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Condensate growth in trapped Bose gases
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We study the dynamics of condensate formation in an inhomogeneous trapped Bose gas with a positive
interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and
the Hartree-Fock mean-field effects in the condensed and the noncondensed parts of the gas. Our growth
equations are solved numerically by assuming that the thermal component behaves ergodically and that the
condensate, treated within the Thomas-Fermi approximation, grows adiabatically. Our simulations are in good
qualitative agreement with experiment, however important discrepancies concerning details of the growth
behavior remain.

PACS numbgs): 03.75.Fi, 32.80.Pj, 05.30.Jp

[. INTRODUCTION veloped, which roughly speaking fall into two categories.
One class of theories focuses on describing the dynamics of
The discovery of Bose-Einstein condensati®EC) in  the average value of the order parameter for BEC, i.e., the
trapped atomic vapors ¥Rb[1], ‘Li [2], and*®Na[3] has  condensate wave function, whereas the other incorporates
initiated a period of intense experimental and theoretical acalso the fluctuations around this mean value. The latter of
tivity. A great deal of information is now available about the course, becomes important when the fluctuations are large
equilibrium properties of these novel systefd$ but much  compared to the mean value, i.e., close to the critical tem-
remains to be understood about their nonequilibrium behavperature. This is analogous to the situation in laser theory
ior. One of the most basic aspects concerns the nonequilip11].
rium growth of the condensate that occurs in the process of A theory that describes both the average value for the
cooling a nondegenerate trapped Bose gas to a final tempererder parameter as well its fluctuations can be obtained in
ture below the BEC transition. This important problem wastwo, essentially equivalent ways. First, one can start from a
addressed even before the first observation of BEC imaster equation for the many-body density matrix and derive
trapped atomic gas¢5—7], and has interesting implications an equation of motion for the one-particle density matrix by
for the general problem of second-order phase transitionsneans of a perturbative treatment of the interactions. This
from superfluidity in liquid “He [8] to problems in cosmol- was the route followed by Gardiner and Zollgr2], in a
ogy [9]. series of papers. Second, one can use field-theoretic methods
Until now, the most detailed study of condensate forma+to obtain a nonperturbative Fokker-Planck equation that de-
tion was carried out using a gas 6fNa atoms confined scribes the nonequilibrium dynamics of the gas. This was the
within a highly anisotropic cigar-shaped trgp0]. In these  formulation developed by Sto¢fi3]. These two approaches
experiments, the sodium atoms were evaporatively cooled tim principle yield a description of the nonequilibrium dynam-
a temperature just above the critical temperature and subsis that is capable of obtaining the complete probability dis-
quently quenched by applying a rapid RF sweep. The lattetribution for the order parameter.
step removes all, or at least a large fraction, of the atoms Alternatively, a theory describing the dynamics of the
above a certain energy, after which the Bose gas relaxes toraean-field value for the macroscopic wave function can also
new equilibrium state below the critical temperature. Thebe obtained in a straightforward decoupling approach, which
growth of the condensate during the equilibration proces$ias been implemented by Kirkpatrick and Dorfmdrd],
was monitored using a nondestructive imaging technique tha®roukakiset al. [15], Walser et al. [16], and in the most
provided a direct measure of the size of the condensate asdetail for the trapped case by Zaremba, Nikuni, and Griffin
function of time. In this way, the characteristic time scale for[17]. In this approach, one assumes the order parameter to be
the growth of the condensate could be determined, and fatonzero at all temperatures, and decouples the hierarchy of
the particular system studied, was found to be of the order ofquations of motion that exists for the correlation functions
100 ms. of the second-quantized field operators. Thus one again ob-
A theoretical description of these experiments requires &ains a perturbative expansion for these equations of motion.
theory that can account for the coupled nonequilibrium dy- The first quantitative calculations of condensate growth
namics of both the noncondensed and condensed compfar trapped Bose gases were carried out by Gardateal.
nents of a trapped Bose gas, and includes in particular thel8], and although good qualitative agreement with experi-
collisional processes that transfer atoms between the twment was found, a number of quantitative discrepancies re-
components. Thus far, several such theories have been derained. For example, the reported experimental growth rates
were up to a factor 30 larger than the initial theoretical re-
sults, and had a temperature dependence opposite to that pre-
*Permanent address: Department of Physics, Queen’s Universitglicted [10]. By removing some simplifying approximations
Kingston, Ontario, Canada K7L 3N6. in subsequent calculations, the theoretical results were im-
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proved, but discrepancies of up to a factor of 3 still remainedions and notation we use are taken from Rgf8,17.
in some cases. From a purely theoretical point of view, one The noncondensate is treated using a semiclassical Boltz-
can attribute some of these discrepancies to the approximaann equation for the phase-space distribution function
tions made in the calculations. First, the dynamics of thef(r,p,t). This semiclassical description is justified when the
noncondensate was to a large extent neglected. Although thargest level spacing in the external trapping potential is
time evolution of the occupancy of low-lying states was in-small compared to the thermal excitation energy. Moreover,
cluded in the simulations, the high-energy states were reprenean-field interactions are included at the level of the
sented by an equilibrium particle reservoir having a fixedHartree-Fock approximation. In this situation, the quantum
chemical potential. This latter assumption is inconsistenkinetic equation for the thermal excitations takes the form
with the nonequilibrium initial state established by the ex-[13,17]
perimental quench procedure. Second, the effect of the mean
field of the condensate on the noncondensate was included  sf(r pit) p
rather crudely by a linear rescaling of the low-energy density ot + o Vi(r,p,t)=VU(r,t)- V f(r,p,t)
of states of the noncondensed atoms.
Our aim in the present paper is to improve on these cal- =C[f]+Cof f]. )
culations by taking fully into account the relaxational dy-
namics of the thermal, or noncondensed, component th . . _
takes place in the presence of the mean field of ?he conde%t!gre’ thg effective potentlaU(r,t)=Uext(r.)+2g[nc(.r,t)
sate. We do this by starting from the above-mentioned theo? N(F,t)] is the sum of the external trapping potential,,
ries describing the growth process, which provide us with £nd the_ self-consistent Hartree—FocI_< mean fle_ld. The latter is
nonlinear Schrdinger equation for the condensate and a ki-détermined by the condensate densigfr ), defined below,
netic equation for the thermal component. This coupled seand the noncondensate dengitfr,t) given by
of equations is still difficult to deal with and a number of
physically motivated approximations are made to simplify
the problem. We assume that the condensate grows adiabati- n(r,t)= f
cally, having an equilibrium spatial distribution determined
by the instantaneous number of atoms in the condensate.
This assumption is also made in earlier wpil8]. The non-  As usual, we treat the interactions in thevave approxima-
condensate is treated by solving a semiclassical Boltzmangion, which results in the bare interaction being replaced by a
equation[13,14,17,19in the ergodic approximation, which contact interaction with an effective coupling constant
again has been used previously by numerous auflio2—  =4x%2a/m proportional to theswave scattering length.
22]. These assumptions allow us to obtain numerically a deThe effective coupling constant is in fact equal to the two-
tailed description of the growth of the condensate, includinghody T matrix, and to emphasize this connection, it is de-
the effects of both the dynamics of the thermal cloud and itsyoted by T?8 in some works[13]. The collision terms ap-
mean-field interaction with the condensate. pearing in Eq(1) are given by
The paper is organized as follows. In Sec. I, we summa-
rize the theory of the nonequilibrium dynamics of a trapped

o (TP 2

Bose gas as developed previously. In Sec. IIl, we introduceczz[f]z“_wng dp, f dps f dp, (21h)3
the central assumption, the ergodic approximation, that al- h (2mh)3) (2wh)3) (27h)3

lows us to numerically solve the Boltzmann equation. In ad-

dition, we briefly discuss the adiabatic approximation for the X o(p+Pp2—P3s—Pa) S(E+E;—E3z—E,)[(1+f)
condensate. In Sec. IV, we treat in some detail particle num- X(L4 ) fafa— (14 o) (1+F4)], 3)

ber and energy conservation. Sec. V introduces the Thomas-

Fermi approximation and gives some analytical results for

the density of states and other quantities of interest. The 47 dp, dps dpy
. . . . . . . . = 2

numerical solution of our kinetic equations is discussed in C1d f]1=—-9 ncf 2 ﬁ)sj 2 ﬁ)sj 2ah)?

