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Weakly interacting Bose-Einstein condensates under rotation
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We investigate the ground and low excited states of a rotating, weakly interacting Bose-Einstein condensed
gas in a harmonic trap for a given angular momentum. Analytical results in various limits as well as numerical
results are presented, and these are compared with those of previous studies. Within the mean-field approxi-
mation and for repulsive interaction between the atoms, we find that for very low values of the total angular
momentum per particld,/N—O0, whereL# is the angular momentum amdlis the total number of particles,
the angular momentum is carried by quadrupdle|&2) surface modes. Fdr/N=1, a vortexlike state is
formed and all the atoms occupy tihe=1 state. For small negative values lofN—1, the states withm
=0 andm=2 become populated, and for small positive valuek/®— 1, atoms in the states with=5 and
m=6 carry the additional angular momentum. In the whole regisiLON<1, we have strong analytic and
numerical evidence that the interaction energy drops linearly as a functiofNofWe have also found that an
array of singly quantized vortices is formed la&\ increases. Finally, we have gone beyond the mean-field
approximation and have calculated the energy of the lowest state up toMifdersmall negative values of
L/N—1, as well as the energy of the low-lying excited states.

PACS numbg(s): 03.75.Fi, 05.30.Jp, 67.40.Db, 67.40.Vs

[. INTRODUCTION the stability of a vortex in the limit of weak interactions. See
also the note added in proof.
One of the basic questions about Bose-Einstein conden- Experimentally, the detection of vortex states in a two-
sates in trapped alkali-metal atom vap¢tg is how they ~component system has been reported by Maithetval.
behave under rotation. A lot of theoretical work has beer|12l; While Madisonet al. [13] have provided evidence for

done on this subject, both analytical and numerjeat1 1, the formano_n of vortex states in a stirred one-component
and the problem has been studied theoretically, both in theBose-Emstgm condensate. : : :
’ Our basic goal in this study is to identify the lowest-

Thomas-Fermi limit of strong interactiori@—5] and in the  gnergy states of a harmonically trapped, weakly interacting
limit of weak interactiong6—11], which we consider in this pggge gas for a given angular momentumAs we show
paper. below, these states are selected by the interactions. In Sec. Il,
Wilkin et al. have considered6] a weakly interacting we describe the model and discuss the degeneracy of the
Bose gas in a harmonic trap. For attractive interactions, theynany-body states for a given angular momentum in the ab-
showed that in the lowest-energy state of a given angulagence of interactions. In Sec. Ill, we use the mean-field ap-
momentum, the angular momentum is carried by the centeroximation to calculate the interaction energy, and derive
of-mass motion. For repulsive interactions, they studied esdumerical and analytical results under various conditions. In
pecially the state with angular momentum per particle equaP€C: !V, we describe how one can go beyond the mean-field

to 2 and, on the basis of numerical and other evidence, mao%pproximation and study as an example the specific case of

a conjecture for the wave function. Butts and Rokhsar calcug’maII negative/N—1. Finally, in Sec. V we give our con-

lated numerically the moment of inertia of a weakly interact-CIUS'onS'

ing trapped Bose gas with effective repulsive interactions Il. THE MODEL

[7]. One of us identified the elementary modes of excitation

for small angular momentum and demonstrated in [R&¥. Our starting point is the HamiltoniaH, given by

that a system of rotating weakly interacting bosons exhibits H=Hq+V. 1)

two additional kinds of condensation associated with the na-

ture of low-lying excitations. Bertsch and Papenbrock perHere

formed in Ref[9] exact numerical diagonalization within the 2 5 s 2 o

subspace of states with a given angular momentum that are Ho=2 | - om Vi TaMeti+yD+iz) |, (2

degenerate in the absence of interactions, and they presented '

a conjecture for the wave functions and lowest eigenvalugvhereM is the atomic mass, which includes the kinetic en-

for 2<L<N. Wilkin and Gunn[10] considered systems with ergy of the particles and their potential energy due to the

L>N and presented approximate structures for describingrapping potential. The axis of rotation is taken to be the

these wave functions. Finally, Linn and Fetf&l] examined axis, and the trapping potential is assumed to be that of an
isotropic harmonic oscillator of frequency in the x-y
plane. Our results do not depend on the trapping potential

*Present address: Royal Institute of Technology, Lindstedmva f(z) in the z direction. The effective interactiod between
24, S-10044 Stockholm, Sweden. atoms is assumed to be of zero range,
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1 generacy. We incorporate the effect of the interactions in the
V= EUoE_ o(ri—rj), (3 mean-field approximation as well as by diagonalization
7 within some appropriately chosen truncated space of degen-

where U,=4m%2a/M is the strength of the effective two- erate states. We describe the two methods separately below.

