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Quantum kinetic theory. VII. The influence of vapor dynamics on condensate growth
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We extend earlier models of the growth of a Bose-Einstein condensate c.w.@Gardineret al., Phys. Rev. Lett.
79, 1793 ~1997!; e-print cond-mat/9801027; Phys. Rev. Lett.81, 5266 ~1998!# to include the full dynamical
effects of the thermal cloud by numerically solving a modified quantum Boltzmann equation. We determine the
regime in which the assumptions of the simple model of Gardineret al. @Phys. Rev. Lett.81, 5266~1998!# are
a reasonable approximation, and compare our results with those that were earlier compared with experimental
data. We find good agreement with our earlier modeling, except at higher condensate fractions, for which a
significant speedup is found. We also investigate the effect of the final temperature on condensate growth, and
find that this has a surprisingly small effect. The particular discrepancy between theory and experiment found
in our earlier model remains, since the speedup found in these computations does not occur in the parameter
regime specified in the experiment.

PACS number~s!: 03.75.Fi, 05.30.Jp, 51.10.1y
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I. INTRODUCTION

The fundamental process in the growth of a Bose-Eins
condensate is that ofbosonic stimulation, by which atoms
are scattered into and out of the condensate at rates enha
by a factor proportional to the number of atoms in the co
densate. This was first quantitatively considered by Gard
et al. @1#, in a paper that treated the idealized case of
growth of a condensate from an nondepletable ‘‘bath’’
atoms at a fixed positive chemical potentialm and tempera-
tureT. This gave rise to a simple and elegant formula kno
as thesimple growth equation

ṅ052W1~n0!$~12e[mC(n0)2m]/kT!n011%, ~1!

in which n0 is the population of the condensate,m is the
chemical potential of the thermal cloud, andmC(n0) is the
condensate eigenvalue. The prefactorW1(n0) is a rate with
an expression derived from quantum kinetic theory@4#,
which was estimated approximately in@1# by using a classi-
cal Boltzmann distribution. To go beyond the Boltzmann a
proximation for W1 involves a very much more detaile
treatment of the populations of the trap levels with ene
less thanm, since the equilibrium Bose-Einstein distributio
for m.0 is not consistent with energies less thanm. In other
words, the populations of the lower trap levelscannot be
treated as time-independent, and thus the dynamics
growth must include at least this range of trap levels as w
as the condensate level. Therefore in@2,3# we considered a
less simplified model, covering a range of energies up t
cutoff ER , above which the system was assumed to b
thermal cloud with a fixed temperature and chemical pot
tial. Equations were derived for the rate of growth of the
levels along with the condensate, and the rates at which
ticles from the thermal bath scattered these quasiparti
between levels within the condensate band. The result
calculations showed that a speedup of the growth rate b
factor of the order of 3–4 compared to the simple grow
1050-2947/2000/62~6!/063608~12!/$15.00 62 0636
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equation could be expected, and that the initial part of
growth curve would be modified, leading to a much shar
onset of the initiation of the condensate growth.

The only experiment that has been done on conden
growth @11# was then under-way. In these experimen
clouds of sodium atoms were cooled to just above the tr
sition temperature, at which point the high-energy tail of t
distribution was rapidly removed by a very severe RF ‘‘cut
where the frequency of the RF field was quickly ramp
down. After a short period of equilibration, the resulting v
por distribution was found to be similar to the assumptio
of our theoretical treatments, and condensate growth
lowed promptly. The results obtained were fitted to solutio
of the simple growth equation~1!. When experimental re-
sults became available, a speedup of about the predicted
tor was found, and indeed the higher temperature res
agreed very well with the theoretical predictions. At low
temperatures there was still some disparity; the theory p
dicted a slower rate of growth with decreasing temperatu
but experimentally the opposite was observed.

The situation in which we now find ourselves leaves
alternative other than to address the remaining approxi
tions. In our previous work, we have made four major a
proximations:

~i! The part of the vapor with energies higher thanER has
been treated as being time-independent.

~ii ! The energy levels above the condensate level w
modified phenomenologically to account for the fact th
they must always be greater than the condensate chem
potential, which rises as the condensate grows.

~iii ! We treated all levels as being particlelike, on t
grounds that detailed calculations@12# have shown that only
a very small proportion of excitations of a trapped Bose g
are not of this kind.

~iv! We have used the quantum Boltzmann equation in
ergodic form, in which all levels of a similar energy a
assumed to be equally occupied.
©2000 The American Physical Society08-1
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In this paper, we will no longer require the first two o
these approximations. Abandoning the first means that
are required to take care of all kinds of collisions that c
occur, and thus treat the time dependence of all levels. T
comes at a dramatic increase in both the computation t
required~hours rather than seconds! and the precision of al-
gorithms required. We also use a density of states that sh
be close to the actual density of states as the conden
grows, thereby avoiding the phenomenological modificat
of energy levels. However, we still treat all of the levels
being particlelike, since it seems unlikely that the few no
particlelike excitations will have a significant effect on th
growth as a whole. The ergodic form of the quantum Bol
mann is needed to make the computations tractable, and
necessity retained.

II. FORMALISM

The basis of our method is quantum kinetic theory, a f
exposition of which is given in Ref.@4#. This develops a
complete framework for the study of a trapped Bose gas
set of master equations. The full solution of these equati
is not feasible, however, and therefore some type of appr
mation must be made. The basic structure of the method u
here is essentially the same as that of QKVI, the major
ference being that all time dependence of the distribut
function is retained. As explained in@3,10#, quantum kinetic
theory leads to a model that can be viewed as a modifica
of the quantum Boltzmann equation in which we have
following.

