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Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary collisions
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~Received 1 May 2000; published 15 November 2000!

Grazing collisions with background gas are the major cause of trap loss and trap heating in atom traps. To
first order, these effects do not depend on the trap density. In collisionally opaque trapped atom clouds,
however, scattered atoms with an energyE larger than the effective trap depthEeff , which are destined to
escape from the atom cloud, will have a finite probability for a secondary collision. This results in a contri-
bution to the heating rate that depends on the column density^nl& of the trapped atoms, i.e., the product of
density and characteristic size of the trap. For alkali-metal atom traps, secondary collisions are quite important
due to the strong long-range interaction with like atoms. We derive a simple analytical expression for the
secondary heating rate, showing a dependency proportional to^nl& Eeff

1/2. When extrapolating to a vanishing
column density, only primary collisions with the background gas will contribute to the heating rate. This
contribution is rather small, due to the weak long-range interaction of the usual background gas species in an
ultrahigh-vacuum system—He, Ne, or Ar—with the trapped alkali-metal atoms. We conclude that the transi-
tion between trap-loss collisions and heating collisions is determined by a cutoff energy 200mK<Eeff

<400 mK, much smaller than the actual trap depthE in most magnetic traps. Atoms with an energyEeff

,E,E escape into the Oort cloud: a mechanism of effective traploss in the microkelvin range of trap
temperatures. We present results of secondary heating rates for the alkali-metal atoms Li through Cs as a
function of the effective trap depth, the column density of the trap, and the species in the background gas. The
predictions of our model are in good agreement with the experimental data of Myatt for heating rates in
high-density87Rb-atom magnetic traps at JILA, including the effect of the rf shield and the composition of the
background gas. It is shown that collisions with atoms from the Oort cloud also contribute to the heating rate.
For 85Rb the calculated heating rate is below the experimentally observed value at JILA, supporting the idea
that inelastic collisions in the trap are the major source of heating.

PACS number~s!: 03.75.Fi, 32.80.Pj
ld
he
g

a
rr
w

th
tr
th
s
o

pt
th
t

s

s
re
In
d
it
p
r

ree-
all
ty or

p
ag-
ms,

as
ts

on-
se
e of

ue
a

ol-
i.e.,

ss
e

n

ss.
ary
or

a
re-
I. INTRODUCTION

The road to Bose-Einstein condensation~BEC! in a dilute
sample of trapped alkali-metal atoms is well known: co
atoms are first trapped in a magneto-optical trap, and t
transferred to a magnetic trap where evaporative coolin
applied to achieve the ultralow temperatures in the 1mK to
10 nK range, where the transition to BEC takes place@1–3#.
For magnetic trap densities in the rangen<1014 cm23, col-
lisions with the background gas at ambient temperature
the dominant mechanism of trap loss: the energy transfe
in these collisions is much larger than the trap depth. Ho
ever, for collisions with a scattering angle of a few mrad,
energy transfer is of the same order of magnitude as the
depth. These atoms do not leave the trap, but dissipate
energy in thermalizing collisions with other trapped atom
All models predict a heating rate that does not depend
either the trap density or the trap size: only the trap de
plays a role, together with the density and composition of
background gas. In a recent paper we calculated the hea
rate for like-particle collisions in low-density traps@4#, re-
sulting in a good agreement with experimental data on C
a far-off-resonance-trap@5#.

The heating rate in magnetic traps of alkali-metal atom
as used for achieving BEC, shows a very different pictu
Most data are available for Rb, the workhorse in this field.
most cases, the experimentally observed heating rate
pends on either the density in the trap or the column dens
i.e., the product of trap density and trap dimensions. Extra
lating to zero density, the heating rate is rather small o
1050-2947/2000/62~6!/063614~15!/$15.00 62 0636
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even vanishes. These observations are in strong disag
ment with the available models for trap heating, which
predict a heating rate that does not depend on trap densi
trap size@4,6#.

The goal of this paper is to provide a model for tra
heating that can explain experimental observations in m
netic traps. The excellent overview of heating mechanis
as given by Myatt@7# and Cornellet al. @8#, has served as a
source of inspiration. At low densities, the background g
will consist of mostly He, Ne, and Ar, the usual constituen
of an ultrahigh-vacuum system that is pumped by an i
getter pump and a titanium sublimation pump. The
background-gas–alkali-metal systems have a small valu
the long range van der Waals coefficientC6 as compared to
the like alkali-metal–alkali-metal systems. The small val
of C6 results in a small-angle differential cross section with
large diffractive regime@4,6,9,10#, with the net result that
only a small fraction of the total cross section results in c
lisions with an energy transfer less than the trap depth,
trap heating@4,6#.

With increasing column density of the trap, a new proce
of heating will start to be effective. We now enter the regim
of a collisionally opaque trap. Primary collisions with a
energy transfer to an alkali-metal atom that islarger than the
trap depth will also start to contribute to the heating proce
The low-energy alkali-metal atom produced in these prim
collisions, with an energy in the range of 10 mK to 10 K
more, has a finite chance for a secondary collision with
trapped alkali-metal atom before leaving the trap. This
©2000 The American Physical Society14-1
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H. C. W. BEIJERINCK PHYSICAL REVIEW A 62 063614
sults in an extra transfer of energy to the trapped populat
proportional to the column density of the trap. This cont
bution will thus dominate the heating rate for large values
the column density.

The driving force for any heating of the trap population
the primary collision rateṄ. This holds for heating by pri-
mary collisions as well as for heating by secondary co
sions. The general physical picture of primary and second
collisions is given in Fig. 1. In a primary collision, the pa
ticle from the background gas with energyEb and velocityv
collides with a cold alkali-metal atom inside the trap. Th
results in a transferred velocity in the laboratory syst
equal to vb with a kinetic energy Eb5 1

2 mvb
2 . The

background-gas atom will then leave the trap without a
further collision.

WhenEb is less than the trap depthE, the target atom will
not leave the trap and thermalize to the equilibrium tempe
ture of the trap. As a result, these primary collisions w
contribute to heating of the trap population. WhenEb is
larger than the trap depthE, the scattered alkali-metal atom
still has a finite chance to collide with another trapped alk
metal atom, resulting in a secondary collision with anoth
trapped atom. In the laboratory system, the transferred ve
ity is equal to Dvb with a kinetic energy DEb
5 1

2 m(Dvb)2. For energiesDEb less than the trap depthE,
these secondary collisions will also lead to a heating of
trap population. Assuming small-angle scattering in
center-of-mass system, the velocityDvb in the laboratory
system is then oriented in a direction roughly parallel
antiparallel to the initial velocityv of the background atom
which is the cause of all this happening.

The transfer of energy in a secondary collisions in the
mK to 10 K range is very efficient: first, the small-ang
differential cross section at these low energies is very la
second, it concerns like-atom collisions of alkali-metal ato

FIG. 1. The background-gas atom with velocityv transfers a
velocity vb to a trapped alkali-metal atom, resulting in a kine
energy larger than the trap depth; before leaving the trap, this a
can collide with another trapped alkali-metal atom, resulting in
transfer of velocityDvb with a corresponding kinetic energy les
than the trap depth, thus remaining trapped and contributing
heating of the trap population by a series of successive thermali
collisions inside the trap.
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with a very strong long-range interaction. For example,
Rb atoms with an energy of 1 K, the total cross section
equal to 7.43103 Å 2. At a density of 231014 cm23,
which is easily obtained experimentally in a trap close to
transition to BEC, the mean free path for secondary co
sions then is equal to 68mm. Comparing this result with a
characteristic trap size of 10–30mm, it is clear that second
ary collisions cannot be neglected for a thorough understa
ing of heating rates.

In this paper we investigate the energy-transfer rate
secondary collisions in the collisionally opaque trap regim
The results for the energy-transfer rate by secondary c
sions are given as simple analytical formulas which can
directly applied to a specific trap geometry, using the co
position of the background gas and the measured trap-
lifetime as input. Typical results are given for traps of t
alkali-metal gases Li through Cs, with He, Ne, and Ar, a
the corresponding alkali-metal atom as most likely const
ents of the background gas.

