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Condensate growth in trapped Bose gases

M. J. Bijlsma, E. Zaremba,* and H. T. C. Stoof
Institute for Theoretical Physics, University of Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands

~Received 21 January 2000; published 15 November 2000!

We study the dynamics of condensate formation in an inhomogeneous trapped Bose gas with a positive
interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and
the Hartree-Fock mean-field effects in the condensed and the noncondensed parts of the gas. Our growth
equations are solved numerically by assuming that the thermal component behaves ergodically and that the
condensate, treated within the Thomas-Fermi approximation, grows adiabatically. Our simulations are in good
qualitative agreement with experiment, however important discrepancies concerning details of the growth
behavior remain.

PACS number~s!: 03.75.Fi, 32.80.Pj, 05.30.Jp
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I. INTRODUCTION

The discovery of Bose-Einstein condensation~BEC! in
trapped atomic vapors of87Rb @1#, 7Li @2#, and 23Na @3# has
initiated a period of intense experimental and theoretical
tivity. A great deal of information is now available about th
equilibrium properties of these novel systems@4#, but much
remains to be understood about their nonequilibrium beh
ior. One of the most basic aspects concerns the nonequ
rium growth of the condensate that occurs in the proces
cooling a nondegenerate trapped Bose gas to a final temp
ture below the BEC transition. This important problem w
addressed even before the first observation of BEC
trapped atomic gases@5–7#, and has interesting implication
for the general problem of second-order phase transitio
from superfluidity in liquid 4He @8# to problems in cosmol-
ogy @9#.

Until now, the most detailed study of condensate form
tion was carried out using a gas of23Na atoms confined
within a highly anisotropic cigar-shaped trap@10#. In these
experiments, the sodium atoms were evaporatively coole
a temperature just above the critical temperature and su
quently quenched by applying a rapid RF sweep. The la
step removes all, or at least a large fraction, of the ato
above a certain energy, after which the Bose gas relaxes
new equilibrium state below the critical temperature. T
growth of the condensate during the equilibration proc
was monitored using a nondestructive imaging technique
provided a direct measure of the size of the condensate
function of time. In this way, the characteristic time scale
the growth of the condensate could be determined, and
the particular system studied, was found to be of the orde
100 ms.

A theoretical description of these experiments require
theory that can account for the coupled nonequilibrium
namics of both the noncondensed and condensed com
nents of a trapped Bose gas, and includes in particular
collisional processes that transfer atoms between the
components. Thus far, several such theories have been
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veloped, which roughly speaking fall into two categorie
One class of theories focuses on describing the dynamic
the average value of the order parameter for BEC, i.e.,
condensate wave function, whereas the other incorpor
also the fluctuations around this mean value. The latte
course, becomes important when the fluctuations are la
compared to the mean value, i.e., close to the critical te
perature. This is analogous to the situation in laser the
@11#.

A theory that describes both the average value for
order parameter as well its fluctuations can be obtained
two, essentially equivalent ways. First, one can start from
master equation for the many-body density matrix and de
an equation of motion for the one-particle density matrix
means of a perturbative treatment of the interactions. T
was the route followed by Gardiner and Zoller@12#, in a
series of papers. Second, one can use field-theoretic met
to obtain a nonperturbative Fokker-Planck equation that
scribes the nonequilibrium dynamics of the gas. This was
formulation developed by Stoof@13#. These two approache
in principle yield a description of the nonequilibrium dynam
ics that is capable of obtaining the complete probability d
tribution for the order parameter.

Alternatively, a theory describing the dynamics of th
mean-field value for the macroscopic wave function can a
be obtained in a straightforward decoupling approach, wh
has been implemented by Kirkpatrick and Dorfmann@14#,
Proukakiset al. @15#, Walser et al. @16#, and in the most
detail for the trapped case by Zaremba, Nikuni, and Grif
@17#. In this approach, one assumes the order parameter t
nonzero at all temperatures, and decouples the hierarch
equations of motion that exists for the correlation functio
of the second-quantized field operators. Thus one again
tains a perturbative expansion for these equations of mot

The first quantitative calculations of condensate grow
for trapped Bose gases were carried out by Gardineret al.
@18#, and although good qualitative agreement with expe
ment was found, a number of quantitative discrepancies
mained. For example, the reported experimental growth r
were up to a factor 30 larger than the initial theoretical
sults, and had a temperature dependence opposite to tha
dicted @10#. By removing some simplifying approximation
in subsequent calculations, the theoretical results were

ty,
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proved, but discrepancies of up to a factor of 3 still remain
in some cases. From a purely theoretical point of view, o
can attribute some of these discrepancies to the approx
tions made in the calculations. First, the dynamics of
noncondensate was to a large extent neglected. Although
time evolution of the occupancy of low-lying states was
cluded in the simulations, the high-energy states were re
sented by an equilibrium particle reservoir having a fix
chemical potential. This latter assumption is inconsist
with the nonequilibrium initial state established by the e
perimental quench procedure. Second, the effect of the m
field of the condensate on the noncondensate was inclu
rather crudely by a linear rescaling of the low-energy den
of states of the noncondensed atoms.

Our aim in the present paper is to improve on these
culations by taking fully into account the relaxational d
namics of the thermal, or noncondensed, component
takes place in the presence of the mean field of the con
sate. We do this by starting from the above-mentioned th
ries describing the growth process, which provide us wit
nonlinear Schro¨dinger equation for the condensate and a
netic equation for the thermal component. This coupled
of equations is still difficult to deal with and a number
physically motivated approximations are made to simp
the problem. We assume that the condensate grows adia
cally, having an equilibrium spatial distribution determin
by the instantaneous number of atoms in the condens
This assumption is also made in earlier work@18#. The non-
condensate is treated by solving a semiclassical Boltzm
equation@13,14,17,19# in the ergodic approximation, which
again has been used previously by numerous authors@6,20–
22#. These assumptions allow us to obtain numerically a
tailed description of the growth of the condensate, includ
the effects of both the dynamics of the thermal cloud and
mean-field interaction with the condensate.

The paper is organized as follows. In Sec. II, we summ
rize the theory of the nonequilibrium dynamics of a trapp
Bose gas as developed previously. In Sec. III, we introd
the central assumption, the ergodic approximation, that
lows us to numerically solve the Boltzmann equation. In a
dition, we briefly discuss the adiabatic approximation for t
condensate. In Sec. IV, we treat in some detail particle nu
ber and energy conservation. Sec. V introduces the Thom
Fermi approximation and gives some analytical results
the density of states and other quantities of interest.
numerical solution of our kinetic equations is discussed
Sec. VI and our results for the growth of a condensate
presented. We end in Sec. VII with a discussion and an
look.

II. NONEQUILIBRIUM DYNAMICS

As discussed in the previous section, the nonequilibri
dynamics of a trapped Bose gas is governed by a se
equations for the condensate and noncondensate co
nents. These equations have been presented in various f
@18,13–17#, but they all describe the coherent dynamics
the gas due to mean-field interactions, as well as the in
herent dynamics associated with atomic collisions. The eq
06360
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tions and notation we use are taken from Refs.@13,17#.
The noncondensate is treated using a semiclassical B

mann equation for the phase-space distribution funct
f (r ,p,t). This semiclassical description is justified when t
largest level spacing in the external trapping potential
small compared to the thermal excitation energy. Moreov
mean-field interactions are included at the level of t
Hartree-Fock approximation. In this situation, the quant
kinetic equation for the thermal excitations takes the fo
@13,17#

] f ~r ,p,t !

]t
1

p

m
•“ f ~r ,p,t !2“U~r ,t !•“pf ~r ,p,t !

5C12@ f #1C22@ f #. ~1!

Here, the effective potentialU(r ,t)[Uext(r )12g@nc(r ,t)
1ñ(r ,t)# is the sum of the external trapping potentialUext
and the self-consistent Hartree-Fock mean field. The latte
determined by the condensate densitync(r ,t), defined below,
and the noncondensate densityñ(r ,t) given by

ñ~r ,t !5E dp

~2p\!3
f ~r ,p,t !. ~2!