~i! The condensate wave function and ener
eigenvalue—the condensate chemical potentialmC(n0)—are
given by the solution of the time-independent Gro
Pitaevskii equation withn0 atoms.

~ii ! The trap levels above the condensate level are
quasiparticle levels appropriate to the condensate wave f
tion. This leads to a density of states for the trap levels tha
substantially modified, as discussed below in Sec. III B.

~iii ! The transfer of atoms between levels is given by
modified quantum Boltzmann equation~MQBE! in the en-
ergy representation. This makes the ergodic assumption
the distribution function depends only on energy.

The ergodic form of the quantum Boltzmann equation

The derivation of the ergodic form of the quantum Bo
zmann equation used by@13# is particular to the undeforme
harmonic potential, and we give here a derivation appro
ate to our case, in which the density of states can cha
with time as the condensate grows. Webin the phase spac
into energy bands labeled by the indexn with energies in a
range

Dn~ t ![S «n~ t !2
d«n~ t !

2
,«n~ t !1

d«n~ t !

2 D
of width d«n(t), and these widths change in time so that t
number of states within each bin,gn, is constant in time.
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Starting from the full quantum Boltzmann equation, t
ergodic approximation is expressed in terms of this binn
description as follows: We setf (x,K ,t) equal to the value
f n , when e(x,K ,t)[\2K2/2m1Veff(x,t) is inside thenth
bin, i.e.,e(x,K ,t)PDn(t). @HereVeff(x,t) is the potential of
the trap, as modified by the mean field arising from the pr
ence of the condensate, as explained in QKV and QKVI.#

Thus we can approximate

] f ~x,K ,t !

]t
→] f n

]t
if e~x,K ,t !PDn~ t !. ~2!

In order to derive the ergodic quantum Boltzmann equati
we define the indicator functionxn(x,K ,t) of the nth bin
Dn(t) by

xn~x,K ,t !5H 1 if e~x,K ,t !PDn~ t ! ~3!

0 otherwise. ~4!

The number of states in the binn will be given by gn
5*dxdKxn(x,K ,t)/h3, and is held fixed.

The formal statement of the binned approximation is

f ~x,K ,t !→(
n

f nxn~x,K ,t !, ~5!

and the ergodic quantum Boltzmann equation is derived
substituting Eq.~5! into the various parts of the quantum
Boltzmann equation as follows. For the time derivative p
we make this replacement, and project ontoDn(t), getting

E d3xd3K

h3
xn~x,K ,t !

] f ~x,K ,t !

]t
→gn

] f n

]t
. ~6!

@Note that the expansion~5! would mean that delta function
singularities at the upper and lower boundaries ofDn(t)
would arise by differentiatingf (x,K ,t) as defined in Eq.~5!,
but the condition thatgn be fixed means that these are
equal and opposite weight, and cancel when integrated o
Dn(t), giving a result consistent with Eq.~6!.# We now re-
place] f (x,K ,t)/]t on the left-hand side of Eq.~6! by the
collison integral that appears on the right-hand side of
quantum Boltzmann equation, and substitute forf (x,K ,t) in
the collision integral using Eq.~5!. @The streaming terms
give no contribution, since the form~5! is a function of the
energye(x,K ,t).#

This leads to theergodic quantum Boltzmann equationin
the form
8-2
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gn

] f n

]t
5

4a2h3

m2 (
pqr

$ f pf q~11 f r !~11 f n!2~11 f p!~11 f q! f r f n%E d3xd3K

h3 E d3K1E d3K2E d3K3xp~x,K1 ,t !

3xq~x,K2 ,t !x r~x,K3 ,t !xn~x,K ,t !d~K11K22K32K !d„e~x,K1 ,t !1e~x,K2 ,t !2e~x,K3 ,t !2e~x,K ,t !….

~7!

The final integral is now approximated by the method of@13# to give (a and v̄ are defined in Sec. III!

gn

] f n

]t
5

8ma2v̄2

p\ (
pqr

$ f pf q~11 f r !~11 f n!2~11 f p!~11 f q! f r f n%M ~p,q,r ,n!D~p,q,r ,n!. ~8!

HereD(p,q,r ,n) is a function that expresses the overall energy conservation, and is defined by

D~p,q,r ,n!5H 1 when u«p1«q2« r2«nu<
ud«p1d«q1d« r1d«nu

2

0 otherwise.

~9!
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Because we approximatef (x,K ,t) by a constant value within
each Dn(t), energy conservation means thatĒ
[(n«ngnf n(t) is constant. This follows from energy conse
vation in the full quantum Boltzmann equation, which al
implies that

(
rn

D~p,q,r ,n!M ~p,q,r ,n!~« r1«n!

5~«p1«q!(
rn

D~p,q,r ,n!M ~p,q,r ,n!. ~11!

This is the limit to which the binning procedure defines e
ergy conservation.

III. DETAILS OF MODEL

The most important aspect of our model is the inclus
of the mean-field effects of the condensate. As the pop
tion of the condensate increases, the absolute energy o
condensate level also rises due to the atomic interacti
This results in a compression in energy space of the quan
levels immediately above the condensate~see Fig. 1!, and

FIG. 1. Qualitative picture of the compression of the quant
levels above the condensate mode as the condensate eigen
increases.
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has an important effect on the evolution of the cloud.
The correct description of the quantum levels imme

ately above the ground state when there is a significant c
densate population requires a quasiparticle transformat
This is computationally difficult, however, so we make u
of a single-particle approximation for these states. T
should be reasonable, as most of the growth dynamics
involve higher-lying states that will be almost unaffected
the presence of the condensate. In@3# we did this using a
linear interpolation of the density of states; here we use
approximate treatment based on the Thomas-Fermi appr
mation.

