt+ ¢g)

and obtain the following ordinary differential equations for
x(2), y(2), and w:

~_ 2(Bzy' —y) R

wx=(1_—zz)—ﬁy +Qy, (55

~  2(azx' —Xx) ,
=(1_—Zz)—ax +Qx, (56)

of the vortex line can be represented as a combination Qfhere we introduce dimensionless angular velocities

plane-wave solutions; helical waves are just one of the pos-

sible combinations and hence do not represent a different set I'MR.R.w _ AMR2R20)

of solutions. Solutiong50) and (51) have different parity, w=— Y Q= A . (57
but the same eigenfrequentn 2D there is degeneragyin qk In(i) qh (R2+ Rz)ln(i)

the 3D case, the plane-wave solutions are not degenerate lg|& Y la| &

and, therefore, in 3D it is impossible to construct a simple
analog of helical waves. The general vortex motion in 3D is
a combination of plane wavdglane-wave solutions in 3D _
exist, at least, for an axisymmetric tyapith different num- Consider a nonrotating trap witR= 0. In this section, we
bers of nodes along the symmetry axis and hence differergeek stationary configurations in which the vortex line re-
frequencies. mains at resfin this case, the contributions to the velocity
from the vortex curvature and the trap potential compensate
each other. To find the stationary configurations, we need to

Let us consider small displacements of the vortex from>0IV€ EQs.(55) and (56) with the conditionw=0. The re-

_ - } ) sulting equations forx and y uncouple; for example, the
the z axis andgzﬂz. The vortex curvature is proportional equation forx(z) has the form
to the vortex displacement, so one can RetO under the
logarithm in Eq.(38). Further, for small displacements,

A. Stationary configurations

IV. DYNAMICS OF A VORTEX IN THREE DIMENSIONS

2
(1-2°)X"—2zX + —x=0. (58)
tX VVy~M[X(02zy — 0ly) +Y(0ix— wizX)],
(52 The general solution of E¢58) can be expressed in terms of
hypergeometric functions, but it is impossible to satisfy the

h [ ivati ith tdhen i " e
where a prime denotes derivative with respecz.tdhen in boundary conditions tha&(z) should be finite az=+1 un-

dimensionless coordinates—Ryx, y—Ryy, z=Rz, less 2k=n(n+1), wheren is an integer K=0). In this
Eq. (38) becomes . .
case, the solutions reduce to Legendre polynomials
) h 2 " — R
i d (Bzy'—y) By In(_i) X P,(2). (59
2MRny (1—22) |CI|§
For example, the first three physical solutions @ve ignore
40 u y n=0, which corresponds ta=x)
+ (o2t ad) RR, (53
(0itwy) FxRy x1=Cz, a=1, (60)
- (o[ 2(azx —X) al R,
V=T 2MRR, (1-2) X Tq] X,=e(1-32%), a==, (62)
40 u X
M (w2+?) RR 9 Xs—C(Z—§ZS>, a=z. (62

063617-6
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If 2/a#n(n+1), the only possible solution of E¢8) is the
trivial one withx=0. The equation for thg coordinate has
the same solutiongxP(z) if 2/=m(m+1), andy=0 if
2/B#Fm(m+1). That is, if 2k#n(n+1) and 2B+ m(m

+1), there are no stationary configurations of the vortex line

apart from the straight orientation along thexis.
One should note that the integefor m) enumerates the

solutions not only fore=0; in particular,n represents the

PHYSICAL REVIEW A 62 063617

For simplicity, consider an axisymmetric trap, so that
= B. In this case, we have only one equation because one can
seek a solution in the form(z) =y(2):

2(azx' —X)

wxX= — ax"+Qx.
(1-2%)

(67)

In the limit <1, Eq. (67) has the following approximate

number of times that the vortex linprecessing with angular solutions:

velocity ,) crosses the axis. For an axisymmetric trap

(a= ), we can conside®, as a function ofx; the function
, changes sign at=a,=2/n(n+1). This observation al-

(68)

|z
, X=y=Csin 2

z
x=y=eg cosh —

lows us to find the number of normal modes with negative

frequency at a fixed value of anisotropy parameteif «
>1, there is only one mode with negative frequencys If
<a<1, there are two such normal modes; ¥ o< 3, there
are three modes, and so on.df,<a<a,_4, there aren
normal modes with negative frequency.