As usual, we treat the interactions in thes-wave approxima-
tion, which results in the bare interaction being replaced b
contact interaction with an effective coupling constantg
54p\2a/m proportional to thes-wave scattering lengtha.
The effective coupling constant is in fact equal to the tw
body T matrix, and to emphasize this connection, it is d
noted byT2B in some works@13#. The collision terms ap-
pearing in Eq.~1! are given by

C22@ f #[
4p

\
g2E dp2

~2p\!3E dp3

~2p\!3E dp4

~2p\!3
~2p\!3

3d~p1p22p32p4!d~E1E22E32E4!@~11 f !

3~11 f 2! f 3f 42 f f 2~11 f 3!~11 f 4!#, ~3!

C12@ f #[
4p

\
g2ncE dp2

~2p\!3E dp3

~2p\!3E dp4

~2p\!3

3~2p\!3d~mvc1p22p32p4!d~Ec1E22E3

2E4!~2p\!3@d~p2p2!2d~p2p3!2d~p2p4!#

3@~11 f 2! f 3f 42 f 2~11 f 3!~11 f 4!#, ~4!

with f [ f (r,p,t), and f i[ f (r,p i ,t). We note that Eq.~4!
takes into account the fact that a condensate atom locally
an energy

Ec~r ,t !5mc~r ,t !1
1

2
mvc

2~r ,t !, ~5!
9-2
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CONDENSATE GROWTH IN TRAPPED BOSE GASES PHYSICAL REVIEW A62 063609
a momentummvc(r ,t), and a chemical potentialmc(r ,t).
These quantities are defined explicitly below. In addition,
energy of a noncondensate atom in the Hartee-Fock app
mation is

E~r ,p,t !5
p2

2m
1U~r ,t !. ~6!

The energy variablesEi appearing in Eqs.~3! and ~4! are
defined asEi5E(r ,pi ,t).

In contrast to the thermal cloud, the dynamics of the c
densate is determined by a time-dependent dissipative
linear Schro¨dinger equation@13,17#

i\
]C~r ,t !

]t
5H 2

\2
“

2

2m
1Uext~r !1g@2ñ~r ,t !1nc~r ,t !#

2 iR~r ,t !J C~r ,t !, ~7!

where the dissipative term, i.e.,R(r ,t), is given by

R[
\

2nc
E dp

~2p\!3
C12@ f #

5
g2

~2p!5\6E )
i 51,4

dpid~mvc1p22p32p4!d~Ec1E2

2E32E4!@d~p12p2!2d~p12p3!2d~p12p4!#

3@~11 f 2! f 3f 42 f 2~11 f 3!~11 f 4!#. ~8!

The appearance of this dissipative term in Eq.~7! is a con-
sequence of the collisional processes, described byC12,
which have the effect of transfering particles between
condensate and noncondensate. The dissipative term
needed in order to ensure overall particle-number conse
tion of the entire system. At a more fundamental level,
condensate wave function is determined by taking the exp
tation value of a Bose field with respect to a probabil
distribution that satisfies the Fokker-Planck equation m
tioned previously@13#. The Langevin equation one derive
within this formulation has the form of a dissipative nonli
ear Schro¨dinger equation with a noise term. It only reduc
to Eq. ~7! in a mean-field approximation. This points to th
need for exercising care in interpreting the order param
occurring in the nonlinear Schro¨dinger equation as the con
densate wave function. Due to the underlyingU~1! gauge
invariance associated with strict particle-number conse
tion, the expectation value is in fact always equal to zero
a result of the diffusion of the global phase of the condens
wave function. In first instance this effect can be neglec
and we are then effectively treating the system as if theU~1!
gauge invariance is explicitly broken.

It is convenient to rewrite Eq.~7! in terms of
amplitude and phase variables defined byC(r ,t)
5Anc(r ,t)exp@iu(r ,t)#. Substituting this form of the wave
function into Eq.~7!, we obtain
06360
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]nc~r ,t !

]t
1“@vc~r ,t !nc~r ,t !#52

2

\
R~r ,t !nc~r ,t !, ~9!

and

m
]vc~r ,t !

]t
1“Fmc~r ,t !1

mvc~r ,t !2

2 G50. ~10!

Here, we have defined the local chemical potential and
perfluid velocity by

mc~r ,t !5Uext~r !1g@nc~r ,t !12ñ~r ,t !#2
\2

2m

“

2Anc~r ,t !

Anc~r ,t !
~11!

and

vc~r ,t !5
\

m
“u~r ,t !, ~12!

respectively. It can easily be shown that this set of equati
for the condensate and thermal cloud is consistent with
conservation of the total number of particles in the syst
@17#.

III. ERGODIC APPROXIMATION

Our main objective in this paper is to apply the kine
theory formulated above to the problem of condensate
mation. In order to make progress, we introduce a numbe
additional approximations. The first and most essential, is
assumption of ergodicity@6,20–22# that has been widely
used in the literature on kinetic theory. This assumes t
equilibration of atoms within one energy level occurs on
much shorter time scale than equilibration of atoms betw
different energy levels. With this assumption, all points
phase space having the same energy are equally prob
and the distribution function therefore only depends on
phase-space variables through the energy variableE(r ,p,t),
i.e., f (r ,p,t)[g(E(r ,p,t),t). In equilibrium this is certainly
correct, but the assumption requires justification for any p
ticular nonequilibrium application. Unfortunately, we are n
aware of any explicit checks that have been made that m
indicate that the assumption is correct for the situations
wish to consider. Nevertheless, it appears to be physic
reasonable that for quantities that vary on a time scale of
order of several collision times, the approximation is su
ciently accurate.

The ergodic approximation allows us to derive a simp
fied kinetic equation for the energy distribution functio
g(e,t). This is accomplished by means of the relation

r~e,t !g~e,t ![E drdp

~2p\!3
d„e2E~r ,p,t !…f ~r ,p,t !,

~13!

which shows that the phase-space projection defined on
right-hand side yields the product ofg(e,t) and the density
of states
9-3
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r~e,t !5E drdp

~2p\!3
d„e2E~r ,p,t !…

5
m3/2

A2p2\3EU<e
drAe2U~r ,t !. ~14!

We note that the density of states is defined on the varia
energy rangeUmin(t)<e,` whereUmin(t) is the minimum
value ofU(r ,t) at timet. The time dependence of the dens
of states is one of the aspects distinguishing the presen
velopment from previous work@20,21#.

We now apply the phase-space projection to the kin
equation in Eq.~1!. As a result of this operation, the stream
ing terms in the Boltzmann equation, i.e., the second
third terms on the left-hand side of Eq.~1!, cancel each other
Only the projection of the time-derivative term survive
This results in

E drdp

~2p\!3
d„e2E~r ,p,t !…

] f ~r ,p,t !

]t

5r~e,t !
]g~e,t !

]t
1rw~e,t !

]g~e,t !

]e
. ~15!

Here, we have introduced aweighteddensity of states

rw~e,t !5E drdp

~2p\!3
d„e2E~r ,p,t !…

]U~r ,t !

]t

5
m3/2

A2p2\3 EU<e
drAe2U~r ,t !

]U~r ,t !

]t
. ~16!

This quantity depends explicitly on the time derivative of t
noncondensate potential that in turn is determined by
time derivatives of both the condensate and nonconden
densities. Some formal details regarding its evaluation
given in the Appendix.

Noting that

]r~e,t !

]t
52

]rw~e,t !

]e
, ~17!

Eq. ~15! can be written as

E drdp

~2p\!3
d„e2E~r ,p,t !…

] f ~r ,p,t !

]t
5

]

]t
~rg!1

]

]e
~rwg!.

~18!