body interaction, witta being the scattering length for atom-
atom collisions. We assume that the interaction is repulsive, Ill. MEAN-FIELD APPROXIMATION

a>0. Attractive interactions have been studied in Rgg. We start with the mean-field Gross-Pitaevskii approach.

and[8]. . . Butts and Rokhsar have used this method to derive numerical
Much theoretical work on rotating condensates has beef,qits for the moment of inertia of a Bose da3 In this

done in the _Thomas—Ferm| limit of strong interactions, Wherescheme the many-body wave function witiparticles and_
the superfluid coherence length

units of angular momentunk’| n(rq,rz, ... ry) is taken to
£=(8mna)~ 12 4) be the product of the single-particle statggr;),
n being the particle density, is much less than the size of the Yin(rz, i) = W) W(rg) - Wiry). (8

cloud. Under these conditions, the system is expected t0 eXe single-particle stat#(r;) can be expanded in terms of
hibit properties much like those of liquid helium [L4]. 1o harmonic-oscillator eigenstatds, (r)):
Most experiments are performed in this regime. In this study, '

we examine the opposite limit of weak interactiomd,), *

<hwo andnU,<AE,, whereAE, is the energy separation W(r)= > cn®n(r), 9
between the first excited state and the ground state for mo- m=0

tion in thez direction. Under the above conditions,

3

where thec,, are variational parameters, which are complex
112 in general and are functions &f The summation in Eq9)

, (5)  lisrestricted to positiven, since states with negativedo not
belong to the space of degenerate states. The quaagity
gives the occupation probability for stade,,. Also

aZ
Na

aOSC

where N is the number of atoms in the trapags.
= (/M w)*?is the oscillator length, and, is the character-

[m
istic length associated with the motion of the atoms inzhe d (r)= z F eim¢e—92/2a§sc,
. . . m( 2 1/29( )
direction. Therefore, the coherence length is larger than the (m!rags) dos
size of the cloud, and the situation is analogous to that for (10

BCS pairing of nucleons in nuclei. In this regime, the inter-

action ener lays a dominant role in determining the char i .
gy pay g bove expression, we have assumed that the bosons are in

acter of eigenstates, whereas for strong coupling, the kineti L A
energy is important. This, together with the fact that the sysI e grgund statg(z) fo.r mOt'On in thez d_|rect|on. The.ex—
tem is similar to ones encountered in other contexts, makeRectation \_/alue of the interaction energyn the state given
this regime an interesting one for theoretical studies. by Eq.(8) is

Since we consider rotation around thaxis, the condition 1
nUy<AE, implies that the motion in this direction is frozen (V)= EN(N—1)U0f |W|dr. (11
out and the problem is essentially two-dimensional. It is well
known that for the harmonic-oscillator potential in two di-
mensions, the single-particle energieare given in the ab-

sence of interactions by

Here p, z, and ¢ are cylindrical polar coordinates. In the

To find the lowest-energy state, we calcul&# as a func-
tion of the variational parameters,, and minimize it with
respect to them under the following two constraints: the nor-

e=(2n,+|m|+ 1)k o (6) malization condition,
wheren, is the radial quantum number antiis the quantum > |cd|=1, (12)
number corresponding to the angular momentum. In the m

lowest-energy state of the many-boson system, all particles N )

are in states witlm, =0 and withm being zero or having the and the condition that the expectation value of the angular
same sign as the total angular momentum. The energy of tHEomentum per particle be fixed,

lowest state of a system of noninteracting bosons with angu-

!ar momentunlL measured relative to that of the ground state > m|cy|2=L/N. (13

is therefore m

E=LAw. 7) The parameterg,, are complex in general, and therefore
both their magnitudes and their phases need to be deter-
There is a huge degeneracy corresponding to the many difnined. However, Eqg12) and (13) impose two constraints
ferent ways of distributind- quanta of angular momentum on the magnitudes of the,,. Furthermore, the overall phase
amongN atoms. Interactions between the atoms lift the de-of the wave function is arbitrary. Finally, the axial symmetry
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1 , N , which is lower than the trap frequeney. Here E,y is the
0 1/ N4 total energy of the system.
081 / ] WhenL increases beyonh, the rotational invariance for
0.6 | 2 L/N=1 is lost. Density contours for various values lof