A. Condensate chemical potentialµC„n0…

We consider a harmonic trap with a geometric mean f
quency of

v̄5~vxvyvz!
1/3. ~12!

We include the mean-field effects via a Thomas-Fermi
proximation for the condensate eigenvalue, which is direc
related to the number of atoms in the condensate mode. A
@3,10#, we use a modified form of this relation in order
give a smooth transition to the correct harmonic-oscilla
value when the condensate number is small:

mC~n0!5a@n01~3\v̄/2a!5/2#2/5, ~13!

wherea5(15av̄m1/2\2/4A2)2/5, anda is the atomics-wave
scattering length. Thus, forn050 we have mC(0)5«0

53\v̄/2.

B. Density of statesḡ„«…

We assume a single-particle energy spectrum with
Bogoliubov-like dispersion relation, as in Timmermanset al.
@14#, which leads to a density of states of the form

alue
8-3
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ḡ~«,n0!5
4

p

mC~n0!2

~\v̄!3 F S «

mC~n0!
21D E

0

1

dxA12x
@A@«/mC~n0!21#21x22x#1/2

A@«/mC~n0!21#21x2
1E

1

«/mC(n0)

dxAxA «

mC~n0!
2xG . ~14!

The integrals can be carried out analytically; the result is

ḡ~«,n0!5
«2

2~\v̄!3 H 11q1~mC~n0!/«!1S 12
mC~n0!

« D 2

q2S 1

«/mC~n0!21D J , ~15!

where

q1~x!5
2

p
@AxA12x~122x!2sin21~Ax!#, ~16!

q2~x!5
4A2

p FA2x1x lnS 11x1A2x

A11x2 D 2H p

2
1sin21S x21

A11x2D J G . ~17!
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This is plotted in Fig. 2, along with that for the ideal ga
Thus the density of states of the trap varies smoothly as
condensate grows.

IV. NUMERICAL METHODS

A. Representation

The bins we shall choose for the representation of
distribution in terms of the quantitiesf n as in Eq.~5! are
divided into two distinct regions, as shown diagrammatica
in Fig. 3. The lowest energy region corresponds essent
to thecondensate band RC of @1,3,7,10#. This is the region in
which f n is rapidly varying in the regime of quantum dege
eracy, and is described by a series of fine-grained ene
bins up to an energyER'3mC(n0,max). The condensate is
singlequantum state represented by the lowest energy b

As the number of particles in the condensate changes
energy of the condensate level changes according to
Thomas-Fermi approximation of Eq.~13!. Thus the total en-
ergy width ofRC decreases as the condensate grows.

We representRC by a fixed number of energy bins o
equal widthd«n with a midpoint of«n .

As the condensate energy increases, we adjust«n andd«n
betweenintegration time steps, such that all of the bins b
low ER have equal width. This is done by redistributing t

FIG. 2. The modified density of states~solid curve! compared
with noninteracting function~dashed curve! for the harmonic trap.
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numbers of particles into new bins after each time step,
thus does not contradict the requirement thatgn is fixeddur-
ing the time step. We find that this is the most simple p
cedure for the calculation of rates in and out of these lev
We choose the number of bins to be sufficient such that
width is not more than aboutd«n;5\v̄.

The high energy region corresponds to thethermal bath
of our previous papers. This is the region in whichf n is
slowly varying, and therefore the energy bins are consid
ably broader~up to 64\v̄ in the results presented in thi
paper!. The evaporative cooling is carried out by the sudd
removal of population of the bins in this region with«n
.«cut.

B. Solution

There are four different types of collision that can occ
given our numerical description of the system. These
depicted in Fig. 4.

~a! Growth: This involves two particles inRNC colliding,
resulting in the transfer of one of the particles to the cond
sate band~along with the reverse process!.

FIG. 3. The numerical representation of the system with a c
densate of 2.33106 atoms at a temperature of 590 nK.RC is the
condensate band, which is fine-grained, whereasRNC is the noncon-
densate band, which is coarse-grained. The division between
two bands is fixed atER . The condensate energy is derived fro
the Thomas-Fermi approximation.
8-4
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~b! Scattering: A particle inRNC collides with a particle in
the condensate band, with one particle remaining inRC .

~c! Internal: Two particles within the condensate ban
collide with at least one of these particles remaining inRC

after the collision.
~d! Thermal: This involves all particles involved in the

collision coming from the non-condensate band and rem
ing there.

Our first description of condensate growth@1# considered
only process~a!. The next calculation@2,3# involved both
processes~a! and ~b!. The calculations presented below i
clude all four processes, allowing us to determine whet
the earlier approximations were justified.

The computation of the rates of processes~a! and ~b! is
made difficult because of the different energy scales of
two regions of the distribution function. Our solution is
interpolate the distribution functionf n in RNC ~nonconden-
sate band! such that the bin sizes are reduced to be the s
as for RC ~the condensate band!. The rates are then calcu
lated using this interpolated distribution function, now co
sisting of more than one thousand bins, and the rates for
large bins of the noncondensate band are found by summ
the rates of the appropriate interpolated bins.

We have found that these rates areextremelysensitive to
the accuracy of the numerical interpolation—small err
lead to inconsistencies in the solutions of the MQBE. T
procedure is more efficient than simply using the same
size for the whole distribution, as there are only a sm
number of bins for the condensate band.

FIG. 4. The four different collision types that can occur in o
numerical description.
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C. Algorithm

The algorithm we use to solve the MQBE is summariz
as follows:

~1! Calculate the collision summation for all types of co
lisions, keeping the density of states, and the energies of
levels in the condensate bandRC fixed. The distribution
function f n(t1dt) is calculated using an embedded fourt
order Runge-Kutta method, using Cash-Karp parame
@15#.

