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Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary collisions

H. C. W. Beijerinck
Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
(Received 1 May 2000; published 15 November 2000

Grazing collisions with background gas are the major cause of trap loss and trap heating in atom traps. To
first order, these effects do not depend on the trap density. In collisionally opaque trapped atom clouds,
however, scattered atoms with an enefgyarger than the effective trap dep#ia;, which are destined to
escape from the atom cloud, will have a finite probability for a secondary collision. This results in a contri-
bution to the heating rate that depends on the column defwsijyof the trapped atoms, i.e., the product of
density and characteristic size of the trap. For alkali-metal atom traps, secondary collisions are quite important
due to the strong long-range interaction with like atoms. We derive a simple analytical expression for the
secondary heating rate, showing a dependency proportior(ail)ogéﬁfz. When extrapolating to a vanishing
column density, only primary collisions with the background gas will contribute to the heating rate. This
contribution is rather small, due to the weak long-range interaction of the usual background gas species in an
ultrahigh-vacuum system—He, Ne, or Ar—with the trapped alkali-metal atoms. We conclude that the transi-
tion between trap-loss collisions and heating collisions is determined by a cutoff energyREQ
<400 pK, much smaller than the actual trap degthin most magnetic traps. Atoms with an ener§y
<E<¢& escape into the Oort cloud: a mechanism of effective traploss in the microkelvin range of trap
temperatures. We present results of secondary heating rates for the alkali-metal atoms Li through Cs as a
function of the effective trap depth, the column density of the trap, and the species in the background gas. The
predictions of our model are in good agreement with the experimental data of Myatt for heating rates in
high-density®’Rb-atom magnetic traps at JILA, including the effect of the rf shield and the composition of the
background gas. It is shown that collisions with atoms from the Oort cloud also contribute to the heating rate.
For ®Rb the calculated heating rate is below the experimentally observed value at JILA, supporting the idea
that inelastic collisions in the trap are the major source of heating.

PACS numbsgps): 03.75.Fi, 32.80.Pj

[. INTRODUCTION even vanishes. These observations are in strong disagree-

The road to Bose-Einstein condensati&kEC) in a dilute  ment with the available models for trap heating, which all
sample of trapped alkali-metal atoms is well known: coldpredict a heating rate that does not depend on trap density or
atoms are first trapped in a magneto-optical trap, and thetrap size[4,6].
transferred to a magnetic trap where evaporative cooling is The goal of this paper is to provide a model for trap
applied to achieve the ultralow temperatures in the.K to heating that can explain experimental observations in mag-
10 nK range, where the transition to BEC takes pldce3]. netic traps. The excellent overview of heating mechanisms,
For magnetic trap densities in the range 10'* cm 3, col-  as given by Myat{7] and Cornellet al. [8], has served as a
lisions with the background gas at ambient temperature argource of inspiration. At low densities, the background gas
the dominant mechanism of trap loss: the energy transferredill consist of mostly He, Ne, and Ar, the usual constituents
in these collisions is much larger than the trap depth. Howof an ultrahigh-vacuum system that is pumped by an ion-
ever, for collisions with a scattering angle of a few mrad, thegetter pump and a titanium sublimation pump. These
energy transfer is of the same order of magnitude as the trapackground-gas—alkali-metal systems have a small value of
depth. These atoms do not leave the trap, but dissipate theine long range van der Waals coeffici€®y as compared to
energy in thermalizing collisions with other trapped atoms.the like alkali-metal—alkali-metal systems. The small value
All models predict a heating rate that does not depend onf Cg results in a small-angle differential cross section with a
either the trap density or the trap size: only the trap deptharge diffractive regimd4,6,9,10, with the net result that
plays a role, together with the density and composition of theonly a small fraction of the total cross section results in col-
background gas. In a recent paper we calculated the heatidigions with an energy transfer less than the trap depth, i.e.,
rate for like-particle collisions in low-density trapd], re-  trap heatind4,6].
sulting in a good agreement with experimental data on Cs in  With increasing column density of the trap, a new process
a far-off-resonance-trafb]. of heating will start to be effective. We now enter the regime

The heating rate in magnetic traps of alkali-metal atomspf a collisionally opaque trap. Primary collisions with an
as used for achieving BEC, shows a very different pictureenergy transfer to an alkali-metal atom thalaigger than the
Most data are available for Rb, the workhorse in this field. Intrap depth will also start to contribute to the heating process.
most cases, the experimentally observed heating rate dd@he low-energy alkali-metal atom produced in these primary
pends on either the density in the trap or the column densitygollisions, with an energy in the range of 10 mK to 10 K or
i.e., the product of trap density and trap dimensions. Extrapomore, has a finite chance for a secondary collision with a
lating to zero density, the heating rate is rather small or itrapped alkali-metal atom before leaving the trap. This re-
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background gas with a very strong long-range interaction. For example, for
Rb atoms with an energy of 1 K, the total cross section is
equal to 7.&410° A2 At a density of 210" cm 3,
which is easily obtained experimentally in a trap close to the
transition to BEC, the mean free path for secondary colli-
sions then is equal to 6@:m. Comparing this result with a
characteristic trap size of 10—30m, it is clear that second-
ary collisions cannot be neglected for a thorough understand-
p ing of heating rates.

In this paper we investigate the energy-transfer rate by
secondary collisions in the collisionally opaque trap regime.
The results for the energy-transfer rate by secondary colli-
sions are given as simple analytical formulas which can be
directly applied to a specific trap geometry, using the com-
position of the background gas and the measured trap-loss

FIG. 1. The background-gas atom with velocitytransfers a In‘etlme as input. Typ|cal results are given for traps of the
velocity vz to a trapped alkali-metal atom, resulting in a kinetic alkali-metal gases Li th',’OUQh Cs, with He, Ne_’ and Ar, a,nd
energy larger than the trap depth; before leaving the trap, this atorﬂ"e corresponding alkali-metal atom as most likely constitu-
can collide with another trapped alkali-metal atom, resulting in a€nts Qf the ba(_:kgrounq gas. _
transfer of velocityAv g with a corresponding kinetic energy less This paper is organized as follows. In ,Sec' II'we de“V?
than the trap depth, thus remaining trapped and contributing to ghe formulas for the energy-transfer rate in secondary colli-

heating of the trap population by a series of successive thermalizin@ions’ based on the energy—tran_sfer in_tegral as deri_ved in a
collisions inside the trap. previous papef4]. In Sec. lll we investigate the scaling of

the energy-transfer integral of the secondary collisions with
the kinetic energy of the projectile, to arrive at an approxi-
sults in an extra transfer of energy to the trapped populatiormate analytical expression for the energy-transfer rate by
proportional to the column density of the trap. This contri-secondary collisions. In Sec. IV we discuss the analytical
bution will thus dominate the heating rate for large values ofexpression for the energy-transfer rate, showing the scaling
the column density. on the properties of the trap atoms, the background gas, the
The driving force for any heating of the trap population is column density, and the trap-loss lifetime. Then, in Sec. V,
the primary collision rateV. This holds for heating by pri- we refine our deﬂmpon of heating collisions, Wlth emphasis
mary collisions as well as for heating by secondary coIIi—gﬁggzs Igggrth?nugrl:ggtrg:) ggg&e?o ?E]Oemcfolziw:?apapne der;(fg%/s
slons. Thg generallphy'smal picture .Of primary and secondar%ith an energy much less than the trap depth. This is usually
collisions is given in Fig. 1. In a primary collision, the par-

cle f he back q ith 4 veloci referred to as the “Oort cloud” paradigm. Before we com-
ticle from the background gas wit ene.rﬁy.an velocityy pare our model calculations with experimental results, we
collides with a cold alkali-metal atom inside the trap. This