We thus arrive at the projected kinetic equation

]

]t
~rg!1

]

]e
~rwg!5I 121I 22, ~19!

where the phase-space projections of the collision integ
are defined as
06360
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I 12~e,t ![E drdp

~2p\!3
d„e2E~r ,p,t !…C12@ f # ~20a!

I 22~e,t ![E drdp

~2p\!3
d~e2E~r ,p,t !!C22@ f #. ~20b!

The result in Eq.~19! is the kinetic equation that we solv
numerically.

We now derive in some detail explicit expressions for t
collision integrals in Eq.~20!. Although an expression forI 22
was given in earlier work@20#, we present here an alternativ
derivation that can also be adapted to the case of theI 12
collision integral. For theI 22 collision integral we have

I 22~e1 ,t !5
4pg2

~2p!9\10E de2E de3E de4d~e11e22e3

2e4!@~11g1!~11g2!g3g42g1g2~11g3!

3~11g4!#E dr S )
i 51,4

E dpi D d~p11p2

2p32p4!d~e12E1!d~e22E2!d~e32E3!

3d~e42E4!, ~21!

where we have introduced the shorthand notationgi
5g(e i ,t). We consider first the momentum integrals in E
~21! which, with the replacementp3→2p3 and p4→2p4,
can be written as

J22[E dp1E dp2E dp3E dp4d~p11p21p31p4!

3d~e12E1!d~e22E2!d~e32E3!d~e42E4!

5E dj

~2p!3 )i 51

4 E dpie
i j•pid~e i2Ei !. ~22!

In obtaining this expression, we have introduced a Fou
representation of the momentum-conserving delta funct
Performing the integrals in Eq.~22! with respect to the mo-
mentum variables, we obtain

J225~4pm!4S )
i 51

4

u~e i2U !D
3E dj

~2p!3

sinjp1 sinjp2 sinjp3 sinjp4

j4
, ~23!

where now it is understood thatpi5A2m(e i2U). The prod-
uct of theta functions can be replaced byu(emin2U), with
emin the minimum value of the four energy variables. Pe
forming the remaining integral with respect to thej variable,
we find
9-4
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J225~2p!3m4u~emin2U !@ up12p21p31p4u

2up12p21p32p4u1up12p22p32p4u

2up12p22p31p4u1up11p21p32p4u

2up11p22p32p4u1up11p22p31p4u

2up11p21p31p4u#. ~24!

This expression is valid for arbitrary values of the mome
but simplifies when energy conservation is taken into
count. Since the energy-conserving delta functiond(e11e2

2e32e4) in Eq. ~21! imposes the constraintp1
21p2

25p3
2

1p4
2, Eq. ~24! can be reduced to

J2254~2p!3m4u~emin2U !A2m~emin2U !. ~25!

Substituting this expression forJ22 into Eq. ~21!, we finally
obtain

I 22~e1 ,t !5
m3g2

2p3\7 E de2E de3E de4r~emin!

3d~e11e22e32e4!@~11g1!~11g2!g3g4

2g1g2~11g3!~11g4!#, ~26!

where we have used the definition of the density of state
Eq. ~14!. This is precisely the result obtained by Snoke a
Wolfe @6# and Luiten, Reynolds, and Walraven@20#, using a
different method. We note that if all energies are expres
in units of\v̄5\(v1v2v3)1/3, the I 22 integral has an over

all factor of (a/ l )2v̄, where l 5A\/mv̄ is the average
harmonic-oscillator length. This factor defines a characte
tic time that can be used as the time unit in the simulatio

The I 12 collision integral can be dealt with in a simila
way if the superfluid velocityvc in Eq. ~4! is set to zero. The
validity of this approximation follows from our assumptio
that the condensate grows adiabatically. The magnitud
the superfluid velocityvc is then typically of the order of
Ṙ(t), whereR(t) is the radius of the condensate. This velo
ity is small compared to the characteristic velocitiesp/m
'A2kBT/m of the thermal atoms participating in a collisio
which justifies the neglect ofmvc in Eq. ~4!. The expression
for I 12 then reads

I 12~e1 ,t !5
4pg2

~2p!6\7E drnc~r ,t !

3E de2E de3E de4d~Ec~r ,t !1e22e32e4!

3@d~e12e2!2d~e12e3!2d~e12e4!#

3@~11g2!g3g42g2~11g3!~11g4!#

3E dp2E dp3E dp4d~p22p32p4!

3d~e22E2!d~e32E3!d~e42E4!. ~27!
06360
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If we now defineJ12 analogously toJ22, we have

J12[E dp2E dp3E dp4d~p21p31p4!

3d~e22E2!d~e32E3!d~e42E4!

5E dj

~2p!3 )
i 52

4 E dpie
i j•pid~e i2Ei !

5~4pm!3u~emin2U !E dj

~2p!3

sinjp2 sinjp3 sinjp4

j3

58p2m3u~emin2U !S~p2 ,p3 ,p4!, ~28!

whereemin is the minimum value ofe2 , e3, ande4, and

S~p2 ,p3 ,p4![
1

2
@sgn~p21p32p4!1sgn~p22p31p4!

2sgn~p21p31p4!2sgn~p22p32p4!#.

~29!

Note that this is a Boolean function that takes on values o
and 1 only. Inserting the expression forJ12 into Eq.~27!, we
finally obtain for theI 12 collision integral the result

I 12~e1 ,t !5
m3g2

2p3\7E de2E de3E de4@d~e12e2!

2d~e12e3!2d~e12e4!#@~11g2!g3g4

2g2~11g3!~11g4!#E
U<emin

drnc~r ,t !

3S~p2 ,p3 ,p4!d„Ec~r ,t !1e22e32e4….

~30!

A comparison of this expression withI 22 in Eq. ~26! shows
that the remaining spatial integral acts as an effective den
of states for scattering into the condensate. It can be ev
ated analytically in the Thomas-Fermi approximation for t
condensate, as shown in Sec. V. The kinetic equation in
~19! and the projected collision integrals in Eqs.~26! and
~30! are the main results of this section.

Before closing this section, we point out one difficul
encountered when a numerical solution of Eq.~19! is at-
tempted. As discussed following Eq.~14!, the time depen-
dence of the mean-field potentialU(r ,t) implies that the
density of states in Eq.~14!, and hence the energy distribu
tion functiong(e,t), are defined on a variable energy rang
To eliminate this variation, it is convenient to introduce t
shifted energy variable

ē[e2Umin~ t !, ~31!

which leads to a fixed energy range 0<ē,`. The density of
states in terms of this new energy variable is given
r(e,t)5r( ē1Umin ,t)[r̄( ē,t). With ē andt as independen
variables, the kinetic equation in Eq.~19! can be rewritten as
9-5
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]

]t
~ r̄ḡ!1

]

]ē
~ r̄wḡ!5 Ī 121 Ī 22. ~32!

Here, bothr̄( ē,t) and r̄w( ē,t) are defined by making the
replacement

U~r ,t !→U~r ,t !2Umin~ t ![Ū~r ,t !, ~33!

in Eqs. ~14! and ~16!. Similarly, from the definition of the
collision integrals in Eqs.~3! and~4!, it can also be seen tha
the change of energy variable leads to the replacemen
U(r ,t) by Ū(r ,t) in this case as well. Thus, the final kinet
equation in terms of theē variable is unchanged in form
from the original equation. We will henceforth drop th
overbar on the functions defined in terms ofē, with the un-
derstanding that the shifted potentialŪ(r ,t) is to be used
wherever the potential appears in the original expressio
The possibility of using a fixed energy range in the solut
of the kinetic equation simplifies the numerical calculatio
considerably.

IV. COLLISIONAL INVARIANTS

In this section, we explicitly consider two important qua
tities that should be conserved as the Bose gas condense
equilibrates, namely, the total number of particles and
total energy of the trapped Bose gas. Together, they de
mine the final equilibrium state of the Bose-condensed g
i.e., the number of particles in the condensate, its chem
potential, and the temperature of the vapor.

