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Quantum kinetic theory. VII. The influence of vapor dynamics on condensate growth
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We extend earlier models of the growth of a Bose-Einstein condensatgGavdineret al, Phys. Rev. Lett.
79, 1793(1997; e-print cond-mat/9801027; Phys. Rev. L&, 5266(1998] to include the full dynamical
effects of the thermal cloud by numerically solving a modified quantum Boltzmann equation. We determine the
regime in which the assumptions of the simple model of Gardéhed. [Phys. Rev. Lett81, 5266(1998] are
a reasonable approximation, and compare our results with those that were earlier compared with experimental
data. We find good agreement with our earlier modeling, except at higher condensate fractions, for which a
significant speedup is found. We also investigate the effect of the final temperature on condensate growth, and
find that this has a surprisingly small effect. The particular discrepancy between theory and experiment found
in our earlier model remains, since the speedup found in these computations does not occur in the parameter
regime specified in the experiment.

PACS numbegps): 03.75.Fi, 05.30.Jp, 51.10y

[. INTRODUCTION equation could be expected, and that the initial part of the
growth curve would be modified, leading to a much sharper
The fundamental process in the growth of a Bose-Einsteinset of the initiation of the condensate growth.

condensate is that dfosonic stimulationby which atoms The only experiment that has been done on condensate
are scattered into and out of the condensate at rates enhanggéwth [11] was then under-way. In these experiments,
by a factor proportional to the number of atoms in the conlouds of sodium atoms were cooled to just above the tran-
densate. This was first quantitatively considered by Gardineéition temperature, at which point the high_energy tail of the
etal. [1], in a paper that treated the idealized case of thgjistripution was rapidly removed by a very severe RF “cut,”
growth of a_condengqte from an nondepletable “bath” of\yhere the frequency of the RF field was quickly ramped
atoms at a fixed positive chemical potentialand tempera-  jown. Atter a short period of equilibration, the resulting va-
tureT. Th's gave rise to a s_lmple and elegant formula I(nOW”por distribution was found to be similar to the assumptions
as thesimple growth equation of our theoretical treatments, and condensate growth fol-
lowed promptly. The results obtained were fitted to solutions
of the simple growth equatiofil). When experimental re-
sults became available, a speedup of about the predicted fac-
tor was found, and indeed the higher temperature results
agreed very well with the theoretical predictions. At lower

an expression derived from quantum kinetic theddy, temperatures there was still some disparity.; the theory pre-
which was estimated approximately fiti] by using a classi- dicted a slower rate of growth with decreasing temperature,

cal Boltzmann distribution. To go beyond the Boltzmann ap-Put experimentally the opposite was observed.

proximation for W* involves a very much more detailed The situation in which we now find ourselves leaves no
treatment of the populations of the trap levels with energyalternative other than to address the remaining approxima-
less tharw, since the equilibrium Bose-Einstein distribution tions. In our previous work, we have made four major ap-
for >0 is not consistent with energies less thann other  pProximations:

words, the populations of the lower trap levelannot be (i) The part of the vapor with energies higher tfaghas
treated as time-independent, and thus the dynamics dfeen treated as being time-independent.

growth must include at least this range of trap levels as well (ii) The energy levels above the condensate level were
as the condensate level. Thereforg 2;3] we considered a modified phenomenologically to account for the fact that
less simplified model, covering a range of energies up to éhey must always be greater than the condensate chemical
cutoff Eg, above which the system was assumed to be @otential, which rises as the condensate grows.

thermal cloud with a fixed temperature and chemical poten- (iii) We treated all levels as being particlelike, on the
tial. Equations were derived for the rate of growth of thesegrounds that detailed calculatiofis2] have shown that only
levels along with the condensate, and the rates at which pae very small proportion of excitations of a trapped Bose gas
ticles from the thermal bath scattered these quasiparticlesre not of this kind.

between levels within the condensate band. The results of (iv) We have used the quantum Boltzmann equation in an
calculations showed that a speedup of the growth rate by argodic form, in which all levels of a similar energy are
factor of the order of 3—4 compared to the simple growthassumed to be equally occupied.

No=2W"(no){(1—elrc s Tng+1}, (1)
in which ngy is the population of the condensaie,is the

chemical potential of the thermal cloud, apg(ng) is the
condensate eigenvalue. The prefadiéi (n,) is a rate with
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In this paper, we will no longer require the first two of  Starting from the full quantum Boltzmann equation, the
these approximations. Abandoning the first means that wergodic approximation is expressed in terms of this binned
are required to take care of all kinds of collisions that candescription as follows: We sdt(x,K,t) equal to the value
occur, and thus treat the time dependence of all levels. Thig,, when e(x,K,t)=#2K?/2m+ Vx(x,t) is inside thenth
comes at a dramatic increase in both the computation timbin, i.e., e(x,K,t) e D,(t). [HereVx(x,t) is the potential of
required(hours rather than secondand the precision of al- the trap, as modified by the mean field arising from the pres-
gorithms required. We also use a density of states that shoukhce of the condensate, as explained in QKV and QKVI.
be close to the actual density of states as the condensate Thus we can approximate
grows, thereby avoiding the phenomenological modification
of energy levels. However, we still treat all of the levels as
being particlelike, since it seems unlikely that the few non-
particlelike excitations will have a significant effect on the .
growth as a whole. The ergodic form of the quantum Boltz- ot at
mann is needed to make the computations tractable, and is of
necessity retained.

af(x,K,t) af, .
_— if  e(x,K,t)eDy(t). (2

In order to derive the ergodic quantum Boltzmann equation,
we define the indicator functiow,(x,K,t) of the nth bin
Il. FORMALISM D,(t) by

The basis of our method is quantum kinetic theory, a full
exposition of which is given in Refl4]. This develops a _
complete framework for the study of a trapped Bose gas in a 1 if  e(XK,t)eDy(t) (3)
set of master equations. The full solution of these equations Xn(X.K,1)= 0 otherwise. (4)
is not feasible, however, and therefore some type of approxi-
mation must be made. The basic structure of the method used
here is essentially the same as that of QKVI, the major dif-The number of states in the bin will be given by g,
ference being that all time dependence of the distribution= [dxdK y,(x,K,t)/h%, and is held fixed.
function is retained. As explained [8,10], quantum kinetic The formal statement of the binned approximation is
theory leads to a model that can be viewed as a modification
of the quantum Boltzmann equation in which we have the

following.
(i) The condensate wave function and energy fx,K, 1) — > foxn(X,K,t), (5)
eigenvalue—the condensate chemical potentigln,)—are n

given by the solution of the time-independent Gross-
Pitaevskii equation withn, atoms.

