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Weakly interacting Bose-Einstein condensates under rotation

G. M. Kavoulakis,* B. Mottelson, and C. J. Pethick
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark

~Received 18 April 2000; published 14 November 2000!

We investigate the ground and low excited states of a rotating, weakly interacting Bose-Einstein condensed
gas in a harmonic trap for a given angular momentum. Analytical results in various limits as well as numerical
results are presented, and these are compared with those of previous studies. Within the mean-field approxi-
mation and for repulsive interaction between the atoms, we find that for very low values of the total angular
momentum per particle,L/N→0, whereL\ is the angular momentum andN is the total number of particles,
the angular momentum is carried by quadrupole (umu52) surface modes. ForL/N51, a vortexlike state is
formed and all the atoms occupy them51 state. For small negative values ofL/N21, the states withm
50 andm52 become populated, and for small positive values ofL/N21, atoms in the states withm55 and
m56 carry the additional angular momentum. In the whole region 0<L/N<1, we have strong analytic and
numerical evidence that the interaction energy drops linearly as a function ofL/N. We have also found that an
array of singly quantized vortices is formed asL/N increases. Finally, we have gone beyond the mean-field
approximation and have calculated the energy of the lowest state up to orderN for small negative values of
L/N21, as well as the energy of the low-lying excited states.

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Db, 67.40.Vs
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I. INTRODUCTION

One of the basic questions about Bose-Einstein cond
sates in trapped alkali-metal atom vapors@1# is how they
behave under rotation. A lot of theoretical work has be
done on this subject, both analytical and numerical@2–11#,
and the problem has been studied theoretically, both in
Thomas-Fermi limit of strong interactions@2–5# and in the
limit of weak interactions@6–11#, which we consider in this
paper.

Wilkin et al. have considered@6# a weakly interacting
Bose gas in a harmonic trap. For attractive interactions, t
showed that in the lowest-energy state of a given ang
momentum, the angular momentum is carried by the cen
of-mass motion. For repulsive interactions, they studied
pecially the state with angular momentum per particle eq
to \ and, on the basis of numerical and other evidence, m
a conjecture for the wave function. Butts and Rokhsar ca
lated numerically the moment of inertia of a weakly intera
ing trapped Bose gas with effective repulsive interactio
@7#. One of us identified the elementary modes of excitat
for small angular momentum and demonstrated in Ref.@8#
that a system of rotating weakly interacting bosons exhi
two additional kinds of condensation associated with the
ture of low-lying excitations. Bertsch and Papenbrock p
formed in Ref.@9# exact numerical diagonalization within th
subspace of states with a given angular momentum that
degenerate in the absence of interactions, and they prese
a conjecture for the wave functions and lowest eigenva
for 2<L<N. Wilkin and Gunn@10# considered systems wit
L.N and presented approximate structures for describ
these wave functions. Finally, Linn and Fetter@11# examined
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the stability of a vortex in the limit of weak interactions. Se
also the note added in proof.

Experimentally, the detection of vortex states in a tw
component system has been reported by Matthewset al.
@12#, while Madisonet al. @13# have provided evidence fo
the formation of vortex states in a stirred one-compon
Bose-Einstein condensate.

Our basic goal in this study is to identify the lowes
energy states of a harmonically trapped, weakly interact
Bose gas for a given angular momentumL. As we show
below, these states are selected by the interactions. In Se
we describe the model and discuss the degeneracy of
many-body states for a given angular momentum in the
sence of interactions. In Sec. III, we use the mean-field
proximation to calculate the interaction energy, and der
numerical and analytical results under various conditions
Sec. IV, we describe how one can go beyond the mean-fi
approximation and study as an example the specific cas
small negativeL/N21. Finally, in Sec. V we give our con
clusions.

II. THE MODEL

Our starting point is the HamiltonianH, given by

H5H01V. ~1!

Here

H05(
i

F2
\2

2M
“ i

21
1

2
Mv2~xi

21yi
2!1 f ~zi !G , ~2!

whereM is the atomic mass, which includes the kinetic e
ergy of the particles and their potential energy due to
trapping potential. The axis of rotation is taken to be thez
axis, and the trapping potential is assumed to be that o
isotropic harmonic oscillator of frequencyv in the x-y
plane. Our results do not depend on the trapping poten
f (z) in the z direction. The effective interactionV between
atoms is assumed to be of zero range,
©2000 The American Physical Society05-1
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V5
1

2
U0(

iÞ j
d„r i2r j…, ~3!

whereU054p\2a/M is the strength of the effective two
body interaction, witha being the scattering length for atom
atom collisions. We assume that the interaction is repuls
a.0. Attractive interactions have been studied in Refs.@6#
and @8#.