A. Particle-number conservation

The time rate of change of the total number of partic
consists of the time rate of change of the number of c
densed particles plus the time rate of change of the num
of noncondensed particles. Because the number of non
densed particles is given byÑ(t)5(2p\)23*drdpf (p,r ,t)
5*der(e)g(e), the time rate of change ofÑ(t) can be
found by integrating Eq.~19! over energy. We thus find tha

]Ñ~ t !

]t
5E deI 12~e,t !, ~34!

where it is easily checked from Eq.~26! that

E deI 22~e,t !50. ~35!

Note that we have assumed here that lime→Umin
rw(e)g(e)

50. A finite limiting value can arise ifg(e) approaches an
equilibrium Bose distribution with a chemical potentialm
5Umin at long times, together with a weighted density
states that depends linearly one2Umin for energies close to
Umin . However, at any finite time in the growth process, it
safe to use the zero limiting value. This is always the c
when the equilibrium chemical potential lies belowUmin .
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To get the time rate of change of the total number
condensate particles, we integrate the continuity equat
Eq. ~9!, over space to find

]Nc

]t
52

2

\E drR~r ,t !nc~r ,t!52E deI 12~e,t !. ~36!

Combining this with Eq.~34! leads to

]~Ñ1Nc!

]t
50, ~37!

which demonstrates that the total number of particles is
deed conserved.

B. Energy conservation

We now consider the conservation of the total energy
the system. The total energy is given by

Etot5E drdp

~2p\!3 H p2

2m
1Uext~r !1g@ ñ~r ,t !

12nc~r ,t !#J f ~r ,p,t !1E drC* ~r ,t !

3F2
\2

“

2

2m
1Uext~r !1

g

2
nc~r ,t !GC~r ,t !. ~38!

The first term is the semiclassical expression for the to
energy of the noncondensate. It contains the kinetic and
ternal potential energy, and the Hartree-Fock mean-field
teraction energy of the noncondensed cloud interacting w
itself and with the condensate. We note that the s
interaction term is reduced by a factor of two relative to t
condensate term to avoid double counting this contributio

The second term in Eq.~38! is the total energy of the
condensate which contains the wave functionC(r ,t) with
normalization

E dr uC~r ,t !u25Nc~ t !. ~39!

It consists of the kinetic energy, the potential energy, and
mean-field energy due to the interaction of the condens
with itself. The mean-field interaction of the condensate w
the noncondensate has already been included in the ex
sion for the energy of the noncondensed cloud. We n
show that this total energy is indeed conserved during
growth process.

Taking the time derivative of Eq.~38! leads to the follow-
ing expression:
9-6



u

ba
th

-

th
ot
co
ity

ally
ing
a-
of
res
are
in in
the
the
ons,
e at
e

oxi-
e

en-
ate

de

the
s a
the

ate
eld
k-

rgy
lk

en-
n-
lic-
are
cal

ion
t of
lem
ical
e

e
a
the
em

en-

CONDENSATE GROWTH IN TRAPPED BOSE GASES PHYSICAL REVIEW A62 063609
]Etot

]t
5E drdp

~2p\!3 H p2

2m
1Uext~r !12g@ ñ~r ,t !

1nc~r ,t !#J ] f ~r ,p,t !

]t
1E dr

]C* ~r ,t !

]t

3H 2
\2

“

2

2m
1Uext~r !1g@nc~r ,t !12ñ~r ,t !#J C~r ,t !

1E drC* ~r ,t !H 2
\2

“

2

2m
1Uext~r !1g@nc~r ,t !

12ñ~r ,t !#J ]C~r ,t !

]t
. ~40!

The first term in Eq.~40! can be rewritten as

E drdp

~2p\!3
E~r ,p,t !

] f ~r ,p,t !

]t

5E drdp

~2p\!3
E~r ,p,t !~C12@ f #1C22@ f # !

5E drEc~r ,t !E dp

~2p\!3
C12@ f #, ~41!

where, to obtain this result, we have used the kinetic eq
tion, Eq.~1!, and the fact that theC22 collision integral con-
serves energy.

If we again assume that the condensate grows adia
cally as atoms are fed into it from the noncondensate,
condensate wave functionC(r ,t) is a solution of the instan
taneous Gross-Pitaevskii~GP! equation

H 2
\2

“

2

2m
1Uext1g@nc~r ,t !12ñ~r ,t !#J C~r ,t !

5Ec~ t !C~r ,t !, ~42!

with a time-dependent energy eigenvalueEc(t). For this spa-
tially independent condensate energy, Eq.~41! reduces to

E drdp

~2p\!3
E~r ,p,t !

] f ~r ,p,t !

]t
5Ec~ t !

]Ñ~ t !

]t
. ~43!

Inserting this result and Eq.~41! into Eq. ~40!, the latter is
easily seen to yield

]Etot

]t
5Ec~ t !S ]Ñ

]t
1

]Nc

]t
D 50, ~44!

due to the conservation of the total particle number. Thus
assumption of adiabaticity is sufficient to ensure that the t
energy is conserved. However, one can also show the
servation of energy exactly, without assuming adiabatic
by making use of the dissipative nonlinear Schro¨dinger equa-
tion in Eq. ~7!.
06360
a-

ti-
e

e
al
n-
,

V. THOMAS-FERMI APPROXIMATION

The assumption that the condensate grows adiabatic
implies that the dynamics of the condensate itself is be
neglected, apart from its trivial time-dependent normaliz
tion. In particular, we are ignoring the possible excitation
internal collective oscillations. However, at the temperatu
of interest in the growth process, these excitations
strongly damped and we expect the condensate to rema
a relatively quiescent state that is well-approximated by
quasiequilibrium solution of the GP equation. Indeed, in
experiments there is no evidence of condensate oscillati
although the thermal cloud has been observed to oscillat
twice the harmonic-oscillator frequency of the trap in som
cases.

For a large number of condensate atoms, a good appr
mation to the equilibrium wave function is provided by th
Thomas-Fermi approximation that neglects the kinetic
ergy in the GP equation. In this situation, the condens
density is given by

nc~r ,t !5
1

g
@mc~ t !2Uext~r !22gñ~r ,t !#. ~45!

Of course, this expression is only valid if the right-hand si
is larger than zero; otherwise,nc(r ,t)50. The last term on
the right-hand side reflects the mean-field interaction of
condensate with the thermal cloud. Since the latter ha
small density relative to the condensate, its effect on
spatial distribution of the condensate is small (2gñ!mc) and
we therefore neglect it when determining the condens
density. By the same token, we shall neglect the mean-fi
interaction of the noncondensate with itself. Strictly spea
ing, these approximations lead to a violation of total ene
conservation, but the error will be very small since the bu
of the mean-field energy, which resides within the cond
sate itself, is still taken into account. In principle, these co
tributions can be included in our treatment as shown exp
itly in the Appendix. However, because these corrections
small, we have decided to neglect them in our numeri
calculations.

It should be noted that the Thomas-Fermi approximat
is to some extent dictated by our semiclassical treatmen
the noncondensate atoms, since it avoids a potential prob
associated with the placement of the condensate chem
potentialmc relative to the minimum energy available to th
thermal atoms, i.e.,Umin5min@Uext12g(ñ1nc)#. For small
condensate densities, it is possible that the GP eigenvalumc
lies abovethis minimum value that is clearly impossible if
full quantum treatment of the excited states is retained. In
Thomas-Fermi approximation, there is no such probl
since the chemical potential is exactly equal toUmin .

Given these approximations, the time-dependent cond
sate density profile becomes

nc~r ,t !5
1

g
@mc~ t !2Uext~r !#, ~46!
9-7
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where the external potential is taken to be a general an
tropic harmonic confining potential,Uext(r )5( imv i

2r i
2/2.

This expression for the density is again only meaning
whenUext(r )<mc(t). The chemical potential of the conden
sate is given by

mc~ t !5
\v̄

2 F15N0~ t !
a

l G
2/5

, ~47!

wherev̄5(v1v2v3)1/3 and l 5A\/mv̄. The potential expe-
rienced by the thermal atoms is then

U~r ,t !5H 2mc~ t !2Uext~r ! if nc5” 0

Uext~r ! if nc50.
~48!