(i) The trap levels above the condensate level are thand the ergodic quantum Boltzmann equation is derived by
quasiparticle levels appropriate to the condensate wave fungubstituting Eq.(5) into the various parts of the quantum
tion. This leads to a density of states for the trap levels that iBoltzmann equation as follows. For the time derivative part
substantially modified, as discussed below in Sec. [I1B.  we make this replacement, and project obtg(t), getting

(i) The transfer of atoms between levels is given by a
modified quantum Boltzmann equatigMQBE) in the en-
ergy representation. This makes the ergodic assumption that

3v(3
the distribution function depends only on energy. f d*xd’K XK all

e R

The ergodic form of the quantum Boltzmann equation

The derivation of the ergodic form of the quantum Bolt- [Note that the expansiofb) would mean that delta function
zmann equation used §¥3] is particular to the undeformed singularities at the upper and lower boundariesDgf(t)
harmonic potential, and we give here a derivation appropriwould arise by differentiatindg(x,K,t) as defined in Eq5),
ate to our case, in which the density of states can changeut the condition thag, be fixed means that these are of
with time as the condensate grows. \bie the phase space equal and opposite weight, and cancel when integrated over
into energy bands labeled by the indexvith energies in a D, (t), giving a result consistent with E¢6).] We now re-
range place of(x,K,t)/dt on the left-hand side of Eq6) by the

collison integral that appears on the right-hand side of the
Seq(t) Seq(t) quantum Boltzmann equation, and substituteffior,K,t) in
D,(t)= sn(t)—T,sn(t)+ 5 the collision integral using Eq(5). [The streaming terms
give no contribution, since the forigh) is a function of the
energye(x,K,t).]
of width dg,(t), and these widths change in time so that the This leads to the@rgodic quantum Boltzmann equation
number of states within each big,, is constant in time. the form
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of, 4a°h® d*xd’K [ . 5
o) {fpfq(1+fr)(1+fn)—(1+fp)(1+fq)frfn}f S fd Klfd Kzf K 5 xp(x,K 1)

X Xq(%,K2,1) xr (%K g, ) xn(6, K, 1) (K 1+ Ko — K3 —K) 8(e(x,K 1) + €(X,K,t) — e(x,K3,t) — €(x,K 1)),

(7
The final integral is now approximated by the method 18] to give (@ andw are defined in Sec. i
of, 8matw?
Here A(p,q,r,n) is a function that expresses the overall energy conservation, and is defined by
Sey+ 0ey+ O, + 6
1 when |8p+8q—£r—8n|$| ept 92qt do, ¥ So
A(p,q,r,n)= 2 9
0 otherwise.
(10)

Because we approximaféx,K,t) by a constant value within has an important effect on the evolution of the cloud.
each D,(t), energy conservation means thag The correct description of the quantum levels immedi-
=3,e,0,(t) is constant. This follows from energy conser- ately above the ground state when there is a significant con-

vation in the full quantum Boltzmann equation, which alsodensate population requires a quasiparticle transformation.
implies that This is computationally difficult, however, so we make use

of a single-particle approximation for these states. This
should be reasonable, as most of the growth dynamics will
% A(p.,q,r,n)M(p,q,r,n)(e,+ey) involve higher-lying states that will be almost unaffected by
the presence of the condensate.[&} we did this using a
linear interpolation of the density of states; here we use an
:(8p+8q)% A(p.q,r,nM(p,q,r,n). (1) approximate treatment based on the Thomas-Fermi approxi-
mation.

This is the limit to which the binning procedure defines en-
ergy conservation. A. Condensate chemical potentialic(ng)

We consider a harmonic trap with a geometric mean fre-
lll. DETAILS OF MODEL quency of

The most important aspect of our model is the inclusion
of the mean-field effects of the condensate. As the popula-

tion of the condensate increases, the absolute energy of thge include the mean-field effects via a Thomas-Fermi ap-
condensate level also rises due to the atomic interactiongyoximation for the condensate eigenvalue, which is directly
This results in a compression in energy space of the quantuiRated to the number of atoms in the condensate mode. As in
levels immediately above the condenséee Fig. 1, and  [3 10, we use a modified form of this relation in order to
give a smooth transition to the correct harmonic-oscillator
value when the condensate number is small:

w= (wxwywz)m. (12

pe(Ng) = alng+ (3hw/2a)%?)?5, (13)

wherea= (15awm¥%2/4\2)?5, anda is the atomics-wave
scattering length. Thus, fony=0 we have u(0)=¢q

=3hwl2.