betweerN and 2. NN are shown in Fig. 4. These were calcu-

Occupancies

0.4 | lated including states up to=6. ForL=1.75N, the optimal
wave function has a twofold axis of symmetry, and the odd-
02 m coefficients in the wave function vanish smoothly as the
transition is approached, as shown in Fig. 1. There is a first-
0 P . .
0 order transition from a state with twofold symmetry to one

with threefold symmetry forL~2.03N. The solution for
o ) ) ~ L/N=2.0 with the statesn=0, 2, 4, 6, and 8 considered
FIG. 1. The coefficient$c|* calculated numerically by mini- has an energy 0_175”’200, whereas the one with threefold
mizing the energy, as a function &fN. The numbers refer to the symmetry, with m=0, 3, 6, and 9, has an energy
corresponding states with angular momentuwfa. The two lowest 176sz'0 By Contraét f(')n_/ly\l= 21 th,e state with three-
curves in the regio./N~1.5 give the occupancy of thm=5 fold symmetry has an énergy 0.1692.&)0 which is lower
(uppey andm=6 (lower) states. than that of the solution with twofold symmetry,

- o . 0.1700N?%v,,.
of the confining potential implies that the origin of the angu- 0 .
lar coordinate is arbitrary, which corresponds to the condi- More generally, we have found that BAN increases, the

tion for conservation of angular momentum, which holdslowest-energy states are the ones where a vortex array is

even in the presence of interactions. Therefore, if the expanfprmed' in agreement with the results of REf].
sion(9) is truncated at a value,,,, the number of indepen-
dent real variables is 2 (Myact1)—4=2(Mya 1) B. Analytical results for L/N—0

We now turn to an analytic approach to the problem. One
A. Numerical results can systematically develop power-series expansions for the
occupanciesc,,|? of the states, as well as for the energy in
certain limits. We start with the case of very low angular
momentum,|=L/N—0. Working in terms of quantum-
mechanical states, one of us has calculated in Fgfthe
difference in the energies of two states where in the one state

tates with hiahem is verv low and therefore includin all N particles havan=0 and in the other state a particle is
states ith >96e ISd e%/ ﬁ ’t?] elte ore th'cu ? promoted to the state witm=X\, andN—1 particles have
states withm would not alter the results on this scale. ..~ 5"\ o denote the states by

Figure 2 shows the corresponding interaction energy and Fig.
3 shows lines of constant densitjd’|?=const, for L/N |oNo, 2N2 2Nz Y (15)
=0.1, 0.6, 0.8, and 1.0. Figure 3 shows the gradual transition

from mostly quadrupole, and to a lesser extent, octupole exyhereN,, is the number of particles with angular momentum
citations, which are present at low angular momentum, tan#, the two states arfoN)y and |ON"1,\1). The difference
vortexlike structures as approachesN. We should also ¢, in the energy between these two states, which correspond
mention that the structures in Fig. 3, as well as those in Flgto the energy of a>2_po|e excitation, is given by

4, rotate with an angular frequen€y given by

We have examined the problem numerically with,,, Up
to 9. The total number of terms in the expression{f@} is
125 in this case. The result of such a calculation waith,
=6 is shown in Fig. 1 for 8<L/N=<2.

We show the results witm,,,,=6, since the occupancy of

Q:E(?Etm:w—iw, (14) 6)\2)\}1(1)_(1_ 2)\71 NUO+O(1)0), (16)
h oL N#A 4l

05 : : : wherevo=Uy[|®o|*dr. One can easily see from E(L6)

045 | that at this level of approximation the excitations with the
2 highest gain in interaction energy per unit of angular mo-
g 04 1 mentum are the ones with=2 or A=3, i.e., quadrupole or
® 035} 1 octupole excitations.
£ o3l J We now calculate the interaction energy for low values of
g 025 | I. The calculation of the energies of elementary excitations
£ 7 indicates that one would expect quadrupole and octupole

0.2 ] modes to be the most important ones for snhallo deter-

0.15 0 0'5 1 1'5 ) mine the most energetically favorable way of giving the sys-

tem angular momentum, one has to identify the behavior of

|c,|? and|c5)? asl =L/N—0, and then it is possible to build
FIG. 2. The interaction energyV), in units ofN%v, as a func-  UpP a power-series expansion. Motivated by the fact that the

tion of L/N. N=2 and 3 excitations are degenerate, and are the ones

L/N
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which give the highest gain in energy per unit of angular
momentum, we assume that bathandc; are of order */2.