Sec. VI and our results for the growth of a condensate are m m m

presented. We end in Sec. VIl with a discussion and an out- X (27h)38(MV+ po— P3—Pa) S(Ec+Ep,— Esg
look.
—E4)(271)% 8(p—pa) — 8(p—p3) — 8(p—Pa)]
Il. NONEQUILIBRIUM DYNAMICS XA+ F)faf,—Fo(1+f3)(1+14)], (4)

As discussed in the previous section, the nonequilibriu ith f=f(r,p,t), and f,=f(r,p; ,t). We note that Eq(4)

dynamlcs of a trapped Bose gas is governed by a set Qhkes into account the fact that a condensate atom locally has
equations for the condensate and noncondensate compQ- energy
nents. These equations have been presented in various forms
[18,13—171, but they all describe the coherent dynamics of 1
the gas due to mean-field interactions, as well as the inco- 2

. . ; > S E.(r,t)=puc(r,t) +zmve(r,t), 5
herent dynamics associated with atomic collisions. The equa- oD =pel(r,0) 2 (0 ®
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a momentummv(r,t), and a chemical potentigk.(r,t). ang(r,t)
These quantities are defined explicitly below. In addition, the
energy of a noncondensate atom in the Hartee-Fock approxi-
mation is and

+V[ve(r,t)ng(r,t)]=— 2R(r,t)nc(r,t), (9)

2 V(1) mvg(r,t)?
m

E(r.p.0) = 5= +U(1 ). ®) PV rdr =5 =0 (10

The energy variable&, appearing in Eqs(3) and (4) are Here, we have defined the local chemical potential and su-

defined asE; = E(r,p; ,1). perfluid velocity by
In contrast to the thermal cloud, the dynamics of the con- 2 w2
densate is determined by a time-dependent dissipative non;, (r ty=y + O+ 2n(r.t)1— A7 Vone(rH
: e : Ree(r, 1) =Uex(r) +9[ne(r,t)+2n(r,t)]
linear Schrdinger equatiorj13,17 2m  n.(r,t)
11
Jv(rt) [ A*V? U - and
ih— =1 = 5+ Ued ) +g[20(r.t) + ne(r.1)]
h
—iR(r D) [W(r,0), (7) Velr )= vV or.y, 12
o ) o respectively. It can easily be shown that this set of equations
where the dissipative term, i.&(r,t), is given by for the condensate and thermal cloud is consistent with the
conservation of the total number of particles in the system
Re h dp Cf] [27].
S 2ng) (2mn)3
) Ill. ERGODIC APPROXIMATION
= %J' [T dpis(mve+p,—ps—pa) S(Ec+E, Our main objective in this paper is to apply the kinetic
(2m)°h°) =14 theory formulated above to the problem of condensate for-
= N N _ mation. In order to make progress, we introduce a number of
Es~Ea)lo(p1=P2) ~ 5(P1~P3) — 6(P1—Pa)] additional approximations. The first and most essential, is the
X[(L+fo)fafs—fo(1+F3)(1+1,)]. (8)  assumption of ergodicity6,20—23 that has been widely

used in the literature on kinetic theory. This assumes that

The appearance of this dissipative term in Ef).is a con-  €quilibration of atoms within one energy level occurs on a
sequence of the collisional processes, describedCpy, ~ Much shorter time scale than equilibration of atoms between
which have the effect of transfering particles between thélifferent energy levels. With this assumption, all points in
condensate and noncondensate. The dissipative term R)aseé space having the same energy are equally probable,
needed in order to ensure overall particle-number conservand the distribution function therefore only depends on the
tion of the entire system. At a more fundamental level, theP?hase-space variables through the energy variébiep,t),
condensate wave function is determined by taking the exped-€-, f(r.p,t)=g(E(r,p,t),t). In equilibrium this is certainly
tation value of a Bose field with respect to a probability Correct, but the assumption requires justification for any par-
distribution that satisfies the Fokker-Planck equation menticular nonequilibrium application. Unfortunately, we are not
tioned previously{13]. The Langevin equation one derives aware of any explicit checks that have been made that might
within this formulation has the form of a dissipative nonlin- indicate that the assumption is correct for the situations we
ear Schrdinger equation with a noise term. It only reducesWish to consider. Nevertheless, it appears to be physically
to Eq. (7) in a mean-field approximation. This points to the reasonable that for quantities that vary on a time scale of the
need for exercising care in interpreting the order parameterder of several collision times, the approximation is suffi-
occurring in the nonlinear Schdinger equation as the con- Ciently accurate.

densate wave function. Due to the underlyidgl) gauge The ergodic approximation allows us to derive a simpli-
invariance associated with strict particle-number conservalied kinetic equation for the energy distribution function
tion, the expectation value is in fact always equal to zero a8(€t). This is accomplished by means of the relation

a result of the diffusion of the global phase of the condensate

wave function. In first instance this effect can be neglected i = drd S(e—E Y ¢
and we are then effectively treating the system as ift® ple)g(et)= (2mt)? (e—E(r,p.)f(r,p.,0),
gauge invariance is explicitly broken. (13)

It is convenient to rewrite EQ.(7) in terms of
amplitude and phase variables defined b¥(r,t)  which shows that the phase-space projection defined on the
=n¢(r,t)exdif(r,t)]. Substituting this form of the wave right-hand side yields the product gfe,t) and the density
function into Eq.(7), we obtain of states
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drdp rdp
p(en- | o adeEEp) aen=| Goadle ETpICHT] (208
m3/2
:—ﬁwzﬁsfugedr\/e—U(r,t). (14) |22(e,t)zf(;j:;;a5(e—E(r,p,t))sz[f]. (20b)

We note that the density of states is defined on the variable

energy rangeJ (1)< e<oe whereU (1) is the minimum  The result in Eq(19) is the kinetic equation that we solve

value ofU(r,t) at timet. The time dependence of the density numerically.

of states is one of the aspects distinguishing the present de- We now derive in some detail explicit expressions for the

velopment from previous work0,21]. collision integrals in Eq(20). Although an expression fdp,
We now apply the phase-space projection to the kinetisvas given in earlier work20], we present here an alternative

equation in Eq(1). As a result of this operation, the stream- derivation that can also be adapted to the case ofl the

ing terms in the Boltzmann equation, i.e., the second andollision integral. For thd,, collision integral we have

third terms on the left-hand side of Ed), cancel each other.

Only the projection of the time-derivative term survives. 4rrg?
This results in [oo(€q,t)= (27-r)—9hl°J dEZJ dEgJ deso(e1t+ex— €3
f P e Erppy TP —€)[(1491)(1+02)9502— 9102(1+gs)
(27h)3 at
Jg(et) sg(et) ><(1+g4)]f dr iHAJdpi)ﬁ(p1+pz
=plet) ——+pule)——. (19 '
—P3—Ps)S(e1—E1)S(e2—Ez) 8(e3—E3)
Here, we have introducedwaeighteddensity of states X 8(e4—E,), (22)
( ):J drdp Se—E(r.pt) Ju(r,t) where we have introduced the shorthand notatign
Pl € (27h)3 P at =9g(€ ,t). We consider first the momentum integrals in Eq.
32 (21 l\)Nhich, with the replacement;— —ps; and p,— — pa,
m aU(r,t) can be written as
_qusedr\/e—uu,t) I (16

JZZEJ dplf dpzj dp3J dp,o(py+ P2+ Pstpa)

X 6(€e1—Eq)8(e,—Ey) 6(e3—E3) 0(€4—Ey)

This quantity depends explicitly on the time derivative of the
noncondensate potential that in turn is determined by the
time derivatives of both the condensate and noncondensate

densities. Some formal details regarding its evaluation are dé 4 .
given in the Appendix. =J 3 H dpe' ¢ Pis(e—E;j). (22
Noting that (2m)°i=1
dp(e€,t) Ipwl(€t) In obtaining this expression, we have introduced a Fourier
a ge 17 representation of the momentum-conserving delta function.