B. Density of statesg(¢)

FIG. 1. Qualitative picture of the compression of the quantum We assume a single-particle energy spectrum with a
levels above the condensate mode as the condensate eigenvalB@goliubov-like dispersion relation, as in Timmermagisal.
increases. [14], which leads to a density of states of the form
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— 4 ug(ng)? ( e ([t i [Velucng —11%+x*=x]*  [elucing [ &
9le.no) =7 (hw)® |\ mc(No) ! fodx 1ox Vel me(ng) — 117+ %2 +f1 dxx pelng | 19
The integrals can be carried out analytically; the result is
— B &? pe(no) | ? 1
Q(Sano)—W[“‘%(Mc(%ﬂ@*‘ 1- - ) %(8/#0(”0)_1)], (15
where 5
A1) = —[Vx1=x(1=2x) = sin *(\x)], (16)
42 T+x+y2x| |7 [ x-1
qZ(X)_T \/Zerln W —{§+Sln m ] (17

This is plotted in Fig. 2, along with that for the ideal gas. numbers of particles into new bins after each time step, and
Thus the density of states of the trap varies smoothly as th#hus does not contradict the requirement tpats fixed dur-
condensate grows. ing the time step. We find that this is the most simple pro-
cedure for the calculation of rates in and out of these levels.
We choose the number of bins to be sufficient such that the

width is not more than abowle,,~5% w.
The high energy region corresponds to thermal bath
The bins we shall choose for the representation of thef our previous papers. This is the region in whithis
distribution in terms of the quantitie, as in Eq.(5) are  slowly varying, and therefore the energy bins are consider-
divided into two distinct regions, as shown diagrammaticallyably broader(up to 64 o in the results presented in this
in Fig. 3. The lowest energy region corresponds essentiallpapej. The evaporative cooling is carried out by the sudden
to thecondensate banddRof [1,3,7,1Q. This is the regionin  removal of population of the bins in this region with,
which f, is rapidly varying in the regime of quantum degen- >¢_,.
eracy, and is described by a series of fine-grained energy

IV. NUMERICAL METHODS

A. Representation

bins up to an energEgr~3uc(Ngmay. The condensate is a
single quantum state represented by the lowest energy bin.

B. Solution

As the number of particles in the condensate changes, the There are four different types of collision that can occur

energy of the condensate level changes according to tH¥

Thomas-Fermi approximation of E¢L3). Thus the total en-
ergy width of Rc decreases as the condensate grows.

We represenR; by a fixed number of energy bins of
equal widthée,, with a midpoint ofe,,.

As the condensate energy increases, we adjyand de,,
betweenintegration time steps, such that all of the bins be-
low Eg have equal width. This is done by redistributing the

5
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FIG. 2. The modified density of statésolid curve compared
with noninteracting functioridashed curvefor the harmonic trap.

ven our numerical description of the system. These are
depicted in Fig. 4.

(a) Growth This involves two particles ifRy¢c colliding,
resulting in the transfer of one of the particles to the conden-
sate bandalong with the reverse process
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FIG. 3. The numerical representation of the system with a con-
densate of 2.3 10° atoms at a temperature of 590 nRe is the
condensate band, which is fine-grained, whefR@sis the noncon-
densate band, which is coarse-grained. The division between the
two bands is fixed aEg. The condensate energy is derived from
the Thomas-Fermi approximation.
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C. Algorithm
Ry Rwc The algorithm we use to solve the MQBE is summarized
as follows:
(1) Calculate the collision summation for all types of col-
lisions, keeping the density of states, and the energies of the
ER levels in the condensate barRl fixed. The distribution
m £ m function f,(t+ ét) is calculated using an embedded fourth-
order Runge-Kutta method, using Cash-Karp parameters
[15].
R¢ R¢ (2) The quantityM (p,q,r,n) defined by Eq(8) expresses
. all the overlap integrals, and is quite difficult to compute
(#) Growth (b) Scattering exactly. In our computations, we have simply set this to cor-
respond to the value found [13], i.e., we set
Ryc Ryc M(paQ7ran):gmin(p,q,r,n) , (18)
q n
and express energy conservation in a simplified form, using
/\m- the fact that the energy bins will be chosequally spaced
Ep V. Eg by choosing a Kronecker delta form
X s
P NG A(p,q.r,n)—3(p+a.r+n). (19
m
Re Re

The difference between these two forms clearly goes to zero
(c) Internal (d) Thermal as the bins become very narrow.

It has been explicitly checked that in practice, energy is
conserved to a very high degree of accuracy throughout the
calculation.

(3) As a result of the time step, the condensate population

(b) Scattering A particle inRyc collides with a particle in will have changed. This causes the density of states to alter
the condensate band, with one particle remaining&dn slightly, along with the positions and widths of the energy

(c) Internal: Two particles within the condensate band bins in the condensate band, as all these quantities are deter-
collide with at least one of these particles remainindRin =~ mined by the condensate numbwey. The derivation in Sec.
after the collision. IIA shows that the populationg,f, are of the bins that

(d) Thermal This involves all particles involved in the move with the change of energy levels and density of states
collision coming from the non-condensate band and remainas the condensate grows so as to maintain the number of
ing there. levelsg,, in the bin constant. Therefore after the Runge-Kutta

Our first description of condensate growt considered time step, the numbers,f, represent the numbers of par-
only process(a). The next calculatiof2,3] involved both ticles in the bins determined by the appropriate energy levels
processesa) and (b). The calculations presented below in- &fter that step. _ o
clude all four processes, allowing us to determine whether (4 As a result of the preceding step, the bins will no
the earlier approximations were justified. !onger be of equal width, so we rgbln the numbers of atoms

The computation of the rates of proces¢asand (b) is into a new set of equally spaced blns., as explal_ned Sec. IVA.
made difficult because of the different energy scales of thef\h To enbsure} total_ nlum_ber conbe_rvapon of parﬂclei, we keep
two regions of the distribution function. Our solution is to enumberof particles in each bingnfy, constant when we

interpolatethe distribution functiorf,, in Rye (nonconden- adjust the energies and widths of the bins. As the change in