Much theoretical work on rotating condensates has b
done in the Thomas-Fermi limit of strong interactions, whe
the superfluid coherence length

j5~8pna!21/2, ~4!

n being the particle density, is much less than the size of
cloud. Under these conditions, the system is expected to
hibit properties much like those of liquid helium II@14#.
Most experiments are performed in this regime. In this stu
we examine the opposite limit of weak interactions,nU0
!\v and nU0!DEz , whereDEz is the energy separatio
between the first excited state and the ground state for
tion in thez direction. Under the above conditions,

j

aosc
;S az

NaD 1/2

, ~5!

where N is the number of atoms in the trap,aosc
5(\/Mv)1/2 is the oscillator length, andaz is the character-
istic length associated with the motion of the atoms in thz
direction. Therefore, the coherence length is larger than
size of the cloud, and the situation is analogous to that
BCS pairing of nucleons in nuclei. In this regime, the inte
action energy plays a dominant role in determining the ch
acter of eigenstates, whereas for strong coupling, the kin
energy is important. This, together with the fact that the s
tem is similar to ones encountered in other contexts, ma
this regime an interesting one for theoretical studies.

Since we consider rotation around thez axis, the condition
nU0!DEz implies that the motion in this direction is froze
out and the problem is essentially two-dimensional. It is w
known that for the harmonic-oscillator potential in two d
mensions, the single-particle energiese are given in the ab-
sence of interactions by

e5~2nr1umu11!\v, ~6!

wherenr is the radial quantum number andm is the quantum
number corresponding to the angular momentum. In
lowest-energy state of the many-boson system, all parti
are in states withnr50 and withm being zero or having the
same sign as the total angular momentum. The energy o
lowest state of a system of noninteracting bosons with an
lar momentumL measured relative to that of the ground sta
is therefore

E5L\v. ~7!

There is a huge degeneracy corresponding to the many
ferent ways of distributingL quanta of angular momentum
amongN atoms. Interactions between the atoms lift the d
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generacy. We incorporate the effect of the interactions in
mean-field approximation as well as by diagonalizati
within some appropriately chosen truncated space of deg
erate states. We describe the two methods separately be

III. MEAN-FIELD APPROXIMATION

We start with the mean-field Gross-Pitaevskii approa
Butts and Rokhsar have used this method to derive nume
results for the moment of inertia of a Bose gas@7#. In this
scheme the many-body wave function withN particles andL
units of angular momentumCL,N(r1 ,r2 , . . . ,rN) is taken to
be the product of the single-particle statesC(r i),

CL,N~r1 ,r2 , . . . ,rN!5C~r1!C~r2!•••C~rN!. ~8!

The single-particle stateC(r i) can be expanded in terms o
the harmonic-oscillator eigenstatesFm(r i):

C~r i !5 (
m50

`

cmFm~r i !, ~9!

where thecm are variational parameters, which are compl
in general and are functions ofL. The summation in Eq.~9!
is restricted to positivem, since states with negativem do not
belong to the space of degenerate states. The quantityucmu2

gives the occupation probability for stateFm . Also

Fm~r !5
1

~m!paosc
2 !1/2

g~z!S r

aosc
D umu

eimfe2r2/2aosc
2

.

~10!

Here r, z, and f are cylindrical polar coordinates. In th
above expression, we have assumed that the bosons a
the ground stateg(z) for motion in thez direction. The ex-
pectation value of the interaction energyV in the state given
by Eq. ~8! is

^V&5
1

2
N~N21!U0E uCu4dr . ~11!

To find the lowest-energy state, we calculate^V& as a func-
tion of the variational parameterscm , and minimize it with
respect to them under the following two constraints: the n
malization condition,

(
m

ucm
2 u51, ~12!

and the condition that the expectation value of the angu
momentum per particle be fixed,

(
m

mucmu25L/N. ~13!

The parameterscm are complex in general, and therefo
both their magnitudes and their phases need to be de
mined. However, Eqs.~12! and ~13! impose two constraints
on the magnitudes of thecm . Furthermore, the overall phas
of the wave function is arbitrary. Finally, the axial symmet
5-2
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WEAKLY INTERACTING BOSE-EINSTEIN . . . PHYSICAL REVIEW A62 063605
of the confining potential implies that the origin of the ang
lar coordinate is arbitrary, which corresponds to the con
tion for conservation of angular momentum, which hol
even in the presence of interactions. Therefore, if the exp
sion ~9! is truncated at a valuemmax, the number of indepen
dent real variables is 23(mmax11)2452(mmax21).