Performing the integrals in E¢22) with respect to the mo-

Eq. (15) can be written as mentum variables, we obtain

4

drdp of(r,p,t) @ J - , B

f (th)sé(e—E(r,p,t))— i E(pwg)_ Joo=(41rm) (Il_ll 0(e; U))
(18)

XJ’ d¢ singplsingpzsin§p3sin§p4, (23

We thus arrive at the projected kinetic equation (2m)3 &

(19 where now it is understood thpt=v2m(e,—U). The prod-
uct of theta functions can be replaced &e,,;,—U), with
€min the minimum value of the four energy variables. Per-

where the phase-space projections of the collision integral®rming the remaining integral with respect to theariable,
are defined as we find

d Jd
E(Pg)‘F E(ng)zllz"‘lzz,
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Joo=(2m)3m*0( €min— U)[|p1— P2+ P3+ P4l If we now definel,, analogously tal,,, we have
—|P1= P2t P3— Pal +|P1— P2~ Ps— P4l
—|p1—P2—P3t P4 +[P1+ P2t P3— P4l

—|p1tP2—P3— P4/ +[P1+P2—P3t P4l

lezf dpzf dpsf dp46(p2+pPstPa)

X o€~ Ez) o(e3—E3)o(€4—Ey)

—|P1t+ P2t patpall. (24) :f oy L H dp.e'éPis(e—E,)
a
This expression is valid for arbitrary values of the momenta
but simplifies when energy conservation is taken into ac- 3 dé sinép,sinépssinép,
count. Since the energy-conserving delta funcbﬁﬁﬂﬁ € =(4mm) a(emin_U)J (2m)3 &
—¢€,) in EQ. (21) imposes the constra|m1+ p2 p3
+ p4, Eq. (24) can be reduced to =87°M>0( €min—U)S(P2.,P3.Pa), (28

Jop=4(27)3M*0( €, — U) 2M(€m— U) . (25) where e, is the minimum value ok,, €3, ande,, and

Substituting this expression fdk, into Eq. (21), we finally S(p,,P3.P4)=
obtain

[Sg(p2+ P3—Pa) +SOMP2—P3+ Pa)

N| =

—Sgn(p2+P3tPa) —SgNP2—P3—Pa)]-
Io(€r,t)= —3—J dEzJ dEsJ desp(€min) (29

Note that this is a Boolean function that takes on values of 0
X Olert e~ e el (1491)(1102)9504 and 1 only. Inserting the expression by, into Eq.(27), we
—010,(1+93)(1+g4)], (26)  finally obtain for thel ;, collision integral the result

where we have used the definition of the density of states in
Eq. (14). This is precisely the result obtained by Snoke and
Wolfe [6] and Luiten, Reynolds, and Walravg20], using a B L B
different method. We note that if all energies are expressed O(€1~€3)~ 8(€1~ €4) JL(1+02)9304

in units ofiw= h(wiwyw3)Y3, thel,, integral has an over- a1+ 1+q,) f drn(r.t)
all factor of (a/l)2w, where |=V#/mw is the average 92(1+03)(1+04)] elr

|12 El,t) f dfzf dfgf d64[5(61 62

harmonic-oscillator length. This factor defines a characteris-
tic time that can be used as the time unit in the simulations. X S(P2,P3,P4) S(Eq(r,t) + €2~ €3~ €4).
The |1, collision integral can be dealt with in a similar (30)

way if the superfluid velocity, in Eq. (4) is set to zero. The

validity of this approximation follows from our assumption A comparison of this expression with, in Eq. (26) shows
that the condensate grows adiabatically. The magnitude dghat the remaining spatial integral acts as an effective density
the superfluid velocityv, is then typically of the order of of states for scattering into the condensate. It can be evalu-
R(t), whereR(t) is the radius of the condensate. This veloc- ated analytically in the Thomas-Fermi approximation for the
ity is small compared to the characteristic velocitjgsn condensate, as shown in Sec. V. The kinetic equation in Eq.
~ \2ksT/m of the thermal atoms participating in a collision, (19 and the projected collision integrals in Eqg6) and

which justifies the neglect ahv,. in Eq. (4). The expression (30) are the main regults Of. this sectio_n. e
for 11, then reads Before closing this section, we point out one difficulty

encountered when a numerical solution of Ef9) is at-
tempted. As discussed following E¢l4), the time depen-
fdmc(r,t) dence of the mean-field potential(r,t) implies that the
density of states in Eq14), and hence the energy distribu-
tion functiong(e,t), are defined on a variable energy range.
X f dezf de3f desS(Eo(r,t)+ex—e3—€y) To eliminate this variation, it is convenient to introduce the
shifted energy variable

X[ (€1~ €)= O €1~ €3) — O €1~ €4)] _
€=e—Upin(t), (31
X[(1+92)9394—092(1+03)(1+94)]

2

mg
|1z(61,t)=m

which leads to a fixed energy rang§§<oo. The density of

xfdpzf dpsf dp4S(P2—P3—Pa) states in terms of this new energy variable is given by
p(e,t)=p(e+Upmin,t)=p(e,t). With € andt as independent
X 8(e,—E,)5(e3—E3)5(€4—E,). (27)  variables, the kinetic equation in EG.9) can be rewritten as
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9 9 __ _ To get the time rate of change of the total number of
—(p9)+ —=(pug) =10t 1. (320  condensate particles, we integrate the continuity equation,
at de Eq. (9), over space to find

Here, bothp(e,t) and p,(e,t) are defined by making the
I t oN 2
replacemen #:—%f drR(r,t)nC(r,t):—f del et). (36)

U(r,H)—U(r,t) —Umn(H)=U(r,1), (33)

in Egs. (14) and (16). Similarly, from the definition of the Combining this with Eq(34) leads to
collision integrals in Eqs(3) and(4), it can also be seen that
the change of energy variable leads to the replacement of

U(r,t) by U(r,t) in this case as well. Thus, the final kinetic I(N+N,) o 37
equation in terms of the variable is unchanged in form ot ’
from the original equation. We will henceforth drop the

overbar on the functions defined in termsepfwith the un- . . .
- i — ’ which demonstrates that the total number of particles is in-
derstanding that the shifted potentid(r,t) is to be used Jeed conserved.

wherever the potential appears in the original expressions.
The possibility of using a fixed energy range in the solution
of the kinetic equation simplifies the numerical calculations B. Energy conservation

considerably. We now consider the conservation of the total energy of

the system. The total energy is given by
IV. COLLISIONAL INVARIANTS

2
In this section, we explicitly consider two important quan- Ero= f ﬂ(p_+ Uend 1) +g[n(r,t)
tities that should be conserved as the Bose gas condenses and ? (27h)3(2m & '
equilibrates, namely, the total number of particles and the

total energy of the trapped Bose gas. Together, they deter- +2n,(r,1)]
mine the final equilibrium state of the Bose-condensed gas, o
i.e., the number of particles in the condensate, its chemical

potential, and the temperature of the vapor. %

f(r,p,t)+f dr¥*(r,t)

%2V?
2m

+Ugul(r)+ gnc(r,t)}\lf(r,t). (38

A. Particle-number conservation

The time rate of change of the total number of particlesThe first term is the semiclassical expression for the total
consists of the time rate of change of the number of conenergy of the noncondensate. It contains the kinetic and ex-
densed particles plus the time rate of change of the numbeernal potential energy, and the Hartree-Fock mean-field in-
of noncondensed particles. Because the number of noncorgeraction energy of the noncondensed cloud interacting with

densed particles is given kﬂ(t)=(277ﬁ)‘3fdrdpf(p,r,t) itself and with the condensate. We note that the self-
= [dep(€)g(e), the time rate of change df(t) can be interaction term is reduqed by a factor Qf two relativg to lthe
found by integrating Eq(19) over energy. We thus find that condensate term to avoid double counting this contribution.