L the density of states and the width of each bin is determined
sate bangsuch that the bin sizes are reduced to be the sambay the condensate number, thecupation per energy level

as forRc (the condensate bandThe rates are then calcu- f yhe nth bin, ., must be altered slightly to ensure number
lated using this interpolated distribution function, now con-.nservation.
sisting of more than one thousand bins, and the rates for the (5) We now continue with stepd).

large bins of the noncondensate band are found by summing The change inuc(n,) with each time step, and hence the
the rates of the appropriate interpolated bins. shifts in the energy of the bins iR¢ is very small. There-
We have found that these rates asdremelysensitive to  fore, the adjustment of the distribution function due to step
the accuracy of the numerical interpolation—small errors(3) is tiny, much smaller than the change due to stBp
lead to inconsistencies in the solutions of the MQBE. This The method has been tested by altering the positidgof
procedure is more efficient than simply using the same birmand width of the energy bins &y andR.. We have found
size for the whole distribution, as there are only a smallthat the solution is independent of the valueE&f over a
number of bins for the condensate band. large range of values of these parameters.

FIG. 4. The four different collision types that can occur in our
numerical description.
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Einstein distribution in the presence of a condensate. This is
- 8 1=0.00s - 6 1=0.02s pictured schematically in Fig. 5.
) n,= 4 ) n,=9 Because of the ergodic assumption, the MQBE that we
o4 o 4 simulate depends only on the geometric average of the trap-
= = ping frequencies = (w,w,w,) . There is likely to be some
“@2 D 2 type of experimental dependence on the actual trap geometry
> = (o) that is not included in our simulation; however, in the regime

6 % 2 (kT)4 6 kT># w this should be small. The trap parameterq bf]
i =

were (oy,wy,0,)=27X(82.3,82.3,18) Hz, givingo=2m
X49.6 Hz.

6 t=0.07s

_ 5
Mo =7.7>10 A. Matching the experimental data

The main source of quantitative experimental data of con-
densate growth generally available is Fig. 5[@fl]. This
gives growth rates as a function of final condensate number
and temperature rather than the initial conditions. Whereas

a(e)f(e) [10*(ha) "]

0 2 (kTi)4 6 0 e (kTi)4 6 the growth curves calculated [d,3] required these param-
eters as inputs, the calculations presented here require three
— 040 — © — 040e different input parameters_; t_he initial _number of_atoms in the
& ' Jd = ' . systemN; (and hence the initial chemical potental,;), the
£ ng=3.2x10 £ ng=7:5x10 initial temperatureT;, and the position of the cut energy
2 4 2 4 7kT; . Given the final parameters supplied[ii], it is pos-
= = sible to calculate a set of initial conditions that we require.
E 2 E 2 As we know the final condensate number, we can calculate
= (e) o the value of the chemical potential of the gas using the
% > 7 6 % > ) 5 Thomas-Fermi approximation for the condensate eigenvalue,
e (KT) e (kT) Eq. (13). This gives a density of states according to Edp),

FIG. 5. Snapshots of the distribution function for a simulation and along with the measured final temperatlife we can
with initial conditions ui=—100iw, T,=1119 nK, and 5 calculate the total energl, and number of atomsl;y in
=2.83. This results in a condensate with=7.5x10° atoms ata the system at the end of the experiment, completely charac-
temperature of =830 nK. For clarity, the condensate itself is not terizing the final state of the gas.

depicted, but the presence of a significant amount of condensate has > g
the effect of displacing the left-hand ends of the curids-(f) an Niot=No+ 4 , (20
amountuc(ne)/kT; from the axis. The growth curve for this simu- en>ncng) €XH{en—pc(No)}/kTe] -1
lation is shown in Fig. @).
€ndn
Eox=Eo(Ng)+ 2, .
V. RESULTS OO g X {en— uc(Ng) /KTl -1
(21

In this paper, we present the results of simulations mod-
eling the experiments described ji1]. In these experi-
ments, a cloud of sodium atoms confined in a “cigar”-
shaped magnetic trap was evaporatively cooled to just abo - . o ) .
the Bose-Einstein transition temperature. Then, in a period of cut™ _”kTi' _If we specify an initial ch_emlcal potential for
10 ms the high energy tail of the distribution was removed € distributioniye, we can self-con.3|stently.solve for the
with a very rapid and rather severe RF cut. The condensaf®rametersT; and » from the following nonlinear set of

We now want to find an initial distribution that would have
\}ge same total energy and number of atoms if truncated at

was then manifested by the formation of a sharp peak in th§auations
density distribution. KT,

We have carried out a full investigation of the effect that Neg= S n 22
varying the initial cloud parameters has on the growth of the tot o Zanon XA (en— mini) (KT ]—1°
condensate for the trap configuration described1it]. In "
this paper, we concentrate on a comparison of these results 7k
with our earlier theoretical model. To model these experi- Eor= > &nJn ) (23)
ments, we begin our simulations with an equilibrium Bose- en=aho OXH (80— min)/KTi]—1

Einstein distribution, with temperatufE and chemical po-

tential u;,; and truncate it at an energy. .~ »kT;, which  This gives the input parameters for our simulation, and we
represents the system at the end of the RF sweep. This ¢an now calculate growth curves starting with initially dif-
then allowed to evolve in time, until the gas once again apferent clouds, but resulting in the same final condensate
proaches an equilibrium, that is, the appropriate Bosenumber and temperature.
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FIG. 6. Growth of a condensate withy=7.5x1C°, T;
=830 nK. Solid linesu;,;=0, dotted linesu,;= — 40k w, dashed
lines ui,=—100hw. (8) Population of condensate versus time.
Gray curve is the solution for model of Rdf3]. (b) Chemical
potentialu(np) of condensatélower curve$ and effective chemi-
cal potentialuq of thermal cloud(upper curves

B. Typical results

A sample set of growth curves is presented in Fi@),6
for a condensate with 7:510° atoms at a final temperature
of 830 nK and a condensate fraction of 10.4%. The initial
parameters for the curves are given in Table I.