This paper is organized as follows. In Sec. II we deri
the formulas for the energy-transfer rate in secondary co
sions, based on the energy-transfer integral as derived
previous paper@4#. In Sec. III we investigate the scaling o
the energy-transfer integral of the secondary collisions w
the kinetic energy of the projectile, to arrive at an appro
mate analytical expression for the energy-transfer rate
secondary collisions. In Sec. IV we discuss the analyti
expression for the energy-transfer rate, showing the sca
on the properties of the trap atoms, the background gas
column density, and the trap-loss lifetime. Then, in Sec.
we refine our definition of heating collisions, with emphas
on the poor coupling of trapped atoms with an ener
slightly less than the trap depth to the cold trapped ato
with an energy much less than the trap depth. This is usu
referred to as the ‘‘Oort cloud’’ paradigm. Before we com
pare our model calculations with experimental results,
present the appropriate expressions for relating the den
temperature and trap parameters to the correct value of
column density~Sec. VI!. In Sec. VII we compare our cal
culated values to the available data for heating in87Rb mag-
netic traps at JILA.1 In Sec. VIII we investigate the colli-
sional coupling of the atoms in the Oort cloud with th
sample in the center of the trap. In Sec. IX we compare
experimental results for the heating rates in85Rb traps with
our calculated values. Finally, concluding remarks are giv
in
Sec. X.

II. SECONDARY COLLISIONS

In this section we investigate the basic ingredients for
analytical description of the heating rate by secondary co
sions. First we derive a suitable expression for the total
ergy input U̇ to the trapped sample of cold gas. Next, w
investigate the parameters that enter this formula: the sm
angle differential cross section for elastic scattering,
probability distribution for the primary scattering angleb,
and the energy-transfer integral for the secondary collis
with scattering angleu.

1Joint institute of the National Institute of Science and Techn
ogy and the University of Colorado, Boulder, CO.
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HEATING RATES IN COLLISIONALLY OPAQUE . . . PHYSICAL REVIEW A 62 063614
A. Total-energy input

A detailed picture of primary and secondary collisions
given in Fig. 2, using a Newton diagram in velocity spa
@10#. In a primary collision, the particle from the backgroun
gas with energyEb5kBTb @4# and velocityv collides with a
cold alkali-metal atom. This results in a scattering angleb in
the center-of-mass system, withCp as the origin. All scatter-
ing events result in a velocity of the target atom on the e
tic scattering sphere, centered atCp. In the laboratory system
with O as origin, the transferred kinetic energy is equal
Eb5 1

2 mvb
2 , with vb5(mp/m) bv in the limit of small scat-

tering angles. Here,mp is the reduced mass of the prima
collision system. When necessary, a superscriptp is used to
indicate that the parameter refers to aprimary collision, e.g.,
as is the case formp andCp. When the transferred energyEb
is less than the trap depthE, the scattered alkali-metal atom
will not leave the trap and contribute to heating of the tr
population. WhenEb is larger than the trap depthE, the
scattered alkali-metal atom still has a finite chance for a s
ondary collision with another trapped alkali-metal atom, d
to the finite value of the column density^nl& of the trap.

For this secondary collision we assume a scattering a
u in the corresponding center-of-mass system, centeredC.
The transferred velocity is given byDvb(u)5(m/m)uvb
~assuming small-angle scattering! with m the mass of the
atoms in the trap andm the reduced mass of the seconda
collision system. For energiesDEb(u)5 1

2 m(Dvb)2 less than
the trap depthE, these secondary collisions will lead to hea
ing of the trap population. Of course, the primary collisi
rate Ṅ is the driving force of the heating by secondary c
lisions.

The energy inputU̇ per second to the total numberN of
trapped atoms is then given by

FIG. 2. Newton diagram in velocity space of primary and s
ondary collisions. The origin of the laboratory system isO; the
origin of the center-of-mass system for primary and secondary
lisions is indicated byC p and C, respectively. The dashed circle
indicate the elastic scattering sphere of the target atom for b
collisions, centered atC p andC, respectively. The background-ga
atom with velocityv transfers a velocityvb to a trapped alkali-
metal atom. Before leaving the trap, this atom, with a kinetic ene
Eb5

1
2 mvb

2 larger than the trap depthE, can collide with another
trapped alkali-metal atom. When the corresponding transferDEb

5
1
2 m(Dvb)2 of the kinetic energy is less than the trap depthE, this

secondary collision will contribute to a heating of the trap popu
tion.
06361
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U̇5ṄE
bmax,b

p

P~b!db

3^nl&E
0

umax,b
sb~u!DEb~u!2p sinudu,

5Ṅ^nl&E
bmax,b

p

db P~b!IQE,b , ~1!

with P(b)db the probability distribution for a primary col
lision with a scattering angleb. A subscriptb or b is used to
indicate the kinetic energyEb andEb , respectively, to which
the specific parameter relates. The first integral of the
mary collisions extends from the maximum scattering an
bmax,b to p, i.e., treats all product alkali-metal atoms with a
energy transferEb>E.

The second integral in the first line of Eq.~1! is the
energy-transfer integral for the secondary collisions with
energyEb in the laboratory system@4#. The product of the
column densitŷ nl& and the differential cross sectionsb(u)
at energyEb determines the finite chance for a seconda
collision before leaving the trap, with a corresponding e
ergy transferDEb(u). The second integral extends over th
range 0 toumax,b5(m/m)(E/Eb)1/2, with the upper limit
corresponding to an energy transferDEb(umax,b)5E. In this
integral we include all the products of secondary collisio
that remain trapped.

In the second line of Eq.~1! we have introduced the shor
hand notationIQE,b for the energy-transfer integral at energ
Eb . We will now investigate the separate factors in th
equation.

B. Small-angle differential cross sections„u…

The long-range atom-atom interaction is well describ
by an inverse power-law potentialV(R)5C6 /R6 for induced
dipole-dipole interaction. For our calculation of both th
alkali-metal-atom–background-gas primary collisions
well as the alkali-metal-atom–alkali-metal-atom second
collisions, we use an accurate semiempirical representa
@11# of the small angle differential cross sections(x) at a
scattering anglex. This function is given by

F~x* !5s~x!/s~0!

5$123.75 sin~0.556x* 2!12.94x* 2%27/6, ~2!

x* 5x/x05x/~4p/k2Q!1/2, ~3!

with x* a scaled scattering angle andx05(4p/k2Q)1/2 the
characteristic diffraction angle@9–13#, with k5mv/\ the
wave number andQ the total cross section. The asymptot
behavior of this model function is in excellent agreeme
with the quantum-mechanical prediction for diffractio
dominated scattering at small anglesx* !1 and the classica
or high-energy approximation at large anglesx* @1. The
function F(x* ) is shown in Fig. 3, together with the refrac
tive limit 0.284x* 27/3 corresponding to classical mechani
for x* @1. The model function of Eq.~2! is correctly nor-
malized: the integral *0

`s(x)2p sinxdx'*0
`s(x)2pxdx

-
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H. C. W. BEIJERINCK PHYSICAL REVIEW A 62 063614
52px0
2s(0)*0

`F(x* )x* dx* 51.002Q gives an accurate valu
for the total cross sectionQ when using the small-angle ap
proximation sinx'x.

The model function of Eq.~2! will be used for calculating
the probability distributionP(b)db for primary collisions in
Sec. II C and for the energy-transfer integralIQE,b for sec-
ondary collisions in Sec. II D. In both cases, it will be adva
tageous to use the scaled scattering anglex* 5b* for pri-
mary collisions andx* 5u* for secondary collisions.

C. Probability distribution P„b…

The probability distribution function for the primary co
lisions with scattering angleb in Eq. ~1! is given by~see the
Appendix!

P~b!db5sb
p~b!2p sinbdb/Qb

p . ~4!

Here sb
p and Qb

p are the differential cross section and to
cross section, respectively, forprimary collisions ~super-
script p) at kinetic energyEb5kBTb of the impinging back-
ground gas atom~subscriptb). By substituting the mode
function F of Eq. ~2! for the differential cross section, Eq
~4! can be written as

P~b!db'@2pb0,b
2 sb

p~0!/Qb
p#F~b* !b* db*

50.764F~b* !b* db* , ~5!

switching to the scaled variableb* 5b/b0,b , with b0,b the
characteristic diffraction angle of the primary collision at e
ergyEb . By using the relations of the Appendix we find th
final expression of Eq.~5!, which can be readily applied fo
numerical and analytical calculations.