~2! The quantityM (p,q,r ,n) defined by Eq.~8! expresses
all the overlap integrals, and is quite difficult to compu
exactly. In our computations, we have simply set this to c
respond to the value found in@13#, i.e., we set

M ~p,q,r ,n!5gmin(p,q,r ,n) , ~18!

and express energy conservation in a simplified form, us
the fact that the energy bins will be chosenequally spaced,
by choosing a Kronecker delta form

D~p,q,r ,n!→d~p1q,r 1n!. ~19!

The difference between these two forms clearly goes to z
as the bins become very narrow.

It has been explicitly checked that in practice, energy
conserved to a very high degree of accuracy throughout
calculation.

~3! As a result of the time step, the condensate popula
will have changed. This causes the density of states to a
slightly, along with the positions and widths of the ener
bins in the condensate band, as all these quantities are d
mined by the condensate numbern0. The derivation in Sec.
II A shows that the populationsgnf n are of the bins that
move with the change of energy levels and density of sta
as the condensate grows so as to maintain the numbe
levelsgn in the bin constant. Therefore after the Runge-Ku
time step, the numbersgnf n represent the numbers of pa
ticles in the bins determined by the appropriate energy lev
after that step.

~4! As a result of the preceding step, the bins will n
longer be of equal width, so we rebin the numbers of ato
into a new set of equally spaced bins, as explained Sec. IV

To ensure total number conservation of particles, we k
the numberof particles in each bin,gnf n, constant when we
adjust the energies and widths of the bins. As the chang
the density of states and the width of each bin is determi
by the condensate number, theoccupation per energy leve
of thenth bin, f n , must be altered slightly to ensure numb
conservation.

~5! We now continue with step~1!.
The change inmC(n0) with each time step, and hence th

shifts in the energy of the bins inRC is very small. There-
fore, the adjustment of the distribution function due to st
~3! is tiny, much smaller than the change due to step~1!.

The method has been tested by altering the position ofER
and width of the energy bins ofRNC andRC . We have found
that the solution is independent of the value ofER over a
large range of values of these parameters.
8-5
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V. RESULTS

In this paper, we present the results of simulations m
eling the experiments described in@11#. In these experi-
ments, a cloud of sodium atoms confined in a ‘‘cigar
shaped magnetic trap was evaporatively cooled to just ab
the Bose-Einstein transition temperature. Then, in a perio
10 ms the high energy tail of the distribution was remov
with a very rapid and rather severe RF cut. The conden
was then manifested by the formation of a sharp peak in
density distribution.

We have carried out a full investigation of the effect th
varying the initial cloud parameters has on the growth of
condensate for the trap configuration described in@11#. In
this paper, we concentrate on a comparison of these re
with our earlier theoretical model. To model these expe
ments, we begin our simulations with an equilibrium Bos
Einstein distribution, with temperatureTi and chemical po-
tential m init and truncate it at an energy«cut5hkTi , which
represents the system at the end of the RF sweep. Th
then allowed to evolve in time, until the gas once again
proaches an equilibrium, that is, the appropriate Bo

FIG. 5. Snapshots of the distribution function for a simulati

with initial conditions m init52100\v̄, Ti51119 nK, and h
52.83. This results in a condensate withn057.53106 atoms at a
temperature ofTf5830 nK. For clarity, the condensate itself is n
depicted, but the presence of a significant amount of condensat
the effect of displacing the left-hand ends of the curves~d!–~f! an
amountmC(n0)/kTi from the axis. The growth curve for this simu
lation is shown in Fig. 6~a!.
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Einstein distribution in the presence of a condensate. Th
pictured schematically in Fig. 5.

Because of the ergodic assumption, the MQBE that
simulate depends only on the geometric average of the t
ping frequenciesv̄5(vxvyvz)

1/3. There is likely to be some
type of experimental dependence on the actual trap geom
that is not included in our simulation; however, in the regim
kT@\v̄ this should be small. The trap parameters of@11#

were (vx ,vy ,vz)52p3(82.3,82.3,18) Hz, givingv̄52p
349.6 Hz.

A. Matching the experimental data

The main source of quantitative experimental data of c
densate growth generally available is Fig. 5 of@11#. This
gives growth rates as a function of final condensate num
and temperature rather than the initial conditions. Wher
the growth curves calculated in@1,3# required these param
eters as inputs, the calculations presented here require
different input parameters; the initial number of atoms in t
systemNi ~and hence the initial chemical potentialm init), the
initial temperatureTi , and the position of the cut energ
hkTi . Given the final parameters supplied in@11#, it is pos-
sible to calculate a set of initial conditions that we requi
As we know the final condensate number, we can calcu
the value of the chemical potential of the gas using
Thomas-Fermi approximation for the condensate eigenva
Eq. ~13!. This gives a density of states according to Eq.~15!,
and along with the measured final temperatureTf , we can
calculate the total energyEtot and number of atomsNtot in
the system at the end of the experiment, completely cha
terizing the final state of the gas.

Ntot5n01 (
«n.mC(n0)

`
gn

exp@$«n2mC~n0!%/kTf #21
, ~20!

Etot5E0~n0!1 (
«n.mC(n0)

`
«ngn

exp@$«n2mC~n0!%/kTf #21
.

~21!

We now want to find an initial distribution that would hav
the same total energy and number of atoms if truncate
«cut5hkTi . If we specify an initial chemical potential fo
the distributionm init , we can self-consistently solve for th
parametersTi and h from the following nonlinear set of
equations

Ntot5 (
«n53\v̄/2

hkTi gn

exp@~«n2m init!/kTi #21
, ~22!

Etot5 (
«n53\v̄/2

hkTi «ngn

exp@~«n2m init!/kTi #21
. ~23!