, " present the appropriate expressions for relating the density,
results in a transferred velocity in the laboratory systeMemperature and trap parameters to the correct value of the
equal to vy with a kinetic energy E;=3mu3. The  column density(Sec. V). In Sec. VIl we compare our cal-
background-gas atom will then leave the trap without anyculated values to the available data for heatin§’iRb mag-
further collision. netic traps at JILA. In Sec. VIII we investigate the colli-
WhenE, is less than the trap depéh the target atom will ~ sional coupling of the atoms in the Oort cloud with the
not leave the trap and thermalize to the equilibrium temperasample in the center of the trap. In Sec. IX we compare the
ture of the trap. As a result, these primary collisions will experimental results for the heating rates®Rb traps with
contribute to heating of the trap population. WhEp is  our calculated values. Finally, concluding remarks are given
larger than the trap depify the scattered alkali-metal atom In
still has a finite chance to collide with another trapped alkali-S€c. X.
metal atom, resulting in a secondary collision with another
trapped atom. In the laboratory system, the transferred veloc- Il. SECONDARY COLLISIONS
ity is equal to Avg with a Kkinetic energy AEg In this section we investigate the basic ingredients for an
=3m(Av )2 For energies\Eg less than the trap dep)  analytical description of the heating rate by secondary colli-
these secondary collisions will also lead to a heating of theions. First we derive a suitable expression for the total en-
trap population. Assuming small-angle scattering in theergy inputU to the trapped sample of cold gas. Next, we
center-of-mass system, the velocity ; in the laboratory investigate the parameters that enter this formula: the small-
system is then oriented in a direction roughly parallel orangle differential cross section for elastic scattering, the
antiparallel to the initial velocity of the background atom, probability distribution for the primary scattering angte
which is the cause of all this happening. and the energy-transfer integral for the secondary collision
The transfer of energy in a secondary collisions in the 10nith scattering angle.
mK to 10 K range is very efficient: first, the small-angle
differential cross section at these low energies is very large; 1Joint institute of the National Institute of Science and Technol-
second, it concerns like-atom collisions of alkali-metal atomsogy and the University of Colorado, Boulder, CO.

__secondary .-~

primary
collision
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FIG. 2. Newton diagram in velocity space of primary and sec-md'Cate t.h'e kinetic enerdly, andEp, re§pe9tlvely, to which .
ondary collisions. The origin of the laboratory systemGsthe  the Specific parameter relates. The first integral of the pri-
origin of the center-of-mass system for primary and secondary colMary collisions extends from the maximum scattering angle
lisions is indicated byCP and ¢, respectively. The dashed circles Bmaxb t0 7, i.€., treats all product alkali-metal atoms with an
indicate the elastic scattering sphere of the target atom for botgnergy transfeg =¢.
collisions, centered atP andC, respectively. The background-gas ~ The second integral in the first line of El) is the
atom with velocityv transfers a velocity 4 to a trapped alkali- energy-transfer integral for the secondary collisions with an
metal atom. Before leaving the trap, this atom, with a kinetic energyenergyE; in the laboratory systerj¢]. The product of the
EB=%mv§ larger than the trap depti can collide with another  column density(nl) and the differential cross sectiar( 6)
trapped alkali-metal atom. When the corresponding transteg  at energyE, determines the finite chance for a secondary
=3m(Av z)? of the kinetic energy is less than the trap defitithis  collision before leaving the trap, with a corresponding en-
secondary collision will contribute to a heating of the trap popula-ergy transferA EB( ). The second integral extends over the
tion. range 0 t00maxp=(M/ 1) (E/ER)™2 with the upper limit

_ corresponding to an energy transfe ;( Omax ) = €. In this
A. Total-energy input integral we include all the products of secondary collisions

A detailed picture of primary and secondary collisions isthat remain trapped.
given in F|g 2, using a Newton diagram in Ve|0city space In the second line of qu) we have introduced the short-
[10]. In a primary collision, the particle from the background hand notatioq 4 for the energy-transfer integral at energy
gas with energy,=kgT}, [4] and velocityv collides witha  Ep- We will now investigate the separate factors in this
cold alkali-metal atom. This results in a scattering argie  €quation.
the center-of-mass system, wiii¥ as the origin. All scatter-
ing events result in a velocity of the target atom on the elas- B. Small-angle differential cross sectiono ()
tic scattering sphere, centered®t In the laboratory system  the |ong-range atom-atom interaction is well described
with O as2 origin, the transferred.kineti(.: energy is equal toby an inverse power-law potenti(R) = C¢/R® for induced
Eg=3mug, withvz=(uP/m) B in the limit of small scat-  gipole-dipole interaction. For our calculation of both the
tering angles. Hereu” is the reduced mass of the primary ajkali-metal-atom—background-gas primary collisions as
collision system. When necessary, a supersgrijgtused to  \e|| as the alkali-metal-atom—alkali-metal-atom secondary
indicate that the parameter refers tpramary collision, e.g.,  collisions, we use an accurate semiempirical representation

as is the case fqu” andCP. When the transferred enery;  [11] of the small angle differential cross sectietfx) at a
is less than the trap depth the scattered alkali-metal atom gscattering angle. This function is given by

will not leave the trap and contribute to heating of the trap
population. WhenEg is larger than the trap dept#, the F(x*)=a(x)/a(0)
scattered alkali-metal atom still has a finite chance for a sec- _ , 2 1n-7/6
ondary collision with another trapped alkali-metal atom, due ={1-3.75siM0.556x* ) +2.94x* 7} "%, (2)
to the finite value of the column densitnl) of the trap. x B 2 ~\1/2
For this secondary collision we assume a scattering angle X" =XIxo=x/(4mlk"Q)™, ®)
¢ in the corresponding center-of-mass system, center€d at \ith x* a scaled scattering angle arg=(47/k2Q)2 the
The transferred velocity is given byvg(0)=(u/m)6vs  characteristic diffraction angl9—13, with k= puuv/% the
(assuming small-angle scatterjngith m the mass of the \aye number an@ the total cross section. The asymptotic
atoms In the trap angk the reduced mass of tr;e secondarypehavior of this model function is in excellent agreement
collision system. For energiesE(6) =3 m(Avg)”lessthan — yith the quantum-mechanical prediction for diffraction-
the trap deptft, these secondary collisions will lead to heat- yominated scattering at small angke's<1 and the classical
ing of the trap population. Of course, the primary collision o high-energy approximation at large angbes>1. The
rate V' is the driving force of the heating by secondary col- function F(x*) is shown in Fig. 3, together with the refrac-

lisions. _ tive limit 0.284x* ~ 73 corresponding to classical mechanics
The energy input) per second to the total numbirof  for x*>1. The model function of Eq(2) is correctly nor-
trapped atoms is then given by malized: the integral [§o(X)2 sinxdx=[qo(X)2mxdx
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10" ¢ 3 D. Energy-transfer integral
: / The essential input for the calculation of the energy trans-
100 L ~ 1 E fer rate by secondary collisions is the energy-transfer integral
E 1q Tqep, i.€., the integral of the product of the differential
S ]« cross section at enerdy,; and the associated energy transfer
%0 3 c‘f, in the laboratory systerfEq. (1)]. Using the model function
3 17 for the differential cross section given in E(R), we can
© 102 1y write the energy-transfer integral b4
0_3 | ||.|«’;i NIRRT RN R R |- IQE’BZO.76427Tﬁ2/m)femaXBf( 0*)0* 3d0*, (6)
10% 107 10° 10" 0
2 =
00)* = (eferef) Oraxs= (Ormacs ! 00,5) = (&1 Evet ) (7)

FIG. 3. Small-angle differential cross sectiofx)/o(0) for the . . .
case of aC4/R5 potential for atom-atom thermal collisions with The scaling factor of the integral in E¢5) depends only on

scattering anglex, as a function of the scaled scattering angle the massn of the target atom. The erendency or,] the energy
(x/xo)2. Full curve: quantum-mechanical calculations; dotted line:E ONly enters through the upper lintif, ., o Of the integral,
diffractive approximation; dash-dotted line: classical mechanics. OrfS eXprQSSEd in terms of the parameltgr;. The latter pa-

the same scale, we also show the energy-transfer intggeabs a ~ rameter is a reference value for the degtbf the trap, which
function of the scaled trap depti&.= (x/xo)2. Data points: nu- determines the transition from heating to trap-loss collisions.
merical resul{Eq. (6)]; dotted line: diffractive approximatiofEq. ~ The reference value has been introduced in a recent paper by
(9)]; dash-dotted line: classical approximatigy. (10)]. Beijerinck[4], and is defined as