As we show below, the mode-mode interaction lifts this de-
generacy, making the=2 mode dominant for low values of
angular momentum.

It is instructive to give an explicit example, so let us ex-
amine the interaction energy up to ordérin order to mini-
mize the interaction energy to this order, the states with
=1, 4, 5, and 6 need to be considered, in addition to those
with m=0, 2, and 3, since the phases of off-diagonal terms,
such as, for examplég,||c,||c,||cs|, can be chosen to have
a negative sign, and thus lower the energy as compared to
the case where onlg,, c,, andcs are nonzero. A useful
formula for the matrix elements of the potential is

f K (NPT (NP p(r)Pp(r)dr

s (k+1)! fCI) aq 1
=m0 S0 v |Do(r)|*dr.  (17)

1.0 1

2 3 4
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FIG. 3. Lines of constant den-
sity for L/N=0.1, 0.6, 0.8, and
1.0 in a plane perpendicular to the
z axis. On the darker curves
|¥|?=0.3n,, and on the lighter
curves |¥|?=0.1n,, where ng
=g(2)% wa3. The unit of length
is the oscillator lengtla,s.. These
pictures show how a vortex enters
the cloud of bosons as the angular
momentum per particle increases.

1 1 3
(V)= §|co|4+ §|Co|2|02|2+ Z|Co|2|03|2+ 1—6|<32|4

5 5
+3_2|Cs|4+ §|Cz|2|(73|2+|Co|2|01|2

V3

2

1 6
|col|Callcol|cal+ §|Co|2|c4|2_ ?|Co||02|2|c4|

1 J10 1
+ E|Co|2|05|2_ T|Co||02||cs||cs|+ 3_2|C0|2|C6|2

V5

— ——=lcollcal?lce| [N2vo+O(Nuy).

16

(18

In the above expression we have chosen the phages the
variational coefficientg,, in such a way as to minimizg/),
and in the specific example we can arrange them so that all
the off-diagonal matrix elements are negative. One of the
phases can have any value, and we make the chiyjee0.
The rest of them can be expressed in terms of, gay We

have found that up ton=6 [ m+ 0], the expression

As will become clear below, to calculate the energy up to
order|? we must include the following terms:

dn=Me1+(m+1)m

3 3 3
L/N=1.25 L/N=1.5 L/N=1.75

2 2 2
1 1 @ 1 o
o : 0 o (020
.1 128 TR
2 2 -2
-3 -3 -3

4 3 -2 -1 01 2 3 4 4 -3 210 1 2 3 4 4 -3 210 1 2 3 4

L/N=2.0
0,0

o/

L/N=2.1

b v 4o =2 N ow
Q
A I

Y4 321012 3 4 43240412 3
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FIG. 4. Lines of constant den-
sity for LIN=1.25, 1.5, 1.75, 2.0,
and 2.1 in a plane perpendicular to
the z axis. On the darker curves
|W|?=0.31, and on the lighter
curves|¥|2=0.1n,.
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gives the lowest energy.
It is convenient to introduce the variab¥e=|c,|%+ |c5|?,

PHYSICAL REVIEW A62 063605

Minimizing the above expression with respect@pwe find
thatX=1/2 and thus the angular momentum has to be carried

which is linear inl to leading order, and make use of the by them=2 state alone, sinde,|?>=1/2 and|cs/>=0 up to

constraints given by Eq$12) and(13). One finds
|col?=1—X—c1|?— el ?—[es|*—|cql?,

|co|?=3X—14|cy|?+4|cyl?+5|cs|?+6|cg|?,  (20)

|Caf*=1—2X—[cy|?~4]cy| *—5|cs|* - 6 ce| .

Then Eq.(18) takes the form

x+13|x 9|2+1 2
=273 et g3 gl

3 1 6 5
- 7|C1||CZ||C3|+ §|C4|2_ ?|CZ|Z|C4|+ ﬂ3|05|2
J10
8
+O(NUO)

7 5
|callcallcs| + 55/ cel>— == |cal?[ce| | NZvg
32 16

(21)

The last four terms in the above equation can lower the en-

ergy to orderl?. For ¢4, for example, the energy is mini-
mized if [see the second line of ER1)]

9 1 J6
7 Tie2= 2 NO 2
acal 8|C4| ilca 8 AR A (22
or
J6
|C4|:7|Cz|2°‘|- (23

Due to the nonzero value af;, the energy is lowered by an
amount

1 V6
Aé= §|C4|2_?|02|2|C4| szo:—1—6|cz|4NZUo
«12N?py. (24)

It is remarkable that the ter’A& exactly cancels the term
3|c,|*/16 in the first line of Eq(18). In a similar way,c;,
Cs, andcg can be expressed in terms ©f andc; (and thus
X), and Eq.(18) takes the form of the effective Hamiltonian,

