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Tc for dilute Bose gases: Beyond leading order in 1ÕN

Peter Arnold and Boris Toma´šik
Department of Physics, University of Virginia, P.O. Box 400714, Charlottesville, Virginia 22904-4714

~Received 23 May 2000; published 9 November 2000!

Baym, Blaizot, and Zinn-Justin have recently used the large-N approximation to calculate the effect of
interactions on the transition temperature of dilute Bose gases. We extend their calculation to next-to-leading
order in 1/N and find a relatively small correction of226% to the leading order result. This suggests that the
large-N approximation works surprisingly well in this application.

PACS number~s!: 03.75.Fi, 11.15.Pg, 64.70.2p
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I. INTRODUCTION

Second-order phase transitions have universal beha
associated with long-wavelength fluctuations, for which cr
cal exponents and other universal quantities can often
successfully calculated using renormalization-group te
niques. For most such systems, the short distance physi
hopelessly complicated. In contrast, the phase transition
dilute, interacting Bose gas provides a fascinating exam
where physics becomes simpler, and perturbative, at~rela-
tively! small distance scales. For this system, it should
possible to marry techniques for treating long-distance c
cal fluctuations to a perturbative treatment of short-dista
physics, and so compute nonuniversal characteristics of
phase transition. A simple example of such a nonunive
quantity is the phase-transition temperatureTc , and the ef-
fect of interactions onTc has been explored by several a
thors @1–6#, with a wide variety of theoretical results. I
particular, the transition temperature has recently been ca
lated by Baym, Blaizot, and Zinn-Justin@7# in the large-N
approximation. For simplicity, they implicitly focus on th
case of Bose gases with a single spin state, where the
energy cross section for atomic collisions can be para
etrized by a single scattering length,a. As will be briefly
reviewed below, the problem is first reduced to a calculat
in a three dimensional O~2! scalar field theory at its critica
point. Replacing that by an O(N) theory with N52, they
find

Tc5T0F11
8p

3z~3/2!4/3
an1/3@11O~N21!#1O„~an1/3!2

…G
~1.1!

in the dilute limit, wheren is the number density andT0 is
the transition temperature of a noninteracting Bose gas,

T05
2p\2

kBm S n

z~3/2! D
2/3

. ~1.2!

For simplicity, we consider a uniform Bose gas, wheren is
fixed. Alternatively, in an arbitrarily wide harmonic trap,n
should be interpreted as the actual density at the center o
trap at the transition temperature.

Baym et al.’s result ~1.1! of DTc /T0[(Tc2T0)/T0
.2.33an1/3 is in good agreement with recent numeric
simulations@6# that giveDTc /T0'(2.260.2)an1/3. The re-
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sult is surprising because it seems to work much better t
the large-N expansion of critical exponents. For example, f
O(N) theory, the susceptibility critical exponentg is @9#1

g522
24

Np2 1
64

N2p4 S 44

9
2p2D1O~N23!

5221.216S 2

ND20.818S 2

ND 2

1O~N23!. ~1.3!

This is not a marvelous expansion forN52, for which the
actual value isg.1.32.

In this paper, we calculate theO(N21) relative correction
to Eq. ~1.1!. We find

Tc5T0F11
8p

3z~3/2!4/3
an1/3F12

0.527 198

N
1O~N22!G

1O„~an1/3!2
…G . ~1.4!

SettingN52, this is only a 26% correction to the leadin
large-N result for DTc /T0. We now have DTc /T0
.1.71an1/3. Though this does not agree as well with th
quoted simulation result, the moderately small size of
correction supports the proposition that the large-N expan-
sion works surprisingly well forTc .