A. Numerical results

We have examined the problem numerically withmmax up
to 9. The total number of terms in the expression for^V& is
125 in this case. The result of such a calculation withmmax
56 is shown in Fig. 1 for 0<L/N<2.

We show the results withmmax56, since the occupancy o
states with higherm is very low, and therefore including
states withm.6 would not alter the results on this scal
Figure 2 shows the corresponding interaction energy and
3 shows lines of constant density,uCu25const, for L/N
50.1, 0.6, 0.8, and 1.0. Figure 3 shows the gradual transi
from mostly quadrupole, and to a lesser extent, octupole
citations, which are present at low angular momentum
vortexlike structures asL approachesN. We should also
mention that the structures in Fig. 3, as well as those in F
4, rotate with an angular frequencyV given by

V5
1

\

]Etot

]L
5v2

1

N\

]^V&
] l

, ~14!

FIG. 2. The interaction energy,^V&, in units ofN2v0 as a func-
tion of L/N.

FIG. 1. The coefficientsucmu2 calculated numerically by mini-
mizing the energy, as a function ofL/N. The numbers refer to the
corresponding states with angular momentumm\. The two lowest
curves in the regionL/N'1.5 give the occupancy of them55
~upper! andm56 ~lower! states.
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which is lower than the trap frequencyv. Here Etot is the
total energy of the system.

WhenL increases beyondN, the rotational invariance for
L/N51 is lost. Density contours for various values ofL
betweenN and 2.1N are shown in Fig. 4. These were calc
lated including states up tom56. ForL*1.75N, the optimal
wave function has a twofold axis of symmetry, and the od
m coefficients in the wave function vanish smoothly as t
transition is approached, as shown in Fig. 1. There is a fi
order transition from a state with twofold symmetry to o
with threefold symmetry forL'2.03N. The solution for
L/N52.0 with the statesm50, 2, 4, 6, and 8 considere
has an energy 0.1757N2v0, whereas the one with threefol
symmetry, with m50, 3, 6, and 9, has an energ
0.1761N2v0. By contrast, forL/N52.1 the state with three
fold symmetry has an energy 0.1691N2v0, which is lower
than that of the solution with twofold symmetry
0.1700N2v0.

More generally, we have found that asL/N increases, the
lowest-energy states are the ones where a vortex arra
formed, in agreement with the results of Ref.@7#.

B. Analytical results for L ÕN\0

We now turn to an analytic approach to the problem. O
can systematically develop power-series expansions for
occupanciesucmu2 of the states, as well as for the energy
certain limits. We start with the case of very low angul
momentum, l 5L/N→0. Working in terms of quantum-
mechanical states, one of us has calculated in Ref.@8# the
difference in the energies of two states where in the one s
all N particles havem50 and in the other state a particle
promoted to the state withm5l, and N21 particles have
m50. If we denote the states by

u0N0,1N1,2N2, . . . &, ~15!

whereNm is the number of particles with angular momentu
m\, the two states areu0N& and u0N21,l1&. The difference
el in the energy between these two states, which corresp
to the energy of a 2l-pole excitation, is given by

el5l\v2S 12
1

2l21D Nv01O~v0!, ~16!

wherev05U0* uF0u4dr . One can easily see from Eq.~16!
that at this level of approximation the excitations with t
highest gain in interaction energy per unit of angular m
mentum are the ones withl52 or l53, i.e., quadrupole or
octupole excitations.

We now calculate the interaction energy for low values
l. The calculation of the energies of elementary excitatio
indicates that one would expect quadrupole and octup
modes to be the most important ones for smalll. To deter-
mine the most energetically favorable way of giving the s
tem angular momentum, one has to identify the behavio
uc2u2 anduc3u2 asl 5L/N→0, and then it is possible to build
up a power-series expansion. Motivated by the fact that
l52 and 3 excitations are degenerate, and are the o
5-3
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FIG. 3. Lines of constant den
sity for L/N50.1, 0.6, 0.8, and
1.0 in a plane perpendicular to th
z axis. On the darker curves
uCu250.3n0, and on the lighter
curves uCu250.1n0, where n0

5g(z)2/paosc
2 . The unit of length

is the oscillator lengthaosc. These
pictures show how a vortex enter
the cloud of bosons as the angul
momentum per particle increases
la

e
f

x-

os
s

e
d
l

t

t all
the
which give the highest gain in energy per unit of angu
momentum, we assume that bothc2 andc3 are of orderl 1/2.
As we show below, the mode-mode interaction lifts this d
generacy, making thel52 mode dominant for low values o
angular momentum.