1 1 1 5
<V>=(§|CO|4+ §|Co|2|cz|2Jr Z|Co|z|03|2+ @f|03|4

1
—Z|cz|2|c3|2)szo+O(Nv0), (25
or equivalently
1 1 27 R

terms linear inl. Also, the quadratic correction /) van-
ishes. Therefore, fot/N—0, the quadrupoleN=2) exci-
tations are dominant. This is one of the important conclu-
sions of our study. We show in the Appendix that a
diagrammatic perturbative expansion that assumes that only
the states withm=0, 2, and 3 are occupied by a macro-
scopic number of particles, while all the other states are not
(but still contribute to the energygives the same result. If
one goes to higher order ih the interaction energy has
within the perturbative scheme a term of the fdap|®|c;|?,
which includes all the processes that convert thve€2 ex-
citations to twoh =3 excitations. This term can combine
with the term|cs|4, which implies that it is possible that
|cal?c|cy| 3132 which actually turns out to be the case.
Thenc,, for example, is given according to the second line
of Eq. (21), by

lcq|= \/§|C2||Cs|°‘|5/4-

Using similar arguments we find that

(27)

|Cm|?<1™2 for m#1 and |cy|?xI%2 (28)

The leading terms ific,|? are given by

11

2_4_ Ty 82
|C0| 1 2|+3| s
|cq2=1%2+213,

1
|C2|2:§| _|3/2,

2
|cal?=31%% (29

3 1173

|2:§|2__|5/2_ |3
8 2

|4 816 '
2 4

2_ %52 T3

e T T

2_i|3
144 °

[
and the corresponding interaction energy is

(30

1IOI4
22700

N2U0+ O(Nvo)

(V)=

The above equation is another basic result of our study,
namely that the interaction energy drops linearly with the
angular momentum up to the order we have examined, for
L/N—0, in agreement with our numerical simulations and
with those of Refs[7] and[9].
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C. Analytical results for 1~1 and the interaction energy to ordet is
We now turn to the regio./N~1. When the angular 1T
momentum per particle is exactly equal to 1, the lowest- ol o N+
energy state is the one whejg|>=1, and corresponds to (V)=|2 72+ N0+ O(Nuo). (36)

a vortex state. We consider the two casesl and|>1

separately, starting with<1. The above equation implies that also in the redierl the
interaction energy varies linearly with the angular momen-
1. Analytical results for k<1 tum to the order we have examined, which is also in agree-

The simpl 1 f h ment with the numerical simulations. The coefficient of the
_/Ne simp est way to crgate a state wit rom that  inear term is the same as the one we found for small values
with 1=1 is to transfer particles from the=1 state to the of the angular momentum

m=0 state. However, the energy can be even lower if alSo g, ations(30) and (36) as well as the numerical results
them=2 state is populated, because of the off-diagonal ternasee Fig. 2 strongly suggest that the interaction ene(yy
|collcal?lcol. The interaction energy up to order=1  drops linearly as a function df/N in the whole region 0
—L/Nis found by minimizing the potential energy, retaining <|./N<1. The same result was derived by Butts and Rokh-

only the coefficientsy, ¢;, andc,. This is sar[7] numerically within the mean-field approximation. In
1 3 Ref.[9], Bertsch and Papenbrock performed exact diagonal-
<V>=(Z|Cl|4+|Co|2|01|2+z|01|2|02|2 izations pf degenerate states of a giteand found that up
to machine accuracy the energy of the lowest state for a

given L varies linearly withL in the range ZL=<N, in
|Co||01|2|C2|) N2+ O(Nug), (32) ;ar\]ggergg;ent with our analytic expansions. See also note added

V2
2
where we have used the fact that for this case too the phases

. ; ; . 2. Analytical results for &1
may be shown to be given by E{.9). Equation(19) is valid

for small negative./N—1 at least up tan=4. Thus in this We turn now to the case>1. We calculate the difference
limit in energy between the statgils'y and|1N"1, (\+ 1)) by a
method similar to that which for smadllled to Eq.(16). The
|Co|zoc|C2|2MT (32 energye, of this 2\-pole excitation withL=N+ X, for \