This gives the input parameters for our simulation, and
can now calculate growth curves starting with initially di
ferent clouds, but resulting in the same final condens
number and temperature.

as
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B. Typical results

A sample set of growth curves is presented in Fig. 6~a!,
for a condensate with 7.53106 atoms at a final temperatur
of 830 nK and a condensate fraction of 10.4%. The ini
parameters for the curves are given in Table I.

As can be seen the curves are very similar, and argu
would be difficult to distinguish in experiment. The ma
difference is the further the system starts from the transi
point ~i.e., the more negative the initial chemical potentia!,
the longer the initiation time but the steeper the grow
curve. This trend continues asm init becomes more negative

FIG. 6. Growth of a condensate withn057.53106, Tf

5830 nK. Solid linesm init50, dotted linesm init5240\v̄, dashed

lines m init52100\v̄. ~a! Population of condensate versus tim
Gray curve is the solution for model of Ref.@3#. ~b! Chemical
potentialmC(n0) of condensate~lower curves! and effective chemi-
cal potentialmeff of thermal cloud~upper curves!.

TABLE I. Parameters for the formation of a condensate w
n057.53106 atoms at a temperature ofTf5830 nK from an un-
condensed thermal cloud. The growth curves are plotted in Fig

m init(\v̄) Ti(nK) Ni(106) h «cut(\v̄)

0 1000 89.1 3.82 1605
240 1080 100.1 3.31 1503

2100 1119 117.6 2.83 1419
06360
l
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1. Effective chemical potential

To facilitate understanding of these results, we introdu
the concept of an effective chemical potentialmeff for the
noncondensate band. We do this by fitting a Bose-Eins
distribution to the lowest energy bins ofRNC as a function of
time. Obviously, the chemical potential is undefined wh
the system is not in equilibrium, but as has been noted for
classical Boltzmann equation, the distribution function ten
to resemble an equilibrium distribution as evaporative co
ing proceeds@16#. The effective chemical potential is no
unique—it is dependent on the particular choice of the
ergy cutoffER . It gives a good indication of the ‘‘state’’ of
the noncondensate, however, since the majority of the
ticles entering the condensate after a collision come fr
these bins. In this paper,meff was computed by a linear fit to
ln@111/f n# of the first ten bins of the noncondensate ban
with the intercept givingmeff , and the gradient an effectiv
temperature.

2. Interpretation

We find that all the results presented in this paper can
qualitatively understood in terms of the simple growth equ
tion ~1!, with the vapor chemical potentialm replaced by the
effective chemical potentialmeff of the thermal cloud.

The simple growth equation requiresmeff.mC(n0) for
condensate growth to occur. In Fig. 6~b!, we plot the effec-
tive chemical potentialmeff of the thermal cloud and the
chemical potential of condensatemC(n0). This graph helps
explain the two effects noted above—longer initiation tim
and a steeper growth curve for them init52100\v̄ case.
First, the inversion of the chemical potentials for this sim
lation occurs at a later time than form init50, causing the
stimulated growth to begin later. This is because the ini
cloud for them init52100\v̄ simulation is further from the
transition point att50. Second, the effective chemical po
tential of the thermal cloud rises more steeply, meaning t
meff2mC(n0) is larger, and therefore the rate of condens
growth is increased.

C. Comparison with earlier model

In Fig. 6~a!, we have also plotted the growth curve that
calculated for these final condensate parameters by the m
of @3#, which we refer to as the simple model@not to be
mistaken with the solution of the simple growth equati
~1!#. For this earlier model the initial condensate number
indeterminate, whereas for the detailed calculation prese
here the initial distribution is Bose-Einstein, with the zero
the time axis being the removal of the high-energy tail.

For these particular parameters, it turns out that the res
of the full calculation of the growth curve give very simila
results to the previous model, with the initial condens
number adjusted appropriately. This is not surprising;
deed, from Fig. 6~b! we can see that the approximation of th
thermal cloud by a constant chemical potential~i.e., the
cloud is not depleted! is good for the region where the con
densate becomes macroscopic.

For larger condensate fractions, however, the princi
condition assumed in the model of@3#, that the chemical

6.
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potential of the vapor can be treated as approximately c
stant, is no longer satisfied. In Fig. 7~a!, we plot the growth
of the same size condensate as in Fig. 6~that is, 7.53106

atoms!, but at a lower final temperature of 590 nK. In th
situation, the condensate fraction increases to 24.1%, an
there is considerable depletion of the thermal cloud. The
fect of this can be seen in Fig. 7~b!. The difference between
the vapor and condensate chemical potentialsmeff2mC(n0)
initially increases to much larger values than for the sim
model, wheremeff is held constant at its final equilibrium
value. It is this fact that causes more rapid growth.

As the condensate continues to grow, it begins to sign
cantly deplete the thermal cloud, causingmeff to decrease
from its maximum. It is the ‘‘overshoot’’ ofmeff from the
final equilibrium value that the model of@3# and QKVI can-
not take account of. This overshoot only occurs for fin
condensate fractions of more than about 10%; hence u
this value the simple model should be sufficient.

D. Effect of the final temperature on condensate growth

We have investigated the effect that final temperature
on the growth of a condensate of a fixed number. All sim
lations were begun withm init50, since the initial chemica

FIG. 7. Comparison of condensate growth models for a cond
sate fraction of 24.1%,n057.53106, Tf5590 nK. Solid lines

m init50, dashed linesm init52100\v̄. ~a! Population of condensat
versus time. Gray line is the solution for model of@3#. ~b! Chemical
potential of condensate~lower curves! and effective chemical po
tential of thermal cloud~upper curves!.
06360
n-

so
f-

e

-

l
to

s
-

potential has little effect on the overall shape of the grow
curves. This determines the other parametersTi and h and
the initial conditions are shown in Table II. The results
these simulations are presented in Fig. 8.