The second term in Eq38) is the total energy of the
aN(t) condensate which contains the wave functiigr,t) with
T:j del 15 €,1), (34 normalization

where it is easily checked from E(R6) that
f dr|W(r,t)[>=Ng(t). (39

J' dEIQz(E,t):O. (35)

i It consists of the kinetic energy, the potential energy, and the
Note that we have assumed here that.lim . pw(€)9(€)  mean-field energy due to the interaction of the condensate
=0. A finite limiting value can arise ij(e) approaches an with itself. The mean-field interaction of the condensate with
equilibrium Bose distribution with a chemical potential  the noncondensate has already been included in the expres-
=Uni, at long times, together with a weighted density of sion for the energy of the noncondensed cloud. We now
states that depends linearly er- U, for energies close to show that this total energy is indeed conserved during the
Umin- However, at any finite time in the growth process, it is growth process.
safe to use the zero limiting value. This is always the case Taking the time derivative of Eq38) leads to the follow-
when the equilibrium chemical potential lies beld,, . ing expression:
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+Uge(r)+2g[n(r,1t)

aEtot_f drdp [ p?
at ) (2mh)3 2m

+nc(r,t)]]—af(;'tp’t) +f dr A L) air,t)

2v2

— —+Uext(r)+g[nc(r,t)+2F1(r,t)]}\lf(r,t)

X 2m

h2v?

5o FUed D Hglne(r,0

+J dr\If*(r,t)[—

P (r,t)

P (40

+2ﬁ(r,t)]]

The first term in Eq(40) can be rewritten as
f drdp
(27h)°

=f drdp E(r,p,t)(Ciff]+Cxf f])
(2mh)? P, 1 2

af(r,p,t)
ot

E(r.p.b)

d
=f drEC(r,t)f(ZW—;)SClz[f], (41

where, to obtain this result, we have used the kinetic equ

tion, Eqg.(1), and the fact that th€,, collision integral con-
serves energy.

If we again assume that the condensate grows adiabat?
cally as atoms are fed into it from the noncondensate, thé

condensate wave functioki(r,t) is a solution of the instan-
taneous Gross-PitaevskiGP) equation

h2v2 ~
[ ~ T Uext glne(r,) +2n(r 0] W(r,0)

=E(t)W(r,t), (42

with a time-dependent energy eigenvaklugt). For this spa-
tially independent condensate energy, Et) reduces to

f drdp
(27h)3
Inserting this result and Ed41) into Eq. (40), the latter is
easily seen to yield

AN(t)
ot

af(r,p,t)
ot

E(r.p,t) =Eq(1) (43

aEtOt _

N¢
at ¢ *

gt ot

=0, (44
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V. THOMAS-FERMI APPROXIMATION

The assumption that the condensate grows adiabatically
implies that the dynamics of the condensate itself is being
neglected, apart from its trivial time-dependent normaliza-
tion. In particular, we are ignoring the possible excitation of
internal collective oscillations. However, at the temperatures
of interest in the growth process, these excitations are
strongly damped and we expect the condensate to remain in
a relatively quiescent state that is well-approximated by the
quasiequilibrium solution of the GP equation. Indeed, in the
experiments there is no evidence of condensate oscillations,
although the thermal cloud has been observed to oscillate at
twice the harmonic-oscillator frequency of the trap in some
cases.

For a large number of condensate atoms, a good approxi-
mation to the equilibrium wave function is provided by the
Thomas-Fermi approximation that neglects the kinetic en-
ergy in the GP equation. In this situation, the condensate
density is given by

1 ~
nc(rut):a[ﬂc(t)_Uext(r)_29n(rvt)]- (45)

Of course, this expression is only valid if the right-hand side
is larger than zero; otherwise(r,t)=0. The last term on
the right-hand side reflects the mean-field interaction of the

%ondensate with the thermal cloud. Since the latter has a

small density relative to the condensate, its effect on the

patial distribution of the condensate is smaly2< u..) and

e therefore neglect it when determining the condensate
density. By the same token, we shall neglect the mean-field
interaction of the noncondensate with itself. Strictly speak-

ing, these approximations lead to a violation of total energy
conservation, but the error will be very small since the bulk

of the mean-field energy, which resides within the conden-
sate itself, is still taken into account. In principle, these con-

tributions can be included in our treatment as shown explic-
itly in the Appendix. However, because these corrections are
small, we have decided to neglect them in our numerical
calculations.

It should be noted that the Thomas-Fermi approximation
is to some extent dictated by our semiclassical treatment of
the noncondensate atoms, since it avoids a potential problem
associated with the placement of the condensate chemical
potentialu relative to the minimum energy available to the

thermal atoms, i.elJ ;= MiN[Ueyt+ 2g(n+n.)]. For small
condensate densities, it is possible that the GP eigenyalue
lies abovethis minimum value that is clearly impossible if a
full quantum treatment of the excited states is retained. In the
Thomas-Fermi approximation, there is no such problem
since the chemical potential is exactly equaldg;, .

due to the conservation of the total particle number. Thus the Given these approximations, the time-dependent conden-
assumption of adiabaticity is sufficient to ensure that the totasate density profile becomes

energy is conserved. However, one can also show the con-

servation of energy exactly, without assuming adiabaticity,

by making use of the dissipative nonlinear Salinger equa-
tion in Eq. (7).

1
nc(rat)za[ﬂc(t)_uext(r)]a (46)
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where the external potential is taken to be a general aniso- o
tropic harmonic confining potential) g (r) == ;mw?r?/2. pul€)= ——

This expression for the density is again onIy meanlngful Jt mho)U<e

whenUg,(r)=<u(t). The chemical potential of the conden-

sate is given by <o 2phe 2) 2(e _Mc) 21
hw 1)

ﬁ_ a 2/5
pe(t)=—- {151\1 (t H , (47) o] 4 —
=——|—=I-(e)=p(e)|. (52)
N | rho

wherew = (w,w-w3) Y3 andl = VA/me. The potential expe-

rienced by the thermal atoms is then The third important quantity that can be calculated ana-

lytically in the Thomas-Fermi approximation arises in the

2u () —Uoir) if n.+0 ergodic projection ofC,,. With the variable change in Eq.
u(r,t)= #elt) .e“( ) ¢ (48  (31), and noting thatU yn(t) = u1c(t) in the Thomas-Fermi
ex(r) if  nc=0. approximation, Eq(30) can be written as
The minimum value of this potential jg.(t) and occurs on —
the boundary of the condensate. |12(51)— 3h7f dfzf dfsf df4[5(51 62)
Three additional important quantities can also be calcu- o o
lated analytically. The first two are the density of states, and —5(e1—€3)— (€1~ €4)][(1+02)9304
the weighted density of states, i.p(e) andp,/(¢€), respec- B
tively. For the former we get 92(1+03)(1+04)]
o2 _ x JU _drng(r,t)S(P2,Ps.Pa) 8 e~ €3~ €4),
p(O = | Ve U e
V2uh 53
_ 2_[ J; ,dyyza yz) \ /2(6__'“0) +y2 wherep; = v2m(e — U). It is apparent that the integrand is
mhao| JU<e ho symmetric in the variables; and €4 We can therefore as-