FIG. 3. Small-angle differential cross sections(x)/s(0) for the
case of aC6 /R6 potential for atom-atom thermal collisions wit
scattering anglex, as a function of the scaled scattering ang
(x/x0)2. Full curve: quantum-mechanical calculations; dotted lin
diffractive approximation; dash-dotted line: classical mechanics.
the same scale, we also show the energy-transfer integralIQE as a
function of the scaled trap depthE/Eref5(x/x0)2. Data points: nu-
merical result@Eq. ~6!#; dotted line: diffractive approximation@Eq.
~9!#; dash-dotted line: classical approximation@Eq. ~10!#.
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D. Energy-transfer integral

The essential input for the calculation of the energy tra
fer rate by secondary collisions is the energy-transfer inte
IQE,b , i.e., the integral of the product of the differenti
cross section at energyEb and the associated energy trans
in the laboratory system@Eq. ~1!#. Using the model function
for the differential cross section given in Eq.~2!, we can
write the energy-transfer integral as@4#

IQE,b50.764~2p\2/m!E
0

umax,b* F~u* !u* 3du* , ~6!

umax,b* 5~umax,b /u0,b!5~E/Eref,b!1/2. ~7!

The scaling factor of the integral in Eq.~6! depends only on
the massm of the target atom. The dependency on the ene
Eb only enters through the upper limitumax,b* of the integral,
as expressed in terms of the parameterEref,b . The latter pa-
rameter is a reference value for the depthE of the trap, which
determines the transition from heating to trap-loss collisio
The reference value has been introduced in a recent pape
Beijerinck @4#, and is defined as

Eref,b5Ebu0,b
2 ~m/m!2. ~8!

The reference value depends on the initial kinetic ener
both directly by the factorEb and implicitly by the depen-
dency of the diffraction angleu0,b on Eb . Throughu0,b , the
reference value also depends on the reduced massm and the
interaction strengthC6 @4# of the collision system, in this
case the secondary collisions of the alkali-metal atoms in
trap.

For the limiting cases of pure diffractive scattering~quan-
tum regime! or pure refractive scattering~classical mechan-
ics!, the dimensionless integral in Eq.~6! can be evaluated
analytically. We then find the asymptotic results@4#

u* max,b
2 !1: IQE,b'0.191~2p\2/m!~E/Eref,b!2, ~9!

u* max,b
2 @1: IQE,b'0.131~2p\2/m!~E/Eref,b!5/6,

~10!

with u* max,b
2 defined in Eq.~7!. Here we directly see the

application of the reference value to obtain simple analyti
formula for the energy-transfer integral. The two asympto
expressions are plotted in Fig. 3, where they are compare
the numerical results forIQE,b as calculated using Eq.~6!.
The deviations are only minor. We can therefore apply
analytical results of Eqs.~9! and~10! to evaluate the expres
sion for the total-energy input to the trapped atoms, as gi
in Eq. ~1!.

III. TOTAL-ENERGY INPUT: SCALING LAWS

The energy-transfer integralIQE,b at energyEb @Eq. ~1!#
depends on the scattering angleb: only by a careful inves-
tigation of the scaling properties of the energy-transfer in
gral IQE,b with the collision parameters can we avoid
messy approach which ends only in numerical results. O

:
n
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TABLE I. System parameters for the alkali-metal–background-gas and like alkali-metal–alkali sys
together with the diffraction angle and the scaling value for the trap depth at energyEb /kB5300 K. For the
background gas we have chosen rare-gas atoms that are usually abundant in an ion-getter-pumped u
vacuum system: He, Ne, and Ar.

Li Na K Rb Cs

Like alkali metals m(a.u.) 7 23 39 87 133
C6(a.u.)a 1393.4 1556 3897 4691 6851
u0,b (mrad) 24.6 11.8 7.1 4.3 3.1
Eref,b (mK) 45.4 10.4 3.83 1.36 0.702

He C6(a.u.)b 21.8 24.1 34.1 36.8 42.5
b0,b (mrad) 62 45.5 40 37 36
E ref,b

p (mK) 268 78.4 40.2 17.5 10.8
Ne C6(a.u.)b 42.6 47.0 66.3 71.7 82.7

b0,b (mrad) 51 24.1 18.2 14.6 13.3
E ref,b

p (mK) 149 43.5 22.4 9.7 6.0
Ar C6(a.u.)b 170.5 188.7 268.7 290.9 336.3

b0,b (mrad) 44 17.7 12.2 8.6 7.5
E ref,b

p (mK) 74.3 21.7 11.1 4.8 3.0

aReference@19#.
bReference@20#.
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aim is to provide analytical expressions which will give
insight into the role of secondary collisions.

A. Scaling ofIQE,b

We first investigate the scaling properties of the ener
transfer integralIQE,b for secondary collisions at a kineti
energyEb . In terms of the primary collisions parameters, t
kinetic energyEb is equal to

Eb5E ref,b
p b* 2, ~11!

E ref,b
p 5Ebb0,b

2 ~mp/m!2~m/mp!. ~12!

The parameterE ref,b
p is the scaling parameter for the prima

collisions with background-gas atoms with a kinetic ene
Eb , massmp, and reduced massmp @4#. As usual, b*
5b/b0,b is the scaled scattering angle of the primary co
sion.

Using the relations of the Appendix, we can write t
reference valueEref,b for secondary collisions at a collision
angle dependent-energyEb in terms of a reference value fo
secondary collisions at a fixed energy. For simplicity,
choose the kinetic energy of the primary collision,Eb , as the
fixed energy for the scaling of the reference value of
secondary collision. The result reads

Eref,b5Eref,b~Eb /Eb!1/55Eref,b~E ref,b
p /Eb!1/5b* 2/5.

~13!

The first step of Eq.~13! shows the simple scaling of th
reference value for the secondary collision system with
kinetic energy. By substituting the result of Eq.~11! for Eb ,
we obtain the final result. The kinetic-energy dependency
the reference valueEref,b of the secondary collision is now
expressed in the factorb* 2/5 of the primary collision scat-
06361
-

y

e

e
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tering angle. The details of the secondary collision are r
resented by the reference valueEref,b , calculated at afixed
kinetic energyEb .

In Eq. ~13! we observe that the value ofEref,b decreases
with decreasing energyEb of the secondary collisions. Fo
trapped atoms with a strong long-range interaction, as is
case for the heavy alkali-metal–alkali-metal systems Rb
Cs, the value ofEref,b at room temperature is on the order
1 mK or less~Table I!. For secondary collisions at a muc
lower energy, for exampleEb51 K, the reference value
Eref,b is on the order of 300mK or less. Even for shallow
traps this already results in a maximum secondary collis
angle in the range of classical scattering, as determined
the conditionumax,b* 2 5(E/Eref,b)>1. This implies that we
can use the analytical result of Eq.~10! for the energy trans-
fer integralIQE,b . Using Eq.~11! for the scaling ofEref,b we
then find a simple result for the scaling ofIQE,b with the
scaled primary collision angleb* , as given by

IQE,b50.131~2p\2/m!~E/Eref,b!5/6~E ref,b
p /Eb!21/6b* 21/3.

~14!

In Eq. ~14! the energy transfer integral at a variable ener
Eb , which depends on the scattering angleb of the primary
collision, is now expressed in terms of the reference val
E ref,b

p andEref,b at a fixed energyEb , and the scaled scatter
ing angleb* of the primary collision. This allows an eas
implementation in Eq.~1!.

B. Energy input

The final expression for the energy input per second,U̇,
to the population ofN trapped atoms@Eq. ~1!# can now be
4-5
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H. C. W. BEIJERINCK PHYSICAL REVIEW A 62 063614
evaluated, using the results of Eqs.~4! and~14! as input. We
then find1

U̇5Ṅ^nl&F0.131S 2p\2

m D S E
Eref,b

D 5/6S E ref,b
p

Eb
D 21/6G

3F0.764 E
bmax,b*

`

b* 2/3F~b* !db* G . ~15!

The integral over the primary collisions in the rangebmax,b*
to ` can be solved numerically, using the simple but ac
rate expression of Eq.~4! as input. However, to obtain mor
insight into the scaling of the energy inputU̇ with the system
parameters, we can also derive a fully analytical result.
substituting the classical approximation for the different
cross section in the weight functionP(b* )db* in Eq. ~15!,
we find

U̇5Ṅ^nl&F0.131S 2p\2

m D S E
Eref,b

D 5/6S E ref,b
p

Eb
D 21/6G

3F0.328S E
E ref,b

p D 21/3G . ~16!

The second factor in square brackets in Eq.~16! corresponds
to the analytical result for the integral in Eq.~15!.

Combining the two factors in Eq.~16!, we observe that
the energy input scales asU̇;E 1/2. For the scaling with the
reference value of the primary collision we findU̇
;(E ref,b

p )1/6, i.e., only a very weak dependence. For the d
pendence on the reference value of the secondary colli
we find U̇;(Eref,b)25/6, as would be the case for the energ
transfer rate for primary collisions with alkali-metal atoms
the classical limit.