The minimum value of this potential ismc(t) and occurs on
the boundary of the condensate.

Three additional important quantities can also be cal
lated analytically. The first two are the density of states, a
the weighted density of states, i.e.,r( ē) andrw( ē), respec-
tively. For the former we get

r~ ē !5
m3/2

A2p2\3EŪ, ē
drAē2Ū~r ,t !

5
2

p\v̄
F E

Ū, ē
dyy2uS 2mc

\v̄
2y2DA2~ ē2mc!

\v̄
1y2

1E
Ū, ē

dyy2uS y22
2mc

\v̄
DA2~ ē1mc!

\v̄
2y2G

[
2

p\v̄
@ I 2~ ē !1I 1~ ē !# ~49!

The integralsI 2( ē) andI 1( ē) are standard, and are given b

I 2~ ē !5
u2

3 x

4
2

a2u2x

8
2

a2
2

8
ln~x1u2!U

x5Amax$0,a2%

x5A2mc /\v̄

,

I 1~ ē !52
u1

3 x

4
1

a1u1x

8
1

a1
2

8
arcsinS x

Aa1
D U

x5A2mc /\v̄

x5Aa1

,

~50!

where we have defineda652(ē6mc)/\v̄, and u6

5Aa67x2.
To obtain an analytic expression for the weighted den

of statesrw( ē) we note that

]Ū~r ,t !

]t
52

]mc~ t !

]t
u@mc~ t !2Uext~r !#2

]mc~ t !

]t
. ~51!

We therefore find that the weighted density of states is gi
by
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rw~ ē !5
]mc

]t F2r~ ē !1
4

p\v̄
E

Ū, ē
dyy2

3uS 2mc

\v̄
2y2DA2~ ē2mc!

\v̄
1y2G

5
]mc

]t F 4

p\v̄
I 2~ ē !2r~ ē !G . ~52!

The third important quantity that can be calculated a
lytically in the Thomas-Fermi approximation arises in t
ergodic projection ofC12. With the variable change in Eq
~31!, and noting thatUmin(t)5mc(t) in the Thomas-Fermi
approximation, Eq.~30! can be written as

I 12~ ē1!5
m3g2

2p3\7E dē2E dē3E dē4@d~ ē12 ē2!

2d~ ē12 ē3!2d~ ē12 ē4!#@~11g2!g3g4

2g2~11g3!~11g4!#

3E
Ū<ēmin

drnc~r ,t !S~p2 ,p3 ,p4!d~ ē22 ē32 ē4!,

~53!

wherepi5A2m( ē i2Ū). It is apparent that the integrand
symmetric in the variablesē3 and ē4. We can therefore as
sume, without loss of generality, thatē2>ē3>ē4, which also
implies p2>p3>p4. In this situation,S(p2 ,p3 ,p4) in Eq.
~29! reduces to

S~p2 ,p3 ,p4!5
1

2
@12sgn~p22p32p4!#, ~54!

which is nonzero and equal to 1, if

p2,p31p4 . ~55!

This restricts the spatial integration in Eq.~53! to the domain
specified by this inequality. Inserting the definitions ofpi

and using the conservation of energy conditionē25 ē31 ē4,
Eq. ~55! is equivalent to

F~Ū ![Ū22
4

3
~ ē31 ē4!Ū1

4

3
ē3ē4.0. ~56!

The roots ofF(Ū)50 are given by

Ū65
2

3
@~ ē31 ē4!6Aē3

22 ē3ē41 ē4
2#, ~57!

in terms of whichF(Ū)5(Ū2Ū2)(Ū1Ū1). The require-
ment F(Ū).0 is therefore satisfied forŪ,Ū2 and Ū

.Ū1 . The latter condition, however, is inconsistent wi
the constraintŪ, ē4 for the integral in Eq.~53!. BecauseŪ2

does satisfy Ū2<ē4, the net effect of the factor
9-8
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S(p2 ,p3 ,p4) in Eq. ~53! is to restrict the spatial integratio
domain to the domain defined byŪ<Ū2 , i.e.,

E
Ū<ēmin

drnc~r ,t !S~p2 ,p3 ,p4!d~ ē22 ē32 ē4!

5E
Ū<Ū2

drnc~r ,t !d~ ē22 ē32 ē4!. ~58!

The remaining spatial integral in Eq.~58! can be carried ou
analytically for the Thomas-Fermi density profile. IfŪ2

>mc , we have simply

E
Ū<Ū2

drnc~r ,t !5Nc~ t !. ~59!

On the other hand, for 0<Ū2<mc , we have

E
Ū<Ū2

drnc~r ,t !5Nc~ t !H 5

2
F12S 12

Ū2

mc
D 3/2G

2
3

2
F12S 12

Ū2

mc
D 5/2G J . ~60!

Physically, Eqs.~59! and ~60! are a consequence of the k
nematical constraints for scattering into the condensate
appear in the original form of the collision integral in E
~30!.

Finally, we indicate some implications of the assumpti
of adiabatic growth in the context of the Thomas-Fermi a
proximation. We take as an approximate solution to the d
sipative nonlinear Schro¨dinger equation in Eq.~7! a conden-
sate wave function of the form

C~r ,t !5Anc~r ,t !eiu(r ,t), ~61!

where nc(r ,t) is the Thomas-Fermi density profile in Eq
~46!. Inserting this wave function into Eq.~7!, neglecting the
kinetic-energy term as in the Thomas-Fermi approximati
and separating real and imaginary parts of the resulting e
tion, we obtain the relations

u~r ,t !52
1

\ E
0

t

dt8mc~ t8!, ~62!

and

R~r ,t !52
\ṁc~ t !

2gnc~r ,t !
. ~63!

The fact that the phase is spatially independent implies
the superfluid velocityvc is zero as we have assumed in Se
III. According to Eq.~36!, Eq. ~63! implies

]Nc

]t
5

1

g E dr ṁc~ t !, ~64!

where the integral is restricted to the region occupied by
condensate, i.e.,nc(r ,t)5” 0. This is the same expression o
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tained by taking the time derivative of the integral of E
~46! over all space. We therefore see that the wave func
in Eq. ~61! is an internally consistent solution of the dissip
tive nonlinear Schro¨dinger equation.

VI. RESULTS

In this section, we present the results of our calculatio
which were performed for the situation corresponding to
MIT experiments@10#. These used23Na atoms confined in
an axially symmetric trap with harmonic frequencies of 18
Hz and 82.3 Hz along and perpendicular to the symme
axis, respectively. These values give an averaged freque
of v̄/2p549.6 Hz, which implies that\v̄/kB is equal to 2.4
nK. Thes-wave scattering lengtha is 2.75 nm.

To begin, we provide a few of the numerical details. W
used a discretized energy mesh consisting of equally spa
points in the range 0<ē<ēmax. The value of the tempera
ture used in the simulations is typically of the order
1 mK, which requires a maximum energy range of abo
ēmax.250023000\v̄ in order to ensure thatr( ē)g( ē) is
sufficiently small at the end of the range. In evaluating t
collision integralsI 22 in Eq. ~26! andI 12 in Eq. ~30!, the delta
functions were used to perform some of the integrations a
lytically. The remaining integrals were then evaluated n
merically using a simple trapezoidal integration scheme. T
main advantage of this scheme in the case of theI 22 collision
integral is that the conservation of both particle number a
energy is numerically exact, which in general is not the c
for higher-order integration schemes such as Simpson’s r
This conserving property is especially important in simu
tions of the condensate growth since a loss of either parti
or energy due to numerical inaccuracy would lead to syste
atic errors in the final equilibrium values for various physic
quantities. The situation for theI 12 collision integral is some-
what different since neither of the integrals in Eq.~35! or
~36! is zero. Thus the numerical results will depend on t
choice of the energy-mesh size, and one must check tha
results obtained for a given simulation are insensitive
variations in this parameter. The checks we have perform
indicate that errors in the final results coming from this n
merical source are no larger than a few percent. Errors of
magnitude will not influence the general conclusions that
make. As a final point, we used the Euler method to pro
gate Eq.~32! in time. The time step was chosen to be suf
ciently small, typically 0.5 ms, to ensure the accuracy of
time evolution.