PHYSICAL REVIEW A 62 063608

1. Effective chemical potential

To facilitate understanding of these results, we introduce
the concept of an effective chemical potentigl; for the
noncondensate band. We do this by fitting a Bose-Einstein
distribution to the lowest energy bins Bf¢ as a function of
time. Obviously, the chemical potential is undefined when
the system is not in equilibrium, but as has been noted for the
classical Boltzmann equation, the distribution function tends
to resemble an equilibrium distribution as evaporative cool-
ing proceedq16]. The effective chemical potential is not
uniqgue—it is dependent on the particular choice of the en-
ergy cutoffEg. It gives a good indication of the “state” of
the noncondensate, however, since the majority of the par-
ticles entering the condensate after a collision come from
these bins. In this papeu, was computed by a linear fit to
In[1+1/f,,] of the first ten bins of the noncondensate band,
with the intercept givingu.s, and the gradient an effective
temperature.

2. Interpretation

We find that all the results presented in this paper can be
qualitatively understood in terms of the simple growth equa-
tion (1), with the vapor chemical potential replaced by the
effective chemical potentigk.s of the thermal cloud.

The simple growth equation requirgs.s> wc(ng) for
condensate growth to occur. In Figh§ we plot the effec-
tive chemical potentialus of the thermal cloud and the
chemical potential of condensate-(ny). This graph helps
explain the two effects noted above—Ilonger initiation time
and a steeper growth curve for the,;= —100iw case.
First, the inversion of the chemical potentials for this simu-
lation occurs at a later time than far;,;;=0, causing the
stimulated growth to begin later. This is because the initial
cloud for theu,;= —100h @ simulation is further from the
transition point at=0. Second, the effective chemical po-
tential of the thermal cloud rises more steeply, meaning that
meii— mc(Ng) is larger, and therefore the rate of condensate
growth is increased.

C. Comparison with earlier model

In Fig. 6(a), we have also plotted the growth curve that is

As can be seen the curves are very similar, and arguablyalculated for these final condensate parameters by the model

would be difficult to distinguish in experiment. The main

of [3], which we refer to as the simple modgiot to be

difference is the further the system starts from the transitiomistaken with the solution of the simple growth equation

point (i.e., the more negative the initial chemical potential

(1)]. For this earlier model the initial condensate number is

the longer the initiation time but the steeper the growthindeterminate, whereas for the detailed calculation presented

curve. This trend continues as,,; becomes more negative.

TABLE I. Parameters for the formation of a condensate with
no=7.5x 10° atoms at a temperature @;=830 nK from an un-
condensed thermal cloud. The growth curves are plotted in Fig. 6

Linit(f @) Ti(nK) N;(10°) n )
0 1000 89.1 3.82 1605

—40 1080 100.1 3.31 1503
-100 1119 117.6 2.83 1419

here the initial distribution is Bose-Einstein, with the zero of
the time axis being the removal of the high-energy tail.

For these particular parameters, it turns out that the results
of the full calculation of the growth curve give very similar
results to the previous model, with the initial condensate
number adjusted appropriately. This is not surprising; In-
deed, from Fig. @) we can see that the approximation of the
thermal cloud by a constant chemical potentiaé., the
cloud is not depleteds good for the region where the con-
densate becomes macroscopic.

For larger condensate fractions, however, the principal
condition assumed in the model §8], that the chemical
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TABLE II. Parameters for the formation of condensate with
no=2.5x10° atoms from an uncondensed thermal cloud with
minie=0. The growth curves are presented in Fig. 8.

Condensate
fraction

Eeut
(fiw)
572

1198
2629

Tf Ti N, 7
(nK) (nK) (10

215
31.6
107.7

0.253
0.099
0.025

2.19
4.03
5.87

622.0
707.3
1064.8

400
600
1000

potential has little effect on the overall shape of the growth
curves. This determines the other paramefgrand » and
the initial conditions are shown in Table Il. The results of
these simulations are presented in Fig. 8.

We find the somewhat surprising result that the growth
curves do not change significantly over a very large tempera-
ture range for the same size condensate. In fact, a condensate
formed at 600 nK grows more slowly than at 400 nK for
these parameters. As the temperature is increased further,
however, the growth rate increases again, and at a final tem-

(0) |

0.4

0.2 0.3
Time (s)

FIG. 7. Comparison of condensate growth models for a conden-
sate fraction of 24.1%n,=7.5x10°, T;=590 nK. Solid lines
Minit= 0, dashed linegji;= — 100hw. (a) Population of condensate
versus time. Gray line is the solution for model[8f. (b) Chemical
potential of condensat@ower curve$ and effective chemical po-

tential of thermal cloudupper curvep

0 0.1

potential of the vapor can be treated as approximately con-
stant, is no longer satisfied. In Fig(@y, we plot the growth

of the same size condensate as in Figtht is, 7.5<10°
atoms, but at a lower final temperature of 590 nK. In this
situation, the condensate fraction increases to 24.1%, and so
there is considerable depletion of the thermal cloud. The ef-
fect of this can be seen in Fig(l§. The difference between
the vapor and condensate chemical potentieds— wc(ng)
initially increases to much larger values than for the simple
model, whereuq is held constant at its final equilibrium
value. It is this fact that causes more rapid growth.

As the condensate continues to grow, it begins to signifi-
cantly deplete the thermal cloud, causipg; to decrease
from its maximum. It is the “overshoot” ofu.¢ from the
final equilibrium value that the model $8] and QKVI can-
not take account of. This overshoot only occurs for final
condensate fractions of more than about 10%; hence up to
this value the simple model should be sufficient.

perature of 1uK the growth rate is faster than at 400 nK.
This effect has also been observed for both larger (7.5
X 10°) and smaller (kX 10°) condensates.