Only a small error is made when using the expression
the weight functionP(b* )db* that corresponds to classic
scattering over the full range of integration, including t
range fromb* 5bmax,b* to b* 51 in the quantum regime o
primary collisions. When looking at the differential cro
section in Fig. 3, we observe that we can expect compen
ing effects in this case. For anglesb* slightly larger than
unity, the first diffraction oscillation in the differential cros
section is larger than the classical approximation; for ang
b* slightly less than unity, the value ofs(b* ) is always
smaller than the classical result. These ideas have b
checked by solving the integral in Eq.~15! numerically. This
calculation shows that forbmax,b* 50.1 the numerical results
are 53% smaller than the analytical approximation, as gi
in Eq. ~16!. For bmax,b* 50.7, the numerical results are 25
larger than the analytical approximation; this difference th
decreases to a few percent in the range 2,bmax* ,10.

1A dimensional check shows a factor@ time#21 from the primary

collision rate Ṅ and a factor @energy# from the term
^nl& (2p\2/m), in agreement with the dimension@energy/time# of

U̇.
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IV. ANALYTICAL RESULTS FOR ENERGY-TRANSFER
RATE

With all the hard work done for calculating the energ
transfer rate for secondary collisions, we can now comp
our results with the energy-transfer rate by primary co
sions. The proof of the pudding is in the eating: this co
parison will show us when one or the other heating mec
nism will dominate. We also investigate the scaling of t
calculated heating rates with the background species,
properties of the trapped alkali-metal atom and details of
trap such as the trap depth and the column density. For
comparison we will use standard conditions for both t
background gas and the trapping parameters, as given b

trap-loss lifetime: tp5100 s,

trap depth: E51 mK,

column density: ^nl&51015 m22, ~17!

background gas: He atEb5300 K, ~18!

trap atoms: Rb. ~19!

The trap depth is typical for a magnetic trap, although on
low side. The column density corresponds to a trap with
densityn51014 cm23 and a size of 10mm, typical num-
bers for Rb traps just above the transition to Bose-Eins
condensation. As the driving force we assume He-Rb
mary collisions, with a reference value equal toE ref,b

p

517.5 mK ~Table I!.

A. Primary collisions

The background gas collision partners He, Ne, and Ar
relevant for the residual gases in an ion-getter-pum
ultrahigh-vacuum system, in combination with a titaniu
sublimation pump. The long-range van der Waals coe
cients are given in Table I, together with the correspond
diffraction angleb0,b and reference valueE ref,b

p at energy
Eb /kB5300 K.

For background collisions with non-alkali atoms, the tra
loss lifetimetp is in good approximation related to the tot
number of primary collisions asṄ/N51/tp. The small frac-
tion DQb

p/Qb
p of the total cross section for primary collision

that results in heating but not in traploss, is equal
DQb

p/Qb
p50.38(E/Eref,b

p ) @4#. For the He-Rb system we find
(E/Eref,b

p )50.09, resulting only in a 4% error in our approx
mation for the trap-loss lifetime.

The energy-transfer rate of secondary collisions has to
compared to the density-independent energy-transfer
U̇p/N due to primary collisions@4#. For an easy comparison
we write the primary-collision energy-transfer rate as@4#

S U̇p

NkB
D 5110 nK/s3S 100 s

tp D S E
1 mKD 2S E ref,b

p

17.5 mKD
21

.

~20!
4-6
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HEATING RATES IN COLLISIONALLY OPAQUE . . . PHYSICAL REVIEW A 62 063614
This result holds for the quantum regime of primary co
sions withbmax,b* 25E/E ref,b

p ,1. Here the numerical facto
110 nK/s is equal to the primary-collision energy-trans
rate for He-Rb background collisions at the standard con
tions of Eq.~19!.

B. Secondary collisions

For the numerical value of the energy transfer rateU̇/N
for secondary collisions, we find@using Eq.~16!#

S U̇

NkB
D 5153 nK/s3S 100 s

tp D S ^nl&

1015 m22D S 87

M D
3S E

1 mKD 1/2S Eref,b

1.36 mKD
25/6S E ref,b

p

17.5 mKD
1/6

3S Eb

300 KD 1/6

. ~21!

The numerical factor 200 nK/s is the energy transfer rate
secondary Rb-Rb collisions for a trap at the standard co
tions of Eq.~19!.

Looking at Eq.~20!, we observe that the energy-transf
rate by primary collisions has a steeper dependencyU̇p/N
;E 2 on the trap depth than observed in the energy-tran
rate U̇/N;E 1/2 by secondary collisions@Eq. ~21!#. This im-
plies that, for decreasing values ofE, there always is a cross
over pointEX where heating by secondary collisions is equ
to heating by primary collisions. Comparison of Eq.~20!
with Eq. ~21! shows a crossover point atEX51.25 mK
where, with decreasing trap depth, heating by second
Rb-Rb collisions takes over from heating by primary He-
collisions. Once we are in the regimeE,EX , simply lower-
ing the trap depth is not a very efficient means to reduce
energy-transfer rate, due to theE 1/2 dependency of heating
by secondary collisions.

C. Rb–rare-gas collisions

We will now investigate the energy-transfer rate for se
ondary collisions in more detail. In Fig. 4 we show the r
sults for Rb as a function of the trap depthE, for all different
primary collision partners He through Ar. For this calcul
tion we have used the standard conditions as given in
~19!. The general trend is the same for all collision partne
This can be directly understood from the weak (E ref,b

p )1/6

dependency on the collision properties of the backgro
gas. For comparison we have also depicted the trap-den
independent energy-transfer rateU̇p/N for primary collisions
@Eq. ~20!#. In all cases, we again observe that the ener
transfer rate for secondary collisions crosses the prim
collision energy transfer rate in the quantum regime of p
mary scattering angles.

In Fig. 5 we depict the energy-transfer rate as a funct
of the column densitŷ nl&, calculated with the analytica
approximation of Eq.~16! at the standard conditions of Eq
~19! with the exception of the trap depthE. Results are given
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for a background gas of He for two different values of t
trap depth. For comparison we also give the value of
trap-density-independent energy-transfer rate due to prim
collisions. Due to the different scaling of both contributio
with trap depth, the crossing pointEX shifts from a high
column densitŷ nl&5531014 m22 for E51.0 mK to a low
column densitŷ nl&5531013 m22 for E50.2 mK.

In Fig. 6 we have plotted the energy-transfer rateU̇/N for
the alkali-metal atoms Li through Cs as a function of the tr
depthE, for the standard conditions of Eq.~19!. The rate is
calculated in the analytical approximation of Eq.~16!. We

FIG. 4. Energy-transfer rateU̇/N;E 1/2 by secondary collisions
for Rb as a function of the trap depthE, for the background gase
He, Ne, and Ar. For the column density and the trap-loss lifetime
the trap, we have used the standard values^nl&51015 m22 and
tp5100 s, respectively. For comparison, we have also drawn
energy-transfer rate due to primary collisions. The arrows indic
the transition from diffractive scattering~slope 2! to classical scat-
tering ~slope 5/6! for E'E ref,b

p . With decreasing value ofE we
observe a crossover from the primary-collision energy-transfer
to the secondary-collision energy-transfer rate.

FIG. 5. Energy-transfer rateU̇/N for a Rb trap, plotted as a
function of the column densitŷnl&. Results are given for He as
background gas, for two valuesE51.0 and 0.2 mK of the trap
depth. In both cases a trap-loss lifetimetp5100 s is assumed. Fo
comparison the energy-transfer rate by primary collisions is gi
as a horizontal line, together with the crossover pointEX .
4-7
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have also plotted the energy-transfer rate by primary co
sions. The arrows indicate the crossover point for prim
collisions from the quantum regime to the classical regime
collisions @Eq. ~3!#. For all systems, we again observe
crossover with the direct energy-transfer rate in the quan
regime of primary collisions. The maximum primary
collision scattering angles at the crossoverEX are equal to
bmax,b* 50.19 to 0.32 for Li through Cs, respectively, we
into the quantum range of scattering.