To start the simulation, we begin with an initial nonequ
librium distribution that is meant to represent the conditio
immediately after the rapid evaporative cooling quench u
in the experiments. Ideally, such a quench starts with
equilibrium distribution at some temperatureT aboveTc and
excises all particles with energy aboveEcut[kBTcut. We
model this by a truncated Bose distribution at the tempe
ture T. Although we expect this initial distribution to repre
sent the experimental situation reasonably well, there will
doubt be differences from the actual distributions due to
finite time taken to perform the quench, which allows som
9-9
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equilibration to occur, and the possible incomplete remo
of all particles in the energy range of the sweep. Since
RF field is resonant only at certain positions in the tra
atoms of a given energy must have sufficient time to re
these positions in order to suffer a spin flip and thus
ejected from the trap. If this is not the case, the distribut
in energy will also have a spatial dependence. Some ind
tion that such a nonergodic state in fact occurs is provided
the observation that the thermal cloud starts to oscillate a
the quench. However, due to a lack of detailed informat
about the experimental initial conditions, we shall assume
idealized truncated Bose distribution as our initial conditio

To complete the specification of the initial state, we m
also make a choice for the number of atoms initially in t
condensate. Of course, if this number is zero,I 12 as given by
Eq. ~27! is zero since we have only included stimulated tra
sitions into the condensate. In the absence of spontan
processes, there is no possibility of condensate growth.
der the experimental conditions of interest, however,
lowest quantum state initially already has a rather large th
mal occupation and stimulated processes will dominate.
therefore choose the initial condensate number to be g
by the occupation of the lowest harmonic-oscillator state
the temperature of the truncated Bose distribution. This nu
ber is typically of the order of a few hundred particles. A
our numerical results presented below will show, the grow
curves are rather insensitive to this starting value as long
is small compared to the final equilibrium number of co
densate atoms.

In Fig. 1, we show a sequence of growth curves that
lustrate the dependence on the parameterTcut. In this set of
simulations, we assume that the temperature of the equ
rium Bose distribution is equal toTc50.765 mK and its
chemical potentialm̃ is equal to zero. Before the cut, the g
containsÑ5403106 thermal atoms and the number of co

FIG. 1. Growth curves for different initial energy cutoffs. A
discussed in Sec. IV, the initial conditions are defined by fixing

temperatureT5Tc50.765 mK and the chemical potentialm̃50 of

the distribution function before it is truncated. This givesÑ540
3106 noncondensate atoms. The number of atoms initially in
condensate is chosen to beNc5214. The solid curves in order o
increasingsaturation values correspond toTcut /Tc55.5, 5.0, 4.5,
4.0, 3.5, 3.0, and 2.5. The dashed curves in order ofdecreasing
saturation values correspond toTcut /Tc52.0, 1.5, 1.0, and 0.5.
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densate atoms is given byNc5@exp(3b\v̄/2)21#215214.
In a particular simulation, the total number of atoms and
average energy per atom of course depends on the dep
the energy cut. The growth curves are characterized by
initial stage of slow growth during which the truncated Bo
distribution evolves into a quasiequilibrium distribution,
well-defined onset timetonsetwhere a significant increase i
the rate of growth occurs, and finally a relaxational sta
where the condensate number approaches a final equilib
value. As the cut is made deeper and deeper, this final n
ber at first increases due to the decreasing total energy o
initial distribution, which results in a lower final temperatur
However, at some point the final number of condensate
oms reaches a maximum and then decreases with fur
deepening of the cut due to the reduced total number
atoms in the initial distribution. To distinguish this behavio
the growth curves are shown as solid lines when the fi
number is increasing with decreasingTcut, and conversely,
by dashed lines when the final number is decreasing.

Although all the growth curves in Fig. 1 are qualitative
similar, it is clear that there are important differences in d
tail. For the curves with an increasing equilibrium number
condensate particles, i.e., the solid curves, both the o
time and subsequent relaxation time are seen to decr
with decreasingTcut. However, for the curves with a de
creasing equilibrium number of condensate particles, i.e.,
dashed curves, the dependence of both of these time
further decreases inTcut is much weaker, and they appear
approach limiting values. In order to quantify this behavi
it is convenient to fit the relaxational part of the theoretic
growth curves to a simple exponential relaxation

Nc
fit~ t !.Nc

eq~12e2g(t2tonset)!, ~65!

where Nc
eq, g, and tonset are fitting parameters. This func

tional form is found to provide a very good fit to this part
the theoretical curves. Fig. 2 summarizes the results for
onset timetonset, and exponential relaxation rateg for the
particular simulations presented in Fig. 1. The onset ti

e

e

FIG. 2. The onset time~a! and relaxation rate~b! for the growth
curves in Fig. 1, as determined by using the fitting function in E
~65!.
9-10
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CONDENSATE GROWTH IN TRAPPED BOSE GASES PHYSICAL REVIEW A62 063609
decreases from about 100 ms to 20 ms asTcut/Tc is reduced
from 5 to 0.5. At the same time, the relaxation rate increa
from about 6 s21 to 12 s21.

We have also looked at the dependence of the gro
curves on the other parameters that appear in the theor
Fig. 3, we show the growth curves for a range of init
temperatures. Prior to the quench, these initial temperat
are larger thanTc , and in each case the chemical potentia
adjusted to provide again a total of 403106 atoms in the
thermal cloud. The energy cut and initial number of cond
sate atoms were taken to beTcut/Tc52.5 andNc(0)5214,
respectively, and were the same for all the runs. Not surp
ingly, we find that the final equilibrium condensate numb
decreases with increasing initial temperature as a resu
the larger average energy per atom. This of course also l
to a higher final equilibrium temperature. However, what
somewhat unexpected is the very rapid increase of the o
time as the initial temperature is increased. In Fig. 4~a!, we
show that a 30% variation inT/Tc gives rise to more than a
tenfold variation intonset, and that these values are typical
much larger than those found using an initial temperature
T5Tc . In addition, Fig. 4~b! shows that the relaxation rat
tends to decrease with increasingT/Tc and is comparable to
the values given in Fig. 2.

In Fig. 5, we show the variation of the growth curves w
the initial number of condensate atoms. In this case, the
tial nonequilibrium distribution is held fixed, correspondin
to a Bose distribution withÑ5403106, T5Tc , and
Tcut/Tc52.5. The growth curve is rather insensitive to t
condensate number in the range 102,Nc,104, but then
shows a much stronger dependence in the range 104,Nc
,106. At the higher end of this range, the initial number
already visible on the graph and byNc5106 there is no
longer a meaningful onset time. This would correspond t
situation in which a significant condensate fraction has

FIG. 3. Growth curves for different initial temperaturesT. In
order of decreasingequilibrium number of condensate atom
T/Tc51, 1.05, 1.1, 1.15, 1.2, 1.25, and 1.3. The initial conditio

are defined by fixing the number of noncondensed particles tÑ
5403106, and the number of condensed atoms toNc5214, as in
Fig. 1. The cutoff is now kept fixed atTcut /Tc52.5. The chemical
potential is less than zero, and adjusted to keep the numbe
noncondensed particles fixed.
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ready formed by the time the quench is completed. This k
of behavior is indeed also seen experimentally under cer
conditions.