It is instructive to give an explicit example, so let us e
amine the interaction energy up to orderl 2. In order to mini-
mize the interaction energy to this order, the states withm
51, 4, 5, and 6 need to be considered, in addition to th
with m50, 2, and 3, since the phases of off-diagonal term
such as, for example,uc0uuc1uuc2uuc3u, can be chosen to hav
a negative sign, and thus lower the energy as compare
the case where onlyc0 , c2, and c3 are nonzero. A usefu
formula for the matrix elements of the potential is

E Fk* ~r !F l* ~r !Fm~r !Fn~r !dr

5dk1 l ,m1n

~k1 l !!

2(k1 l )Ak! l !m!n!
E uF0~r !u4dr . ~17!

As will become clear below, to calculate the energy up
order l 2 we must include the following terms:
06360
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^V&5S 1

2
uc0u41

1

2
uc0u2uc2u21

1

4
uc0u2uc3u21

3

16
uc2u4

1
5

32
uc3u41

5

8
uc2u2uc3u21uc0u2uc1u2

2
A3

2
uc0uuc1uuc2uuc3u1

1

8
uc0u2uc4u22

A6

8
uc0uuc2u2uc4u

1
1

16
uc0u2uc5u22

A10

8
uc0uuc2uuc3uuc5u1

1

32
uc0u2uc6u2

2
A5

16
uc0uuc3u2uc6u DN2v01O~Nv0!. ~18!

In the above expression we have chosen the phasesfm of the
variational coefficientscm in such a way as to minimizêV&,
and in the specific example we can arrange them so tha
the off-diagonal matrix elements are negative. One of
phases can have any value, and we make the choicef050.
The rest of them can be expressed in terms of, say,f1. We
have found that up tom56 @mÞ0#, the expression

fm5mf11~m11!p ~19!
-

o

FIG. 4. Lines of constant den
sity for L/N51.25, 1.5, 1.75, 2.0,
and 2.1 in a plane perpendicular t
the z axis. On the darker curves
uCu250.3n0, and on the lighter
curvesuCu250.1n0.
5-4
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gives the lowest energy.
It is convenient to introduce the variableX5uc2u21uc3u2,

which is linear in l to leading order, and make use of th
constraints given by Eqs.~12! and ~13!. One finds

uc0u2512X2uc1u22uc4u22uc5u22uc6u2,

uc2u253X2 l 1uc1u214uc4u215uc5u216uc6u2, ~20!

uc3u25 l 22X2uc1u224uc4u225uc5u226uc6u2.

Then Eq.~18! takes the form

^V&5S 1

2
2

l

4
2

31

16
X21

13

8
lX2

9

32
l 21

1

4
uc1u2

2
A3

2
uc1uuc2uuc3u1

1

8
uc4u22

A6

8
uc2u2uc4u1

5

16
uc5u2

2
A10

8
uc2uuc3uuc5u1

17

32
uc6u22

A5

16
uc3u2uc6u DN2v0

1O~Nv0!. ~21!

The last four terms in the above equation can lower the
ergy to orderl 2. For c4, for example, the energy is mini
mized if @see the second line of Eq.~21!#

]

]uc4u
1

8
uc4u25

]

]uc4u
A6

8
uc2u2uc4u ~22!

or

uc4u5
A6

2
uc2u2} l . ~23!

Due to the nonzero value ofc4, the energy is lowered by a
amount

DE5S 1

8
uc4u22

A6

8
uc2u2uc4u DN2v052

3

16
uc2u4N2v0

} l 2N2v0 . ~24!

It is remarkable that the termDE exactly cancels the term
3uc2u4/16 in the first line of Eq.~18!. In a similar way,c1 ,
c5, andc6 can be expressed in terms ofc2 andc3 ~and thus
X), and Eq.~18! takes the form of the effective Hamiltonian

^V&5S 1

2
uc0u41

1

2
uc0u2uc2u21

1

4
uc0u2uc3u21

5

34
uc3u4

2
1

4
uc2u2uc3u2DN2v01O~Nv0!, ~25!