(et sume, without loss of generality, thag/ €3=€,4, Which also
A /(E—_'“C)_yZ] implies p,=pz=p,. In this situation,S(p,,ps3,p4) in EQ.
hw

(29) reduces to

2_21u’C

+fu<edyy20(y fio
> 1

=——=[l (e)+1,(e)] (49 S(P2,P3.P4) = 5[1=5gnP2—P3—pa)l, (54
Thw

) — — , which is nonzero and equal to 1, if
The integrald _(€) andl , (€) are standard, and are given by

P2<P3tPs. (55
— u’x a.ux a* X=V2pclho . . - o .
| (6)=— — ——— —In(x+u_) , This restricts the spatial integration in E§3) to the domain
4 8 8 X= [EOa" specified by this inequality. Inserting the definitions mf
and using the conservation of energy condit- e3+ €4,

e uix+a+ +x+a r( X ) x=\a; Eq. (55) is equivalent to
(e)=—— arcsin — ,

4 8 8 a - 4 _ _ _ 4

var X=v2ﬂc’hg’50) F(U)=U?- 2(es+ €U +3e3€,>0. (56)

where we have defineda.=2(e*pu)/hw, and u.  The roots ofF (U)=0 are given by
=a.¥x% )

To obtam_an analytic expression for the weighted density U. :g[(?ﬁa)i \ /635_;3?4+;‘21]’ (57)
of statesp,,(€) we note that

— in terms of whichF(U U—-U_)(U+U.). The require-
) _ ol o1l (L)=(U=U)(U*U,). The req
Y =2 O pe(t) —Uoy(r)]— ———. (51) ment F(U)>0 is therefore satisfied fod<U_ and U
>UJr The latter condition, however, is inconsistent with

We therefore find that the weighted density of states is giveihe constraint) <e, for the integral in Eq(53). BecausdJ
by does satisfy u_ <e4, the net effect of the factor
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S(p»,pP3.P4) in Eg. (53) is to restrict the spatial integration tained by taking the time derivative of the integral of Eg.
domain to the domain defined hy<U_, i.e., (46) over all space. We therefore see that the wave function
in Eqg. (61) is an internally consistent solution of the dissipa-

— - — tive nonlinear Schrdinger equation.
e drng(r,t)S(pz2,P3,P4) S €2~ €3~ €4)

— = — VI. RESULTS
:f_ _ drnc(r,t)5(62_63_64). (58)
Us=u_ In this section, we present the results of our calculations,
which were performed for the situation corresponding to the

The remaining spatial integral in E¢b8) can be camed_out MIT experiments[10]. These used*Na atoms confined in

analytically for the Thomas-Fermi density profile. U 55 ayially symmetric trap with harmonic frequencies of 18.0
= e, we have simply Hz and 82.3 Hz along and perpendicular to the symmetry
axis, respectively. These values give an averaged frequency
fU<U drng(r,t)=Nc(t). (59 of w/2m=49.6 Hz, which implies thali w/kg is equal to 2.4

nK. The sswave scattering length is 2.75 nm.
To begin, we provide a few of the numerical details. We
used a discretized energy mesh consisting of equally spaced

5 u_\%? points in the range € e<e¢,,. The value of the tempera-
f_ _ drnc(r,t)=Nc(t)[—{1—(1——) } ture used in the simulations is typically of the order of
usu- 2 He 1 uK, which requires a maximum energy range of about
3[ ( U_)5/2 } €max=2500-3000  in order to ensure thap(e)g(e) is
—=1-|1-— . (60) sufficiently small at the end of the range. In evaluating the
2 He collision integrald ,, in Eq.(26) andl , in Eq.(30), the delta

Physically, Eqs(59) and (60) are a consequence of the ki- functions were used to perform some of the integrations ana-

nematical constraints for scattering into the condensate thatically. The remaining integrals were then evaluated nu-
appear in the original form of the collision integral in Eq. merically using a simple trapezoidal integration scheme. The
(30). main advantage of this scheme in the case of jheollision

integral is that the conservation of both particle number and

Finally, we indicate some implications of the assumption . . L .
of adiabatic growth in the context of the Thomas-Fermi ap-EN€rgy is numerically exact, which in general is not the case

proximation. We take as an approximate solution to the disfor higher-order integration schemes such as Simpson’s rule.

sipative nonlinear Schdinger equation in Eq7) a conden- 1 hiS conserving property is especially important in simula-
sate wave function of the form tions of the condensate growth since a loss of either particles

or energy due to numerical inaccuracy would lead to system-
W(r,t)=n(r,t)e'rn, (61  atic errors in the final equilibrium values for various physical
quantities. The situation for tHg, collision integral is some-
where ng(r,t) is the Thomas-Fermi density profile in Eq. what different since neither of the integrals in B85 or
(46). Inserting this wave function into E¢7), neglecting the (36) is zero. Thus the numerical results will depend on the
kinetic-energy term as in the Thomas-Fermi approximationghoice of the energy-mesh size, and one must check that the
and separating real and imaginary parts of the resulting equaiesults obtained for a given simulation are insensitive to
tion, we obtain the relations variations in this parameter. The checks we have performed
indicate that errors in the final results coming from this nu-
o(r 1) = — E ftdt',u,c(t'), 62) meric_al source are no larger than a few percent. Errors of this
f Jo magnitude will not influence the general conclusions that we
make. As a final point, we used the Euler method to propa-
and gate Eq.(32) in time. The time step was chosen to be suffi-
_ ciently small, typically 0.5 ms, to ensure the accuracy of the
hg(t) time evolution.
- m (63) To start the simulation, we begin with an initial nonequi-
librium distribution that is meant to represent the conditions

The fact that the phase is spatially independent implies thammediately after the rapid evaporative cooling quench used

the superfluid velocity, is zero as we have assumed in Sec.in the experiments. Ideally, such a quench starts with an
1. According to Eq.(36), Eq. (63) implies equilibrium distribution at some temperatur@aboveT . and

excises all particles with energy abo¥g ,=kgT.,:. We
INg 1 . model this by a truncated Bose distribution at the tempera-
o gf dr (1), (64) ture T. Although we expect this initial distribution to repre-
sent the experimental situation reasonably well, there will no
where the integral is restricted to the region occupied by the&loubt be differences from the actual distributions due to the
condensate, i.en¢(r,t) #0. This is the same expression ob- finite time taken to perform the quench, which allows some

On the other hand, forer_s,uc, we have

R(r,t)=
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FIG. 1. Growth curves for different initial energy cutoffs. As
discussed in Sec. IV, the initial conditions are defined by fixing the Tou/T.

temperaturd = T.=0.765 K and the chemical potential=0 of FIG. 2. Th i d relaxati 1) for th wih
the distribution function before it is truncated. This givids-40 curves'in'Fi elor;edégf?“igd Le alj(;rlont;z (fai?zinorfur?c?iz)on inE
X 1P noncondensate atoms. The number of atoms initially in the g- % y 9 9 a

condensate is chosen to be=214. The solid curves in order of (85).

increasingsaturation values correspond 1Q,/T.=5.5, 5.0, 4.5, _

4.0, 3.5, 3.0, and 2.5. The dashed curves in ordedasfreasing densate atoms is given By.=[exp(3Bhw/2)— 1] 1=214.