The system dependency of the value ofEX is determined
mainly by the system dependency of the heating rate by
mary collisions. The dependency of the energy-transfer
by secondary collisions on the specific alkali-metal at
considered is only very weak. The two factors in Eq.~21!
that depend on the secondary collision system, i.e., the m
factor (87/M ) and the reference parameter factor (Eref,b)25/6,

FIG. 6. Energy-transfer rateU̇/N for the alkali-metal atoms Li
through Cs as a function of the trap depthE, assuming He as the
background gas. For the column density and the particle loss
time of the trap we have used the standard value^nl&51015 m22

and tp5100 s, respectively. The arrows indicate the transit
point for primary collisions from diffractive scattering~slope 2! to
classical scattering~slope 5/6!, which is located atE'E ref,b

p .
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surprisingly cancel out nearly all influence on the second
energy transfer rate.

V. EFFECTIVE TRAP DEPTH Eeff

Until now, we have defined heating collisions as tho
collisions that leave an initially cold atom with a transferr
energy less than the trap depthE. Using this definition, we
implicitly assume that these collisionally heated atoms w
all rapidly thermalize with the sample of cold atoms, resu
ing in an equilibrium heating rate. However, typical samp
temperatures are in the 1 –40mK range, while the depth of
the magnetic trap is on the order of 5–10 mK. Furthermo
the collisionally heated atoms in the mK range occupy
volume that is much larger than the sample volume and t
density is correspondingly low. The assumption of a rapi
developing equilibrium thus needs further refinement.

A. Oort cloud

The low-density cloud of collisionally heated but st
trapped atoms was called the ‘‘Oort cloud’’ by Cornellet al.
@8#, in analogy to the extremely disperse and essentially
detectable cloud of comets located far outside the orbit
Pluto but still belonging to the solar system as proposed
Oort @14#. There is considerable experimental evidence t
the mK Oort cloud does exist. In the low-temperature ran
of the sample of trapped atoms, at the end of the evapora
cooling cycle, the total population of the Oort cloud can ev
exceed the population of the centrally located sample b
factor 4. Typical experimental data for the Oort cloud a
given in Table III, as measured at JILA@7#.

We propose a concept for the Oort cloud, where its po
lation consistsonly of atoms with a kinetic energyE in the
rangeEeff,E,E. In this concept, the Oort cloud does n
contain any atoms with a kinetic energyE<Eeff . The value
of Eeff will be much smaller than the trap depth, but st
much larger than the thermal energy of the atoms in the c
sample at the center of the trap~Fig. 7!.

e-
e
for
TABLE II. Calculated energy-transfer rateU̇/NkB for secondary collisions@Eq. ~21!#, in comparison with
the measured values~both with and without an rf shield! of Myatt for the 87Rb experiment at JILA. The

calculated energy-transfer rateU̇p/NkB for primary collisions@Eq. ~20!# is given as a reference. Both th
dependency on the background gas and the cutoff valueEeff are given. The trap parameters used as input
the model calculation are the experimental data^n&5331013 cm23, T51.2 mK, v r /2p5110 Hz, and
tp5250 s, resulting inl r515.5 mm and^nl&51.331015 m22.

No shield rf shield
Background Eeff5200 mK 400 mK 48 mK

Secondary collisions He 35 nK/s 50 nK/s 17 nK/s
Ar 29 nK/s 40 nK/s 14 nK/s
Rb 22 nK/s 31 nK/s 11 nK/s

Primary collisions He 1.8 nK/s 7.2 nK/s 0.1 nK/s
Ar 6.4 nK/s 26 nK/s 0.4 nK/s
Rb 31 nK/s 126 nK/s 1.8 nK/s

Experimentala 120 nK/s 60 nK/s

aMyatt @7#.
4-8
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The parameterEeff serves as an effective cutoff for th
energy-transfer integral. We assume that primary and
ondary collisions with an energy transferlarger thanEeff but
less thanE are lost in the Oort cloud: this constitutes a
effective-loss mechanism for atoms in the cold sample at
center of the trap. Collisions with an energy transfer lar
than E actually escape from the trap. In both cases th
atoms do not contribute to the energy-transfer rate to the
sample in the center of the trap.

Conversely, primary and secondary collisions with an
ergy transferless than Eeff do contribute to heating of the
cold sample in the center of the trap, due to a rapid therm
ization in a series of collisions. By intuition, we expect th
the value ofEeff will at maximum be one or two orders o
magnitude larger than the temperature of the cold sampl
the center of the trap, i.e., in the range of hundreds ofmK.
For a comparison of our model calculations with experim
tal results in Sec. VII, we use extreme values of the rang

TABLE III. Input parameters for the calculation of the heatin
of the sample in the center of the trap by collisions with atoms
the Oort cloud, together with the resulting energy-transfer rate
calculated for two different values of the cutoff energyEeff . The
numbers are typical for trapped samples of Rb atoms at JILA.

parameter valuea

TOort 2 mK
NOort /N 1–4
N 53(105–106)
VOort '1021 cm3

nOort 53105 cm23 b

vOort 76 cm/s
Eref,Oort 125 mK

Eeff548 mK 7 nK/sb

Eeff5200 mK 25 nK/sb

Eeff5400 mK 45 nK/sb

aMyatt @7#.
bLower limit NOort553105.

FIG. 7. Schematic of the trapping potential, the Oort cloud, a
the region of rapid thermalization by ‘‘pendulum’’ trajectories
the products of secondary collisions with a transferred kinetic
ergy less than the cutoffEeff .
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200 mK<Eeff<400 mK ~22!

to test our new concept of the Oort cloud in trap heatin
This comparison can help us to fix a value forEeff which is
most realistic.

An important conclusion of this new concept of heati
collisions is evident when we look at Fig. 4. The value f
EX , the transition point from dominant heating by seconda
collisions to dominant heating by primary collisions, is a
ways larger than the proposed value for the cutoff, as gi
in Eq. ~22!. We can conclude that we arealways in the re-
gime where heating by secondary collisions is the domin
mechanism, proportional to the column density of the trap
second important conclusion is that the experimentally
served heating rates do not depend on the actual trap depE,
at least when the latter is larger than, e.g., 1 mK. For shal
traps with a depth,1 mK, the formation of an Oort cloud
is not to be expected.

B. Thermalizing collisions

To investigate the validity of our assumption of a rap
thermalization for atoms with a kinetic energy less thanEeff ,
we discuss a ‘‘pendulum model’’ for the interaction of co
lisionally heated atoms with the cold sample in the center
the trap. In this model, we assume that all these atoms h
a negligible macroscopic angular momentum in the tr
This implies that these collisionally heated atoms trave
the cold sample in the center of the traptwiceper oscillation
period ~Fig. 7!. At each crossing, the probability for a coll
sion is equal to@12exp(2^nl&Q)#, with Q the total cross
section. For a kinetic energyE<400 mK we can use the
s-wave limit QT→0 for the total cross section~Fig. 8!. The
time constantt thermal for the thermalization of a collisionally
heated atom to the trap temperature is then given by

n
s

d

-

FIG. 8. Total cross section for elastic87Rb1 87Rb collisions in
the u1,21& state, as a function of the center-of-mass energyEcm

5E/2. Both the fully quantum-mechanical results~with contribu-
tions for l 50, 2, 4, and 6! as well as the semiclassical formula o
Eq. ~A1! are given. The range of validity of the latter expressi
starts when five to ten angular momenta contribute, at a cente
mass energyEcm55 –20 mK.
4-9
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t thermal
21 5~v/p!^nl&QT→0 , ~23!

with v the angular frequency of the atom trap in the coor
nate of tightest confinement, i.e. the largest frequency.

For Rb, the single-crossing collision probability is equ
to ^nl&QT→050.50 for a typical value of 1015 m22 for the
column density. On the average, half of the kinetic energy
the collisionally heated atom is transferred in each collis
to the cold atom in the trap, due to the isotropic nature
s-wave collisions. For example, a 100-mK atom will ther-
malize to a temperature of 1mK in typically seven colli-
sions, i.e. in a time span approximately equal to 7t thermal
554 ms when inserting a typical experimental valuev/2p
5150 Hz. This collision time should be compared to typic
values for the elastic collision time in the cold sample in t
center of the trap, which ranges from 3 to 100 ms@7#.

Although all collisionally heated atoms that are st
trapped originate from a collision with an atom in the sam
at the center of the trap, the assumption that they will foll
a pendulum movement is most appropriate for low-ene
atoms. These atoms probe the low-energy region of the t
where the absolute value of the anisotropy of the trapp
potential is small. With increasing kinetic energy, the ato
will probe the more anisotropic region of the trap, and a
quire a larger macroscopic angular momentum. These at
will circle around the sample in the center of the trap rat
then hitting it twice per period of oscillation. The latter a
oms do not thermalize rapidly and are lost in the Oort clo
The cutoff energyEeff is the transition from one regime to th
other.