B. Dynamics of a vortex in a disk-shaped condensat®, <R :
Investigation of unstable mode

In the limit @, 3> 1 the approximate solution of Eq&5)
and (56) that corresponds to the unstable mode is

ZZ
x=¢g| 1+ —]|, (63

2a
=g|l z 64
y—S +ﬁ ’ ( )

with the corresponding eigenvalue

~ 3_3 1/1 1 65
w = - —1—0 ;4‘5 ( )

~ 1 ~
w=——+Q, (69

o
so that the lowest even and odd modes have approximately

the same frequency. Equati¢d9) yields the metastable an-
gular velocity(),, in an elongated cigar-shaped condensate,

R,

lali(of+ o)) RE (R
lalé

Qn 8 Rf n

. (70)

In contrast to Eq(66) for a flattened condensate, this expres-
sion becomes very large for a highly elongated trap. Conse-
quently, it is significantly more difficult to stabilize a vortex

in a cigar-shaped condensate than in one with a disk shape.

D. Numerical results for 3D

We have used Eq67) to evaluate the eigenvalues and
eigenfunctions for an axisymmetric trape€ 8). A finite

trap rotation produces only a shift of eigenvalues(byso

we can sef()=0. In addition, solutions of Eq67) can be
classified as even or odd functionsofOne can enumerate
the solutions by the numben of times that the vortex line
crosses the axis, m=0,1,2 ... . Thelowest (most nega-

Forf):O, the excitation energy is negative and hence for+tive) eigenvalue corresponds =0.

mally unstable. If the trap rotates, the soluti@®) becomes
stable ajQ|=Q,,, where

1

_lalf(oz+ o)) 1,
10\ «

1 1)
8 . (66)

B

R,
Q In| ——
" (|q|§

This expression generalizes that for the angular velocity at
which a straight vortex at the center of a thin disk-shape

condensate becomes metastdBleincluding the corrections
of ordera™* and 8~ 1.

C. Dynamics of a vortex in a cigar-shaped condensate
R,>R : Investigation of unstable modes

In Fig. 2, we plot the angular velocity of the vortex pre-
cessionw as a function of the trap anisotropy=R?/RZ for
m=0,1,2. In appropriate limits, the numerical solutian,
coincides with those found analyticallyo~—3— £« for
a=1 andwg~— 1/a for a<1. The next two solutions;

and Z)z are proportional tax for large @« and diverge like
=1/« for small a. If a>1, only one mode has a negative

C%requency(namely:oo). If $<a<1, there are two such nor-

mal modes; if<a<3, there are three modes, efthese
numerical results coincide with those found analytically

The more elongated the trap, the larger the number of
modes with negative frequenciésee alsd44]). This con-
clusion represents one of our main findings. For a disk-
shaped condensate, the angular velo€ity for the onset of

In the opposite limite, 3<<1, the lowest unstable-mode
solution of Eqgs.(55) and (56) corresponds to exponential metastability is smaller than the thermodynamic critical an-
growth of the vortex displacement as a functiorzoSuch a  gular velocityQ., with Q,=2Q [9]. The situation is com-
solution is possible in 3D because the condensate is boundgdietely different for a cigar-shaped condensate with
along thez axis. =R?/R2<0.26, becaus€), then becomes larger thdb, .
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20
18

O

> " FIG. 4. Shape of the vortex line for the first odd normal mode
2 23 5 for different «.
O0—R1/R

¥4
the shape of the vortex line for normal modes with one and

FIG. 2. Dimensionless frequencies[defined according to Eq. two nodes for different values of trap anisotropylin Fig. 4,
(57)] of the first three normal modes of the vortex as a function OfX = |X(Z=R))|.