<N, is given by
To obtain the coefficients of proportionality, it is convenient

to use the following parametrization: 1 N+2
6)\=7xﬁw—§(1— : Nvo+O(vg). (37
lcol?=(1+ )T, 2
_ This formula implies that fot>1, the single-particle exci-
lci)?=1—(1+2a)l, (33) tations with the lowest energy per unit of angular momentum
o are those withh =4 or 5, which means that the actual angu-
lco?=al, lar momentum carried by the particlesns=5 or 6. In con-

trast to the low-angular-momentum case, here boglf and
|ce|? vary linearly with I, |cg|?<|cg|?<], where |=L/N
—1. In addition, in this regime we find that the energy has
corrections of higher order than linear. Using similar argu-

ments to those given before for smilive find, to ordell 2,

where « is a variational parameter. Minimizing the interac-
tion energy in Eq.(31) with respect toa, we find thata
=1. More generally, using similar arguments we find that to
leading order

|Cyp| 2o 1T, (34)

N _ o |co|2=0.1213 2,
and the explicit expressions for the coefficients are

2 32 Icy|2=1-0.2241,
|col“=2I 2I ,
27 |c,|2=0.1934 2,
|C1|2:1_3|_+ _|—2, —
8 |c52=0.1203
2 T 2 , _ (38)
|Cof*=1-71 % (39) |cg|2=0.1038,
Ic |2:§|—2 |co|2=1.7x 10731 2,
3 8 1 B
T3 |c10/?=1.3x1073| 2,
lcal?=75, ., i
1 |cyy2=8.6%10731 2,
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and the interaction energy is

1 51 .
— —+6.7<10 31?4+ 0(1%) |N?v g+ O(Nuvy).

M=12"&

If we compare the expressioli36) and (39) for the interac-

(39

PHYSICAL REVIEW A62 063605

Just beyond./N=2 the lowest-energy state passes through a
first-order phase transition and the slope of the interaction
energy exhibits a small negative discontinuity. Figure 4
shows lines of constant densityy’|?=const, forL/N=2.

The occurrence of two nodes in the density reflects the pres-
ence of two displaced vortices, and thus we see that the
lowest-energy state of the system has two separated vortices

tion energy, we see that there is a change in its slopend not a doubly quantized vortex. This clearly demonstrates
HKVYldL, as L passesN, from —Nuvg/4 for L<N to

—5Nuv /64 for L>N.

D. Results for higher values ofL/N

the instability of the double-quantized vortex state to forma-
tion of two vortices plus surface waves.

IV. BEYOND THE MEAN-FIELD APPROXIMATION

We mentioned earlier that as the angular momentum per  Another way of approaching the problem of rotation is to
particle increases even further, there are certain ranges gfagonalize the Hamiltonian within the space of degenerate
values ofL/N over which the state with the lowest energy giates. This approach goes beyond the mean-field approxima-

has a specific symmetry. The lowest valud_éN for which

tion, since in mean-field theory the many-body wave func-

this occurs is=1.75 and the symmetry of the state is two- tjon is a product of single-particle states, whereas more gen-
fold, i.e., onlyc,,# 0. We have examined analytically as an gra|ly the true many-body state has correlations between the
example the case/N=2. Keeping only the first three non- particles. This technique can be used by taking into account
zero coefficients, which are the dominant ones, we find tqnhe whole set of statd], but it is convenient and pedagogi-

orderl =L/N—2 that

|col?=pB(1)—1/4,
|co?=1-28(1), (40)
|cql2=B(1)+1/4,
where
— 3092-48\6 17(64\6+109 _
B)=—595 * Toi5g | ~0-2343r0.4449,
(41)
or
|co|2~0.2343+0.1949,
|c,|2~0.5314-0.88917, (42)
|c4|2~0.2343+0.6949 ,
and the corresponding interaction energy is
(VY=[A—BI+CI2+0(13)]N%y+O(Nvy), (43
where
3 Bo B5
A—1—6+§2(7—4\/5)+ﬁ(64\/5—109),
(44)
B= ! 4+85
= 514+ 8560),

and Bo= B(0). Numerically Eq.(43) is

(V)~[0.1773-0.0467 +0.0170 2+ O(I 3)]N?%v,

+O(NUO)

(49)

cal to work in a restricted space, appropriately chosen.