1For Bose gases, a more physical example of a critical expone
n5120.540(2/N)20.470(2/N)21O(N23), whose actual value is
n.0.67 for N52. The fact that O~2! critical exponents should be
identified with Bose-gas exponents is not completely trivial. A u
form, nonrelativistic Bose gas is a constrained system: the par

densityn is fixed. This constraint causes the critical exponentsx̃

5(ã,b̃,g̃,ñ) of the actual system to be related@10# to the standard

exponentsx5(a,b,g,n) of the field theory by~i! ã52a/(1

2a), and x̃5x/(12a) for the others, ifa.0, or ~ii ! x̃5x if a
,0. The actual value ofa for the O~2! model is believed to be
20.00760.006@11#. If negative, there is no difference between t
exponents; if positive, there is in principle a very tiny differenc
This relation explains, by the way, the difference between me
field theory exponents for the O~2! model ~e.g., a5

1
2 ) and the

exponents of a noninteracting Bose gas~e.g.,ã521).
©2000 The American Physical Society04-1
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PETER ARNOLD AND BORIS TOMÁŠIK PHYSICAL REVIEW A 62 063604
In the remainder of this Introduction, we review the lon
distance O~2! effective theory for Bose condensation a
then review the arguments of@5,7# about how to calculate
DTc /Tc . In Sec. II, we review the leading-order calculatio
in largeN as done in@7#. In Sec. III, we go on to calculate
the next order in 1/N. An Appendix explains how to calcu
late some of the basic three-dimensional integrals that ap
at that order.

But first, we should mention some experimental data
the 4He-Vycor system@8#. As alluded to earlier, there hav
been several different theoretical results and simulation
sults forDTc /T0, obtained by various methods~e.g.,@1–4#!,
giving a large range of values for the coefficient ofan1/3 in
DTc /T0. Superficially, the4He-Vycor data seem to fit wel
an early theoretical estimate of Stoof@3#, which is DTc /T0
.(16p/3)z(3/2)24/3an1/3.4.66an1/3 ~exactly twice the
leading-order large-N result!. However, the detailed interpre
tation of this data is unclear. In that experiment, the heli
atoms are confined to an interconnected network of chan
in the porous Vycor glass, and, for the low-density data t
appear to fit Stoof, the interparticle spacing is the same o
of magnitude as the widths of the channels. Reference@8#
simply assumes that the system can be modeled by a
Bose gas with~i! an effective mass for the atoms that
extracted experimentally, but~ii ! the same scattering lengt
as for bulk helium, which is moreover taken from theoretic
modeling. Because of these assumptions, the apparent a
ment with the early work of Stoof should be treated w
caution.

A. Review of effective theory

The basic assumption throughout will be that the aver
separationn21/3 of atoms is large compared to the scatteri
lengtha. This can also be expressed asl(T0)@a, wherel is
the thermal wavelength

l~T!5S 2p\2

mkBTD 1/2

. ~1.5!

It is well known that, at distance scales large compared to
scattering lengtha, an appropriate effective theory for a d
lute Bose gas is the second-quantized Schro¨dinger equation,
together with a chemical potentialm that couples to particle
number densityc* c, and aucu4 contact interaction that re
produces low-energy scattering. The corresponding Lagra
ian is

L5c* S 2 i\] t2
\2

2m
“

22m Dc1
2p\2a

m
~c* c!2.

~1.6!

In this context, the corresponding mean-field equation of m
tion is called the Gross-Pitaevskii equation.~For a review,
see@12#.! As with any effective theory, there are correctio
represented by higher-dimensional, irrelevant interactions~in
06360
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the sense of the renormalization group!,2 such as (c* c)3 and
c*“4c. However, higher and higher dimension operato
are parametrically less and less important if the dista
scales of interest are large compared to the character
scales~a! of the atomic interactions. The (c* c)2 term in the
Lagrangian~1.6! is in fact the lowest-dimension irrelevan
interaction, and it is adequate for computing the leadin
order effects of interactions in the diluteness expansion.~For
a discussion of analyzing corrections in this language,
Ref. @13#, which extended earlier work on corrections b
Refs. @14#. A similar discussion for Fermi gases may b
found in Ref.@15#.!