_ 2 2
=2mx50(0) [ F(x*)x* dx* =1.00%) gives an accurate value Eretp=Ep00,5(1/M)" ®)
for the total cross sectio@ when using the small-angle ap- e reference value depends on the initial kinetic energy,
proximation sirk=x. _ . both directly by the factoEz and implicitly by the depen-
The mo‘?'?' fu_nct!on Qf Eq2) will be u_sed for calc_ulan_ng dency of the diffraction anglé, s onE ;. Throught, s, the
the probability distributiorP(3)dg for primary collisions in reference value also depends’on the reduced maa’?w the
Sec. IIC af“?' for .the energy-transfer 'meg@Eﬂ for sec- jyieraction strengtiCg [4] of the collision system, in this
ondary collisions in Sec. I D. In both cases, it will be advan- e the secondary collisions of the alkali-metal atoms in the
tageous to use the scaled scattering andle g* for pri- trap.
mary collisions and* = 6" for secondary collisions. For the limiting cases of pure diffractive scatterifugian-
tum regime or pure refractive scattering@lassical mechan-
C. Probability distribution P(8) ics), the dimensionless integral in E() can be evaluated

T, , ) analytically. We then find the asymptotic resyksg
The probability distribution function for the primary col-

g\sions (\j/v)l;[h scattering anglg in Eq. (1) is given by(see the H*%axﬁ<1: Toe 5~0.19% 27Tﬁ2/m)(5/5ref,5)2, (9)
ppendi

P(B)dB=ol(B)27 sinBABIQE. @ 0% aax s> 1 Toe p~0.13427h2/m)(ElEer )", 0

Here of and QP are the differential cross section and total with 6*7., ; defined in Eq.(7). Here we directly see the

cross section, respectively, farimary collisions (super- — application of the reference value to obtain simple analytical

scriptp) at kinetic energ\E,=kgT,, of the impinging back- formula for the energy-transfer integral. The two asymptotic

ground gas atongsubscriptb). By substituting the model expressions are plotted in Fig. 3, where they are compared to

function F of Eq. (2) for the differential cross section, Eq. the numerical results fafye ; as calculated using Ed6).

(4) can be written as The deviations are only minor. We can therefore apply the
analytical results of Eq$9) and(10) to evaluate the expres-

2 b o o okt sion for the total-energy input to the trapped atoms, as given
P(B)dB~[2mBypop(0)/Qp]F(B*)B* dB in Eq. (1).

=0.764F(B*)B*dB*, 5)
Ill. TOTAL-ENERGY INPUT: SCALING LAWS

switching to the scaled variablg* = 8/ By, with Bo,, the The energy-transfer integrde ; at energyE, [Eq. (1)]
characteristic diffraction angle of the primary collision at en-depends on the scattering angle only by a careful inves-
ergy E, . By using the relations of the Appendix we find the tigation of the scaling properties of the energy-transfer inte-
final expression of Eq5), which can be readily applied for gral Zyg z with the collision parameters can we avoid a
numerical and analytical calculations. messy approach which ends only in numerical results. Our

063614-4



HEATING RATES IN COLLISIONALLY OPAQUE. .. PHYSICAL REVIEW A 62 063614

TABLE |. System parameters for the alkali-metal—background-gas and like alkali-metal—alkali systems,
together with the diffraction angle and the scaling value for the trap depth at elBgfgy=300 K. For the
background gas we have chosen rare-gas atoms that are usually abundant in an ion-getter-pumped ultrahigh-
vacuum system: He, Ne, and Ar.

Li Na K Rb Cs
Like alkali metals m(a.u.) 7 23 39 87 133
Cg(a.u.p 1393.4 1556 3897 4691 6851
fop (mrad) 24.6 11.8 7.1 4.3 3.1
Eretp (MK) 45.4 10.4 3.83 1.36 0.702
He Ce(aup 21.8 24.1 34.1 36.8 425
Bop (mrad) 62 455 40 37 36
ERp (MK) 268 78.4 40.2 175 10.8
Ne Ce(aup 42.6 47.0 66.3 71.7 82.7
Bop (mrad) 51 24.1 18.2 14.6 13.3
EPyp (MK) 149 435 22.4 9.7 6.0
Ar Ce(a.u.y 170.5 188.7 268.7 290.9 336.3
Bop (mrad) 44 17.7 12.2 8.6 7.5
EPyp (MK) 74.3 21.7 11.1 4.8 3.0
3Referencd 19].
bReferencd 20].

aim is to provide analytical expressions which will give ustering angle. The details of the secondary collision are rep-

insight into the role of secondary collisions. resented by the reference valfig;,, calculated at dixed
kinetic energyEy, .
A. Scaling of Zog g In Eqg. (13) we observe that the value éf; decreases

We first i tiaate th i " £ th with decreasing energ¥ of the secondary collisions. For
€ lirst investigate the scaiing properties or the ?nergy'trapped atoms with a strong long-range interaction, as is the
transfer integrallqe g for se(_:ondary C_O!I'S'OHS at a kinetic ,qe for the heavy alkali-metal—alkali-metal systems Rb and
e.nergyEﬁ. n ter”.‘s of the primary collisions parameters, theCs, the value of,;, at room temperature is on the order of
kinetic energyE is equal to 1 mK or less(Table ). For secondary collisions at a much
E,—&P. g* 2 11 Iower. energy, for exampl&z=1 K, the reference value
s~ Eretnl (1 Erer,p is on the order of 300uK or less. Even for shallow
traps this already results in a maximum secondary collision
angle in the range of classical scattering, as determined by

the condition 6%,.% ;= (/& 5)=1. This implies that we

The_ parame_teffefvb Is the scaling parame_ter for_the_primary can use the analytical result of E4.0) for the energy trans-
collisions with background-gas atoms with a kinetic energyc,, integralZog 5. Using Eq.(11) for the scaling oo, we

p p *
Eb’/ mass Th’ andl zjeduciatd Masg |[4]'f QS us_ual,ﬂ i then find a simple result for the scaling B§e z with the
;(ﬁ] Bop 1s the scaled scattering angle of the primary colli- scaled primary collision anglg*, as given by

Using the relations of the Appendix, we can write the
reference value ; for secondary collisions at a collision- Toe . =0.13%27h2 5/6/ ¢ p —16,% —1/3
; ) =0. m) (&l & EPcW/E :
angle dependent-ener@y; in terms of a reference value for ~°%# X2mh™IM) (& Eret )™ Erero/ Eo) 8 (14
secondary collisions at a fixed energy. For simplicity, we
choose the kinetic energy of the primary collisié,, as the

fixed energy for the scaling of the reference value of then £q. (14) the energy transfer integral at a variable energy
secondary collision. The result reads Ez, which depends on the scattering anglef the primary
collision, is now expressed in terms of the reference values
& Pef’b and &, at a fixed energ¥,, and the scaled scatter-
ing angleB* of the primary collision. This allows an easy
implementation in Eq(1).

P p=EnBop(1P/m)2(m/mP). (12)

Eretp= Eretpl B En) V9= Eratn( € g En) VB* 7" (13)
13

The first step of Eq(13) shows the simple scaling of the
reference value for the secondary collision system with the
kinetic energy. By substituting the result of E41) for Ej4,

we obtain the final result. The kinetic-energy dependency of _
the reference valu€, z of the secondary collision is now The final expression for the energy input per secdsnd,
expressed in the factgg* 2® of the primary collision scat- to the population oN trapped atom$Eg. (1)] can now be

B. Energy input
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evaluated, using the results of E¢$) and(14) as input. We IV. ANALYTICAL RESULTS FOR ENERGY-TRANSFER

then find RATE
o 2wk [ £ |\ ER, | 1O With all the hard work done for calculating the energy-
U=AMnl) O.13J( )(5 ) ( E ) } transfer rate for secondary collisions, we can now compare
ref,b b

our results with the energy-transfer rate by primary colli-
sions. The proof of the pudding is in the eating: this com-
. (19 parison will show us when one or the other heating mecha-
nism will dominate. We also investigate the scaling of the
calculated heating rates with the background species, the
. . . properties of the trapped alkali-metal atom and details of the
to  can be .SOIVEd numerlpally, using the simple .bUt aCCu'trap such as the trap depth and the column density. For this
rate expression of Ed4) as input. However, to obtain more comparison we will use standard conditions for both the

insight into the scaling of the energy inputwith the system packground gas and the trapping parameters, as given by
parameters, we can also derive a fully analytical result. By

x[0.764 fx B* 2BFRB*)dp*

maxb

The integral over the primary collisions in the rangg,,

substituting the classical approximation for the differential trap-loss lifetime: 7°=100 s,
cross section in the weight functid8*)dg* in Eq. (15),
we find trap depth: £=1 mK,
L 2mh2\ [ &\ ERgp| T
U=AMnl) O.13J( T )( ) relD column density: (nl)=10'5 m~2, (17)
m gref,b Eb
e\ background gas: He aE,=300 K, (18
x|0.32 (16)
ref,b trap atoms: Rb. (19