or equivalently

^V&5F1

2
2

l

4
1

27

17S X2
l

2D 2GN2v01O~Nv0!. ~26!
06360
n-

Minimizing the above expression with respect toX, we find
thatX5 l /2 and thus the angular momentum has to be car
by them52 state alone, sinceuc2u25 l /2 anduc3u250 up to
terms linear inl. Also, the quadratic correction tôV& van-
ishes. Therefore, forL/N→0, the quadrupole (l52) exci-
tations are dominant. This is one of the important conc
sions of our study. We show in the Appendix that
diagrammatic perturbative expansion that assumes that
the states withm50, 2, and 3 are occupied by a macr
scopic number of particles, while all the other states are
~but still contribute to the energy!, gives the same result. I
one goes to higher order inl, the interaction energy ha
within the perturbative scheme a term of the formuc2u3uc3u2,
which includes all the processes that convert threel52 ex-
citations to twol53 excitations. This term can combin
with the term uc3u4, which implies that it is possible tha
uc3u2}uc2u3} l 3/2, which actually turns out to be the cas
Thenc1, for example, is given according to the second li
of Eq. ~21!, by

uc1u5A3uc2uuc3u} l 5/4. ~27!

Using similar arguments we find that

ucmu2} l m/2 for mÞ1 and uc1u2} l 5/2. ~28!

The leading terms inucmu2 are given by

uc0u2512
1

2
l 1

1

3
l 3/2,

uc1u25 l 5/212l 3,

uc2u25
1

2
l 2 l 3/2,

uc3u25
2

3
l 3/2, ~29!

uc4u25
3

8
l 22

3

2
l 5/22

1173

816
l 3,

uc5u25
2

15
l 5/22

4

15
l 3,

uc6u25
1

144
l 3,

and the corresponding interaction energy is

^V&5F1

2
2

l

4
1O~ l 4!GN2v01O~Nv0!. ~30!

The above equation is another basic result of our stu
namely that the interaction energy drops linearly with t
angular momentum up to the order we have examined,
L/N→0, in agreement with our numerical simulations a
with those of Refs.@7# and @9#.
5-5



s

ls
r

g

as

n

c-

to

n-
ee-
he
ues

s

kh-
n
al-

r a

ded

um
u-

as
u-

G. M. KAVOULAKIS, B. MOTTELSON, AND C. J. PETHICK PHYSICAL REVIEW A62 063605
C. Analytical results for lÉ1

We now turn to the regionL/N'1. When the angular
momentum per particle is exactly equal to 1, the lowe
energy state is the one whereuc1u251, and corresponds to
a vortex state. We consider the two casesl ,1 and l .1
separately, starting withl ,1.

1. Analytical results for lË1

The simplest way to create a state withl ,1 from that
with l 51 is to transfer particles from them51 state to the
m50 state. However, the energy can be even lower if a
them52 state is populated, because of the off-diagonal te
uc0uuc1u2uc2u. The interaction energy up to orderl̄ 51
2L/N is found by minimizing the potential energy, retainin
only the coefficientsc0 , c1, andc2. This is

^V&5S 1

4
uc1u41uc0u2uc1u21

3

4
uc1u2uc2u2

2
A2

2
uc0uuc1u2uc2u DN2v01O~Nv0!, ~31!

where we have used the fact that for this case too the ph
may be shown to be given by Eq.~19!. Equation~19! is valid
for small negativeL/N21 at least up tom54. Thus in this
limit

uc0u2}uc2u2} l̄ . ~32!

To obtain the coefficients of proportionality, it is convenie
to use the following parametrization:

uc0u25~11a! l̄ ,

uc1u2512~112a! l̄ , ~33!

uc2u25a l̄ ,

wherea is a variational parameter. Minimizing the intera
tion energy in Eq.~31! with respect toa, we find thata
51. More generally, using similar arguments we find that
leading order

ucmu2} l̄ um21u, ~34!

and the explicit expressions for the coefficients are

uc0u252 l̄ 2
3

2
l̄ 2,

uc1u25123 l̄ 1
27

8
l̄ 2,

uc2u25 l̄ 2
9

4
l̄ 2, ~35!

uc3u25
3

8
l̄ 2,

uc4u25
l̄ 3

12
,

06360
t-

o
m

es

t

and the interaction energy to orderl̄ 3 is

^V&5F1

4
1

l̄

4
1O~ l̄ 4!GN2v01O~Nv0!. ~36!

The above equation implies that also in the regionl ,1 the
interaction energy varies linearly with the angular mome
tum to the order we have examined, which is also in agr
ment with the numerical simulations. The coefficient of t
linear term is the same as the one we found for small val
of the angular momentum.

Equations~30! and ~36! as well as the numerical result
~see Fig. 2! strongly suggest that the interaction energy^V&
drops linearly as a function ofL/N in the whole region 0
<L/N<1. The same result was derived by Butts and Ro
sar @7# numerically within the mean-field approximation. I
Ref. @9#, Bertsch and Papenbrock performed exact diagon
izations of degenerate states of a givenL and found that up
to machine accuracy the energy of the lowest state fo
given L varies linearly withL in the range 2<L<N, in
agreement with our analytic expansions. See also note ad
in proof.