Now treat the system at finite temperature using
imaginary time formalism. The field can then be decompo
into frequency modes with Matsubara frequenciesvn
52pnkBT/\. At sufficiently large distance scales (@l),
and small chemical potential (umu!kBT), the 2(\2/2m)“2

2m terms in Eq. ~1.6! become small compared to th
O(\vn) time derivative term, providednÞ0. The nonzero
Matsubara frequency modes then decouple from the dyn
ics, leaving behind an effective theory of only the zer
frequency modesc0. Roughly,

1

\E0

\b

dtE d3xL→bE d3xFc0* S 2
\2

2m
“

22m Dc0

1
2p\2a

m
~c0* c0!2G ~1.7!

with b51/kBT. In detail, the parameters of~1.7! are renor-
malized by coupling to the nonzero modes, and there
again corrections in the form of irrelevant~and even mar-
ginal! interactions. However, these effects are all suppres
in the dilute limit3 and do not affect the computation o
DTc /T0 at leading order inan1/3.

It is then convenient to writec05\21(mkBT)1/2(f1
1 if2) so that the effective actionS5H/T becomes a con-
ventionally normalized O~2! field theory:

2At short distances, the] t and“

2 terms of the action*dtd3xL
determine that times scales as (length)2 and the scaling dimension
of c is (length)23/2.

3For the three-dimensional effective theory~1.7!, the short-
distance scaling dimension ofc0 is ~length!21/2, the (c0* c0)2 in-
teraction is relevant, and a (c0* c0)3 interaction would be marginal
Even though marginal, this last interaction can be ignored at
order of interest in the diluteness expansion because it has a s
coefficient. For example, consider the term that would arise dire
from the presence of a correctiong3(c* c)3 to the original La-
grangian ~1.6!. That would lead to ag3(c0* c0)3 term in ~1.7!
which, after rescaling, would become a term proportional
(mg3 /\2l4)(f2)3 in Eq. ~1.8!. Sincel.l(T0)}n21/3 at the tran-
sition, the coefficient of this term is high order in the dilutene
expansion inn1/3. Similarly, an effective (c0* c0)3 term arising from
the four-point interactions (c* c)2 and from integrating out physics
at the scalel ~due, for example, to nonzero Matsubara mod!
would give rise to a (f2)3 term in Eq.~1.8! with coefficient pro-
portional tou3l3}l23.
4-2
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S5E d3xF1

2
u“fu21

1

2
rf21

u

4!
~f2!2G , ~1.8!

where f is understood to be a two-component real vec
(f1 ,f2) and

r 52
2mm

\2
, u5

96p2a

l2
. ~1.9!

B. Review of DTc ÕT0

Our effective theory depends on two as yet undetermi
parameters—r and u, or equivalentlym and T. One con-
straint comes from fixing particle number densityn:

n5^c* c&5
mkBT

\2
^f2&. ~1.10a!

At the critical temperature, the system will have infinite co
relation length. It will also have an infinite susceptibilityx,
which we use as our second constraint:

x215r 1P~0!50, ~1.10b!

whereP(p) is the proper self-energy of thef field. The two
equations~1.10! determine the two unknownsr and u, and
henceTc . As noted by Baymet al., the density equation
~1.10a! can be rewritten as

\2n

mkBT
5E

p

1

p21r 1P~p!
5E

p

1

p21@P~p!2P~0!#
,

~1.11!

where the last equality uses Eq.~1.10b!. Throughout this
paper, we will use the notational shorthand

E
p
[E d3p

~2p!3
~1.12!

for momentum integrals.~Technically,p is a wave number
rather than a momentum, but we will use conventiona\
51 nomenclature, even though we have not set\ to 1.!

Expression~1.11! for the density is ultraviolet~UV! di-
vergent and so receives contributions from short-dista
scales where the effective theory breaks down. This could
handled by appropriately regulating the effective theory a
then perturbatively correcting the UV contribution. A
pointed out by Baymet al., it is simpler instead to conside
the differencen-n0(T), wheren0(T) is the same expressio
in the absence of interactions~i.e., with P set to zero!:

\2@n2n0~T!#

mkBT
5E

p
F 1

p21r 1P~p!
2

1

p2G
5E

p
F 1

p21@P~p!2P~0!#
2

1

p2G .

~1.13!
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n0(T) represents the density anoninteractingBose gas has if
its transition temperature isT. It is given by inverting Eq.
~1.2!:

n0~T!5
z~3/2!

l3~T!
. ~1.14!

This formula cannot be derived directly in the effectiv
theory~1.8!, but the differencen-n0 in Eq. ~1.13! is insensi-
tive to the UV and so can be.