0.4 0.6
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FIG. 8. Growth of a condensate with a final condensate size of

D. Effect of the final temperature on condensate growth

2.5x 10° atoms from a vapor withe;,;;=0. The dotted line is for a

We have investigated the effect that final temperature hagnal temperature of 400 nK, dashed 600 nK, and solidKL (a)
on the growth of a condensate of a fixed number. All simu-Growth curves(b) Chemical potential of condensatewer curves

lations were begun withe;,;;=0, since the initial chemical
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TABLE Ill. Parameters for the formation of condensated at
=590 nK from an uncondensed thermal cloud with;=0. The
growth curves are presented in Fig. 9.

Ny Ti N; 7 €cut Condensate veeeneed
(10°) (nK) (10° (hw) fraction TTEL

n, (10°)
N w » &, [2] ~ 00

2.3 692.5 29.6 4.07 1186 0.095
5.0 794.6 44.7 291 973 0.179
7.5 897.9 64.6 2.29 865 0.239

—_

This observation can once again be interpreted using the 0
simple growth equation(1). Although W (ny) increases 0 ot 02 03 04 05 08
with temperaturéapproximately ag? as shown ir{1]), the Time (s)
maximum value ofues— mc(ng) achieved via evaporative
cooling decreases with temperature for a fixed condensate
number, as the cut required is less severe and the final con-
densate fraction is smaller. Also, the term in the curly brack-
ets of Eq.(1) is approximately proportional t®~* for most 60
regimes. The end result is that the decrease in this term com- )
pensates for the increase W™ (ng), giving growth curves €40
that are very similar for the different simulations. Once the 3 |1/ 4 - - e
“overshoot” of the thermal cloud chemical potential ceases 20
to occur(when the evaporative cooling cut is not as sejere 3
the growth rate begins to increase with temperature as pre-
dicted by the model of3] and QKVI.

thermal cloud

condensate (b) 1

0 0.1 0.2 0.3 04 0.5 0.6
E. Effect of size on condensate growth Time (s)

Finally, we have performed some simulations of the for- FIG. 9. Growth of condensates with a final temperature of 590
mation of a condensate at a fixed final temperature, but of 8K, starting from an uncondensed thermal cloud with;;=0.
varying size. The parameters for these simulations are givegolid line, 7.5¢10° atoms; dotted line, 5:010° atoms; dashed
in Table IIl, and the growth curves are plotted in Figa)d  line, 2.3% 10° atoms. The dashed line is for the same parameters as

We find that the larger the condensate, the more rapidly it® lower temperature curves [8]. (8) Growth curves, with the
grows. The initial clouds required to form the larger conden-S0ution to the model of3] in gray. (b) Chemical potential of

sates not only start at a higher temperatizned thus have a condensatélower curveg and thermal cloudupper curves

Rﬁr?cee:tgg”:ﬁggrg;ié?e?egéglj\g?gblg ﬂ?oetrhgi};fgre:r?cgoirk:ethture' because of the cancellation noted in Sec. VD. This
Y, 9 g &ffect has its origin in the quite simple fact that with a suf-

fﬁ:srglce?;e?:?stennetla;?i,nasezﬁﬁ notlﬁe::gsbﬁ E‘:S’rg\]/?ct)izdsg&iofri]ciently severe cut it is impossible to separate the process of
here thev tend gto re%nforce one another 'IF')his causes thequilibration of the vapor distribution to a quasiequilibrium
y ) " - om the actual process of growth of the condensate. In other
growth rate to be highly sensitive to the final number of ds. th ol he “ideal” : .
atoms in the condensate for a fixed final temperature words, the attempt to implement the “ideal” experiment in
' which a condensate grows from a vapor with a constant

For further comparison with the previous model, in Flg'chemical potential and temperature cannot succeed with a
9(a) the dashed curve is for the same parameters as for th

lower temperature results §8], whose prediction is plotted seufficiently large cgt. Under these conditions, the initial tem-
in gray—as can be seen the, two methods are in very goo erature differs quite strongly from the final temperature, and
agreement with each othér for this choice of parameters. Iti s well, '_[he number of atoms required to produce the; con-

4 : ) ; >rS- ! Bensate is so large that the vapor cannot be characterized by
this particular set of final parameters for which the discrep-

. . a slowly varying chemical potential during most of the
ancy between theory and experiment remains. growth process.

F. The appropriate choice of parameters G. Comparison with experiment

In our computations, we have taken some care to make
sure that we can give our results as a function of the experi-
mentally measurefinal temperaturé ; and condensate num- The most quantitative data available frgdd] is in their
berny. Nevertheless, it can be seen from our results that thi§ig. 5, in which results are presented as parameters extracted
can give rise to counterintuitive behavior, such as the facfrom fits to the simple growth equatiai). In [3], we took
that under the condition of a given final condensate numbettwo clusters of data from this figure, at the extremes of the
the growth rate seems to be largely independent of temperdaemperature range for which measurements were made, and

1. Comparison with MIT fits
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8 TABLE IV. Comparison of the static parameters of the Bose gas
-l that match Fig. 4 of Ref11].
6 Parameters extracted Parameters that give
. Quantity from experiment an apparent fit
[(e]
o
= 4t N;(10°) 40.0 40.0
o Atoms lost 60% 94%
8 Condensate fraction 7.2% 51%
2t T, (nK) 945.5 765
1} T (nK) 530 211
7 2.19 0.60
0 0.1 0.2 0.3 0.4 0.5
Time (s) The agreement with the experimental growth curve data is

FIG. 10. A comparision between the results of Fig. 11Df]  very good for both computations. The simpler mode([3f
and our own calculations with the initial conditiom§ = 60X 1° and QKVI cannot reproduce the results at this temperature,
atoms,T;=876 nK, »=2.5. Our data are shown as the solid line as js shown by the lower gray curve in Fig. 10. This is as we
and the results from Bijlsmat al. are the dashed line. The results expect—the final condensate fraction is far greater than 10%
of the simple model of condensate growth with a final temperatureynq in this case the “overshoot” Ql is significant.
of T{=604 nK matching these initial conditions is the lower gray  Gjyen these initial conditions, this is the only case in
curve. The upper gray curve is also for the simple model, but Wm\Nhich we have found that the “speedup” given by the full
what we feel is a more realistic final temperatureTef=830 nK. quantum Boltzmann theomnayyield a significant improve-
The experimental data points are the solid dots. ment of the fit to the experimental data.