As an example, we consider small negativéN—1.
From the analysis of Sec. lll C we know that in this limit the
states withm=1, 0, and 2 are dominant. Therefore, the ei-
genstates

|, Ty=[01#, IN-T-20 ony (46)

with N particles and.=N—T units of angular momentum
are expected to provide a good basis for describing the low-

lying states forl <N. We restrict ourselves to this limit and
demonstrate how one can derive an effective Hamiltonian
which can be diagonalized exactly. In the limit we consider,

T is <N, and thusu~T<N. The diagonal matrix elements
in the Hamiltonian are, up to terms of orddr

1 i 3
(u|V|p)y= ZN(N—1)+§|N+Z,U.N vg, (47

and the off-diagonal matrix elements are

2 =
<u+1IVIu>~§NvoJm+I+1><M+1). (48)

Ignoring for the moment théliagonal first term of Eq.(47),
which corresponds to the interaction energy of the gtelte,
we see from Eqsi47) and (48) that we have to diagonalize
the Hamiltonian

E 1 V2
H= §a$a0+ Za;aer 7(a£a5+azao) Nuo, (49

which can be done exactly by use of a Bogoliubov transfor-
mation. Herea,, is an annihilation operator that destroys a
particle with angular momentum? . Introducing the opera-
tors c andd given by

c=a}++2a, and d=2a,+a}, (50)
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we may write the Hamiltonian as

~ N

H= Z(d*d—l)vo. (51)
Acting on states of the typ&6), the operatod’d—c'c is
diagonal, and has an eigenvalde- L. Therefore,d'd can
be eliminated and from Ed51) we obtain

N NUO
—(N—L—-1)vy+——c'c.

H=2 4

(52

The total interaction energy is thus the eigenenerdyl plus
the diagonal parN(N—1)vy/4, or

N N
(V)= Z(N—1)UO+ Z(N—L—1+<<:Tc>)v0+0(vo)

_ N(2N-L-2)

1
7 vo+ Z(c*c)Nvo+0(v0).

(53

In the ground statéc’c)=0, and the energy given by Eq.

(53) is the same as that derived numerically in R6f. The
presence of the terric’c) in Eq. (53) implies that the ex-
cited states in this limit of small negatite N—1 are sepa-
rated from the ground state by an amount

N
AE: —Uo+ O(Uo).

. (54
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L/N—0 andL/N—1, the energy is a linear function of the
angular momentum up to the order we have explored, while
numerically this linearity persists in the whole region 0
<L/N=<1.

For small positiveL/N—1, the states which carry the ad-
ditional angular momentum are those withi=5 andm==6.
In addition, asL passesN the derivative of the interaction
energy with respect to the angular momentum changes
abruptly. We have also found that fa¥N~1.75 there is a
second-order phase transition and for £I5N<2.03 the
lowest-energy state has twofold symmetry. IMN~2.03,
there is a first-order phase transition to a state with threefold
symmetry. More generally, for higher valueslaiN a vortex
array develops.

The Gross-Pitaevskii wave function is a power series
in zZ=x+iy. Thus if one truncates the series mat Mynaxs
the wave function will haven,,,, hodes. In the vicinity of a
node az=z,, the wave function varies a-z, and there-
fore each node corresponds to a singly quantized vortex
having the same sense as the total angular momentum.
It is instructive to study how the vortex lines move as the
angular momentum is increased. For low angular momen-
tum, the condensate wave function has omy0 andm
=2 components, and it is therefore proportional [tb
— (1¥212) (plagsy 2e? *]exp(—p?l2a2,) for the choice ofe,
=1, according to Eq(19) with ¢;=0. This has vortices on
the x axis atx= * \2/I¥a,.. With increasing angular mo-
mentum, components of the wave function with adgrow,

We have also performed numerical diagonalization, andind the twofold symmetry of the cloud is broken, as may be

we have confirmed the above res(@B), as well as Eq(54).

seen in Fig. 3 fol./N=0.1, one of the vortices moving to

The average occupancy of single-particle states for théarger distances and the other to smaller ones. dhterm

lowest-energy state arld=N is

1
. |col?=]c,|?=5+0

2
21—+
lcil*=1 O N

N

(59)

N2 N2

leads to a third vortex at large distances from the origin. For
L/N=1, there is only one vortex, which is at the origin.
With further increase il./N, the velocity field is at first still
dominated by a vortex close to the origin, but subsequently a
second vortex moves into the cloud untillatN~1.75 the
twofold symmetry is restored. As/N increases the distance

and thus in the limitN—c there is agreement between the Petween the two'vorticgs does not change appreciably until
mean-field approximation and the present one. The result d¢/N~2.03 at which point the lowest-energy state changes
Eq. (55) is in agreement with Refl6], where the largest discontinuously to a configuration of three vortices.

eigenvalue of the single-particle density matrix was found to

In this paper, we have also investigated effects not in-

be 1-2/N. The two results gave identical answers becausé&luded in mean-field theory by diagonalizing a model Hamil-
both studies considered only trial wave functions with notonian forL close to, but less thamN. We find that forl
radial excitations,n, =0, as is appropriate in the weak- =N, the occupancy of thev=1 state is 1, with corrections

interaction regime defined in Sec. Il.