saturation values correspond Tg,/T.=2.0, 1.5, 1.0, and 0.5. In a particular simulation, the total number of atoms and the
average energy per atom of course depends on the depth of

a}he energy cut. The growth curves are characterized by an

énitial stage of slow growth during which the truncated Bose

RF field is resonant only at certain positions in the trap'dlstr|but|on evolves into a quasiequilibrium distribution, a

atoms of a given energy must have sufficient time to reacleve”'de‘cmEd onset tiMégnse;Where a significant increase in

these positions in order to suffer a spin flip and thus bethe rate of growth occurs, and finally a relaxational stage

ejected from the trap. If this is not the case, the distributionWhere the condensate number approaches a final equilibrium

value. As the cut is made deeper and deeper, this final num-

in energy will also have a spatial dependence. Some indica- o .
tion that such a nonergodic state in fact occurs is provided ba}‘?‘?r. at f!rst_lnc_reases _due to the .decreasmg total energy of the
In|t|al distribution, which results in a lower final temperature.

the observation that the thermal cloud starts to oscillate afteH wever. at som int the final number of condensate at-
the quench. However, due to a lack of detailed information OWEVer, at Some po € Tinal humber of condensate a
ms reaches a maximum and then decreases with further

about the experimental initial conditions, we shall assume a'gee ening of the cut due to the reduced total number of
idealized truncated Bose distribution as our initial condition. 2€€PENING ot the cut due eauce Al numbe
atoms in the initial distribution. To distinguish this behavior,

To complete the specification of the initial state, we mustth rowth cury re shown lid lines when the final
also make a choice for the number of atoms initially in the € growth curves are shown as so es whe € fina
condensate. Of course, if this number is zékg as given by number is increasing with (_jecreasm'gut,_ and conv_ersely,
Eq. (27) is zero since we have only included stimulated tran-bygﬁsgedhl'gﬁihghergﬁﬁ Enflelu.r::b;r Islda(argreazllqgi' ol
sitions into the condensate. In the absence of spontaneous ug 9 urves in F1g. quaiitatively

processes, there is no possibility of condensate growth. U Similar, it is clear that there are important differences in de-
der the e;<perimental conditions of interest, however, th ail. For the curves with an increasing equilibrium number of

lowest quantum state initially already has a rather large ther(_:_ondensate particles, i.e., th_e SO'.'d curves, both the onset
me and subsequent relaxation time are seen to decrease

mal occupation and stimulated processes will dominate. Wg ith d T H for th ith a d
therefore choose the initial condensate number to be giveWI ecreasingl c,,. HOWEVer, for the curves with a de-

by the occupation of the lowest harmonic-oscillator state afreasing equilibrium number of condensate particles, i.e., the

the temperature of the truncated Bose distribution. This num?a;:]eddcurves, th_; d(_epender:]ce Olz both dol:hthese time? on
ber is typically of the order of a few hundred particles. As urth€r decreases i, IS much weaker, and théy appear o

our numerical results presented below will show, the growthapproaCh I|r_n|t|ng V?"“es- In Ofd.ef to quantify this behav_|or,
curves are rather insensitive to this starting value as long as ifIs convenient to f|t_the relaxat|ona_| part of the theoretical
is small compared to the final equilibrium number of con-grOWth curves to a simple exponential relaxation
densate atoms.

In Fig. 1, we show a sequence of growth curves that il-
lustrate the dependence on the paramétgy. In this set of

simulations, we assume that the temperature of the eqUIIIbﬁonal form is found to provide a very good fit to this part of

fum Eose d'Str_'bft'_on Is equal 13,=0.765 uK and its o theoretical curves. Fig. 2 summarizes the results for the
chemical potentiak is equal to zero. Before the cut, the gas onset timet s, and exponential relaxation rate for the
containsN=40x 10° thermal atoms and the number of con- particular simulations presented in Fig. 1. The onset time

equilibration to occur, and the possible incomplete remov.
of all particles in the energy range of the sweep. Since th

Ngt(t):NEO(l_e—Y(t_tonse)), (65)

where N9, y, andt,,e are fitting parameters. This func-

063609-10



CONDENSATE GROWTH IN TRAPPED BOSE GASES PHYSICAL REVIEW @2 063609

5 0.6
—_ 1 (a)
4 A b 0.4
w3 - oz -
° _
S 2 _ 0.0 T T T
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FIG. 3. Growth curves for different initial temperaturés In 1.0 1.1 1.2 1.3 1.4
order of decreasingequilibrium number of condensate atoms, T/T,

T/T,=1, 1.05, 1.1, 1.15, 1.2, 1.25, and 1.3. The initial conditions
are defined by fixing the number of noncondensed particled to ~ FIG. 4. The onset timég) and relaxation ratéb) for the growth
=40x 10°, and the number of condensed atomd\{e=214, as in  curves in Fig. 3, using the same fitting procedure as in Fig. 2.
Fig. 1. The cutoff is now kept fixed &t ,/T.=2.5. The chemical
potential is less than zero, and adjusted to keep the number ¢eady formed by the time the quench is completed. This kind
noncondensed particles fixed. of behavior is indeed also seen experimentally under certain
conditions.
In order to explain some of these results, it is necessary to

. ] ! examine the time evolution of the distribution function
from 5 to 0.5. At the same time, the relaxation rate mcreasea(:t) In Fig. 6, we show Irg) vs e for various times after

sl —1
from abhout 6 IS t? 15 s ' he d q ¢ th the quench. At early times the distribution function is equili-
We have also looked at the dependence of the growtiy aied by the scattering of thermal atoms into states above

curves on the other parameters that appear in the theory. {§e £ that are initially depleted. To conserve energy, the
Fig. 3, we show the growth curves for a range of initial \ean'energy of the atoms beldgy, must decrease. In fact,

temperatures. Prior to the quench, these initial temperaturgge population of the low-energy states increases signifi-
are larger thaf;, and in each case the chemical potential iscantly before the onset of rapid condensate growth. This is

adjusted to provide again a total of 400" atoms in the shown in Fig. 7 Wherg(?,t) is plotted as a function of time

thermal cloud. The energy cut and initial number of conden,, o — )
sate atoms were taken to Be,/T,=2.5 andN,(0)=214 for some speqﬁc energy values..We see t_l;(_&t,t) at first
utt fe e C '’ increases rapidly, reaches a maximum at a time very close to

_respectlvel_y, and were t_he sam(_a_fo_r allthe runs. Not SUMDMShe onset time and then relaxes toward its final equilibrium
ingly, we find that the final equilibrium condensate number lue of (eﬁeq:— 1) 1. This behavior is typical of all situa

decreases with increasing initial tempgrature as a result (ﬁﬁns in which the growth of a condensate is observed. This
the larger average energy per atom. This of course also lea S lati f th K N h th
to a higher final equilibrium temperature. However, what js> 1ong corre ation of the peak position In Fig. 7 with the

. o ' onset time suggests that condensate formation is triggered by
somewhat unexpected is the very rapid increase of the onset

time as the initial temperature is increased. In Fi@) dwe

decreases from about 100 ms to 20 m3 gg/T.. is reduced

show that a 30% variation i/T_ gives rise to more than a g h
tenfold variation int,,s, and that these values are typically 6 1
much larger than those found using an initial temperature of
T=T.. In addition, Fig. 4b) shows that the relaxation rate =z 5]
tends to decrease with increasimgr, and is comparable to ?Q 4 ]
the values given in Fig. 2. ~ 3
In Fig. 5, we show the variation of the growth curves with 2 4
the initial number of condensate atoms. In this case, the ini- 1
tial nonequilibrium distribution is held fixed, corresponding 0 —
to a Bose distribution withN=40x10°, T=T., and 0.00 0.25 0.50 0.75 1.00
Tt/ Tc=2.5. The growth curve is rather insensitive to the
condensate number in the range?4M.<10*, but then t(s)
shows a much stronger dependence in the rande<Q FIG. 5. Growth curves for different initial number of condensed