VI. COLUMN DENSITY OF TRAP

Before we can compare our model with experimental
sults, we have to give a clear definition of the average va
^nl& of the column density. We assume a Boltzmann dis
bution for the density profile in both the axial and rad
directions. Integration over the Gaussian density profile
radial direction shows that the effective ‘‘density-length
product for a cigar-shaped harmonic trap with trapping f
quenciesv r!vz is, in a good approximation equal to

^nl&50.886~p/2!n~0!l r , ~24!

with n(0) the peak value of the density andl r
5(kBT/mv r)

1/2 the rms radius of the trap population. Th
factor p/2 stems from the fact that the solid-angle-weight
average path in a three-dimensional trap is a factorp/2
larger than the distance traveled in the radial direction@15#.

For a direct comparison with the expression given by M
att, we also write Eq.~24! as a function of the density
weighted average valuên& of the density, resulting in

^nl&52.50~p/2!^n& l r ,

^n&5N21E E E n2~rW !d3rW5n~0!/23/2. ~25!

The result in Eqs.~25! differs by a factor (2.50/p1/2)51.41
from the expression̂nl&5(p3/2/2)^n& l r given by Myatt@7#.
06361
-

l

f
n
f

l

e

y
p,
g
s
-
s

r

.

-
e

i-
l
n

-

-

Clearly, this difference of a factor 21/2 in the work of Myatt
is the result of applying the model of aninfinitely long trap in
axial direction, which results in a different relation^n&2D
5n(0)/2 between the average value of the density and
peak density. For a full three-dimensional~3D! approach the
relation between the peak density and the average v
readŝ n&3D5n(0)/23/2, as can be expected from a Gaussi
profile in all three directions. The result of Eq.~24!, in terms
of the peak density, has the advantage that it does not de
on the specific model used for the trap geometry.

VII. COMPARISON TO 87Rb EXPERIMENTS

A. Experimental results

Accurate and well-documented data on heating rates
Rb traps were given by Myatt@7# at JILA. Their first obser-
vation is the very different behavior for the two spin stat
u2,2& andu1,21& that can be trapped. Typical data for a tra
with average densityn53 1013 cm23 and temperatureT
51.2 mK are heating rate of 600 and 120 nK/s for theu2,2&
and u1,21& states, respectively. Three possible reasons
the larger heating rate of theu2,2& state are given. First, the
internal energy of the hyperfine splitting that can serve a
source of heat. Second, the existence of two trappable s
in theF52 manifold, that could result in a two-step kind o
heating process which can also contribute. Third, differen
in the total cross section due to shape resonances for an
momental>2 can have an influence on the heating rate.

The second observation of Myatt@7# is that the heating
rate is proportional to the elastic collision rategel in the
sample, irrespective of the temperature and density in
trap. The experiments are not conclusive if there is a dep
dency on the trap frequencyv. This relationship holds both
with and without applying a rf shield, over a wide range
heating rates. For example, for theu1,21& spin state without
a rf shield, the range of validity extends for heating ra
ranging from 5 to 230 nK/s.

Their third observation is that the heating rate is stron
affected by applying an ‘‘rf shield,’’ i.e., a rf field as used
evaporative cooling but with a cutoff temperature that
much higher than the trap temperature. For example, aT
51 mK, a rf shield with a cutoff at 48mK reduces the
heating rate by a factor of 2@7#. This ‘‘shield’’ will not
entice atoms to leave the sample in the center, due to
vanishing population in the Boltzmann tail of the kineti
energy distribution.

B. Model calculations

These are the facts that we have to compare with
model calculations. The first observation is outside the sc
of this paper, because we only take into account single-s
trapped atoms. However, we still can eliminate one of
suggestions of Myatt for explaining the observed differenc
Precise calculations of the total cross section at low temp
tures, as recently performed by Kokkelmans and Verh
@16#, show that there are no major differences for the t
states involved. Also, both show a pronouncedd-wave reso-
nance, equally large for theu2,2& and u1,21& states.
4-10
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HEATING RATES IN COLLISIONALLY OPAQUE . . . PHYSICAL REVIEW A 62 063614
We now proceed to the second observation. The ela
collision rate is equal togel5^nQv& trap , taking the average
over the trap volume and the velocity distribution in the tra
respectively. When we write the average velocity as^v&
;v r l r , with l r the typical excursion in the harmonic tra
we directly observe that the elastic collision rate is prop
tional to the product of trap frequencyv r and opacity
^nlQ& trap . For the Rb-Rb system we are in the regime
s-wave scattering when the center-of-mass energy is lim
to Ecm<39 mK, i.e., a kinetic energy ofE578 mK of the
trapped atoms@17#. The scaling law of Myatt for the heatin
rate can now be written as

U̇/N;gel;v r^nlr&QT→0;^nlr&, ~26!

where the last step is valid only for a fixed trapping fr
quencyv r . Comparing this result to the secondary heat
rate in Eq.~21! shows the same dependency on the colu
density when using Eq.~24! for ^nl& in terms of the average
density and the rms value of the radial excursion. The
periments of Myatt are not conclusive if a dependency on
radial trap frequencyv r actually exists. Looking at the re
sults of our model for heating by secondary collisions,
existence of such a dependency onv r would be rather sur-
prising.

We now discuss the third experimental observation
Myatt. We assume that the heating ratewithout a rf shield
correlates with the energy transfer by secondary collisi
with a cutoff energyEeff . It is obvious that the rf shield doe
influence the heating by secondary collisions when the
cutoff energyErf is less than the effective trap depthEeff . The
decrease in heating rate whenswitching onthe rf shield then
corresponds to the energy transfer with an effective t
depth equal toErf . The scaling of the energy-transfer rate
secondary collisions withE 1/2 then results in a decrease
heating rate according to

~U̇/N!rf5~Erf /Eeff!
1/2~U̇/N!. ~27!

Considering our choice for a cutoff value in the ran
200 mK,Eeff,400 mK, the heating rate is reduced by
factor of 2–3 by applying a rf shield at a cutoff equal
50 mK. This reduction is of the correct order of magnitud
when looking at the experimental data of Myatt.

We now look in detail at theabsolute valueof the energy-
transfer rate by secondary collisions in the experiments
Myatt ~Table II!. In the case of a trap with density^n&53
31013 cm23, temperatureT51.2 mK, and trap frequency
v/2p5110 Hz, the column density is equal to^nl&'1.3
31015 m22; the measured trap-loss lifetime istp'250 s.
Inserting these numbers into Eq.~21!, we then calculate the
energy-transfer rate by secondary collisions. Results
given in Table II for two different values of the cutoff, equ
to Eeff5200 and 400mK. By lowering the effective trap
depth toEeff5Erf548 mK we can include the effect of the r
shield. For comparison we have also calculated the ene
transfer rate by primary collisions, using Eq.~20!.

To show the dependency of the heating rate on the c
position of the background gas, we have calculated
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energy-transfer rates for three species: He, Ar, and Rb.
experimentally obtained information, showing that t
energy-transfer rate nearly vanishes when extrapolating
zero column density, helps us to decide on the composi
of the background gas. A background of Rb is eliminated
its large density-independent energy-transfer rate by prim
collisions, which is in strong contradiction with the colum
density dependency of Myatts data@7#. The absolute value o
the energy-transfer rate by secondary collisions points in
direction of He as a background gas, because it has the
est effect. Looking at the absolute values of the ener
transfer rate, we conclude that a cutoff atEeff5400 mK
gives a fair representation of the experimental results of M
att.

Looking at the influence of the rf shield on the energ
transfer rates, the case of He andEeff5400 mK shows a
decrease of 42 nK/s when switching on the shield. This nu
ber is in fair agreement with the experimental data of Mya
who found a decrease of'60 nK/s. However, the absolut
values of the energy transfer rates with and without the
shield are too low by approximately 30–60 nK/s, respe
tively.