. . . . i i however, that the param-
compared the theoretical results with the fitted experlmentaét We would like to emphasize, P

curves. At the higher temperature of 830 nK, the results were ers used for this simulatiodo notcome from Ref{11].
in good agreement with experiment, but at 590 nK they dif- he MIT paper does not provide any details of the size of the

fered sianificantly. the experimental arowth rate bein abou%hermal cloud, or the temperature at which this curve was
ered sig Y P ' 9 9 measured, and as such, a set of unique initial and final pa-
three times faster than the theoretical result.

rameters of the experiment cannot be determined. We have

We have performed the same calculations using the de-; .
tailed model. The results for 830 nK are presented in Fig. |r;1]ply taken these parameters from the calculation of Ref.

‘;’T‘]ni tEObS et\fvor ig?hnKt\SretE;%‘c;gE;? ::olfjlgi ﬂ?ég‘tzrrﬁ "Zr‘:‘?oo In fact, it seems likely to us that the final temperature for
atch between the two P the experimental curve shown in Fig. 10 should be higher.

tures. Studying Fig. 5 of Ref[11] shows that most condensates of
7x10° atoms or more were formed at temperatures above
800 nK. We have therefore performed a second calculation
In [11], some specific growth curves are also presentedysing the simple model with a final temperature of 830 nK,
and we shall compare these with with our computations, an@nd this result is shown as the upper gray curve in Fig. 10.
those of Bijlsmaet al.[17]. As can be seerthis also fits the experimental data extremely
In Fig. 10 we show the data from Fig. 3 ¢11], the  well. The condensate fraction at this higher temperature is
computation of Fig. 11 of17], and our own computations. 10.2%, meaning that these parameters are very similar to the
This is for the MIT sodium trap, with the simulation param- sjtuation considered in Fig. 6, which was originally found to
eters taken from Ref17] of N;=60x 1%, T;=876 nK,and be a good match to experimental data in R8&f. We note
n=2.5. We find this results in a condensate of &47°  that the solution to the simple model at this higher tempera-
atoms at a temperature of 604 nK, and a final condensatgire is also in good agreement with our more detailed calcu-
fraction of 21.8% after half a second, which agrees with outation for these parameters.
predictions from the solution of the equations in Sec. VA at  The situation is very different, however, if we compare
t=o0 to within 0.2%. with the result of Fig. 4 of11], in which the final condensate
We can see that there is little difference in the results ohumber was 1.2 10° atoms. In this case, the data of Fig.
the two computations for this case, the main discrepancy(b) of Ref.[11] can be used to extract all the relevant ex-
being that the initiation time for our simulation is a little perimental parameters. This graph shows an experimentally
longer than that of Bijlsmat al This is likely to be due to measured reduction in the thermal cloud number from about
the fact that their calculation starts with the condensate al40x 10° atoms to about 181C° over the duration of the
ready occupied witmy=5x10* atoms, whereas we begin experiment. Including the final condensate population gives
with the equilibrium number at this temperature given by thea total number of atoms in the system of approximately
Bose distribution ohy= 208 atoms. This difference could be 16.2<x 1P, or a loss of about 60% of the atoms. With the
brought about by the use of a slightly different density ofthree pieces of data taken from the MIT gragimstial ther-
states, which is also the likely cause of the difference in themal cloud number, final thermal cloud number and final con-
final condensate number, of approximateby 80> atoms. densate numbgrwe can estimate all the relevant parameters

2. Comparison with sample growth curves
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1.4 ; " g - tions would have to remove 94% of the atoms in the trap,
| . and we believe it is very unlikely that this matches any of the
' _mm— = experimental situations.
1 >~
o;\ - b ,’ 3. Speedup of condensate growth compared to simplified theory
T of We have shown that a significant speedup of the conden-
o 08y :’ sate growth can occur at higher condensate fractions, but this
04} @ cannot explain this particular discrepancy with the experi-
d mental results, for all of the measured values of temperature
02 o and condensate fraction for which growth rates are presented
ol . . . . in Fig. 5 of [11].
0 0.1 0.2 0.3 0.4 0.5 The only situation in which this speedup might possibly

Time (s) be relevant to experiment is the single growth curve corre-

FIG. 11. A comparison between the data of Fig. 41| (large spondﬁng to Fig..lo.' However, a§ we have Qoted, th(:j' initial
solid dots and our own calculations. The solid curve shows theconditions for this figure are quite speculative, and in fact

growth curve for the static parameters that we have extracted frorRlISO appear to be unrealistic. o
the experimental datdy,=40x10°, T,=945.5 nK, #=2.19. The actual speedup observed in our computations is of the

An apparent fit can also be obtained—the parameters for the gra§rder of magnitude of that achievable with a different con-
curve (our resulty and dashed curvéBijlsma et al) are N;=40  densate fraction, and it is conceivable that the problem could
x10° atoms, T;=765 nK, 7=0.6. However, as noted in the be experimental rather than theoretical—a systematic error in
text, these parameters are not experimentally acceptable. the methodology of extracting the condensate number from
the observed data could possibly cause the effect. For a re-
Slistic comparison to be made between experiment and
tmeory, sufficient data should be taken to verify positively all

e relevant parameters that have an influence on the results.
hus, one should measure the initial temperature and number

using the equations of Sec. V A, and these are shown in th
second column of Table IV.