<10°. At the higher end of this range, the initial number is particles. The other parameters defining the initial conditions are the
already visible on the graph and By.=1CP there is N0  same as in Fig. 1, and the cutoff is held fixedTat,/T,=2.5. In
longer a meaningful onset time. This would correspond to @rder of increasing saturation values, the curves correspond to
situation in which a significant condensate fraction has alN.(0)=1, 1¢°, 1¢%, 1¢°, and 16.
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FIG. 6. Plot of the logarithm of the distribution functigife,t) 0 5000 10000
for the curve withT,/T.=2.5 from Fig. 1, at time intervaldt € (h@)
=0.02 s, starting fromt=0.02 s. Each curve is shifted up by one o )
unit with respect to the previous one for clarity. FIG. 8. Equilibration of the local temperature and chemical po-

tential for a situation in which the final equilibrium temperature of
an enhanced low-energy population. Before the onset timéhe gas is above the critical temperature. Pdagbives the local

find icallv th beh . | temperature as a function of energy for a sequence of times during
we Tind numericaily thatg(e) behaves approximately as the equilibration process. In equilibrium, both the temperature and

(€) 5% which is a stronger singularity than that exhibited chemical potential are independent of energy. Pdbebives the
by an equilibrium Bose distribution with zero chemical po- corresponding variation of the local chemical potential. The initial
tential, and agrees within our numerical accuracy with theconditions before the distribution is truncated are defined by a tem-

(?)’5’3 dependence predicted by Svisturf@3]. Regardless peratureT=2 uK, and a chemical potential = — 200. The cutoff
of the precise exponent, it seems that a “supercritical” be-is atTey/T.=2.5.
havior of the distribution function is a precursor to conden-

sate formatiorj 24]. - are shown in Fig. & and 8b) at time intervals of 0.05 s for
A useful way to characterize the time evolutiongffe,t) @ situation in which the quenched thermal cloud equilibrates
is to express it locally as a Bose distribution to a final temperature above.. Both parameters are seen to

be strongly energy-dependent at early times but evolve to-

ward energy-independent values by the end of the simula-
—— = (66) tion. The negative equilibrium value of the chemical poten-
expfe—pm)—1 tial corresponds to an uncondensed thermal cloud at a
~ temperature of about 1.92.K.
where the two parametefsandu are defined by fitting this A situation in which the quench leads to the formation of
expression to the value of the distribution function and itSy condensate is illustrated in Figgapand gb). The param-
energy derivative. Although the parameters are treated logters are plotted at 0.25 s intervals during the relaxational
cally as constants in this procedure,_they nevertheless depegpage of the growth curve beyond the onset time. At low
parametrically on the energy variabée The local tempera-

g(et)=

ture and chemical potential parameters defined in this way 0.55
3 £ 0.50 |
S 4
= 0.45 (@)
1 (@
o 2 0.40 — T 1
% 500
2 ) __ 400  (v)
g 300
a <00 7
100 -
0 + v T T T T T v 0 v T - T =
0.00 0.25 0.50 0.75 1.00 0 1000 2000 3000
t(s) g (na@)

FIG. 7. Plot of the product of the density of states and the FIG. 9. As in Fig. 8, but for a situation in which the final equi-
distribution function at energies of 30, 60, 120, and 249 for the librium temperature is below the critical temperature. The equilibra-
curve withT/T.=2.5in Fig. 1. The peaks occur in the vicinity of tion of the local temperature and chemical potential corresponds to
the onset timée ;qet. the T, /T.=2.5 growth curve in Fig. 1.
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FIG. 10. Theoretical growth curves for the initial conditions of  FIG. 11. Theoretical growth curve for initial conditions given by
Fig. 1, but with N;(0)=10" and for various energy cutsa  N(0)=60x10°, T=T,=0.876 uK, Te/T.=2.5, and Ng(0)
Teuw/Tc=1.9, (D) Tey/Tc=0.6,(c) Tey/Tc=5.7. The experimental =50x 10*. The experimental points are taken from Fig. 3 of Ref.
points are taken from Fig. 4 of R€fL0]. The dashed line shows the [10].
theoretical growth curve for the conditions of cadg but with
mean-field interactions turned off. this case, the final equilibrium number of condensate atoms

) . ] _is 4.5x 1P, which is too large by almost a factor of 4. This
rium value that reflects the higher temperature of the 'n't'altemperature (recall that these simulations usefi=T,
Bose distribution. However at higher energies, the local tem=q 765 «K), however as Fig. 3 shows, achieving a fourfold
perature is lower than the final temperature since the gas ippgyction in the equilibrium condensate number would in-
this energy range is effectively colder as a result of theyrease the onset time well beyond the experimental value. It
quench. Figure @) shows the corresponding variation of the herefore appears that the present simulations cannot repro-
chemical potential. As a result of the formation of the con-qce all aspects of the experiments simultaneously.
densate, the chemical potential at low energies is pinned to Figyre 10 also shows a theoretical growth curve for the
zero and then increases at higher energies. Th<=T dewatlonsg&me initial conditions as for cund®), but with mean-field
both the local temperature and chemical potential from theif,teractions between the condensate and thermal cloud
final equilibrium values are seen to relax to zero on a timgyrned off. To elaborate, the potential acting on the thermal
scale that is comparab_le with thelaxatlonal stage of the  ;|oud is simply the time-independent trapping potential, and
condensate growth. This relaxation rate can therefore be afe condensate is taken to have essentially a delta function
tributed to the relatively slow equilibration of the local tem- gnatia| distribution at zero energy. In this case, the integral of
peratur(_a and chemical potentlgl of the therme_ll cloud. ~ng(r,t) in Eq. (30) is replaced byN(t). It can be seen that

We finally turn to a comparison with experiment. This is e qualitative behavior is very similar to the fully interacting

shown in Fig. 10 for the particular case in which the Sta”ingsimulation, but that the equilibrium number of condensate
number of noncondensed atoms is<4D0P, as in the SIMU-  atoms is increased considerably, as expected.

lations discussed above, but with the initial number of con-  Figyre 11 provides a comparison with another set of ex-

densate atoms set #;(0)=10". In the particular experi- perimental results. In this case the initial number of atoms
mental run starting with this total number of atoms beforepefore the quench is not known and was therefore taken to be
the RF quench, the condensate number is found to relax to gy« 1f in order to optimize agreement with experiment.
final number of 1.X 10° atoms. According to Fig. 1, there Furthermore, the energy cut was chosenTag/T.=2.5.

are two values off ¢ that will lead to this final number of This |eads to a final number of 23LCf condensate atoms in
condensate atomdq/T.=0.6 andTc,/Tc=5.7. The re-  the trap, which is approximately the same number as found
sults for the deeper cut dfc,/T.=0.6 are shown as curve , the experimentN,=7.2x 1C°. Although this simulation

(b) and are seen to be in very good agreement with the eX;chieves good agreement between theory and experiment for
perimental results. However, we cannot claim good agreeqe condensate growth curve, there are too many unknown
ment overall since the total number of atoms after the quenchariables, including the final number of atoms in the trap, to
is only 2.5<10° as compared to the experimental number ofinow whether or not theory is reproducing experiment. For

about 16.x10° atoms. For the shallower cut oFcu/Tc  this reason, the results in Fig. 11 should simply be viewed as
=5.7 shown as curvéc), the agreement between the theo- 5 possible fit to the experimental data.

retical and experimental growth curves is clearly worse in

that the theoretical growth _ra_te is too smaI_I. Moreover, the VII. DISCUSSION AND OUTLOOK

total number of atoms remaining in the trap is 37 BY that

is too large by roughly a factor of 2. Alternatively, one can  Our main objective has been to obtain a realistic descrip-
choose a cut that reproduces the final number of atoms in thigon of condensate growth that takes into account the effects
trap. In our simulations, this requires a cut®f,/T.=1.9. of mean-field interactions. Within the ergodic approximation
Although the initial growth rate agrees with experiment infor the noncondensed atoms, and the adiabatic approxima-