In Sec. VIII A we will show that primary collisions with
‘‘hot’’ mK atoms in the isotropic Oort cloud could be th
cause of this extra contribution. One should keep in m
that the hot atoms from the Oort cloud impinging on the co
atoms in the center of the trap are not eliminated by the
shield: the heating collisions do not depend on the magn
substate, at least in a first-order approximation. The influe
of the rf shield is limited to the influence of the lower cuto
from heating to trap loss in these primary collisions, as
flected in the upper bound of the energy-transfer integra

C. Background-gas composition

The scaling of the energy-transfer rate by secondary
lisions with only the (E ref,b

p )1/6 power of the reference valu
of the primary collisions results in a very weak dependen
on the background-gas atom. Even when switching fr
He-Rb primary collisions to Rb-Rb primary collisions, wit
E ref,b

p 517.5 and 1.36 mK, respectively, this results in only
factor (E ref,b

Rb /E ref,b
He )1/650.65 decrease in the predicted

energy-transfer rate~Table II!. This scaling is in strong con
trast with the energy-transfer rate by primary collision
which increases proportional to (E ref,b

p )21 in the quantum
regime of diffractive scattering~Table II!.

Experimental support for this counterintuitive scalin
rule, i.e., a decrease in energy-transfer rate by secondary
lisions when we assume a primary collision with a mu
stronger long-range interaction, can also be found in the
perimental work of Myatt@7#. To investigate the dependenc
of the heating rate on the density of the background g
Myatt @7# heated the walls of the trapping chamber. He o
served a drop in the trap-loss lifetime of his magnetic tr
from tcold

p '400 s tothot
p '100 s. Going from ‘‘cold’’ to

‘‘hot,’’ the heating rate increased by a factor 1.5 to 2.5, mu
less than the decrease intp.

With cold walls, the background gas most likely consis
of atoms with a low mass number and a weak long-ran
4-11
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TABLE IV. Absolute value of the heating rate in the experiment of Myatt on Rb, in comparison with
total of the three contributions by primary background collisions with He, secondary Rb-Rb collision
primary Rb-Rb collisions with atoms in the Oort cloud, as predicted by the models in this paper@Eqs.~20!,
~21!, and~29!#.

No shielda rf shieldb

Model Secondary collisions 50 nK/s 17 nK/s ^nl& dependent
Primary collisions 7.2 nK/s 0.1 nK/s n independent

Oort cloud 45 nK/s 7 nK/s n independent in first order

Model Total heating rate 102 nK/s 24 nK/s

Experiment Myattc 120 nK/s 60 nK/s ^nl&-dependent

aEeff5400 mK.
bEeff548 mK.
cReference@7#.
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interaction, e.g., H2, He or Ne, as shown in Sec. VII B. Hea
ing up the chamber will result mainly in an additional flux
Rb atoms, evaporating from the walls. For the scaling of
heating rate in these two experiments, we thus have to
into account the effect of both the increase in density as w
the change in composition of the background gas. For
increase in heating rate we then predict a factor

~U̇/N!hot

~U̇/N!cold

5S thot
p

tcold
p D 21S E ref,b

Rb

E ref,b
He D 1/6

52.6. ~28!

The good agreement with the experimental results of My
provides extra support for our model of heating by second
collisions.

VIII. THERMAL COUPLING TO OORT CLOUD

In our new concept of the Oort cloud we have implicit
assumed that the Oort cloud does not contribute to
energy-transfer rate to the mK sample. However, in view
the observed discrepancies between experiments and m
calculations, the latter being too small, it is necessary to
vestigate this assumption in more detail. We discuss
models: first, an Oort cloud with an isotropic distribution
velocity space, the equivalent of a background gas at a t
perature of a few millikelvin~Fig. 7!. Second, we investigat
the contribution to heating for the case of an Oort cloud w
‘‘pendulum’’ trajectories for all atoms in the cloud. The la
ter clearly is an upper limit to the heating rate due to the O
cloud.

A. Isotropic gas model

We consider collisions of atoms in the Oort cloud wi
atoms in the sample at the center of the trap, assuming
isotropic distribution of the velocity of the atoms in the Oo
cloud. The expression for the heating rate is then the sam
for heating by primary collisions with a background gas,
course, with its composition and a much lower temperat
TOort as the two most pronounced differences. First, the O
cloud consists of the trapped species: the alkali-metal–alk
metal long-range interaction is much stronger than the no
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gas-alkali-metal interaction, resulting in a much smal
value ofEref . Second, the mK temperature of the Oort clo
results in a scaling of the reference valueEref to even lower
values @Eq. ~13!# as compared to the room-temperatu
value. The resulting value atTOort52 mK is Eref,Oort
5125 mK. For this reason primary collisions dominate th
heating by collisions with atoms in the Oort cloud. The de
sity nOort'106 cm23 corresponds to an equivalent bac
ground pressure of 3310211 Torr, not very different from
the background gas itself at a trap loss lifetime of 100 s.

For Rb we can still apply—although marginally—th
semiclassical expressions for the energy-transfer integralIQE
at an energy of a few mK~see the Appendix!. The energy-
transfer rate per atom is then given by@4#

U̇Oort/N5nOortvOortIQE,Oort. ~29!

Here,vOort5(2kBTOort/m)1/2 is the characteristic velocity o
the atoms in the Oort cloud.

The calculation ofIQE,Oort has been done for the tw
different valuesEeff5200 and 400mK of the effective cut-
off, i.e., the transition point between heating and trap-lo
collisions. Because the cutoff is always much larger than
reference value, we can apply an approximate expression
the energy-transfer integral based on classical scattering@Eq.
~10!#. In the Appendix we investigate the validity of this—
rather crude—approximation, showing that the errors are
too large. Using the input as given in Table III, which appli
to the case of Rb, we find an extra energy transfer rate in
range of 25–45 nK/s. Applying an rf shield, with a cuto
energy equal toErf548 mK, as relevant for a compariso
with the experimental results of Myatt@7#, results in an extra
energy-transfer rate equal to 7 nK/s.

Comparison to experimentally obtained heating ra
shows that we cannot neglect this contribution of the O
cloud to the energy-transfer rate to the centrally located c
sample. This extra contribution can perhaps explain why
model results in Sec. VII are always smaller than the exp
mental results of Myatt. In Table IV we compile the releva
data of Tables II and III for an easy comparison of the e
perimental and model results for the total heating rate in
4-12
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TABLE V. Calculated energy-transfer rates for secondary and primary collisions, in comparison wi
experimental values for the heating rate in the85Rb trapping experiment at JILA. Due to the low valu
^nl&5431013 cm23 of the column density, the contribution by primary collisions is larger than for seco
ary collisions.

Background Eeff5200 mK Eeff5400 mK

Secondary collisions He 1.1 nK/s 1.6 nK/s
Primary collisions He 1.8 nK/s 7.0 nK/s

Experimenta 1–3 nK/s

aReference@18#.
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experiment of Myatt. We observe a rather good agreem
on the absolute value.

An important observation that we cannot discard direc
however, is the fact that the extra contribution of the O
cloud doesnot directly depend on the density or colum
density of the trap, as can be seen in Eq.~29!. However, it is
not unlikely that the densitynOort of the Oort depends on th
trap parameters such as the total populationN or the trapping
frequency. In turn, this would result in a dependency of
Oort contribution to the heating rate on the density and
column density of the trap. A conclusive answer cannot
given: the experimental evidence on the Oort cloud is s
too scarce.

B. Pendulum model

All atoms in the Oort cloud originate from a primary o
secondary collision occurring in the sample at the cente
the trap. When assuming an ideal harmonic trap, these a
will acquire no additional macroscopic angular momentu
Their path in the trap volume will oscillate from one end
the trap to the other, each time traversing the sample at
center of the trap: a ‘‘pendulum mode’’ of atomic motio
This mode has been assumed as being effective for the r
thermalization of the hot atoms with an energy below
cutoff energyEeff . This implies a very strong correlation o
the velocity distribution and the spatial distribution of th
atoms in the Oort cloud, with a strong collisional coupling
the sample in the center.

When we assume that this ‘‘pendulum’’ model applies
all atoms in the Oort cloud, we find extremely large valu
of the energy-transfer rate in the range of 100–400mK/s.
The magnitude of the calculated energy-transfer rate is t
cally a factor 1000 larger than experimental results. The m
jor deficiency is the assumption thatall atoms in the Oort
cloud behave in a ‘‘pendulum’’ mode, crossing the sample
the center twice per oscillation period of the trapping pot
tial. Clearly, this is not a realistic assumption, as alrea
discussed in Sec. V B: the pendulum model is only realis
for the very-low energy atoms of the Oort cloud. Howev
this is precisely the regime whereE<Eeff holds and the Oort
cloud is depopulated in our newly proposed concept.