2. Analytical results for lÌ1

We turn now to the casel .1. We calculate the difference
in energy between the statesu1N& andu1N21, (l11)1& by a
method similar to that which for smalll led to Eq.~16!. The
energyel of this 2l-pole excitation withL5N1l, for l
!N, is given by

el5l\v2
1

2 S 12
l12

2l D Nv01O~v0!. ~37!

This formula implies that forl .1, the single-particle exci-
tations with the lowest energy per unit of angular moment
are those withl54 or 5, which means that the actual ang
lar momentum carried by the particles ism55 or 6. In con-
trast to the low-angular-momentum case, here bothuc5u2 and
uc6u2 vary linearly with l̄ , uc5u2}uc6u2} l̄ , where l̄ 5L/N
21. In addition, in this regime we find that the energy h
corrections of higher order than linear. Using similar arg
ments to those given before for smalll, we find, to orderl̄ 2,

uc0u250.1213l̄ 2,

uc1u25120.2241l̄ ,

uc2u250.1934l̄ 2,

uc5u250.1205l̄ ,
~38!

uc6u250.1036l̄ ,

uc9u251.731023 l̄ 2,

uc10u251.331023 l̄ 2,

uc11u258.631023 l̄ 2,
5-6
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and the interaction energy is

^V&5F1

4
2

5 l̄

64
16.731023 l̄ 21O~ l̄ 3!GN2v01O~Nv0!.

~39!

If we compare the expressions~36! and~39! for the interac-
tion energy, we see that there is a change in its slo
]^V&/]L, as L passesN, from 2Nv0/4 for L,N to
25Nv0/64 for L.N.

D. Results for higher values ofL ÕN

We mentioned earlier that as the angular momentum
particle increases even further, there are certain range
values ofL/N over which the state with the lowest energ
has a specific symmetry. The lowest value ofL/N for which
this occurs is'1.75 and the symmetry of the state is tw
fold, i.e., onlyc2mÞ0. We have examined analytically as a
example the caseL/N52. Keeping only the first three non
zero coefficients, which are the dominant ones, we find
order l̄ 5L/N22 that

uc0u25b~ l̄ !2 l̄ /4,

uc2u25122b~ l̄ !, ~40!

uc4u25b~ l̄ !1 l̄ /4,

where

b~ l̄ !5
3092248A6

12695
1

17~64A61109!

10156
l̄ '0.234310.4449l̄ ,

~41!

or

uc0u2'0.234310.1949l̄ ,

uc2u2'0.531420.8897l̄ , ~42!

uc4u2'0.234310.6949l̄ ,

and the corresponding interaction energy is

^V&5@A2B l̄ 1C l̄ 21O~ l̄ 3!#N2v01O~Nv0!, ~43!

where

A5
3

16
1

b0

32
~724A6!1

b0
2

256
~64A62109!,

~44!

B5
1

512
~4185b0!,

andb05b(0). Numerically Eq.~43! is

^V&'@0.177320.0467l̄ 10.0170l̄ 21O~ l̄ 3!#N2v0

1O~Nv0!. ~45!
06360
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Just beyondL/N52 the lowest-energy state passes throug
first-order phase transition and the slope of the interac
energy exhibits a small negative discontinuity. Figure
shows lines of constant density,uCu25const, forL/N52.
The occurrence of two nodes in the density reflects the p
ence of two displaced vortices, and thus we see that
lowest-energy state of the system has two separated vor
and not a doubly quantized vortex. This clearly demonstra
the instability of the double-quantized vortex state to form
tion of two vortices plus surface waves.

IV. BEYOND THE MEAN-FIELD APPROXIMATION

Another way of approaching the problem of rotation is
diagonalize the Hamiltonian within the space of degener
states. This approach goes beyond the mean-field approx
tion, since in mean-field theory the many-body wave fun
tion is a product of single-particle states, whereas more g
erally the true many-body state has correlations between
particles. This technique can be used by taking into acco
the whole set of states@9#, but it is convenient and pedagog
cal to work in a restricted space, appropriately chosen.