063609-13



M. J. BIJLSMA, E. ZAREMBA, AND H. T. C. STOOF PHYSICAL REVIEW /62 063609

tion for the condensate, the kinetic equation we obtain igyral enters. As a result, the effective collision cross section
given by Eq.(19), and we have used this equation to performinvolving the condensate does not depend on time as it does
simulations of condensate growth. In agreement with earliein our formulation. A second apparent difference has to do
work [18,21], we find that the growth curves have a well- with the term involving the weighted density of stajggin
defined onset time, after which an exponential relaxation toEQ- (19). This term arises as a consequence of the time de-
ward equilibrium takes place. Detailed comparison with thePendence of the mean-field interaction. Although Davis, Gar-
results reported in Ref10] shows that certain parameters diner, and Ballagh also deal with a time-dependent density of
can be tuned in order to achieve agreement with the experftates, the second term on the right-hand side of (E§).
mental growth curves. However, it seems impossible withdoes not appear explicitly in their kinetic equation. However,

the present simulations to reproduce the overall equilibriunt?€y account for this term by dividing phase space into en-
state of the trapped gas. ergy bins having widths that are a function of time. A final

If we attribute the existing discrepancies to theory wedifference involves the use of the Bogoliubov excitation

must at some point reexamine the two major assumptionSPECtrUm in the calculation of their density of states, instead
made in this work, namely the adiabatic growth of the con-Of the Hartree-Fock dispersion used here. We do not expect

densate and the ergodic evolution of the thermal cloud. This to affect the condensate growth curves significantly.
adiabatic assumption neglects the dynamics of the Condeﬂl—jowgve.r, if quasiparticle excitations are invoked, one shpgld
sate, specifically the possibility that collective oscillations!" Principle also use these states to calculate the collision
are excited during the growth process. Whether or not thigtégrals[14]. It is not known at present what effect this
has any important effect on the rate at which atoms are exTight have on the collision rates for the low-lying energy
changed between the condensate and thermal cloud in nigve!s: _

known and should be investigated. In the same vein, oscilla- Finally, we note that the ergodic treatment of the Boltz-
tions of the thermal cloud seen in the experiments clearlyn@nn equation is a powerful, albeit approximate, method
indicate the nonergodic state of the gas that in principldhat would allow the study of nonequilibrium processes in
might be important in determining the time scale of equili- Other situations as well. Some future applications might in-
bration. However, to answer this question requires a solutio§Ude the nonequilibrium dynamics of fermion-fermion and
of the full quantum Boltzmann equation that seems out of©SOn-fermion mixtures. Thus far, the problem of evapora-
reach at the moment. One cannot of course discount the polve cooling in these systems has been studied using a sim-
sibility that there are uncertainties in the experimental result®lified procedure whereby the distribution function is as-
themselves. Further experimental work is needed to confirfjMed to be given by a cutoff equilibrium distribution

the earlier results and to explore in more detail the depenfUnction [26]. A cooling trajectory in phase space is then

dences on various parameters such as the initial temperatu@&nerated by solving for the temperature, chemical potential

of the cloud and the depth of the RF cut. and cutoff energy at each successive time step. The accuracy
After completion of this work, a preprint by Davis, Gar- of this approach could be checked by solving for the entire

diner, and Ballagh appearé¢#5] that is a continuation of a distribution function following the methods used here. An-
series of papers by Gardinet al. It also addresses the issue Cther interesting application would be to study a nonequilib-

of mean-field interactions as affecting the density of stated]UMm Stéady-state situation in which atoms are continuously

and improves on the authors’ earlier work by giving a morefed into the trapping potential while simultaneously being

realistic description of the RF quench used in the experif€moved by an RF cui27]. This would be relevant to the
ments. Thus, although there are differences in methodologytudy Of steady-state atom lasers.

the physical basis of their work and the approximations they

make are essentially equivalent to ours. As confirmation of ACKNOWLEDGMENTS

this equivalence, their calculations of condensate growth per- g 7 acknowledges the FOM for its financial support dur-
formed for the initial conditions of Figs. 10 and 11 yield j,q 5 sabbatical visit to the University of Utrecht, as well as
results that are in quantitative agreement with ours. The situsnport from the Natural Sciences and Engineering Research
ation considered in Fig. 10 is optimal from a theoretical pointcouncil of Canada. We would like to acknowledge useful

of view since the experimental conditions are best known inyiscussions with A. Griffin and J. Williams, and with C. W.
this case. Yet both sets of calculations are unable to reprasardiner regarding the work in ReR5].

duce the experimental results in every detail.

One of the differences between their work and ours con-  AppeNDIX: EVALUATION OF THE WEIGHTED
cerns the way that the condensate is treated. In our formula- DENSITY OF STATES.
tion, the condensate is isolated explicitly as the macroscopi-
cally occupied quantum state, and the remaining excited In this appendix, we summarize the steps needed to in-
states making up the thermal cloud are treated semiclass#lude in our calculations the effect of the mean-field interac-
cally. As a result of this formulation, we have two kinds of tions arising from the noncondensed cloud itself. Referring
collision integrals, one for thermal atoms scattering amondgo Eg. (16), we see that we must evaluai®(r,t)/dt. This
each other and a second for collisions of thermal atoms wittguantity is given by

the condensate. In the formulation of Davis, Gardiner, and -
Ballagh on the other hand, all states including the condensate Ju(r,t) _, an(r,t) N ang(r,t) (AD)
are treated equivalently and thus only a single collision inte- ot g ot ot '
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The time derivative of(r,t) can be expressed as

an(r,t) o d
pn — (2mh)? ded(e—E(r,p,t))g(e,t)
aU(r,t) dg(e,t) dg(et)
Y PPORNLIEL T L
au(r,t) dg(e,t)
=1(r,t) n +fdep(r,e,t) pn , (A2)
where we have defined
I(r,t)= Jdep(ret) g(et) (A3)

Substituting Eq.(Al) into Eq. (A2), the latter can be rear-

ranged to provide an expression for the time rate of change
of n(r,t) in terms of the time rate of change of the conden-

sate densityn,(r,t) and the distribution functiog(e). We
find

an(r,ty  2gl(r,t) ang(r,t)
gt 1-2gl(r,t) at
p(r,e,t) dg(e,t)
+fd€1—29l(r,t) ot (A4)
Inserting this result into EqA1), we have
Ju(r,t) 29 ang(r,t) oN
gt 1-2gl(r,t) N, at
(6 t)
2l Gt
(AS)
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We have here made use of the fact thafr,t) depends on
time parametrically throughl.(t), so that

ang(r,t)
at

ang(r,t) oN
T

_ang(r,t) ONg

N, dt (A6)

at’
Thus, the weighted density of states becomes
aU(r t)

pulet)= fde'rp(r et)

29 ang(r,t)\ oN
_fdarp(r’f’t)<1—Zgl(r,t) N, |
2gp(r,€’,t) dg(e’,t)
fd3rpret)fdel 291(r.0) at
oN "t
EA(e,t)E~I—f de’B(e,e’,t)%, (A7)
where
2 ang(r,t
A(E’t)z_jdarp(r’f't)(l—zg?(rt) &I(\I !,
(A8)
and
r,e,t)p(r,e ,t
Bie.e’ =20 [ o p(lez)(;l((ri) L

We recover the expression fpr,(e,t) given in Eq.(52) by
setting the kerneB equal to zero and neglectingin the
expression folA. It can be seen that including the mean field
of the noncondensate complicates the calculations consider-
ably, but all quantities can in principle be calculated explic-
itly if these refinements are desired. However, as discussed
in Sec. V, we do not expect these effects to be quantitatively
important.
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