The second factor in square brackets in Bd) corresponds

to the analytical result for the integral in EAL5). The trap depth is typical for a magnetic trap, although on the

Combining the two factors in Eq16), we observe that low sjde. The4co|u[n3n density corresponds to a trap with a
. : 12 . . densityn=10"* cm~3 and a size of 10um, typical num-
the energy input scales ab~£7% For the scaling with Fhe bers for Rb traps just above the transition to Bose-Einstein
reference value of the primary collision we fintd  condensation. As the driving force we assume He-Rb pri-
~(ERp) ™, i.e., only a very weak dependence. For the demary collisions, with a reference value equal &,
pendence on the reference value of the secondary collision 17 5 mK (Table . '
we find U~ (Ee1p) >, as would be the case for the energy-
transfer rate for primary collisions with alkali-metal atoms in
the classical limit. o
Only a small error is made when using the expression for The background gas collision partners He, Ne, and Ar are
the weight functiorP(5*)d8* that corresponds to classical relevant for the residual gases in an ion-getter-pumped
scattering over the full range of integration, including theultrahigh-vacuum system, in combination with a titanium
range fromB* = B, to #* =1 in the quantum regime of s_ubllmatlon pump. The long-range van der Waals coefﬁ-
primary collisions. When looking at the differential cross CI€Nts are given in Table I, together with the corresponding
section in Fig. 3, we observe that we can expect compensafliffraction angle 8o, and reference valué€py, at energy
ing effects in this case. For anglg slightly larger than En/kg=300 K. . _ _
unity, the first diffraction oscillation in the differential cross ~ For background collisions with non-alkali atoms, the trap-
section is larger than the classical approximation; for angle!pss lifetime7” is in good approximation related to the total
B* slightly less than unity, the value af(8*) is always number of primary collisions a&8/N=1/7". The small frac-
smaller than the classical result. These ideas have bedion AQP/QP of the total cross section for primary collisions,
checked by solving the integral in E(L5) numerically. This  that results in heating but not in traploss, is equal to
calculation shows that foBy,,x,=0.1 the numerical results AQP/Qp=0.38(&/R;,,) [4]. For the He-Rb system we find
are 53% smaller than the analytical approximation, as givemg/gfef,b):o_og, resulting only in a 4% error in our approxi-
in Eq. (16). For B},,,=0.7, the numerical results are 25% mation for the trap-loss lifetime.
larger than the analytical approximation; this difference then The energy-transfer rate of secondary collisions has to be
decreases to a few percent in the range/, ,,<10. compared to the density-independent energy-transfer rate

UP/N due to primary collision§4]. For an easy comparison,
we write the primary-collision energy-transfer rate[4$

A. Primary collisions

A dimensional check shows a factdime] ~* from the primary . 1
i A uP 100 S E \? &Py
collision rate N and a factor [energy from the term =110 nK/sx ref,
(nl) (2w#3/my), in agreement with the dimensiganergy/timé of Nkg P 1 mK/ {175 m '
u. (20)
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This result holds for the quantum regime of primary colli- 10*
sions Withﬁﬁaxbzz(‘,’/(‘,‘fetﬁl. Here the numerical factor
110 nK/s is equal to the primary-collision energy-transfer
rate for He-Rb background collisions at the standard condi-
tions of Eq.(19).

primary //
s

108

.. 102 E
B. Secondary collisions

For the numerical value of the energy transfer ra\ 10" i

(dU/dt) / (N kg) (nK/s)

for secondary collisions, we findising Eq.(16)] 3 Ve
. E A e [
U 153 nK/ 100 s (nl) 87 10° Lol il il i
_— | = _ -2 -1 0 1 2
Nkg nK/s< > 105 m-2) | M 10 10 10 10 10
£ (mK)
E N e |V ERgp | :
X 1 mK 136 m 175 m FIG. 4. Energy-transfer ratd/N~ &2 by secondary collisions
) ) for Rb as a function of the trap dep#h for the background gases
= 1/6 He, Ne, and Ar. For the column density and the trap-loss lifetime of
X m) (21)  the trap, we have used the standard val(re =10 m~2 and
=100 s, respectively. For comparison, we have also drawn the

energy-transfer rate due to primary collisions. The arrows indicate
The numerical factor 200 nK/s is the energy transfer rate fothe transition from diffractive scatteringlope 2 to classical scat-
secondary Rb-Rb collisions for a trap at the standard conditering (slope 5/6 for £~£P,,. With decreasing value of we
tions of Eq.(19). observe a crossover from the primary-collision energy-transfer rate
Looking at Eqg.(20), we observe that the energy-transfer to the secondary-collision energy-transfer rate.

rate by primary collisions has a steeper dependdnBiN

~ 2 on the trap depth than observed in the energy-transfeior a background gas of He for two different values of the
rate U/N~£Y2 by secondary collisionfEq. (21)]. This im-  trap depth. For comparison we also give the value of the
plies that, for decreasing values&fthere always is a cross- trap-density-independent energy-transfer rate due to primary
over point€y where heating by secondary collisions is equa|cc_>II|S|ons. Due to the dlffergnt sca_lllng of_ both contr|bL_1t|ons
to heating by primary collisions. Comparison of E@0) ~ With trap depth, the crossing poiidk shifts from a high
with Eq. (21) shows a crossover point a=1.25 mK  column densitynl)=5x10"* m™2for £&=1.0 mK to a low
where, with decreasing trap depth, heating by secondargolumn density(nl)=5x10"* m~? for £=0.2 mK.

Rb-Rb collisions takes over from heating by primary He-Rb In Fig. 6 we have plotted the energy-transfer & for
collisions. Once we are in the reginge< &y, simply lower-  the alkali-metal atoms Li through Cs as a function of the trap
ing the trap depth is not a very efficient means to reduce thdepthé&, for the standard conditions of E(L9). The rate is
energy-transfer rate, due to tidé’? dependency of heating calculated in the analytical approximation of E46). We

by secondary collisions.

C. Rb-rare-gas collisions & £ £

We will now investigate the energy-transfer rate for sec- % . l
ondary collisions in more detail. In Fig. 4 we show the re- =~ £=1.0 mK e
sults for Rb as a function of the trap degthfor all different 2 10 3 ,
primary collision partners He through Ar. For this calcula- Z -
tion we have used the standard conditions as given in Eq. ~ L
(19). The general trend is the same for all collision partners. BT 10 e
This can be directly understood from the weakf,) = v
dependency on the collision properties of the background = s /’T £=0.2 mK
gas. For comparison we have also depicted the trap-density- 10° X
independent energy-transfer raé/N for primary collisions 0.02 0102 12
[Eg. (20)]. In all cases, we again observe that the energy- <nl> (1015 m'2)

transfer rate for secondary collisions crosses the primary-

collision energy transfer rate in the quantum regime of pri- g 5. Energy-transfer rat&)/N for a Rb trap, plotted as a
mary scattering angles. _ function of the column densitynl). Results are given for He as a

In Fig. 5 we depict the energy-transfer rate as a functiorhackground gas, for two valued=1.0 and 0.2 mK of the trap
of the column densitynl), calculated with the analytical depth. In both cases a trap-loss lifetinfe=100 s is assumed. For
approximation of Eq(16) at the standard conditions of Eq. comparison the energy-transfer rate by primary collisions is given
(19) with the exception of the trap depth Results are given as a horizontal line, together with the crossover péint
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FIG. 6. Energy-transfer ratg/N for the alkali-metal atoms Li
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surprisingly cancel out nearly all influence on the secondary
energy transfer rate.

V. EFFECTIVE TRAP DEPTH &g

Until now, we have defined heating collisions as those
collisions that leave an initially cold atom with a transferred
energy less than the trap depfh Using this definition, we
implicitly assume that these collisionally heated atoms will
all rapidly thermalize with the sample of cold atoms, result-
ing in an equilibrium heating rate. However, typical sample
temperatures are in the 1-40K range, while the depth of
the magnetic trap is on the order of 5—10 mK. Furthermore,
the collisionally heated atoms in the mK range occupy a
volume that is much larger than the sample volume and their
density is correspondingly low. The assumption of a rapidly

through Cs as a function of the trap degthassuming He as the developing equilibrium thus needs further refinement.
background gas. For the column density and the particle loss life-

time of the trap we have used the standard vghig=10'> m~2

and 7°=100 s, respectively. The arrows indicate the transition

point for primary collisions from diffractive scatteringlope 2 to
classical scatterin¢slope 5/, which is located af~Ef, .