As an example, we consider small negativeL/N21.
From the analysis of Sec. III C we know that in this limit th
states withm51, 0, and 2 are dominant. Therefore, the
genstates

um, l̃ &5u0 l̃ 1m,1N2 l̃ 22m,2m& ~46!

with N particles andL5N2 l̃ units of angular momentum
are expected to provide a good basis for describing the l
lying states forl̃ !N. We restrict ourselves to this limit an
demonstrate how one can derive an effective Hamilton
which can be diagonalized exactly. In the limit we consid
l̃ is !N, and thusm; l̃ !N. The diagonal matrix element
in the Hamiltonian are, up to terms of orderN,

^muVum&5S 1

4
N~N21!1

1

2
l̃ N1

3

4
mND v0 , ~47!

and the off-diagonal matrix elements are

^m11uVum&'
A2

4
Nv0A~m1 l̃ 11!~m11!. ~48!

Ignoring for the moment the~diagonal! first term of Eq.~47!,
which corresponds to the interaction energy of the stateu1N&,
we see from Eqs.~47! and ~48! that we have to diagonalize
the Hamiltonian

H̃5F1

2
a0

†a01
1

4
a2

†a21
A2

4
~a2

†a0
†1a2a0!GNv0 , ~49!

which can be done exactly by use of a Bogoliubov transf
mation. Heream is an annihilation operator that destroys
particle with angular momentumm\. Introducing the opera-
tors c andd given by

c5a0
†1A2a2 and d5A2a01a2

† , ~50!
5-7
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we may write the Hamiltonian as

H̃5
N

4
~d†d21!v0 . ~51!

Acting on states of the type~46!, the operatord†d2c†c is
diagonal, and has an eigenvalueN2L. Therefore,d†d can
be eliminated and from Eq.~51! we obtain

H̃5
N

4
~N2L21!v01

Nv0

4
c†c. ~52!

The total interaction energy is thus the eigenenergy ofH̃ plus
the diagonal partN(N21)v0/4, or

^V&5
N

4
~N21!v01

N

4
~N2L211^c†c&!v01O~v0!

5
N~2N2L22!

4
v01

1

4
^c†c&Nv01O~v0!. ~53!

In the ground statêc†c&50, and the energy given by Eq
~53! is the same as that derived numerically in Ref.@9#. The
presence of the term̂c†c& in Eq. ~53! implies that the ex-
cited states in this limit of small negativeL/N21 are sepa-
rated from the ground state by an amount

DE5
N

4
v01O~v0!. ~54!

We have also performed numerical diagonalization, a
we have confirmed the above result~53!, as well as Eq.~54!.
The average occupancy of single-particle states for
lowest-energy state andL5N is

uc1u2512
2

N
1OS 1

N2D , uc0u25uc2u25
1

N
1OS 1

N2D ,

~55!

and thus in the limitN→` there is agreement between th
mean-field approximation and the present one. The resu
Eq. ~55! is in agreement with Ref.@6#, where the larges
eigenvalue of the single-particle density matrix was found
be 122/N. The two results gave identical answers beca
both studies considered only trial wave functions with
radial excitations,nr50, as is appropriate in the weak
interaction regime defined in Sec. II.

V. SUMMARY AND CONCLUSIONS

To summarize, we have studied the lowest-energy st
of a system of rotating, weakly interacting harmonica
trapped bosons. Within the mean-field approximation,
L/N→0 we find that the angular momentum is carri
mainly by quadrupole (umu52) excitations. We have dem
onstrated that diagrammatic perturbation theory also lead
the same results as the method we have used here.

For L/N51, the angular momentum is carried by pa
ticles in them51 state, while for small negativeL/N21 the
m50 and m52 states are also populated. In the lim
06360
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L/N→0 andL/N→1, the energy is a linear function of th
angular momentum up to the order we have explored, w
numerically this linearity persists in the whole region
<L/N<1.

For small positiveL/N21, the states which carry the ad
ditional angular momentum are those withm55 andm56.
In addition, asL passesN the derivative of the interaction
energy with respect to the angular momentum chan
abruptly. We have also found that forL/N'1.75 there is a
second-order phase transition and for 1.75<L/N<2.03 the
lowest-energy state has twofold symmetry. AtL/N'2.03,
there is a first-order phase transition to a state with three
symmetry. More generally, for higher values ofL/N a vortex
array develops.