the trap anisotropw = Rf/Rﬁ . The lower horizontal line represents

the dimensionless thermodynamic critical angular velocity. E. Energy of a curved vortex in a trapped

Bose-Einstein condensate

For comparison, Fig. 2 includes the line= — Q= —5. Let us consider a condensate in a trap that rotates with an
In Fig. 3, we plot the shape of the vortex line for the gngular velocityQ) around thez axis. We assume that the

lowest (unstablg normal mode = 0) for different values  condensate containscafold quantized vortex line, and the

of trap anisotropya. The functionx(z) is an even function equation of the line shapeis=x(z,t), y=y(zt). In a frame

of zwithout nodes ané =x(z=0). In Figs. 4 and 5, we plot rotating with angular velocitﬁi, the energy functional of
the system is

1.0 7
] 1.0 7
0.8 ]
] 0.8 1
0.6 ]
] 0.6 1
0.4 - 0.3
] 0.4 7 0=0.06
0.2 .
] 0.2 4
Z/R, 0.0 3 Z/R,
] 0.0 1
0.2 ]
] 0.2
0.4 ]
] -0.4 7
-0.6 3 ]
] -0.6
0.8 4 ]
] 0.8
1.0 R e
00 02 04 06 08 10 12 14 16 1.8 -1.0 e L M I
0.1x/e 04 -03 -02 -01 00 01 02 03 04
] ) 0.1x/e
FIG. 3. Shape of the vortex line for the normal mode with the
lowest frequencythe most unstable moyéor different values of FIG. 5. Shape of the vortex line for the second even normal
the trap anisotropyr. mode for differenta.
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h
E(V)= fdv(—|v«1f|2+vtr|~1r|2 _|q,|4 Ev(Xo, YO)—83 1R, £2n0(0)(1—x3— y@”{q 'n(|§|§>
+\P*ihQ¢9¢\P). (72) _ sl
_ 74
5h(w2+ o )( %0 yO)] 7

To find the energy of the vortex, one can first find the con-
densate wave functiol and then substitute it into the func-
tional (71). For a curved vortex line, however, this approac
is complicated. Instead, one can use EBB) to find the
vortex energy directly. As we know, the stationary Gross-

Pitaevskii equation can be obtained by varying the energy g VX, y)—8—,uR £ny(0)] g In( R, ) 8qud
functional (71). The dynamical equatiof88) is, in fact, the 2 70 lalé)  5h(w2+ )
time-dependent Gross-Pitaevskii equation, written in a way

suitable to describe the vortex motion. Therefore, if we for- 5 1 q 5 2
mally putV=0 in Eq. (38) (that is, omit time derivativés +2mquR.£o(0) fﬁldz 5 (1=29(ax
then the resulting stationary equation should follow from

In the general case of a curved vortex and small displace-
pments, Eq.(73) gives the following expression for the en-
ergy:

variation of the energy functiondt, (associated with the 4pQ(1-22)
vortex if we consider it as a functional of the vortex shape: +,8y’2)ln( +(x2+y?) —
Ey=Ey(x(2),y(2)). An equivalent energy functional has the lal¢ h(wit wy)
form (in the TF limit)
In( R, ) (75)
~ M ol

h2
Ev(X(Z).y(Z))=WWf dZ(qZI‘PTplzv1+(X’)2+(y’)2

Further, for small displacements of the vortex, E8g) in

R, | 2qM g|¥H*Q terms ofx andy reduces to Eq¥53) and (54). Multiplying
X'”(m T Th AV, ) (72 Eq. (53) by (1-2z?)y and Eq.(54) by (1-z?)x and then
integrating the difference of the resulting equations, we ob-
where the prime denotes derivative with respect.tvaria- tain
tion of Eq. (72) with respect tox(z) andy(z) gives Eq. 1
(389) (with V=0) plus terms proportional to f (1-2%)(yx—xy)dz
xx'2, xy'?, yx'?, yy'?, xx'y', yx'y'. Hence, -1