A. Oort cloud

The low-density cloud of collisionally heated but still
trapped atoms was called the “Oort cloud” by Cornetlal.
[8], in analogy to the extremely disperse and essentially un-

have also plotted the energy-transfer rate by primary colligetectable cloud of comets located far outside the orbit of
sions. The arrows indicate the crossover point for primaryPjuto but still belonging to the solar system as proposed by
collisions from the quantum regime to the classical regime oDort [14]. There is considerable experimental evidence that
collisions [Eq. (3)]. For all systems, we again observe athe mK Oort cloud does exist. In the low-temperature range
crossover with the direct energy-transfer rate in the quanturof the sample of trapped atoms, at the end of the evaporative

regime of primary collisions. The maximum primary- cooling cycle, the total population of the Oort cloud can even

collision scattering angles at the crosso¥dgrare equal to

exceed the population of the centrally located sample by a

Bmaxp=0.19 to 0.32 for Li through Cs, respectively, well factor 4. Typical experimental data for the Oort cloud are

into the quantum range of scattering.
The system dependency of the valuefgfis determined

given in Table Ill, as measured at JILK].
We propose a concept for the Oort cloud, where its popu-

mainly by the system dependency of the heating rate by prilation consistoonly of atoms with a kinetic energk in the
mary collisions. The dependency of the energy-transfer rateangeE4<E<E. In this concept, the Oort cloud does not
by secondary collisions on the specific alkali-metal atomcontain any atoms with a kinetic ener@y=E&.. The value

considered is only very weak. The two factors in E21)

of E will be much smaller than the trap depth, but still

that depend on the secondary collision system, i.e., the massuch larger than the thermal energy of the atoms in the cold

factor (87M) and the reference parameter factfg(,) >,

sample at the center of the trépig. 7).

TABLE Il. Calculated energy-transfer raté/Nkg for secondary collisiongEq. (21)], in comparison with
the measured valugdoth with and without an rf shiejdof Myatt for the 8Rb experiment at JILA. The
calculated energy-transfer ratte’/N kg for primary collisions[Eq. (20)] is given as a reference. Both the
dependency on the background gas and the cutoff \@lgiare given. The trap parameters used as input for
the model calculation are the experimental data=3x10"* cm™3, T=1.2 uK, w/27=110 Hz, and
=250 s, resulting in,=15.5 um and(nl)=1.3x 10" m2,

No shield rf shield
Background Ee=200 uK 400 wK 48 uK
Secondary collisions He 35 nK/s 50 nK/s 17 nK/s
Ar 29 nK/s 40 nK/s 14 nK/s
Rb 22 nK/s 31 nK/s 11 nK/s
Primary collisions He 1.8 nK/s 7.2 nK/s 0.1 nK/s
Ar 6.4 nK/s 26 nK/s 0.4 nK/s
Rb 31 nK/s 126 nK/s 1.8 nK/s
Experimentd 120 nK/s 60 nK/s

AMyatt [7].
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TABLE lll. Input parameters for the calculation of the heating T
of the sample in the center of the trap by collisions with atoms in , s-wave limit
the Oort cloud, together with the resulting energy-transfer rate as 105 L .
calculated for two different values of the cutoff ener§y;. The P quantum ]
numbers are typical for trapped samples of Rb atoms at JILA. c‘;“(
parameter valiie o v/ TN

10*
Toort 2 mK F
Noor/N 1-4 '
N 5% (10°-10F)
Voort ~10 ! cm?®
Noort 5x10° cm 3P 10° ""-"_1 . """'Io . --'---"1 :
Uoort 76 cm/s 10 10 10
5ref,00rt 125 pK Ecm =E/2 (mK)
Eerf=48 K 7 nKig FIG. 8. Total cross section for elastfiéRb+ &'Rb collisions in
Eert=200 uK 25 nK/g the |1,— 1) state, as a function of the center-of-mass endigy
Eerr=400 uK 45 nK/ =E/2. Both the fully quantum-mechanical resultsith contribu-
tions forl=0, 2, 4, and Has well as the semiclassical formula of

AMyatt [7].

Eqg. (A1) are given. The range of validity of the latter expression
starts when five to ten angular momenta contribute, at a center-of-
mass energ¥.,,=5-20 mK.

The paramete€y; serves as an effective cutoff for the
energy-transfer integral. We assume that primary and sec-
ondary collisions with an energy translarger than & but
less than& are lost in the Oort cloud: this constitutes an
effective-loss mechanism for atoms in the cold sample at théo test our new concept of the Oort cloud in trap heating.
center of the trap. Collisions with an energy transfer largefThis comparison can help us to fix a value & which is
than £ actually escape from the trap. In both cases thesenost realistic.
atoms do not contribute to the energy-transfer rate to the cold An important conclusion of this new concept of heating
sample in the center of the trap. collisions is evident when we look at Fig. 4. The value for

Conversely, primary and secondary collisions with an en<y, the transition point from dominant heating by secondary
ergy transferlessthan £+ do contribute to heating of the collisions to dominant heating by primary collisions, is al-
cold sample in the center of the trap, due to a rapid thermalways larger than the proposed value for the cutoff, as given
ization in a series of collisions. By intuition, we expect thatin Eq. (22). We can conclude that we aedwaysin the re-
the value of&. will at maximum be one or two orders of gime where heating by secondary collisions is the dominant
magnitude larger than the temperature of the cold sample imechanism, proportional to the column density of the trap. A
the center of the trap, i.e., in the range of hundredgléf  second important conclusion is that the experimentally ob-
For a comparison of our model calculations with experimenserved heating rates do not depend on the actual trap éepth
tal results in Sec. VII, we use extreme values of the range at least when the latter is larger than, e.g., 1 mK. For shallow
traps with a depthi<1l mK, the formation of an Oort cloud

b ower limit Nogr=5X 10°.

200 pK<E <400 uK (22)

gq<E<g . coldatoms is not to be expected.
isotropic
Qort cloud ;/ s B. Thermalizing collisions
I --trap loss . . . . .
€ — — To investigate the validity of our assumption of a rapid
/ thermalization for atoms with a kinetic energy less tlsgn,
trapping  \ | 1 loss to we discuss a “pendulum model” for the interaction of col-
potential / Oort cloud lisionally heated atoms with the cold sample in the center of
the trap. In this model, we assume that all these atoms have
o1t A heating a negligible macroscopic angular momentum in the trap.
pendulum kgT- This implies that these collisionally he_ated atoms traverse
trajectories % the cold sample in the center of the triayice per oscillation
E<éy period (Fig. 7). At each crossing, the probability for a colli-

sion is equal tof 1—exp(—(nhQ)], with Q the total cross
FIG. 7. Schematic of the trapping potential, the Oort cloud, andS€ction. For a kinetic energ<400 uK we can use the
the region of rapid thermalization by “pendulum” trajectories of Swave limit Qt_, for the total cross sectio(Fig. 8. The
the products of secondary collisions with a transferred kinetic entime constantr,e ma for the thermalization of a collisionally
ergy less than the cutoffy;. heated atom to the trap temperature is then given by
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Tinerma= (@/ T){(NHQ7_0, (23)  Clearly, this difference of a factor'Z in the work of Myatt
is the result of applying the model of amfinitely long trap in
with o the angular frequency of the atom trap in the coordi-axial direction, which results in a different relatidm),p
nate of tightest confinement, i.e. the largest frequency. =n(0)/2 between the average value of the density and the
For Rb, the single-crossing collision probability is equal peak density. For a full three-dimensioridD) approach the
to (n1YQ1_,=0.50 for a typical value of 8 m~2 for the  relation between the peak density and the average value
column density. On the average, half of the kinetic energy ofeads(n)sp=n(0)/2*%, as can be expected from a Gaussian
the collisionally heated atom is transferred in each collisiormprofile in all three directions. The result of E@4), in terms
to the cold atom in the trap, due to the isotropic nature ofof the peak density, has the advantage that it does not depend
swave collisions. For example, a 10K atom will ther-  on the specific model used for the trap geometry.
malize to a temperature of K in typically seven colli-
sions, i.e. in a time span approximately equal torfermal
=54 ms when inserting a typical experimental valumr
=150 Hz. This collision time should be compared to typical A. Experimental results