IX. COMPARISON TO 85Rb EXPERIMENTS

Recently, great progress has been made in the trap
and cooling of the85Rb isotope. In 1999 these efforts hav
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resulted in the observation of a condensate. However, b
the density and the total number of trapped atoms are m
smaller than in87Rb. Typical experimental heating rates a
in the range of 1 –3 nK/s. Applying a rf shield does n
influence these rates. The heating rate is attributed to th
body collision loss rates. Above the transition temperatu
characteristic numbers areN5106, ^n&55 1011 cm23,
and T550 nK at confining frequencies of 1731737 Hz3

@18#. At these conditions, the typical dimensions in rad
and axial direction are 21 and 40mm, respectively, result-
ing in a column density of̂ nl&'4 1013 m22. For this
number we have used the radial dimension of the trap.
depth of the magnetic trap is on the order of a few m
Typical trap-loss lifetimes are of the order oftp'250 s or
more.

In Table V we present the energy-transfer rates for b
secondary as well as primary collisions, again assuming
effective trap depth ofEeff5200 or 400 mK. Because the
column density is rather low in this experiment, the energ
transfer rate for primary collisions is larger by a factor 2
than the contribution by secondary collisions. This occ
when the transition pointEX lies below the cutoff valueEeff .
We observe that the calculated heating rates are larger
the experimental values. Also, the calculated values wo
decrease when applying a rf shield, which is not obser
experimentally.

A possible explanation can be found in the original a
sumption that three-body losses dominate the process of
loss. The contribution of background collisions to the me
sured trap-loss lifetimetp5250 s is then much smaller, re
sulting in an effective lifetime for background collision
(tp)8@250 s. For example, (tp)851000 s results in a de
crease by a factor 4 in the calculated heating rates, show
a better agreement of calculation and experiment. It is ra
hard to find another idea to obtain a smaller value of
primary-collision heating rate, due to its very direct relatio
ship to the primary-collision loss rate. This discussion co
firms the assumption that the experimentally observed h
ing rate should be partially attributed to other processes t
primary and secondary collisions driven by the backgrou
gas.

X. CONCLUDING REMARKS

All trapping experiments that lead to Bose-Einstein co
densation are in the collisionally opaque regime when th
4-13
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are close to the transition temperature. The simple mode
density-independent heating by primary collisions with t
background gas is then no longer valid. In this case, seco
ary collisions inside the trap are the main cause of heat
with only a small contribution from primary collisions wit
the background gas and tertiary collisions with atoms in
Oort cloud. Lowering the trap depth has no influence on
secondary heating rate, because the cutoff between he
and loss collisions is determined by an escape into the O
cloud rather than the escape from the trap.

A very efficient method to decrease the heating rate i
trap is to apply a rf shield, as shown experimentally. T
model in this paper supports this conclusion both quant
tively as well as qualitatively. Another efficient way to d
crease the secondary heating rate while keeping the de
in the trap high is to opt for a trap geometry with a lar
aspect ratio, i.e., a trap with a strong radial confinement
a very relaxed axial confinement. In this case the radial
mension will be the relevant length parameter that de
mines the column density in Eq.~21!. This conclusion is the
same as for a trap of metastable neon atoms, where sec
ary collisions of the hot products of ionizing collisions in th
trap are the major source of heating@15#.

Finally, the non-negligible contribution of collisions wit
atoms in the Oort cloud to the heating rate shows us that
important to obtain quantitative data on its population. O
then can we give a final answer to questions such as
dependency of the population of the Oort cloud on the t
parameters. Also, more insight is necessary with respec
the dynamics of the formation of the Oort cloud. Is the O
cloud a remnant of the population of the magneto-opti
trap which has ‘‘survived’’ the process of evaporative co
ing? These questions are the motivation for future resea
on the Oort cloud.
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APPENDIX: ELASTIC CROSS SECTIONS

1. Semiclassical approach

Within the framework of a semiclassical approach to el
tic scattering, the small-angle differential cross sections(u)
scales with the diffraction angleu05(4p/k2Q)1/2, with k the
wave number. For an inverse power law potentialV(R)
5C6 /R6 the total cross sectionQ, the differential cross sec
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tion s(0) for scattering in the forward direction and the d
fraction angleu0 are related according to

Q58.08~Cs /\v !2/(s21),

s~0!5k2Q2/@16p2 cos2~p/5!#,
~A1!

u05~4p/k2Q!1/2,

2pu0
2s~0!/Q5@2 cos2~p/5!#2150.764.

Throughout this paper we use semiclassical expressions
both the total cross section as well as the differential cr
section. For the primary collisions atEb /kB5300 K this is a
highly accurate description of fully quantum-mechanical c
culations. For the secondary collisions, at energies in the
millikelvin to tens of K range, we have to establish the ran
of collision energies where this approximation still appli
within reasonable accuracy.

2. Quantum mechanical calculations

In Fig. 8 we show the fully quantum mechanical tot
cross section for Rb-Rb collisions@16#, as a function of the
center-of-mass energyEcm . The partial wavesl 50, 2, 4,
and 6 have been taken into account in these calculations.
Ecm<39 mK we indeed observe that the total cross sect
is nearly constant, indicative fors-wave scattering. For pure
s-wave scattering the elastic cross section is fully determi
by the scattering lengtha, as given by

QT→058pa2, ~A2!

sT→0~u!5QT→0/4p. ~A3!

The differential cross section is isotropic in this limit, a
expected for an incomings wave. For comparison, we hav

TABLE VI. Elastic total cross sectionQT→0 and differential
cross sectionsT→0(0) for Rb in the limit of s-wave scattering,
together with the scattering lengtha. For comparison we also give
the numerical result when evaluating the semiclassical express
for Q, s(0), and u0 at a center-of-mass energyEcm5E/2
539 mK at the transition point to pures-wave scattering, far out-
side the range of validity. We observe that the absolute values a
fair agreement. Also, the isotropic differential cross sect
sT→0(0) for s-wave scattering is fairly well characterized over
large angular range by the semiclassical expression with a cha
teristic angleu051.8 rad.

Regime Parameter Value

s wave a 100a0

QT→0 73104 Å 2

sT→0(0) 5.63103 Å 2/sr
sT→0(u) isotropic

Semiclassical Q 53104 Å 2

s(0) 2.93103 Å 2/sr
u0 1.83 rad
4-14
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also plotted the semiclassical expression forQ, as given in
Eq. ~A1!. For a center-of-mass energyEcm5E/2>4 mK the
semiclassical result agrees with the quantum-mechanica
tal cross section within a factor of 2.

3. Range of validity of semiclassical approach

The height of the rotational barrier forp-wave scattering
defines the characteristic center-of-mass energyEp-wave
which defines the onset of multiple partial-wave scatteri
The semiclassical expressions for the total and differen
cross section provide a sufficiently accurate description
fully quantum-mechanical calculations when 5–10 par
waves contribute to the Rayleigh sum for the scattering a
plitude. This condition is thus satisfied at a center-of-m
energy that is larger by a factor of 64–256~for bosons only
even partial waves contribute!, because the deBroglie wave
length scales asEcm

21/2. For Rb, withEp-wave539 mK, this
implies a lower limit ofE52Ecm55 to 20 mK for the range
of validity of our semiclassical approach.

Surprisingly, the absolute value and the general chara
of the s-wave cross section and the~incorrectly applied!
semiclassical expressions at a laboratory energy equal to
ev

tt

7

l
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onset of thes-wave scattering regime are not very dispara
for Rb, as can be seen in Table VI. The absolute values oQ
ands(0) are equal toQT→0 andsT→0(0) within 30% and
40%, respectively. The characteristic angle is equal tou0
51.83, indicating a rather isotropic differential cross sect
over a large angular range. This is in fair agreement with
isotropic differential cross section fors-wave scattering. Of
course, features like thel 52 resonance in the cross sectio
are not incorporated in the semiclassical formulas.

For the calculation of the energy-transfer rate by seco
ary collisions, the lower limit of the energyEb is equal to the
effective trap depthEeff , which is on the order of 400mK.
However, for He-Rb primary collisions with a referenc
valueE ref,b

p 517.5 mK, the majority of the collisions resu
in a transferred energyEb.8 mK. The fraction of the col-
lisions with a smaller transferred energy is equal
DQb

p(8 mK)/Qb
p50.38(8 mK/E ref,b

p )50.17. The range of
validity of the semiclassical expressions is thus fairly w
matched to the range of application in the energy-trans
integral IQE,b . We conclude that the calculated energ
transfer rates by secondary collisions are reliable for all pr
tical applications, with an estimated error on the order
25% or less.
er,
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