The above constraints are entirely adequate to system
cally determineDTc in the large-N expansion, but there is a
convenient way to simplify the bookkeeping a bit. Bay
et al. give a simple argument that, to leading order in t
density expansion,

DTc

T0
.2

2

3

@n2n0~Tc!#

n
, ~1.15!

where the factor of 2/3 in Eq.~1.13! arises from the relation
T0}n0

2/3. Combining Eq.~1.15! with Eq. ~1.13!, we can
summarize as

DTc

T0

.2
2mkBT0

3\2n
E

p
F 1

p21r 1P~p!
2

1

p2G
52

2mkBT0

3\2n
E

p
F 1

p21@P~p!2P~0!#
2

1

p2G
~1.16!

to leading order inan1/3. It is also useful to rephrase this
again in terms of the fieldsf of the effective theory, as

DTc

T0
.2

2mkBT0

3\2n
D^f2&, ~1.17!

where

D^f2&[^f2&2^f2&P→0 . ~1.18!

Note that the problem of calculatingD^f2& from the ac-
tion ~1.8!, subject to the constraint~1.10b!, has only one
dimensionful scale in it:u. The length scale of this problem
which will be the length scale of the physics that determin
DTc /T0, is therefore

u21;
l2

a
~1.19!

by dimensional analysis. In the dilute limitl(Tc)@a, this
length scale is large compared tol, which justifies use of the
O~2! effective theory~1.8!.

II. REVIEW OF LEADING ORDER IN 1 ÕN

We now review the leading large-N calculation of^f2&
2^f2&P→0, and hence ofDTc /T0, by Baymet al. The de-
tails of our calculation are slightly different from theirs, an
4-3
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we will introduce techniques needed to proceed to hig
order. We start with the standard large-N generalization of
the O~2! scalar field theory~1.8! to an O(N) scalar theory:
replacef by anN-component vector and treatNu as fixed in
the N→` limit. The reader should keep in mind thatu is
therefore order 1/N. StandardN power counting of Feynman
diagrams consists of a power ofu;1/N for each four-point
vertex and a power ofN for each flavor trace.

The set of diagrams that determineD^f2& at leading or-
der in 1/N is depicted in Fig. 1, where the dashed line d
notes bubble chains, as shown in Fig. 2.~For comparison, the
diagram for^f2&P→0 is shown in Fig. 3.! The cross denote
an insertion of the operatorf2, whose expectation we ar
computing. There is a simple way to summarize the effec
diagrammatic perturbation theory of therf2 term in the ac-
tion ~1.8! and the constraint~1.10b! that r 52P(0).

Rule 1. Use massless~gapless! scalar propagators 1/p2

when evaluating diagrams, ignoring therf2 term in the ac-
tion. But whenever there is a one-particle irreducible subd
gram X that represents a contribution to thef proper self-
energyP(p), then4 replaceX(p) by X(p)2X(0).

We note for later reference that, for the purpose of t
rule, a diagram that is cut in two pieces only by cutting
single internaldashedline is still one-particle irreducible
because cutting the bubble chain represented by a da
line corresponds to cutting twof lines ~Fig. 2!.

The bubble chain sum shown in Fig. 2 is given by

~2.1!

where

4This rule is unambiguous for calculating expectations such
^f2&. It is potentially ambiguous for calculating the free energy
for example, a diagram like Fig. 1 but without the cross on it.
that case, it is ambiguous which subdiagrams would be consid
self-energy insertions. A systematic way to treat the perturba
theory in all cases is to treat therf2 term in the action as a pertur
bation, include it in Feynman diagrams as a two-point vertex,
then setr 52P(0) order by order in perturbation theory.

FIG. 1. Diagrams contributing toD^f2& at leading order in 1/N.
06360
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Fp[
1

3

Nu
1S̃0~p!

~2.2a!

andS̃0(p) represents the basic massless bubble integral~not
summed over flavors!,

S̃0~p![
1

2El

1

l 2u l1pu2
. ~2.2b!

In d53 dimensions,

S̃0~p!5
1

16p
. ~2.3!