While the parameters we present here are consistent wi
the static experimental data, the growth curve corresponding

:ﬁ théase pa_rarlmcejtet(sh\cl)vwn f[n dFI'?H %1,[ certainly doeshnot ];'t of atoms, along with the final temperature, condensate num-
€ dynamical data. We fin at fo remove Such a 1argge, and the size of the “cut.” It should be noted in particu-

proportion of_a_t(_)ms, yet still obtain a relatively small con- lar, in the one case where all of this data is available—that
densate, the initial system must be a long way from the tranbresented in Fig. 11—good agreement is not found.

sition temperature, Withjy;= —212 w. The previous paper in this series, QKVI, considered in
This means that condensate growth does not occur untfletail a semiclassical method of fitting theoretical spatial dis-
the relaxation of the thermal cloud is almost Complete, r'etributions to the two-dimensional data extracted by phase_
sulting in a very long initiation time. Also, when the growth contrast imaging of the system during condensate growth.
does begin, the rate is significantly slower than was experiThis method shows that significantly different condensate
mentally observedThis is the region in which the experi- numbers and temperatures are consistent with the MIT data
mental and theoretical discrepancies lie. and methodology11]. This seems to us to be a more likely
The comparison of results is presented in Fig. 11. As welpyrigin of the discrepancy between theory and experiment at

as the computation based on the extracted parameters, W&y temperatures with a small condensate number.
also present two “apparent fits,” one based on our calcula-

tions and another based on a calculatioflaf], and here we
find the results of the two different formulations are almost H. Outlook
identical. The difference appears to be due to the initial con- It does remain conceivable, however, that approximations
densate number—our calculations begin with 295 atomsmnade in this formulation of quantum kinetic theory are not
whereas Bijlsmat al. begin with 1d atoms. The initial pa- appropriate to the experimental regime where the discrep-
rameters chosen ifil7] for this simulation are a system of ancy remains. In this section, we summarize the possible
N;=40x 10° atoms at at temperature @ =765 nK, and further extensions.
the energy distribution is truncated st 0.6—an extremely The first is the ergodic approximation, that all levels of a
severe cut. similar energy are assumed to be equally occupied. From the
However, while the fit to the experimental data looks veryresults of QKII, it would seem than any nonergodicity in the
good, the initial parameters for these calculations are naiitial distribution would be damped on the time-scale of the
consistent with the experiment. An inspection of the finalgrowth—therefore the effect of this could be significant if
state of the gas explains the situation. The final temperaturéne initial distribution is far from ergodic. It is difficult to
according to these computations T§=211 nK, and the know what the exact initial distribution of the system is with-
condensate fraction is 51%. Looking at the datdldf], we  out performing a three-dimensional detailed calculation of
find no reported temperatures to be lower than 500 nK, anthe evaporative cooling, which would require massive com-
the largest condensate fraction reported to be 8@hough putational resources. There is also the fact that we have used
our analysis of their data from Fig. 5 gave a maximum ofthe simplified form(18), derived in analogy with the work of
17%). The evaporative cooling of these particular simula-Holland et al. [13] on the ergodic approximation.
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The second important approximation is that the lower-the concept of the effective chemical potentigl for the
lying states of the gas are reasonably well-described by thghermal cloud as it relaxes, and observed it to overshoot its
single-particle excitation spectrum, and thus using a densitfinal equilibrium value in these situations, resulting in a
of states description in calculating the collision rates of thesgnuch higher growth rate than the simple model would pre-
levels. The justification of this is that these states are nogict. Thus we have identified a mechanism for a possible
expected to be important in determining the growth of thespeedup that may contribute to eliminating the discrepancy
condensate, and in QKVI it was shown that varying theseyith experiment.
rates by orders of magnitude had little effect on the growth \We have also found that the results of these calculations
curves. can be qualitatively explained using the effective chemical

A third approximation made is that the growth of the con-potential of the thermal clougkes and the simple growth
densate level is adiabatic, and its shape remains welkquation(1). In particular, the rate of condensate growth for
described by the Thomas-Fermi wave function. This may nothe same size condensate can be remarkably similar over a
be the case, and indeed some collective motion duringvide range of temperatures; In contrast, the rate of growth is
growth was observed ifiL1]. We feel this may become im- highly sensitive to the final condensate number at a fixed
portant for sufficiently large truncations of the thermal cloud,temperature.
in_experiments that could be considered a temperature This model we have used in this paper eliminates all the
“quench.” Removing this assumption would require intro- major approximations in the calculation of condensate
ducing a full description of the lower-lying quasiparticle lev- growth, apart from the ergodic assumption, whose removal
els, and a time-dependent Gross-Pitaevskii equation for th@ould require massive computational resources. In the ab-

shape Of the conde'nsat.e. _ _ sence of experimental data sufficiently comprehensive to
The final approximation is that fluctuations of the occu-make possible a full comparison between experiment and
pation of the quantum levels are ignored. theory, this does not at present seem justified.

The agreement between the theory and the single experi- |n Sec. V G 2, we have compared the results of our simu-
ment performed so far is generally good, and there is onlyations to those of Bijlsmaet al. [17], and found that our
one regime in which there is significant discrepancy. Theformulations are quantitatively very similar, giving growth
removal of these approximations requires a large amount cfurves in very good agreement with each other. The two
work, and we feel this is not justified until new experimental treatments are based on similar, but not identical methodolo-
data on condensate growth becomes available. gies, and have been independently computed. Thus the dis-

agreement with experiment must be taken seriously.
VI. CONCLUSION
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