The Gross-Pitaevskii wave function is a power ser
in z̃5x1 iy . Thus if one truncates the series atm5mmax,
the wave function will havemmax nodes. In the vicinity of a
node atz̃5 z̃0, the wave function varies asz̃2 z̃0 and there-
fore each node corresponds to a singly quantized vo
having the same sense as the total angular momen
It is instructive to study how the vortex lines move as t
angular momentum is increased. For low angular mom
tum, the condensate wave function has onlym50 and m
52 components, and it is therefore proportional to@1
2( l 1/2/2)(r/aosc)

2e2if#exp(2r2/2aosc
2 ) for the choice off2

5p, according to Eq.~19! with f150. This has vortices on
the x axis atx56A2/l 1/4aosc. With increasing angular mo
mentum, components of the wave function with oddm grow,
and the twofold symmetry of the cloud is broken, as may
seen in Fig. 3 forL/N50.1, one of the vortices moving to
larger distances and the other to smaller ones. Thec3 term
leads to a third vortex at large distances from the origin. F
L/N51, there is only one vortex, which is at the origi
With further increase inL/N, the velocity field is at first still
dominated by a vortex close to the origin, but subsequent
second vortex moves into the cloud until atL/N'1.75 the
twofold symmetry is restored. AsL/N increases the distanc
between the two vortices does not change appreciably u
L/N'2.03 at which point the lowest-energy state chang
discontinuously to a configuration of three vortices.

In this paper, we have also investigated effects not
cluded in mean-field theory by diagonalizing a model Ham
tonian for L close to, but less than,N. We find that forL
5N, the occupancy of them51 state is 1, with corrections
of order 1/N. We have calculated the energy up to terms
order N. Finally, we also found that the low-lying excite
states are separated from the lowest state of the same an
momentum by energies of orderNv0.

In this study, we have examined the limit of weak inte
actions. When the interaction energy per particlenU0 be-
comes comparable to or greater than\v, components of the
wave function that are not members of the lowest multip
in the absence of interaction must be included. Calculati
for this regime based on the Gross-Pitaevskii equation h
been carried out by Isoshima and Machida@15#. Comparison
of our results with theirs is difficult because these auth
calculated the lowest-energy state in a rotating frame, ra
than the lowest-energy state for a given angular moment
5-8
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One question of importance both conceptually and
cause of its relevance to experiment is whether or not
states are stable to small perturbations, and if they are
what is the lifetime of the state. The answer to these qu
tions depends on the nature of the perturbation, nam
whether it is due to a deformation of the trap or to intera
tions with particles outside the condensate, and we shall
cuss this elsewhere.

In our calculations above, we have shown for a particu
example that the Gross-Pitaevskii approach gives corre
the contribution to the energy of orderN2. This result, which
is alluded to in Ref.@7#, is more general, and in another stu
@16# it has been shown how the Gross-Pitaevskii approac
recovered as the first term in an expansion in powers of 1N.
The method may be extended to calculate contributions
the energy of orderN, which are in excellent agreement wit
results obtained by numerical diagonalization of the Ham
tonian.

Note added in proof. In a recent paper@17# it has been
demonstrated that the linearL dependence of the interactio
energy for 2>L>N exhibited in Fig. 2 and discussed in Sec
III and IV indeed corresponds to an eigenvalue of the Ham
tonian. In addition, two recent papers@18,19# provide proofs
that this eigenvalue corresponds to the wave function p
posed in@9#. It has not been possible, however, to prove t
this eigenvalue is the lowest in energy.
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APPENDIX: PERTURBATION THEORY APPROACH

We show in this appendix that one can use perturba
theory to derive an effective Hamiltonian in the regionL/N
→0, corresponding to Eq.~25!. We assume that only th
states withm50, 2, and 3 are macroscopically occupie
However, other states~the m51, 4, 5, and 6 ones in this
case! give corrections to the energy that can be treated p
turbatively. Let us demonstrate how this works by consid
v.

tt.
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ing the interaction energy up to orderl 2. As long as bothc2
andc3 vary asl 1/2, the only processes that contribute to t
interaction energy up tol 2 are shown in Fig. 5.

Let us consider the first process on the left as an exam
The matrix elementM corresponding to the vertex, wher
two particles withm52 scatter to states withm50 andm
54, is equal to

M5
A6

16
N2ANv0 . ~A1!

From Eq.~16! we find that the difference in the energy b
tween the intermediate state and the initial state is

de52
Nv0

8
1O~v0!. ~A2!

In perturbation theory, the leading correction to the energ
given by

uMu2

de
52

3

16
N2

2v052
3

16
uc2u4N2v0 , ~A3!

which is precisely the same as Eq.~24! ~plus terms of order
Nv0). Similarly, the other diagrams shown above gi
25uc3u4/544, 2uc2u2uc3u3/8, and23uc2u2uc3u2/4 in units of
N2v0, respectively, and are identical to the corrections giv
by the terms in the last four lines of Eq.~18!.

FIG. 5. The four diagrams contributing to the interaction ene
to orderl 2.
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