Putting everything together, the diagram of Fig. 1 gives

D^f2&52E
lp

Fp

l 4 F 1

u l1pu2
2

1

p2G1O~N21!. ~2.4!

As pointed out by Baymet al. in @7#, the above integral is
not absolutely convergent in three dimensions, and one m
be careful to consistently regulate the theory before proce
ing. Integrals that are not absolutely convergent are at b
ambiguous—they depend on the order one chooses to do
integrations. For example, if one evaluates Eq.~2.4! directly
in three dimensions, doing the angular integrations first, t
the l integration, and then thep integration, the result is zero
This is not in fact the correct answer. We will discuss th
issue in some detail in order to justify the correctness of
procedure for later evaluating higher-order diagrams.

Baym et al.’s preferred method for the leading-order ca
culation is to use dimensional regularization and evalu
everything ind532e dimensions. This is difficult at nex
order in 1/N: the loop integrals we shall encounter are su
ciently complicated that evaluation ind532e dimensions

s

ed
n

d

FIG. 2. Bubble chains. Unbroken lines denote flavor index c
tractions.

FIG. 3. Diagram representing the noninteracting res
^f2&P→0.
4-4
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seems hard. Our strategy will be instead always to red
diagrams to well-defined three-dimensional integrals, wh
are simpler to evaluate. We imagine starting with some c
sistent regularization scheme, such as dimensional reg
ization, and will now discuss how to manipulate the integr
so that they will be absolutely convergent if we setd53. We
assume in what follows that the UV regulator respects pa
and is invariant under shiftsp→p1k of loop momentap.

Let us look at the divergences that cause absolute con
gence of the integral~2.4! to fail in three dimensions. A
simple one to correct is the behavior forl fixed andp→`.
The large p piece of thep integration then behaves a
*pp• l/p4, which is logarithmically UV divergent~from the
point of view of absolute convergence!. This can be rem-
edied by rewriting theregulatedversion of Eq.~2.4! by us-
ing the freedom to change the integration variablep to 2p:

D^f2&LO52E
lp

Fp

l 4 F 1

2u l1pu2
1

1

2u l2pu2
2

1

p2G . ~2.5!

Now, if we throw away the UV regulator, thel fixed, largep
divergence is gone. This sort of divergence is trivial, easy
remedy, and will not have much practical impact on o
calculations~given the order in which we will eventually d
integrations!. We will simply acknowledge the issue in late
calculations, without emphasizing it, by writing Eq.~2.5! as

D^f2&LO52E
lp

Fp

l 4 F 1

u l1pu2
2

1

p2G
6

, ~2.6!

where the subscript6 means that one should average t
expression withp→2p ~or equivalently withl→2 l).

Unfortunately, even Eq.~2.5! is not absolutely conver
gent. There is still a logarithmic UV divergence associa
with l and p simultaneouslybecoming large (l;p→`), as
can be seen by simple power counting and the fact thatFp
approaches a nonzero constant for largep. Return to consid-
ering Eq. ~2.5! with a UV regulator still in place. We can
eliminate the UV divergence by rewriting

D^f2&LO52E
lp

~Fp2F`!

l 4 F 1

u l1pu2
2

1

p2G
6

2E
lp

F`

l 4 F 1

u l1pu2
2

1

p2G
6

. ~2.7!

The second integral vanishes, as can be seen by changin
integration variablep→p2 l in its first term. So

D^f2&LO52E
lp

~Fp2F`!

l 4 F 1

u l1pu2
2

1

p2G
6

. ~2.8!

This is now UV convergent becauseFp2F`→0 asp→`.
However, we have traded the logarithmic UV divergence
a logarithmic infrared~IR! divergence, associated withp
; l→0.
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We now need some sort of infrared regulator. One phy
cally motivated possibility for consistently regulating the i
frared would be to consider the system infinitesimally abo
the critical temperature, so that all the massless scalar pr
gators 1/p2 should be replaced by massive ones 1/(p2

1M2), whereM2 represents a tiny, nonzero, inverse susc
tibility x21. This replacement defines an absolutely conv
gent integral in three dimensions, and the limitM→0 would
be taken only after the integrations.