In order to explain some of these results, it is necessar
examine the time evolution of the distribution functio
g( ē,t). In Fig. 6, we show ln(g) vs ē for various times after
the quench. At early times the distribution function is equ
brated by the scattering of thermal atoms into states ab
the Ecut that are initially depleted. To conserve energy, t
mean energy of the atoms belowEcut must decrease. In fact
the population of the low-energy states increases sign
cantly before the onset of rapid condensate growth. Thi
shown in Fig. 7 whereg( ē,t) is plotted as a function of time
for some specific energy values. We see thatg( ē,t) at first
increases rapidly, reaches a maximum at a time very clos
the onset time and then relaxes toward its final equilibri
value of (ebeqē21)21. This behavior is typical of all situa-
tions in which the growth of a condensate is observed. T
strong correlation of the peak position in Fig. 7 with th
onset time suggests that condensate formation is triggere

of

FIG. 4. The onset time~a! and relaxation rate~b! for the growth
curves in Fig. 3, using the same fitting procedure as in Fig. 2.

FIG. 5. Growth curves for different initial number of condens
particles. The other parameters defining the initial conditions are
same as in Fig. 1, and the cutoff is held fixed atTcut /Tc52.5. In
order of increasing saturation values, the curves correspond
Nc(0)5102, 103, 104, 105, and 106.
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an enhanced low-energy population. Before the onset ti
we find numerically thatg( ē) behaves approximately a
( ē)21.63, which is a stronger singularity than that exhibite
by an equilibrium Bose distribution with zero chemical p
tential, and agrees within our numerical accuracy with
( ē)25/3 dependence predicted by Svistunov@23#. Regardless
of the precise exponent, it seems that a ‘‘supercritical’’ b
havior of the distribution function is a precursor to conde
sate formation@24#.

A useful way to characterize the time evolution ofg( ē,t)
is to express it locally as a Bose distribution

g~ ē,t !5
1

exp~bē2m̃ !21
, ~66!

where the two parametersb andm̃ are defined by fitting this
expression to the value of the distribution function and
energy derivative. Although the parameters are treated
cally as constants in this procedure, they nevertheless de
parametrically on the energy variableē. The local tempera-
ture and chemical potential parameters defined in this w

FIG. 6. Plot of the logarithm of the distribution functiong(e,t)
for the curve withTcut /Tc52.5 from Fig. 1, at time intervalsDt
50.02 s, starting fromt50.02 s. Each curve is shifted up by on
unit with respect to the previous one for clarity.

FIG. 7. Plot of the product of the density of states and

distribution function at energies of 30, 60, 120, and 240\v̄, for the
curve withTcut /Tc52.5 in Fig. 1. The peaks occur in the vicinity o
the onset timetonset.
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are shown in Fig. 8~a! and 8~b! at time intervals of 0.05 s for
a situation in which the quenched thermal cloud equilibra
to a final temperature aboveTc . Both parameters are seen
be strongly energy-dependent at early times but evolve
ward energy-independent values by the end of the sim
tion. The negative equilibrium value of the chemical pote
tial corresponds to an uncondensed thermal cloud a
temperature of about 1.92mK.

A situation in which the quench leads to the formation
a condensate is illustrated in Figs. 9~a! and 9~b!. The param-
eters are plotted at 0.25 s intervals during the relaxatio
stage of the growth curve beyond the onset time. At l

e

FIG. 8. Equilibration of the local temperature and chemical p
tential for a situation in which the final equilibrium temperature
the gas is above the critical temperature. Panel~a! gives the local
temperature as a function of energy for a sequence of times du
the equilibration process. In equilibrium, both the temperature
chemical potential are independent of energy. Panel~b! gives the
corresponding variation of the local chemical potential. The init
conditions before the distribution is truncated are defined by a t

peratureT52 mK, and a chemical potentialm̃52200. The cutoff
is at Tcut /Tc52.5.

FIG. 9. As in Fig. 8, but for a situation in which the final equ
librium temperature is below the critical temperature. The equilib
tion of the local temperature and chemical potential correspond
the Tcut /Tc52.5 growth curve in Fig. 1.
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energies, the local temperature lies above the final equ
rium value that reflects the higher temperature of the ini
Bose distribution. However at higher energies, the local te
perature is lower than the final temperature since the ga
this energy range is effectively colder as a result of
quench. Figure 9~b! shows the corresponding variation of th
chemical potential. As a result of the formation of the co
densate, the chemical potential at low energies is pinne
zero and then increases at higher energies. The deviatio
both the local temperature and chemical potential from th
final equilibrium values are seen to relax to zero on a ti
scale that is comparable with therelaxational stage of the
condensate growth. This relaxation rate can therefore be
tributed to the relatively slow equilibration of the local tem
perature and chemical potential of the thermal cloud.

We finally turn to a comparison with experiment. This
shown in Fig. 10 for the particular case in which the start
number of noncondensed atoms is 403106, as in the simu-
lations discussed above, but with the initial number of co
densate atoms set toNc(0)5104. In the particular experi-
mental run starting with this total number of atoms befo
the RF quench, the condensate number is found to relax
final number of 1.23106 atoms. According to Fig. 1, ther
are two values ofTcut that will lead to this final number o
condensate atoms,Tcut/Tc50.6 andTcut/Tc55.7. The re-
sults for the deeper cut ofTcut/Tc50.6 are shown as curv
~b! and are seen to be in very good agreement with the
perimental results. However, we cannot claim good agr
ment overall since the total number of atoms after the que
is only 2.53106 as compared to the experimental number
about 16.03106 atoms. For the shallower cut ofTcut/Tc
55.7 shown as curve~c!, the agreement between the the
retical and experimental growth curves is clearly worse
that the theoretical growth rate is too small. Moreover,
total number of atoms remaining in the trap is 37.53106 that
is too large by roughly a factor of 2. Alternatively, one c
choose a cut that reproduces the final number of atoms in
trap. In our simulations, this requires a cut ofTcut/Tc51.9.
Although the initial growth rate agrees with experiment

FIG. 10. Theoretical growth curves for the initial conditions
Fig. 1, but with Nc(0)5104 and for various energy cuts:~a!
Tcut /Tc51.9, ~b! Tcut /Tc50.6, ~c! Tcut /Tc55.7. The experimenta
points are taken from Fig. 4 of Ref.@10#. The dashed line shows th
theoretical growth curve for the conditions of case~b! but with
mean-field interactions turned off.
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this case, the final equilibrium number of condensate ato
is 4.53106, which is too large by almost a factor of 4. Th
final number could be improved by elevating the starti
temperature ~recall that these simulations usedT5Tc
50.765 mK), however as Fig. 3 shows, achieving a fourfo
reduction in the equilibrium condensate number would
crease the onset time well beyond the experimental valu
therefore appears that the present simulations cannot re
duce all aspects of the experiments simultaneously.

Figure 10 also shows a theoretical growth curve for
same initial conditions as for curve~b!, but with mean-field
interactions between the condensate and thermal c
turned off. To elaborate, the potential acting on the therm
cloud is simply the time-independent trapping potential, a
the condensate is taken to have essentially a delta func
spatial distribution at zero energy. In this case, the integra
nc(r ,t) in Eq. ~30! is replaced byNc(t). It can be seen tha
the qualitative behavior is very similar to the fully interactin
simulation, but that the equilibrium number of condens
atoms is increased considerably, as expected.

Figure 11 provides a comparison with another set of
perimental results. In this case the initial number of ato
before the quench is not known and was therefore taken t
603106 in order to optimize agreement with experimen
Furthermore, the energy cut was chosen asTcut/Tc52.5.
This leads to a final number of 7.33106 condensate atoms in
the trap, which is approximately the same number as fo
in the experiment,Nc57.23106. Although this simulation
achieves good agreement between theory and experimen
the condensate growth curve, there are too many unkn
variables, including the final number of atoms in the trap,
know whether or not theory is reproducing experiment. F
this reason, the results in Fig. 11 should simply be viewed
a possible fit to the experimental data.