the functional(72) describes the energy associated with the 5
vortex both for a straight vortex line and for small displace- f dz{ [ - (x®+y?)
ments of a curved vortex from theaxis (when terms pro- " MRR

portional to the fourth power of the displacement can be
omitted in the expression for the eneygPne should note
that Eq.(72) contains only a singlefold integration, which is
a significant simplification of the original formul&1). In )
dimensionless lengthx—R,x, y—R)y, z—R,z the N 4pQ(l-z )(x2+y2)
functional (72) has the form ﬁ(w§+ “’32/)

2 12 12
+3(1-2°)(ax +By )]qln(|q|§)

) ) s o Using this equation, one can rewrite E@5) in the follow-
Ev(X(2),y(2))=2muR,¢ no(O)f dz g% (1—-x“—y“—29 ing form:

Ev(xy) = o uR,Eng(0)] o In 5| - I
Vit ax' 2t gy’2 X, = n n Tr 2. 2\
X1+ ax <+ By'“In |q|§ vy 3 #zs o g |Q|§ 5ﬁ(w)2(+w§)
Cv2_ 25232 MR,R
R e 73 +2mquR£2Ng(0) ——
2 2 ' fi
ﬁ(wx-l-a)y)
1 ) i
where a=R)2(/R§, B:R§/R§, gzZﬁZIZMM, and no(O) Xfﬁl(l—zz)(YX—XY)dZ. (76)

= ul/g is the density at the center of the vortex-free conden-
sate. The integration over is taken in the region x*  |f only one normal mode is excited, then the shape of the

—y*-27°=0. vortex line is given by
For a straight vortex lineX=xq, Y=Y,), Eq. (73) repro-
duces the well-known resulf] X=Xp(Z2)SiN(wpt+ ¢g),  Y=Yn(z)cOL wnt+ ¢q),
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wherew,= w,({) is the normal-mode frequency in the ro- V. NORMAL MODES OF A VORTEX WITH IMAGINARY
tating frame(we assumev,, to be real; for imaginary values FREQUENCIES FOR A NONAXISYMMETRIC
of w, one should take sinh and cosh). For this normal mode 3D CONDENSATE

one can rewrite Eq(76) as follows: For an axisymmetric trap, all small-amplitude normal

modes have real frequencies. For a nonaxisymmetric trap
(a# B), however, Eqs(55), and (56) can have solutions
with imaginary frequencie@n certain regimes of trap anisot-
ropy). As an example, we recall that a nonrotating spherical
trap has a special normal mode with=1 andw=0. Let us

+ 7w, ()RR R,NG(0) now consider a nearly spherical traghis geometry is rel-
evant to the JILA experimen{€6])

alé) 5hi(wi+ w?)

8 ) )
Ev(X,y)= 5 #RE2N4(0)| G2In

x f ' (1-2x(Dyn(2)dz 7
1 la—1|<1, |g—1|<1.

) o One can rewrite Eqg55) and(56) as follows:
For a long axisymmetric cigar-shaped condensaie (),

the lowest unstable mode i5,(z) =y,(z) =& cosh@«), for X

which [ ,(1—2%)xn(2)yn(2)dz~ % a?c? cosh(2k). w(1- 22)( ) —H,
A general vortex motion is a superposition of normal

modes with different frequencies. Applying the usual Sturm-

Liouville procedure to the coupled differential equati¢sd  where

and (54), one can establish orthogonality of the normal

modes with different frequencief! ;(1—z%)xm(2)yn(2)dz . 5

«dmn. The orthogonality ensures energy conservation dur- Ho=—{2+d,[(1~2 )52]}( 1 0)’

ing the vortex motion, which is a property of the time-

dependent GP equation. Thus in the general case, the energy 0

is a sum of contributions from all excited modes: U= —az[(l—zz)&z]( o

X

y

+V

I
y) (79

-1
1 0

. ,=(0 1
(1—2)01 ,

andV is a small perturbation.
The unperturbed equation corresponds to the equation for
the normal modes of a vortex in a spherical nonrotating trap
15N (1 ) E and, therefore, all eigenfrequencies of the unperturbed equa-
g ,1(1_2 ) = hon()Xa(2)Yn(2)dZ o5 are real. The eigenvalue=0 of the unperturbed equa-
tion is degenerate, and there are two solutions that corre-

lg|é 5ﬁ(w§+w§)