\clzlr:{;? ;?rt:]getre;aswh?g#'f;n S?ﬁ;&tgigollgosgﬂrgple in the Accurate and well-documented data on heating rates in
P, 9 Rb traps were given by Myaf] at JILA. Their first obser-

AIthough . all coII|S|onaIIy_ _heated atoms that are stil vation is the very different behavior for the two spin states
trapped originate from a collision with an atom in the sample|2 2 and|1,— 1) that can be trapped. Typical data for a trap

at the center of the trap, the assumption that they will follow' ™. - PR
a pendulum movement is most appropriate for Iow-energ;‘/vIth average density)=310° cm ° and temperaturel
; =1.2 wK are heating rate of 600 and 120 nK/s for
atoms. These atoms probe the Iow-e_nergy region of the t_rap,nd |1ILi 1) states rgspectively. Three possible reLﬁseg%s for
where the absolute value of the anisotropy of the trappin he larger heating rate of tHe,2) state are given. First, the

potential is small. With increasing kinetic energy, the atoms . o
will probe the more anisotropic region of the trap, and ac_mternal energy of the hyperfine splitting that can serve as a

quire a larger macroscopic angular momentum. These atorource of heat. Second, the existence of two trappable states

will circle around the sample in the center of the trap rather” the F =2 manifold, that could result in a two-step kind of

then hitting it twice per period of oscillation. The latter at- _heating process which can also contribute. Third, differences
oms do not thermalize rapidly and are lost in the Oort cloud” the total cross section due to shape resonances for angular

The cutoff ener is the transition from one regime to the momental =2 can have an influence on the heating ra_te.
other O er g The second observation of Mydff] is that the heating

rate is proportional to the elastic collision rajg, in the
sample, irrespective of the temperature and density in the
trap. The experiments are not conclusive if there is a depen-
Before we can compare our model with experimental redency on the trap frequeney. This relationship holds both
sults, we have to give a clear definition of the average valugvith and without applying a rf shield, over a wide range of
(nl) of the column density. We assume a Boltzmann distri-heating rates. For example, for tfg— 1) spin state without
bution for the density profile in both the axial and radial @ rf shield, the range of validity extends for heating rates
directions. Integration over the Gaussian density profile ifanging from 5 to 230 nK/s.
radial direction shows that the effective “density-length” ~ Their third observation is that the heating rate is strongly
product for a cigar-shaped harmonic trap with trapping fre-affected by applying an “rf shield,” i.e., a rf field as used in

VIl. COMPARISON TO #Rb EXPERIMENTS

VI. COLUMN DENSITY OF TRAP

quenciesw, < w, is, in a good approximation equal to evaporative cooling but with a cutoff temperature that is
much higher than the trap temperature. For exampld, at
(nly=0.88G =/2)n(0)l, , (24 =1 uK, a rf shield with a cutoff at 48uK reduces the

. ) heating rate by a factor of £7]. This “shield” will not
with n(0) the peak value of the density anh  entice atoms to leave the sample in the center, due to the

= (ksT/ma;)*? the rms radius of the trap population. The yanishing population in the Boltzmann tail of the kinetic-
factor /2 stems from the fact that the solld-angIe-welghtedenergy distribution.

average path in a three-dimensional trap is a faetd2
larger than the distance traveled in the radial direcfit.
For a direct comparison with the expression given by My-

B. Model calculations

att, we also write Eq(24) as a function of the density- ~ These are the facts that we have to compare with our
weighted average valug) of the density, resulting in model calculations. The first observation is outside the scope
of this paper, because we only take into account single-state

(nly=2.5Q 7/2){n)l,, trapped atoms. However, we still can eliminate one of the

suggestions of Myatt for explaining the observed differences.
o 5 > 3n a2 Precise calculations of the total cross section at low tempera-
(m=N f f f n“(r)d°r=n(0)/2°%. (25 tures, as recently performed by Kokkelmans and Verhaar
[16], show that there are no major differences for the two
The result in Eqs(25) differs by a factor (2.50+?)=1.41  states involved. Also, both show a pronounckedave reso-
from the expressiofinl) = (7¥%2)(n)l, given by Myatt[7].  nance, equally large for tHg,2) and|1,—1) states.
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We now proceed to the second observation. The elastienergy-transfer rates for three species: He, Ar, and Rb. The
collision rate is equal tg/e;=(NQu)y4p , taking the average experimentally obtained information, showing that the
over the trap volume and the velocity distribution in the trap,energy-transfer rate nearly vanishes when extrapolating to a
respectively. When we write the average velocity (a$ zero column density, helps us to decide on the composition
~w,l,, with I, the typical excursion in the harmonic trap, of the background gas. A background of Rb is eliminated by
we directly observe that the elastic collision rate is propor4ts large density-independent energy-transfer rate by primary
tional to the product of trap frequency, and opacity collisions, which is in strong contradiction with the column-
(nlQ)trap. For the Rb-Rb system we are in the regime ofdensity dependency of Myatts ddfd. The absolute value of
swave scattering when the center-of-mass energy is limitethe energy-transfer rate by secondary collisions points in the
to Ec=39 uK, i.e., a kinetic energy oE=78 uK of the  direction of He as a background gas, because it has the larg-
trapped atom§l7]. The scaling law of Myatt for the heating est effect. Looking at the absolute values of the energy-

rate can now be written as transfer rate, we conclude that a cutoff &ix=400 uK
_ gives a fair representation of the experimental results of My-
U/N~ yei~ (Nl )Qr_o~(nl;), (26) att.

Looking at the influence of the rf shield on the energy-

where the last step is valid only for a fixed trapping fre-transfer rates, the case of He afigi=400 uK shows a
quencyw, . Comparing this result to the secondary heatingdecrease of 42 nK/s when switching on the shield. This num-
rate in Eqg.(21) shows the same dependency on the columrber is in fair agreement with the experimental data of Myatt,
density when using Eq24) for (nl} in terms of the average who found a decrease e¢60 nK/s. However, the absolute
density and the rms value of the radial excursion. The exvalues of the energy transfer rates with and without the rf
periments of Myatt are not conclusive if a dependency on thehield are too low by approximately 30—60 nK/s, respec-
radial trap frequencyn, actually exists. Looking at the re- tively.
sults of our model for heating by secondary collisions, the In Sec. VIII A we will show that primary collisions with
existence of such a dependency @pwould be rather sur- “hot” mK atoms in the isotropic Oort cloud could be the
prising. cause of this extra contribution. One should keep in mind

We now discuss the third experimental observation ofthat the hot atoms from the Oort cloud impinging on the cold
Myatt. We assume that the heating ratghout a rf shield atoms in the center of the trap are not eliminated by the rf
correlates with the energy transfer by secondary collisionshield: the heating collisions do not depend on the magnetic
with a cutoff energyqs. It is obvious that the rf shield does substate, at least in a first-order approximation. The influence
influence the heating by secondary collisions when the rbf the rf shield is limited to the influence of the lower cutoff
cutoff energy&y is less than the effective trap del;. The  from heating to trap loss in these primary collisions, as re-
decrease in heating rate whswitching onthe rf shield then flected in the upper bound of the energy-transfer integral.
corresponds to the energy transfer with an effective trap
depth equal t&,s. The scaling of the energy-transfer rate by

e Y . . C. Background-gas composition
secondary collisions witlf ' then results in a decrease in

heating rate according to The scaling of the energy-transfer rate by secondary col-
lisions with only the €F.,)*'® power of the reference value
(UIN) = (E¢1 Ei) VA UIN). (270  of the primary collisions results in a very weak dependence

on the background-gas atom. Even when switching from

Considering our choice for a cutoff value in the rangeHe Rb primary collisions to Rb-Rb primary collisions, with
200 puK<E4<400 uK, the heating rate is reduced by a Eferp=17.5 and 1.36 mK, respectively, this results in only a
factor of 2—3 by applying a rf shield at a cutoff equal to factor (ERF,/£15,)¥6=0.65 decreasein the predicted
50 wK. This reduction is of the correct order of magnitude energy-transfer ratéTable ). This scaling is in strong con-
when looking at the experimental data of Myatt. trast with the energy-transfer rate by primary collisions,