VII. DISCUSSION AND OUTLOOK

Our main objective has been to obtain a realistic desc
tion of condensate growth that takes into account the effe
of mean-field interactions. Within the ergodic approximati
for the noncondensed atoms, and the adiabatic approx

FIG. 11. Theoretical growth curve for initial conditions given b

Ñ(0)5603106, T5Tc50.876 mK, Tcut /Tc52.5, and Nc(0)
5503104. The experimental points are taken from Fig. 3 of R
@10#.
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tion for the condensate, the kinetic equation we obtain
given by Eq.~19!, and we have used this equation to perfo
simulations of condensate growth. In agreement with ear
work @18,21#, we find that the growth curves have a we
defined onset time, after which an exponential relaxation
ward equilibrium takes place. Detailed comparison with
results reported in Ref.@10# shows that certain paramete
can be tuned in order to achieve agreement with the exp
mental growth curves. However, it seems impossible w
the present simulations to reproduce the overall equilibri
state of the trapped gas.

If we attribute the existing discrepancies to theory,
must at some point reexamine the two major assumpt
made in this work, namely the adiabatic growth of the co
densate and the ergodic evolution of the thermal cloud.
adiabatic assumption neglects the dynamics of the con
sate, specifically the possibility that collective oscillatio
are excited during the growth process. Whether or not
has any important effect on the rate at which atoms are
changed between the condensate and thermal cloud in
known and should be investigated. In the same vein, osc
tions of the thermal cloud seen in the experiments clea
indicate the nonergodic state of the gas that in princi
might be important in determining the time scale of equ
bration. However, to answer this question requires a solu
of the full quantum Boltzmann equation that seems out
reach at the moment. One cannot of course discount the
sibility that there are uncertainties in the experimental res
themselves. Further experimental work is needed to con
the earlier results and to explore in more detail the dep
dences on various parameters such as the initial temper
of the cloud and the depth of the RF cut.

After completion of this work, a preprint by Davis, Ga
diner, and Ballagh appeared@25# that is a continuation of a
series of papers by Gardineret al. It also addresses the issu
of mean-field interactions as affecting the density of sta
and improves on the authors’ earlier work by giving a mo
realistic description of the RF quench used in the exp
ments. Thus, although there are differences in methodolo
the physical basis of their work and the approximations th
make are essentially equivalent to ours. As confirmation
this equivalence, their calculations of condensate growth
formed for the initial conditions of Figs. 10 and 11 yie
results that are in quantitative agreement with ours. The s
ation considered in Fig. 10 is optimal from a theoretical po
of view since the experimental conditions are best known
this case. Yet both sets of calculations are unable to re
duce the experimental results in every detail.

One of the differences between their work and ours c
cerns the way that the condensate is treated. In our form
tion, the condensate is isolated explicitly as the macrosc
cally occupied quantum state, and the remaining exc
states making up the thermal cloud are treated semicla
cally. As a result of this formulation, we have two kinds
collision integrals, one for thermal atoms scattering amo
each other and a second for collisions of thermal atoms w
the condensate. In the formulation of Davis, Gardiner, a
Ballagh on the other hand, all states including the conden
are treated equivalently and thus only a single collision in
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gral enters. As a result, the effective collision cross sect
involving the condensate does not depend on time as it d
in our formulation. A second apparent difference has to
with the term involving the weighted density of statesrw in
Eq. ~19!. This term arises as a consequence of the time
pendence of the mean-field interaction. Although Davis, G
diner, and Ballagh also deal with a time-dependent densit
states, the second term on the right-hand side of Eq.~15!
does not appear explicitly in their kinetic equation. Howev
they account for this term by dividing phase space into
ergy bins having widths that are a function of time. A fin
difference involves the use of the Bogoliubov excitati
spectrum in the calculation of their density of states, inste
of the Hartree-Fock dispersion used here. We do not exp
this to affect the condensate growth curves significan
However, if quasiparticle excitations are invoked, one sho
in principle also use these states to calculate the collis
integrals @14#. It is not known at present what effect th
might have on the collision rates for the low-lying ener
levels.

Finally, we note that the ergodic treatment of the Bol
mann equation is a powerful, albeit approximate, meth
that would allow the study of nonequilibrium processes
other situations as well. Some future applications might
clude the nonequilibrium dynamics of fermion-fermion a
boson-fermion mixtures. Thus far, the problem of evapo
tive cooling in these systems has been studied using a
plified procedure whereby the distribution function is a
sumed to be given by a cutoff equilibrium distributio
function @26#. A cooling trajectory in phase space is the
generated by solving for the temperature, chemical poten
and cutoff energy at each successive time step. The accu
of this approach could be checked by solving for the en
distribution function following the methods used here. A
other interesting application would be to study a nonequi
rium steady-state situation in which atoms are continuou
fed into the trapping potential while simultaneously bei
removed by an RF cut@27#. This would be relevant to the
study of steady-state atom lasers.
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APPENDIX: EVALUATION OF THE WEIGHTED
DENSITY OF STATES.

In this appendix, we summarize the steps needed to
clude in our calculations the effect of the mean-field inter
tions arising from the noncondensed cloud itself. Referr
to Eq. ~16!, we see that we must evaluate]U(r ,t)/]t. This
quantity is given by

]U~r ,t !

]t
52gS ]ñ~r ,t !

]t
1

]nc~r ,t !

]t
D . ~A1!
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The time derivative ofñ(r ,t) can be expressed as

]ñ~r ,t !

]t
5

]

]tE d3p

~2p\!3E ded„e2E~r ,p,t !…g~e,t !

5E der~r ,e,t !F]U~r ,t !

]t

]g~e,t !

]e
1

]g~e,t !

]t G
5I ~r ,t !

]U~r ,t !

]t
1E der~r ,e,t !

]g~e,t !

]t
, ~A2!

where we have defined

I ~r ,t ![E der~r ,e,t !
]g~e,t !

]e
. ~A3!

Substituting Eq.~A1! into Eq. ~A2!, the latter can be rear
ranged to provide an expression for the time rate of cha
of ñ(r ,t) in terms of the time rate of change of the conde
sate densitync(r ,t) and the distribution functiong(e). We
find

]ñ~r ,t !

]t
5

2gI~r ,t !

122gI~r ,t !

]nc~r ,t !

]t

1E de
r~r ,e,t !

122gI~r ,t !

]g~e,t !

]t
. ~A4!

Inserting this result into Eq.~A1!, we have

]U~r ,t !

]t
52

2g

122gI~r ,t !

]nc~r ,t !

]Nc

]Ñ

]t

1
2g

122gI~r ,t !E der~r ,e,t !
]g~e,t !

]t
.

~A5!
an
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tt.
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We have here made use of the fact thatnc(r ,t) depends on
time parametrically throughNc(t), so that

]nc~r ,t !

]t
5

]nc~r ,t !

]Nc

]Nc

]t
52

]nc~r ,t !

]Nc

]Ñ

]t
. ~A6!

Thus, the weighted density of states becomes

rw~e,t !5E d3rr~r ,e,t !
]U~r ,t !

]t

52E d3rr~r ,e,t !S 2g

122gI~r ,t !

]nc~r ,t !

]Nc
D ]Ñ

]
t

1E d3rr~r ,e,t !E de8
2gr~r ,e8,t !

122gI~r ,t !

]g~e8,t !

]t

[A~e,t !
]Ñ

]t
1E de8B~e,e8,t !

]g~e8,t !

]t
, ~A7!

where

A~e,t ![2E d3rr~r ,e,t !S 2g

122gI~r ,t !

]nc~r ,t !

]Nc
D ,

~A8!

and

B~e,e8,t ![2gE d3r
r~r ,e,t !r~r ,e8,t !

122gI~r ,t !
. ~A9!

We recover the expression forrw(e,t) given in Eq.~52! by
setting the kernelB equal to zero and neglectingI in the
expression forA. It can be seen that including the mean fie
of the noncondensate complicates the calculations cons
ably, but all quantities can in principle be calculated expl
itly if these refinements are desired. However, as discus
in Sec. V, we do not expect these effects to be quantitativ
important.
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