We find the somewhat surprising result that the grow
curves do not change significantly over a very large tempe
ture range for the same size condensate. In fact, a conde
formed at 600 nK grows more slowly than at 400 nK f
these parameters. As the temperature is increased fur
however, the growth rate increases again, and at a final t
perature of 1mK the growth rate is faster than at 400 nK
This effect has also been observed for both larger (
3106) and smaller (13106) condensates.

n-

FIG. 8. Growth of a condensate with a final condensate size
2.53106 atoms from a vapor withm init50. The dotted line is for a
final temperature of 400 nK, dashed 600 nK, and solid 1mK. ~a!
Growth curves.~b! Chemical potential of condensate~lower curves!
and thermal cloud~upper curves!.

TABLE II. Parameters for the formation of condensate w
n052.53106 atoms from an uncondensed thermal cloud w
m init50. The growth curves are presented in Fig. 8.

Tf
(nK)

Ti
(nK)

Ni

(106)
h «cut

~\v̄)

Condensate
fraction

400 622.0 21.5 2.19 572 0.253
600 707.3 31.6 4.03 1198 0.099

1000 1064.8 107.7 5.87 2629 0.025
8-8
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This observation can once again be interpreted using
simple growth equation~1!. Although W1(n0) increases
with temperature~approximately asT2 as shown in@1#!, the
maximum value ofmeff2mC(n0) achieved via evaporative
cooling decreases with temperature for a fixed conden
number, as the cut required is less severe and the final
densate fraction is smaller. Also, the term in the curly bra
ets of Eq.~1! is approximately proportional toT21 for most
regimes. The end result is that the decrease in this term c
pensates for the increase inW1(n0), giving growth curves
that are very similar for the different simulations. Once t
‘‘overshoot’’ of the thermal cloud chemical potential ceas
to occur~when the evaporative cooling cut is not as seve!,
the growth rate begins to increase with temperature as
dicted by the model of@3# and QKVI.

E. Effect of size on condensate growth

Finally, we have performed some simulations of the f
mation of a condensate at a fixed final temperature, but
varying size. The parameters for these simulations are g
in Table III, and the growth curves are plotted in Fig. 9~a!.
We find that the larger the condensate, the more rapidl
grows. The initial clouds required to form the larger conde
sates not only start at a higher temperature~and thus have a
higher collision rate to begin with!, but also they need to b
truncated more severely, causing a larger difference in
chemical potentials, as seen in Fig. 9~b!. Thus, instead of
these effects negating each other as in the previous sec
here they tend to reinforce one another. This causes
growth rate to be highly sensitive to the final number
atoms in the condensate for a fixed final temperature.

For further comparison with the previous model, in F
9~a! the dashed curve is for the same parameters as for
lower temperature results of@3#, whose prediction is plotted
in gray—as can be seen, the two methods are in very g
agreement with each other for this choice of parameters.
this particular set of final parameters for which the discr
ancy between theory and experiment remains.

F. The appropriate choice of parameters

In our computations, we have taken some care to m
sure that we can give our results as a function of the exp
mentally measuredfinal temperatureTf and condensate num
bern0. Nevertheless, it can be seen from our results that
can give rise to counterintuitive behavior, such as the f
that under the condition of a given final condensate num
the growth rate seems to be largely independent of temp

TABLE III. Parameters for the formation of condensates atTf

5590 nK from an uncondensed thermal cloud withm init50. The
growth curves are presented in Fig. 9.

n0

(106)
Ti

(nK)
Ni

(106)
h «cut

(\v̄)

Condensate
fraction

2.3 692.5 29.6 4.07 1186 0.095
5.0 794.6 44.7 2.91 973 0.179
7.5 897.9 64.6 2.29 865 0.239
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ture, because of the cancellation noted in Sec. V D. T
effect has its origin in the quite simple fact that with a su
ficiently severe cut it is impossible to separate the proces
equilibration of the vapor distribution to a quasiequilibriu
from the actual process of growth of the condensate. In o
words, the attempt to implement the ‘‘ideal’’ experiment
which a condensate grows from a vapor with a const
chemical potential and temperature cannot succeed wi
sufficiently large cut. Under these conditions, the initial te
perature differs quite strongly from the final temperature, a
as well, the number of atoms required to produce the c
densate is so large that the vapor cannot be characterize
a slowly varying chemical potential during most of th
growth process.

G. Comparison with experiment

1. Comparison with MIT fits

The most quantitative data available from@11# is in their
Fig. 5, in which results are presented as parameters extra
from fits to the simple growth equation~1!. In @3#, we took
two clusters of data from this figure, at the extremes of
temperature range for which measurements were made,

FIG. 9. Growth of condensates with a final temperature of 5
nK, starting from an uncondensed thermal cloud withm init50.
Solid line, 7.53106 atoms; dotted line, 5.03106 atoms; dashed
line, 2.33106 atoms. The dashed line is for the same parameter
the lower temperature curves in@3#. ~a! Growth curves, with the
solution to the model of@3# in gray. ~b! Chemical potential of
condensate~lower curves! and thermal cloud~upper curves!.
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compared the theoretical results with the fitted experime
curves. At the higher temperature of 830 nK, the results w
in good agreement with experiment, but at 590 nK they d
fered significantly, the experimental growth rate being ab
three times faster than the theoretical result.

We have performed the same calculations using the
tailed model. The results for 830 nK are presented in Fig
and those for 590 nK are presented in Fig. 9. There is a g
match between the two theoretical models atboth tempera-
tures.

2. Comparison with sample growth curves

In @11#, some specific growth curves are also presen
and we shall compare these with with our computations,
those of Bijlsmaet al. @17#.