8w
Ev(xy)= ?Mszzno(O)[ q2 In(

(78 spond tow=0:
where N=87R,R R,ng(0)/15 is the total number of par- X1| _[ 2 2| (0O (80)
ticles in the condensate. Equatién8) establishes the con- 21 0/" \y, z)’

nection between thermodynamic stability and dynamic
(metgstability of the vortex(the first and second terms, re-
spectively. If at least one normal mode has a negative fre
quency, it follows from Eq(78) that a straight vortex line
along thez axis does not correspond to a local minimum of
energy(nor is it a local maximum When the trap rotates
sufficiently fast that the frequencies of all normal modes be-
come positive 1> ,,)), the straight vortex line along the
axis corresponds to a local minimum of energy.

One should note that for a cigar-shaped condensate with
R,=2R,, there is an interval of angular velocity of trap V12:§ p—1+ §Q
rotation whenQ).<Q<Q,,. In this interval, the frequency
of (at least the lowest vortex mode remains negative, but
penetration of a vortex into the condensate is energetically V==
favorable. Under such a condition, the vortex line can lower 3
its energy by undergoing a finite-amplitude deformation, and
the ground state of the system corresponds to a curved vortéo first order in the perturbation, the eigenfrequencies have
line displaced from the trap axisee alsd45]). the form

The eigenfunctions ofl, are Legendre polynomials, and
‘these eigenfunctions form a complete basis. Therefore, one
can apply the usual perturbation theory to solve Et9).

The matrix elements are given by

V11=V=0,

2 am1+ 10
oa— +g .

063617-10



DYNAMICS OF A VORTEX IN A TRAPPED BOSE. .. PHYSICAL REVIEW A 62 063617

- V1V senting a motionless straight vortex Iirﬂvvtr) that passes
w= il— through the center of the trap, with the shape
(1-7%)Z%dz
ffl X=98,  Y=WS, Z=YS. (85
1. 1. Heres is the length measured along the vortex line starting
=*5 a—1+ EQ B—1+ EQ : (8D from the trap center angl 7,7, are the direction cosines

of the angles between the vortex line and the principal axes

If, for example, a<1<p (namely R,<R,<R,), then the X,y,Z [so that 7§+ Yi+t =1, t=(nawy ,v2)). For a
solutions have imaginary frequencies < 5(1— «): slightly anisotropic trap, however, the solution has_ approxi-
mately the same form as Ed85), but the coefficients
5 _ 1~ ¥x: Yy, Y, become time-dependent. To find a solution to first
w==*ivy, 725\/ l1-a— §Q>(ﬁ—1+ 59) >0. order in the trap anisotropy, one can omit the curvature of
82) the vortex line and put=0 in Eq.(38). Also we should use
the vortex-free condensate dengiy¢|? and takeR, to be
Here, the imaginary frequency means a vortex line oriente§du@! to the value for a spherical trap. Using the standard
along thez axis (which is the intermediate principal axis in Perturbation theory, we obtain the following equations for
our examplg corresponds to an unstable equilibrium. In con-the coefficientsy,, vy, v, (here, we assume that there is no
trast, a vortex line oriented along the other principal axes idrap rotation:
stable. If the angular velocity of the trap rotation increases,