We now look in detail at thabsolute valuef the energy-  which increases proportional te€f,;,) ~* in the quantum
transfer rate by secondary collisions in the experiments ofegime of diffractive scatteringTable ).
Myatt (Table 1). In the case of a trap with density)=3 Experimental support for this counterintuitive scaling
X103 cm™3, temperatureT=1.2 uK, and trap frequency rule, i.e., a decrease in energy-transfer rate by secondary col-
o/2m=110 Hz, the column density is equal {ol)~1.3 lisions when we assume a primary collision with a much
X 10" m~2; the measured trap-loss lifetime #~250 s.  stronger long-range interaction, can also be found in the ex-
Inserting these numbers into E@1), we then calculate the perimental work of Myatf7]. To investigate the dependency
energy-transfer rate by secondary collisions. Results aref the heating rate on the density of the background gas,
given in Table Il for two different values of the cutoff, equal Myatt [7] heated the walls of the trapping chamber. He ob-
to E.=200 and 400uK. By lowering the effective trap served a drop in the trap-loss lifetime of his magnetic trap
depth tof.4=E+=48 wK we can include the effect of the rf from 78,,,~400 s torf,~100 s. Going from “cold” to
shield. For comparison we have also calculated the energythot,” the heating rate increased by a factor 1.5 to 2.5, much
transfer rate by primary collisions, using EQO). less than the decrease if.

To show the dependency of the heating rate on the com- With cold walls, the background gas most likely consists
position of the background gas, we have calculated thef atoms with a low mass number and a weak long-range

063614-11



H. C. W. BEIJERINCK PHYSICAL REVIEW A 62 063614

TABLE IV. Absolute value of the heating rate in the experiment of Myatt on Rb, in comparison with the
total of the three contributions by primary background collisions with He, secondary Rb-Rb collisions and
primary Rb-Rb collisions with atoms in the Oort cloud, as predicted by the models in this [fagEe(20),

(21), and(29)].

No shield rf shieldP

Model Secondary collisions 50 nK/s 17 nK/s (nl) dependent

Primary collisions 7.2 nK/s 0.1 nK/s n independent

Oort cloud 45 nK/s 7 nK/s n independent in first order

Model Total heating rate 102 nK/s 24 nK/s
Experiment Myatft 120 nK/s 60 nK/s (nl)-dependent
%Eeii=400 ukK.
be =48 uK.
‘Referencd7].

interaction, e.g., i He or Ne, as shown in Sec. VII B. Heat- gas-alkali-metal interaction, resulting in a much smaller
ing up the chamber will result mainly in an additional flux of value of&.;. Second, the mK temperature of the Oort cloud
Rb atoms, evaporating from the walls. For the scaling of theesults in a scaling of the reference valfig to even lower
heating rate in these two experiments, we thus have to takealues [Eq. (13)] as compared to the room-temperature
into account the effect of both the increase in density as weWalue. The resulting value allgo=2 MK is Eefoon
the change in composition of the background gas. For the=125 wK. For this reason primary collisions dominate the
increase in heating rate we then predict a factor heating by collisions with atoms in the Oort cloud. The den-
_ . U6 Sity Noe=10° cm~2 corresponds to an equivalent back-
(U/N)not ot Ef{e?’b ground pressure of 810~ Torr, not very different from
OIN)ers 2Hie =26 (28)  the background gas itself at a trap loss lifetime of 100 s.
cold ref.o For Rb we can still apply—although marginally—the
§emiclassical expressions for the energy-transfer intdgyal
t an energy of a few mKsee the Appendjx The energy-
ransfer rate per atom is then given [}

p
Tcold

The good agreement with the experimental results of Myat
provides extra support for our model of heating by secondar
collisions.

U Oort/N =Noor OortZQ E,Oort- (29
VIIl. THERMAL COUPLING TO OORT CLOUD

In our new concept of the Oort cloud we have implicitly . . .
assumed that the Oort cloud does not contribute to th&'€r®:voor=(2KeToon/ m)*2is the characteristic velocity of
S 1Ihe atoms in the Oort cloud.
energy-transfer rate to the mK sample. However, in view o

the observed discrepancies between experiments and mod #fT he CaIﬁUIat'on_OfIQE,OOét has beerf1 ﬁonefffor_ the two
calculations, the latter being too small, it is necessary to indIerent valuestey=200 and 400K of the effective cut-

vestigate this assumption in more detail. We discuss twt?ff'.i'.e" the transition point b.etween heating and trap-loss
models: first, an Oort cloud with an isotropic distribution in cOlliSions. Because the cutoff is always much larger than the

nieference value, we can apply an approximate expression for
perature of a few millikelvir(Fig. 7). Second, we investigate € energy-transfer integral based on classical scattgfiqg

the contribution to heating for the case of an Oort cloud with(lo)]' In the Appendi>_< we investiga_te the validity of this—
“pendulum” trajectories for all atoms in the cloud. The lat- rather crude—approximation, showing that the errors are not

ter clearly is an upper limit to the heating rate due to the Oorf©0 arge. Using the input as given in Table Ill, which applies
cloud. to the case of Rb, we find an extra energy transfer rate in the

range of 25—45 nK/s. Applying an rf shield, with a cutoff
energy equal t&€;=48 uK, as relevant for a comparison
with the experimental results of MydfT], results in an extra
We consider collisions of atoms in the Oort cloud with energy-transfer rate equal to 7 nK/s.

atoms in the sample at the center of the trap, assuming an Comparison to experimentally obtained heating rates
isotropic distribution of the velocity of the atoms in the Oort shows that we cannot neglect this contribution of the Oort
cloud. The expression for the heating rate is then the same atoud to the energy-transfer rate to the centrally located cold
for heating by primary collisions with a background gas, ofsample. This extra contribution can perhaps explain why our
course, with its composition and a much lower temperaturenodel results in Sec. VIl are always smaller than the experi-
Toort @S the two most pronounced differences. First, the Oorinental results of Myatt. In Table IV we compile the relevant
cloud consists of the trapped species: the alkali-metal—alkalidata of Tables Il and Il for an easy comparison of the ex-
metal long-range interaction is much stronger than the noblegperimental and model results for the total heating rate in the

A. Isotropic gas model
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TABLE V. Calculated energy-transfer rates for secondary and primary collisions, in comparison with the
experimental values for the heating rate in fff®b trapping experiment at JILA. Due to the low value
(n1)=4x10" cm™2 of the column density, the contribution by primary collisions is larger than for second-
ary collisions.

Background Eei=200 uK =400 uK
Secondary collisions He 1.1 nK/s 1.6 nK/s
Primary collisions He 1.8 nK/s 7.0 nK/s
Experiment 1-3 nK/s

“Referencd 18].