In Fig. 10 we show the data from Fig. 3 of@11#, the
computation of Fig. 11 of@17#, and our own computations
This is for the MIT sodium trap, with the simulation param
eters taken from Ref.@17# of Ni5603106, Ti5876 nK, and
h52.5. We find this results in a condensate of 6.973106

atoms at a temperature of 604 nK, and a final conden
fraction of 21.8% after half a second, which agrees with
predictions from the solution of the equations in Sec. V A
t5` to within 0.2%.

We can see that there is little difference in the results
the two computations for this case, the main discrepa
being that the initiation time for our simulation is a littl
longer than that of Bijlsmaet al. This is likely to be due to
the fact that their calculation starts with the condensate
ready occupied withn0553104 atoms, whereas we begi
with the equilibrium number at this temperature given by
Bose distribution ofn05208 atoms. This difference could b
brought about by the use of a slightly different density
states, which is also the likely cause of the difference in
final condensate number, of approximately 33105 atoms.

FIG. 10. A comparision between the results of Fig. 11 of@17#
and our own calculations with the initial conditionsNi5603106

atoms,Ti5876 nK, h52.5. Our data are shown as the solid lin
and the results from Bijlsmaet al. are the dashed line. The resul
of the simple model of condensate growth with a final tempera
of Tf5604 nK matching these initial conditions is the lower gr
curve. The upper gray curve is also for the simple model, but w
what we feel is a more realistic final temperature ofTf5830 nK.
The experimental data points are the solid dots.
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The agreement with the experimental growth curve dat
very good for both computations. The simpler model of@3#
and QKVI cannot reproduce the results at this temperat
as is shown by the lower gray curve in Fig. 10. This is as
expect—the final condensate fraction is far greater than 1
and in this case the ‘‘overshoot’’ ofmeff is significant.

Given these initial conditions, this is the only case
which we have found that the ‘‘speedup’’ given by the fu
quantum Boltzmann theorymayyield a significant improve-
ment of the fit to the experimental data.

We would like to emphasize, however, that the para
eters used for this simulationdo not come from Ref.@11#.
The MIT paper does not provide any details of the size of
thermal cloud, or the temperature at which this curve w
measured, and as such, a set of unique initial and final
rameters of the experiment cannot be determined. We h
simply taken these parameters from the calculation of R
@17#.

In fact, it seems likely to us that the final temperature
the experimental curve shown in Fig. 10 should be high
Studying Fig. 5 of Ref.@11# shows that most condensates
73106 atoms or more were formed at temperatures ab
800 nK. We have therefore performed a second calcula
using the simple model with a final temperature of 830 n
and this result is shown as the upper gray curve in Fig.
As can be seen,this also fits the experimental data extreme
well. The condensate fraction at this higher temperature
10.2%, meaning that these parameters are very similar to
situation considered in Fig. 6, which was originally found
be a good match to experimental data in Ref.@3#. We note
that the solution to the simple model at this higher tempe
ture is also in good agreement with our more detailed ca
lation for these parameters.

The situation is very different, however, if we compa
with the result of Fig. 4 of@11#, in which the final condensate
number was 1.23106 atoms. In this case, the data of Fi
4~b! of Ref. @11# can be used to extract all the relevant e
perimental parameters. This graph shows an experimen
measured reduction in the thermal cloud number from ab
403106 atoms to about 153106 over the duration of the
experiment. Including the final condensate population gi
a total number of atoms in the system of approximat
16.23106, or a loss of about 60% of the atoms. With th
three pieces of data taken from the MIT graphs~initial ther-
mal cloud number, final thermal cloud number and final co
densate number!, we can estimate all the relevant paramet

e

h

TABLE IV. Comparison of the static parameters of the Bose g
that match Fig. 4 of Ref.@11#.

Parameters extracted Parameters that g
Quantity from experiment an apparent fit

Ni(106) 40.0 40.0
Atoms lost 60% 94%
Condensate fraction 7.2% 51%
Ti (nK) 945.5 765
Tf (nK) 530 211
h 2.19 0.60
8-10
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using the equations of Sec. V A, and these are shown in
second column of Table IV.

While the parameters we present here are consistent
the static experimental data, the growth curve correspond
to these parameters~shown in Fig. 11! certainly does not fit
the dynamical data. We find that to remove such a la
proportion of atoms, yet still obtain a relatively small co
densate, the initial system must be a long way from the tr
sition temperature, withm init52212\v̄.

This means that condensate growth does not occur u
the relaxation of the thermal cloud is almost complete,
sulting in a very long initiation time. Also, when the grow
does begin, the rate is significantly slower than was exp
mentally observed.This is the region in which the exper
mental and theoretical discrepancies lie.

The comparison of results is presented in Fig. 11. As w
as the computation based on the extracted parameters
also present two ‘‘apparent fits,’’ one based on our calcu
tions and another based on a calculation of@17#, and here we
find the results of the two different formulations are almo
identical. The difference appears to be due to the initial c
densate number—our calculations begin with 295 ato
whereas Bijlsmaet al. begin with 104 atoms. The initial pa-
rameters chosen in@17# for this simulation are a system o
Ni5403106 atoms at at temperature ofTi5765 nK, and
the energy distribution is truncated ath50.6—an extremely
severe cut.