. R
however, then the solutiofB1) becomes real fof)>5(1 Vx f s?ds
- . . . gh -R R
a) and the vortex line along the axis becomes stable | ==— In(—)
because of the rotation. _y 2pu (R 5 s? la| &
It is straightforward to consider a general anisotropic trap Yz fﬁ s 1- E ds
(not necessarily close to a spherical shapée result is the
following: if the parameters and 8 satisfy the inequality 7y7z(w§—w)2,)
) 3 x| Wy wi—w)) |, (86)
a<———<p,
n(n+1) P P2 = w?)

wheren is a non-negative integer, then a nonrotating trap hasr, evaluating the integrals,
a normal-mode solution with imaginary frequency that cor-

responds to thath Legendre polynomial. Moreover, if . 5qn R
= I oz | (03— wd) vy (87)
) ) EETRICEA
a<n(n+ 1) m(m+1) B &9 . 5qh R
Vy——ln(—)(wi—wf)vxvz, (88)
dp - \lalg

then there arer(—m+ 1) solutions with imaginary frequen-

cies. Increasing the external trap rotation sequentially elimi-

nates such solutions. : :5qﬁ (i)
One should note that trap rotation can also produce nor-

mal modes with imaginary frequencies. For an anisotropic

trap with R,#R,, the anomalous mode,(Q) becomes Equations of this type are known in classical mechanics as

imaginary in a vicinity ofQ)=|w,(Q=0)|. Euler's equations of rigid-body motion; they describe the

evolution of the angular velocity of free motion of a body

with different principal moments of inertia as seen in the

body-fixed framg47]. Equations87)—(89) have the follow-

ing integrals of motion:

In the previous sections, we studied the motion of the

(05— w3) YxYy - (89)

VI. MOTION OF A STRAIGHT VORTEX LINE IN A
SLIGHTLY NONSPHERICAL 3D CONDENSATE

vortex line for small displacements of the vortex from equi- Vet ¥vot+vei=1, (90
librium position(normal modek In this section we solve the
general nonlinear equation of the vortex dynan{@8 for a Wi Ye+ 0fye+ wly;=const. (91)

slightly nonspherical trap. This problem is directly related to

a recent JILA experiment involving the evolution of an ini- That is, the ends of the straight vortex move along trajecto-

tially straight vortex line in a nearly spherical condensateries that correspond to the intersection of a sphere and an

[46]. In practice, the trap slightly deviates from the sphericalellipsoid with principal axes proportional t8,,Ry,R,. In

shape R,#Ry#R,). fact, Eq.(92) is the equation of energy conservation during
For a strictly spherical trap, E438) has a solution repre- the vortex motion.
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In the particular case of an axisymmetric tra‘pr ex- 8= \/5§(O)+5§(0) cn(\/5§(0)+5§(0)t+c,k),
ample,w,=wy=w,), Eqs.(87)—(89) have the following so- (102)
lution:

8,=*6%(0)+ 620 82(0)+ 82(0)t+C,k),
Y= 740) = const, (92 /= =VA0+ 50 Va0 g0 G,
7= n(0)cog o)+ (O)sin(wt), ©3 8,= +\/82(0) + 53(0) dn(\/32(0) + 53(0)t + C, k),
_ (109
Yy=vy(0)cog wt) — y,(0)sin(wt), (94)
where the modulusk=/55(0)+ 5;(0)/1/85(0)+ 55(0) is
where less than 1, an@ is a constant that must be chosen to satisfy
507 (02— o2 the initial conditions. The solution is a periodic function of
e qfi(w;— ) ) (O)In(i) time with the period
4p ’ [C[F3
" - 4 /2 dQD
5qh( 1 1 R = — 5 —
Sl el — 52(0)+ 65(0 1—k?sir?
M| R 7,(0)In |q|§), (95) V85(0)+ 55(0)Jo sine
4
and[ y4(0),7,(0),¥,(0)] fixes the initial orientation of the = ﬁlﬂk), (109
vortex line. The line precesses around #exis (the axis of 9,(0)+5y(0)

symmetry at a fixed angle of inclination with respect to the_ where K(k) is the complete elliptical integral of the first