experiment of Myatt. We observe a rather good agreemenesulted in the observation of a condensate. However, both
on the absolute value. the density and the total number of trapped atoms are much
An important observation that we cannot discard directly,smaller than in®’Rb. Typical experimental heating rates are
however, is the fact that the extra contribution of the Oortin the range of 1-3 nK/s. Applying a rf shield does not
cloud doesnot directly depend on the density or column influence these rates. The heating rate is attributed to three-
density of the trap, as can be seen in E29). However, itis  body collision loss rates. Above the transition temperature,
not unlikely that the densityig,; Of the Oort depends on the characteristic numbers ar&l=1C°, (n)=5 10" cm 3,
trap parameters such as the total populaioor the trapping and T=50 nK at confining frequencies of X717x7 HZ
frequency. In turn, this would result in a dependency of thg18]. At these conditions, the typical dimensions in radial
Oort contribution to the heating rate on the density and/oand axial direction are 21 and 4@m, respectively, result-
column density of the trap. A conclusive answer cannot béng in a column density ofnly~4 10 m~2. For this
given: the experimental evidence on the Oort cloud is stillnumber we have used the radial dimension of the trap. The
too scarce. depth of the magnetic trap is on the order of a few mK.
Typical trap-loss lifetimes are of the order et~250 s or
more.
] o } In Table V we present the energy-transfer rates for both
All atoms in the Oort cloud originate from a primary or secondary as well as primary collisions, again assuming an
secondary collision occurring in the sample at the center offfective trap depth 0F.;=200 or 400 uK. Because the
the trap. When assuming an ideal harmonic trap, these atomg|umn density is rather low in this experiment, the energy-
will acquire no additional macroscopic angular momentumyyansfer rate for primary collisions is larger by a factor 2—3
Their path in the trap volume will oscillate from one end of than the contribution by secondary collisions. This occurs
the trap to the other, each time traversing the sgmple 'at th&hen the transition pointy lies below the cutoff value,y;.
center of the trap: a “pendulum mode” of atomic motion. we gbserve that the calculated heating rates are larger than
This mode has been assumed as being effective for the rapjfle experimental values. Also, the calculated values would
thermalization of the hot atoms with an energy below theyecrease when applying a rf shield, which is not observed
cutoff energyce. This implies a very strong correlation of experimentally.
the velocity distribution and the spatial distribution of the A possible explanation can be found in the original as-
atoms in the Oort cloud, with a strong collisional coupling t0 symption that three-body losses dominate the process of trap
the sample in the center. ~loss. The contribution of background collisions to the mea-
When we assume that this “pendulum” model applies 0gred trap-loss lifetime®=250 s is then much smaller, re-
all atoms in the Oort cloud, we find extremely large valuesting in an effective lifetime for background collisions
of the energy-transfer rate in the range of 100—-408/s.  (:ry'>250 s. For example,7)’=1000 s results in a de-
The magnitude of the calculated energy-transfer rate is typigrease by a factor 4 in the calculated heating rates, showing
cally a factor 1000 larger than experimental results. The mag petter agreement of calculation and experiment. It is rather
jor deficiency is the assumption thall atoms in the Oort  pharq to find another idea to obtain a smaller value of the
cloud behave in a “pendulum” mode, crossing the sample inyrimary-collision heating rate, due to its very direct relation-
the center twice per oscillation period of the trapping potenship to the primary-collision loss rate. This discussion con-
tial. Clearly, this is not a realistic assumption, as alreadyirms the assumption that the experimentally observed heat-
discussed in Sec. V B: the pendulum model is only realistiGng rate should be partially attributed to other processes than

for the very-low energy atoms of the Oort cloud. However, ,rimary and secondary collisions driven by the background
this is precisely the regime wheEe< £, holds and the Oort gas.

cloud is depopulated in our newly proposed concept.

B. Pendulum model

IX. COMPARISON TO %Rb EXPERIMENTS X. CONCLUDING REMARKS

Recently, great progress has been made in the trapping All trapping experiments that lead to Bose-Einstein con-
and cooling of the®>Rb isotope. In 1999 these efforts have densation are in the collisionally opaque regime when they
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are close to the transition temperature. The simple model of TABLE VI. Elastic total cross sectio®Qr_, and differential

density-independent heating by primary collisions with thecross sectionrr_o(0) for Rb in the limit of swave scattering,

background gas is then no longer valid. In this case, secondogether with the scattering lengéh For comparison we also give

ary collisions inside the trap are the main cause of heating‘,he numerical result when evaluating the semiclassical expressions

with only a small contribution from primary collisions with for Q. o(0), and 6, at a center-of-mass energ§.,=E/2

the background gas and tertiary collisions with atoms in the=39 #K at the transition point to purewave scattering, far out-

Oort cloud. Lowering the trap depth has no influence on theide the range of validity. We observe that the absolute values are in

secondary heating rate, because the cutoff between heat“t@'r agreement. Also, thg isgtropic differential cross section

and loss collisions is determined by an escape into the OO\‘fT—‘O(O) for swave scattering is fairly well characterized over a
arge angular range by the semiclassical expression with a charac-

cloud rather _th_an the escape from the trap. _ _ teristic anglef,—= 1.8 rad.

A very efficient method to decrease the heating rate in a
trap is to apply a rf shield, as shown experimentally. The,

. ! h ) . "Regime Parameter Value
model in this paper supports this conclusion both quantita-
tively as well as qualitatively. Another efficient way to de- s wave a 1008,
crease the secondary heating rate while keeping the density Q1.0 7x108 A?
in the trap high is to opt for a trap geometry with a large o1_0(0) 5.6x10° A ?/sr
aspect ratio, i.e., a trap with a strong radial confinement and o1_0(6) isotropic
a very relaxed axial confinement. In this case the radial di-
mension will be the relevant length parameter that deterSemiclassical Q 5x10* A?
mines the column density in ER1). This conclusion is the a(0) 2.9x10° A?/sr
same as for a trap of metastable neon atoms, where second- o 1.83 rad

ary collisions of the hot products of ionizing collisions in the

trap are the major source of heatifitp. , L L .
Finally, the non-negligible contribution of collisions with tion o(0) for scattering in the forward direction and the dif-

atoms in the Oort cloud to the heating rate shows us that it ifaction angled, are related according to

important to obtain quantitative data on its population. Only Q=8.08C,/fip)?D
then can we give a final answer to questions such as the ' s '
dependency of the population of the Oort cloud on the trap o(0)=k2Q?/[ 1672 co(7/5)]

parameters. Also, more insight is necessary with respect to

the dynamics of the formation of the Oort cloud. Is the Oort (A1)
cloud a remnant of the population of the magneto-optical 6= (47/k?Q)*?,

trap which has “survived” the process of evaporative cool-

ing? These questions are the motivation for future research zwggg(o)/Q:[g cod(m/5)] 1=0.764.

on the Oort cloud.
Throughout this paper we use semiclassical expressions for
both the total cross section as well as the differential cross
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is nearly constant, indicative fa&rwave scattering. For pure
s-wave scattering the elastic cross section is fully determined

APPENDIX: ELASTIC CROSS SECTIONS by the scattering length, as given by

1. Semiclassical approach
PP Qr_o=8ma? (A2)

Within the framework of a semiclassical approach to elas-
tic scattering, the small-angle differential cross sectiq®) o1_0(0)=Qq_ /4. (A3)
scales with the diffraction anglé,= (47/k*Q)*?, with k the
wave number. For an inverse power law potenVqR) The differential cross section is isotropic in this limit, as
=C4/R® the total cross sectio, the differential cross sec- expected for an incoming wave. For comparison, we have
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also plotted the semiclassical expression @ras given in  onset of thesswave scattering regime are not very disparate
Eq.(Al). For a center-of-mass enerffy,,=E/2=4 mKthe for Rb, as can be seen in Table VI. The absolute valugg of
semiclassical result agrees with the quantum-mechanical t@nd o(0) are equal tdQ+ .o andor_(0) within 30% and
tal cross section within a factor of 2. 40%, respectively. The characteristic angle is equabgo
=1.83, indicating a rather isotropic differential cross section
over a large angular range. This is in fair agreement with the
isotropic differential cross section farwave scattering. Of
The height of the rotational barrier fgrwave scattering  course, features like tHe=2 resonance in the cross section
defines the characteristic center-of-mass eneEjya,e  are not incorporated in the semiclassical formulas.
which defines the onset of multiple partial-wave scattering. For the calculation of the energy-transfer rate by second-
The semiclassical expressions for the total and differentiaary collisions, the lower limit of the enerdy; is equal to the
cross section provide a sufficiently accurate description ogffective trap deptt€., which is on the order of 40QuK.
fully quantum-mechanical calculations when 5-10 partialHowever, for He-Rb primary collisions with a reference
waves contribute to the Rayleigh sum for the scattering amvalueé‘f’ef,b= 17.5 mK, the majority of the collisions result
plitude. This condition is thus satisfied at a center-of-masén a transferred energlf;>8 mK. The fraction of the col-
energy that is larger by a factor of 64—286r bosons only lisions with a smaller transferred energy is equal to
even partial waves contribytebecause the deBroglie wave- AQP(8 mK)/QE=0.38(8 mKEP®,;,)=0.17. The range of
length scales aEc‘nﬁ’Z. For Rb, WithE, y4,e=39 uK, this  validity of the semiclassical expfessions is thus fairly well
implies a lower limit ofE=2E_,,=5 to 20 mK for the range matched to the range of application in the energy-transfer
of validity of our semiclassical approach. integral Zgg ;. We conclude that the calculated energy-
Surprisingly, the absolute value and the general characteransfer rates by secondary collisions are reliable for all prac-
of the swave cross section and théncorrectly appliedl tical applications, with an estimated error on the order of
semiclassical expressions at a laboratory energy equal to tt#5% or less.

3. Range of validity of semiclassical approach
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