V. SUMMARY AND CONCLUSIONS

of order 1N. We have calculated the energy up to terms of
order N. Finally, we also found that the low-lying excited

states are separated from the lowest state of the same angular
momentum by energies of ordBlv .

To summarize, we have studied the lowest-energy states In this study, we have examined the limit of weak inter-

of a system of rotating, weakly interacting harmonically actions. When the interaction energy per particld, be-
trapped bosons. Within the mean-field approximation, forcomes comparable to or greater thfaa, components of the
L/N—0O we find that the angular momentum is carriedwave function that are not members of the lowest multiplet
mainly by quadrupole||=2) excitations. We have dem- in the absence of interaction must be included. Calculations
onstrated that diagrammatic perturbation theory also leads tfr this regime based on the Gross-Pitaevskii equation have
the same results as the method we have used here. been carried out by Isoshima and Machjd&]. Comparison

For L/N=1, the angular momentum is carried by par- of our results with theirs is difficult because these authors
ticles in them=1 state, while for small negatide/N—1 the  calculated the lowest-energy state in a rotating frame, rather
m=0 and m=2 states are also populated. In the limitsthan the lowest-energy state for a given angular momentum.
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One question of importance both conceptually and be-m=2 m~2 m=3 m=3 m=2 m=3 m=2 m=3
cause of its relevance to experiment is whether or not the
states are stable to small perturbations, and if they are not
what is the lifetime of the state. The answer to these ques
tions depends on the nature of the perturbation, namely
whether it is due to a deformation of the trap or to interac- me=4 m=6 m=5 m=1
tions with particles outside the condensate, and we shall dis
cuss this elsewhere.
In our calculations above, we have shown for a particular
example that the Gross-Pitaevskii approach gives correctly /
the contribution to the energy of ordf. This result, which m=2 m=2 m=3 m=3 m=2 m=3 m=3 m=2
is alluded to in Ref[ 7], is more general, and in another study ) o ) )
[16] it has been shown how the Gross-Pitaevskii approach is FIG. 52. The four diagrams contributing to the interaction energy
recovered as the first term in an expansion in powershof 1/ t© order!=.
The method may be extended to calculate contributions to . .
the energy of ordeN, which are in excellent agreement with "9 the interaction energy up to ordét As long as botrc,

1/2 H
results obtained by numerical diagonalization of the Hamil-2NdCs vary asl ™, the only processes that contribute to the
tonian. interaction energy up tt? are shown in Fig. 5.

Note added in proofin a recent papefl7] it has been Let us consider the first process on the left as an example.
demonstrated that the lineardependence of the interaction | N€ Matrix eler.nent/i/l corresponding to the vertex, where
energy for 22L=N exhibited in Fig. 2 and discussed in Secs. O particles withm=2 scatter to states witm=0 andm
Il and IV indeed corresponds to an eigenvalue of the Hamil-= 4 IS equal to

tonian. In addition, two recent papdis3,19 provide proofs NG
that this eigenvalue corresponds to the wave function pro- M= _6N N (A1)
posed in[9]. It has not been possible, however, to prove that 16 2 0

this eigenvalue is the lowest in energy. ) ) )
From Eq.(16) we find that the difference in the energy be-
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APPENDIX: PERTURBATION THEORY APPROACH M|? 3 3

| 56| :—1—6N§UOZ_1_6|C2|4N2U0, (A3)

We show in this appendix that one can use perturbation
theory to derive an effective Hamiltonian in the regiofiN
—0, corresponding to Eq25). We assume that only the which is precisely the same as H@4) (plus terms of order
states withm=0, 2, and 3 are macroscopically occupied.Nvy). Similarly, the other diagrams shown above give
However, other stateéhe m=1, 4, 5, and 6 ones in this —5|cs|*/544, —|c,|?|cs|®/8, and—3|c,|?|c5|?/4 in units of
cas@ give corrections to the energy that can be treated peN?v,, respectively, and are identical to the corrections given
turbatively. Let us demonstrate how this works by considerby the terms in the last four lines of E(L8).
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