Z”"’rllx';' ;]I'hen;r?/qt;}(ianﬁy 0:‘ m's \;/)r(ratcis?nonideperndrs]dci)n tlhft'rkind. The solutiong102—(104) represent a superposition of
clination a anisnes € vorte € 1S perpendicuiar 10, onuniform circular motion in a plane perpendicular to the

the z axis with 72.(0):0' . . z axis and oscillations along theaxis: &, oscillates within
We now consider a general nonaxisymmetric trap. To b%he following segment:

specific, we assume thab,>w,>w, and introduce new

scaled functions 5(0) = 55(0)<| 5= \/83(0) + 65(0). (106

_ 59 R 7 2, 2 2 If |5,(0)|>]8,(0)| (the modulusk is greater than )] the
5*‘@'”(@) V(o= wg) () o) (96 vortex line oscillates around theaxis. In this case one can
use a reciprocal modulus transformatiofk sn(u,k)
507 R > =sn(ku,1k), cn(u,k)=dn(ku,1k), dn(u,k)=cn(ku,1Kk))
5y:ﬂ'” lqlé \/(“’y_ w)(0x—oy)yy, (97 and rewrite the solution€L02)—(104) as follows:
5qh | R I 8=+ 8,(0) + 85(0) dn(y/8,(0) + 85(0)t +C, 1K),
6Z:HIn Tl V(oj— o)) (0~ )y, (98 (107
— 2 2 2 2 ra
Then one can rewrite Eq$37)—(89) as follows: Oy== \/52(0)+ %,(0) sn(\/éx(O)+ d,(0)t+ C’l/k)(’los)
== 3yd;, (99 8,=\[82(0) + 52(0) c(/62(0) + 62(0)t + T, 1K).
. (109
8y= 58,5, (100
The solution is a periodic function of time with the period
8,=— 8,6, (102 A 2 de
These equations have the following propertysif, o, , 6, is = J8%(0) + 5§(O)JO K2—sir o

a solution of these equations, then if we change the sign of

any two functions (for example, 5,——d, dy— 4

-3,, ©&,—5,), we obtain another solution. This property = ﬁK(l/k)- (110
can serve to construct solutions that satisfy specific initial 9,(0)+8,(0)

conditions. Equation§99)—(101) have three stationary solu- _ _ .
tions. Two of them(the vortex line parallel to the or z axis) It 16(0)[=[8,(0)] (k=1), the solution reduces to

correspond to a stable equilibrium, while the third solution 52(0)+ 52(0)

(the vortex parallel to thg axis) is an unstable equilibrium. 8=+ 8,= ; Y , (111
If |6,(0)|<|8,(0)], the vortex line oscillates around tke costi\/65(0)+ 55(0)t+C]

axis (this is one of the equilibrium orientationgnd one can

express the solution of Eq€9)—(101) in terms of Jacobian 8y=+8,(0)+ 85(0) tanH /85(0) + 8,(0)t+C];

elliptic functions as follows: (112
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lines up along they axis (which is a direction of unstable
equilibrium for the geometrys,> w,>w, that we are con-
sidering.

Finally, one can rewrite these solutions directly in terms
of the parameters,, vy, ,v, that describe the orientation of
the vortex line. For example, instead of E(¢E02—(105), we
have

2_ 2
-~ \/y§<0>+ (702 2 0)en(wt+C.K),
(wx_wz)