However, while the fit to the experimental data looks ve
good, the initial parameters for these calculations are
consistent with the experiment. An inspection of the fin
state of the gas explains the situation. The final tempera
according to these computations isTf5211 nK, and the
condensate fraction is 51%. Looking at the data of@11#, we
find no reported temperatures to be lower than 500 nK,
the largest condensate fraction reported to be 30%~although
our analysis of their data from Fig. 5 gave a maximum
17%!. The evaporative cooling of these particular simu

FIG. 11. A comparison between the data of Fig. 4 of@11# ~large
solid dots! and our own calculations. The solid curve shows t
growth curve for the static parameters that we have extracted f
the experimental data:Ni5403106, Ti5945.5 nK, h52.19.
An apparent fit can also be obtained—the parameters for the
curve ~our results! and dashed curve~Bijlsma et al.! are Ni540
3106 atoms, Ti5765 nK, h50.6. However, as noted in th
text, these parameters are not experimentally acceptable.
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tions would have to remove 94% of the atoms in the tr
and we believe it is very unlikely that this matches any of t
experimental situations.

3. Speedup of condensate growth compared to simplified theo

We have shown that a significant speedup of the cond
sate growth can occur at higher condensate fractions, but
cannot explain this particular discrepancy with the expe
mental results, for all of the measured values of tempera
and condensate fraction for which growth rates are prese
in Fig. 5 of @11#.

The only situation in which this speedup might possib
be relevant to experiment is the single growth curve cor
sponding to Fig. 10. However, as we have noted, the ini
conditions for this figure are quite speculative, and in fa
also appear to be unrealistic.

The actual speedup observed in our computations is of
order of magnitude of that achievable with a different co
densate fraction, and it is conceivable that the problem co
be experimental rather than theoretical—a systematic erro
the methodology of extracting the condensate number fr
the observed data could possibly cause the effect. For a
alistic comparison to be made between experiment
theory, sufficient data should be taken to verify positively
the relevant parameters that have an influence on the res
Thus, one should measure the initial temperature and num
of atoms, along with the final temperature, condensate n
ber, and the size of the ‘‘cut.’’ It should be noted in partic
lar, in the one case where all of this data is available—t
presented in Fig. 11—good agreement is not found.

The previous paper in this series, QKVI, considered
detail a semiclassical method of fitting theoretical spatial d
tributions to the two-dimensional data extracted by pha
contrast imaging of the system during condensate grow
This method shows that significantly different condens
numbers and temperatures are consistent with the MIT d
and methodology@11#. This seems to us to be a more like
origin of the discrepancy between theory and experimen
low temperatures with a small condensate number.

H. Outlook

It does remain conceivable, however, that approximati
made in this formulation of quantum kinetic theory are n
appropriate to the experimental regime where the discr
ancy remains. In this section, we summarize the poss
further extensions.

The first is the ergodic approximation, that all levels of
similar energy are assumed to be equally occupied. From
results of QKII, it would seem than any nonergodicity in th
initial distribution would be damped on the time-scale of t
growth—therefore the effect of this could be significant
the initial distribution is far from ergodic. It is difficult to
know what the exact initial distribution of the system is wit
out performing a three-dimensional detailed calculation
the evaporative cooling, which would require massive co
putational resources. There is also the fact that we have u
the simplified form~18!, derived in analogy with the work o
Holland et al. @13# on the ergodic approximation.

m
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The second important approximation is that the low
lying states of the gas are reasonably well-described by
single-particle excitation spectrum, and thus using a den
of states description in calculating the collision rates of th
levels. The justification of this is that these states are
expected to be important in determining the growth of
condensate, and in QKVI it was shown that varying the
rates by orders of magnitude had little effect on the grow
curves.

A third approximation made is that the growth of the co
densate level is adiabatic, and its shape remains w
described by the Thomas-Fermi wave function. This may
be the case, and indeed some collective motion du
growth was observed in@11#. We feel this may become im
portant for sufficiently large truncations of the thermal clou
in experiments that could be considered a tempera
‘‘quench.’’ Removing this assumption would require intr
ducing a full description of the lower-lying quasiparticle le
els, and a time-dependent Gross-Pitaevskii equation for
shape of the condensate.

The final approximation is that fluctuations of the occ
pation of the quantum levels are ignored.

The agreement between the theory and the single exp
ment performed so far is generally good, and there is o
one regime in which there is significant discrepancy. T
removal of these approximations requires a large amoun
work, and we feel this is not justified until new experimen
data on condensate growth becomes available.

VI. CONCLUSION

We have extended the earlier models of condens
growth @1–3# and QKVI to include the full time dependenc
of both the condensate and the thermal cloud. We have c
pared the results of calculations using the full model with
simple model, and determined that for bosonic stimulat
type experiments resulting in a condensate fraction of
order of 10%, the model of@3# and QKVI is quite sufficient.

However, for larger condensate fractions, the depletion
the thermal cloud becomes important. We have introdu
ys

P

P
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the concept of the effective chemical potentialmeff for the
thermal cloud as it relaxes, and observed it to overshoo
final equilibrium value in these situations, resulting in
much higher growth rate than the simple model would p
dict. Thus we have identified a mechanism for a possi
speedup that may contribute to eliminating the discrepa
with experiment.

We have also found that the results of these calculati
can be qualitatively explained using the effective chemi
potential of the thermal cloudmeff and the simple growth
equation~1!. In particular, the rate of condensate growth f
the same size condensate can be remarkably similar ov
wide range of temperatures; In contrast, the rate of growt
highly sensitive to the final condensate number at a fix
temperature.

This model we have used in this paper eliminates all
major approximations in the calculation of condens
growth, apart from the ergodic assumption, whose remo
would require massive computational resources. In the
sence of experimental data sufficiently comprehensive
make possible a full comparison between experiment
theory, this does not at present seem justified.

In Sec. V G 2, we have compared the results of our sim
lations to those of Bijlsmaet al. @17#, and found that our
formulations are quantitatively very similar, giving growt
curves in very good agreement with each other. The t
treatments are based on similar, but not identical method
gies, and have been independently computed. Thus the
agreement with experiment must be taken seriously.
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