(113
(wf—w?)
yy=%\/ %(0)+ ﬁ’)’y(o)sdwt_*—c k),
(wy—w3)
(114
FIG. 6. Typical trajectories of the end of a straight vortex line
(that passes through the condensate cgutiering its motion in a (wi— “’3) 5
slightly nonspherical trap witR,<R,<R, . V= y2(0) + — - 7y(0)dn(wt+C k),
wX z
. : . (119
during the motion, the vortex remains on a plane through the
y axis, oriented alongs,= = 8, (see Fig. &; it eventually where
|
(03— o)) [(0F— 0)) ¥((0) +(w)— 07)%(0)]
(02 02) [(02-02)Y2(0) + (0 0l) ¥2(0)] (119
50% \/
0= \/(w _wz)yz(o)+(w y)J’y(O) ln(|Q|§)
Sqﬁ\/ \/ YO+ | = |20 ( R) 117
— - — ——— nl——|.
RR R RZ R 7 lalé
|
The period of the motion is given by group, and their results agree quantitatively with our theory
[46]. One should note that our analytical results for the
4 (w2 do 4 normal-mode frequencies are valid with the logarithmic ac-
=31, N KK, (118 curacy, namely when IR(|q/&>1. It is, however, straight-

forward to go beyond logarithmic accuracy and obtain the
numerical correction to the logarithiisee Ref[35]). This
correction modifies our formulas for the normal-mode fre-
quencies as follows: instead of Ri(g|£), one should use
IN(R/|q|&)+0.675=In(1.96R/|q| £). In the JILA experiments,
hg1(R/§) ~3.5, and the inclusion of the correction improves the
quantitative agreement with the experimental observations.

For a nonaxisymmetric trap, we plot trajectories of the
end of the vortex line in Fig. 6. The plot corresponds to the
geometry R,<R,<R,. There are two stable orientations
(along thex andz axes) and one unstable on@long they
axis). The shape of the trajectories strongly depends on t
initial orientation of the vortex. For an axisymmetric trap, we
have w,=w, so thatk=0. Then, using the properties
sn(z,0)=sinz, cn(z,0)=cosz, dn(z,0)=1, we can re- VIl. CONCLUSIONS
produce formulag92)—(95).

Because the motion is periodic, one can anticipate one or In this paper, we consider the dynamics of a vortex line in
more revivals of the vortex image in the recent JILA experi-2D and 3D condensates in the TF limit. We took into ac-
ments. The revival time depends on the orientation of thecount the nonuniform nature of the systénamely the trap
vortex with respect to the symmetry axes and the deviationpotentia), the vortex curvature, and a possible trap rotation.
from sphericity. Recently, such revivals of the vortex imageWe derived a general equation of vortex dynamics and in-
(as well as vortex precessiq5]) were seen by the JILA vestigated various normal modes of the vortex line. For an
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axisymmetric trap, all eigenvalues are real and the motion ofortex is unstable. As an example of the solution of the gen-
the vortex line can be represented as a superposition of plaral nonlinear problem of vortex dynamics, we considered
nar normal modes with different frequencies. In a 2D con-the motion of a straight vortex line in a slightly nonspherical
densate, the normal modes are degenerate, and, as a resulgoddensate. The vortex line changes its orientation in space

superposition of planar waves can produce helical waves. Igt a rate proportional to the trap anisotropy.
3D, there is no such degeneracy and there is no simple ana-

log of the helical waves.

An externally applied trap rotatiof shifts the normal-
mode frequencies and makes the vortex locally stable for
sufficiently large(). For a cigar-shaped condensate, the vor- This work was supported in part by the National Science
tex curvature has a significant effect on the frequency of thé-oundation, Grant No. DMR 99-71518, and by Stanford
most unstable normal modghat with the most negative fre- University (A.A.S.). We are grateful to B. Anderson, J. An-
quency, and additional modes witliesg negative frequen- glin, E. Cornell, and D. Feder for valuable correspondence
cies appear. As a result, it is more difficult to stabilize theand discussions. This work benefited from our participation
central vortex in a cigar-shaped condensate than in a diskn recent workshops at the Lorentz Center, Leiden, The
shaped one. Netherlands and at ECTEuropean Center for Theoretical

Normal modes with imaginary frequencies can exist for aStudies in Nuclear Physics and Related Areas, Trento, Italy;
nonaxisymmetric condensat@oth in 2D and 3D. This we thank H. Stoof and S. Stringari for organizing these
means that the corresponding equilibrium orientation of thevorkshops and for their hospitality.
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