Massless propagators 1/p2 will be much easier to dea
with, however, in higher-order calculations. As a practic
matter for computing diagrams, we prefer to introduce as f
massive propagators as possible. It would be convenient
example, to IR regulate Eq.~2.8! by introducingM only in
the 1/l 2 propagators:

D^f2&LO52 lim
M→0

E
lp

~Fp2F`!

~ l 21M2!2 F 1

u l1pu2
2

1

p2G
6

,

~2.9!

where Fp is still defined in terms of the massless bubb
integral, as in Eq.~2.2!. One might worry that anad hoc
procedure of putting masses only on some propagators c
be inconsistent, so let us argue more carefully. Return to
UV regulated version of Eq.~2.5! and note that the integral i
not sensitive to the region of integration wherel is infinitesi-
mal, because this particular integral is IR convergent. Th
is then no reason we cannot modify the infrared behavio
the integrand for infinitesimall, without affecting the inte-
gral. So, for instance,

D^f2&LO52 lim
M→0

E
lp

Fp

~ l 21M2!2 F 1

u l1pu2
2

1

p2G
6

.

~2.10!

But now, again rewritingFp5(Fp2F`)1F` , the same
steps as before reproduce Eq.~2.9!.

Now that we have an absolutely convergent integral~2.9!,
we can do the integration in three dimensions and in a
order we choose. It is convenient to do thel integral first:

E
l

1

~ l 21M2!2 F 1

u l1pu2
2

1

p2G
6

5
1

8pM ~p21M2!
2

1

8pMp2

52
M

8pp2~p21M2!
. ~2.11!

The ‘‘6 ’’ prescription makes no difference to this particul
integral, because thel integration by itself is completely con
vergent without it. Note that naively settingM to zero at this
stage would give the incorrect, zero result mentioned ear
Instead, we have

D^f2&LO5 lim
M→0

E
p
~Fp2F`!

M

8pp2~p21M2!
. ~2.12!
4-5
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The overall factor ofM in the numerator is canceled by
linear IR divergence in thep integration, which is cut off by
M.

For smallM, the integral~2.12! is dominated5 by p;M .
So, in the limit of M→0, we can simplify the calculation
slightly by replacingFp2F` by F02F` . So

D^f2&LO5~F02F`!E
p

M

8pp2~p21M2!
5

F02F`

32p2

52
Nu

96p2
. ~2.13!

When combined with the formula~1.17! for DTc , this repro-
duces Baymet al.’s leading large-N result~1.1!, in which N
has been set to 2.

III. NEXT ORDER IN 1 ÕN

The diagrams which contribute toD^f2& at next order in
1/N are shown in Figs. 4 and 5. The diagrammatic expans
comes from the standard introduction of an auxiliary fields,
represented by the dashed lines.6 The O(N) action of Eq.
~1.8! is rewritten as

S5E d3xF1

2
uDfu21

1

2
rf21

1

2
f2s2

1

6u
s2G . ~3.1!

Thes propagator is then turned into the bubble chain of F
2 by resumming the basic massless bubble of Fig. 6 into
s propagator. Technically, this is accomplished by trivia
rewriting Eq.~3.1! as

S5S01Ssubtractions1E d3x 1
2 f2s, ~3.2a!

5Some readers may worry that the integral~2.12! is dominated by
arbitrarily smallp;M→0. They may worry because at sufficient
small momentum our perturbative propagators are no longer g
approximations to the full propagators. Thefull scalar propagators
for example, actually scale like 1/l 21h rather than 1/l 2 at small l
(!Nu), where the critical exponenth is O(N21). The difference
becomes significant whenl &Nu exp(2h)5Nuexp@2O(1/N)#. One
might worry that the sensitivity of Eq.~2.12! to p→0 is a sign that
naive large-N perturbation theory must break down. It is importa
to realize, in the present case, that this infrared sensitivity is sim
an artifact of our mathematical manipulations on the infrared-s
expression~2.9!. Regardless of whether one used some sort
infrared-improved propagator in Eq.~2.9!, that expression is no
sensitive to far-infrared momenta. It is sensitive to momenta*Nu,
for which there is nothing wrong with a large-N expansion based on
perturbative propagators.

6For a very quick review of standard largeN, see, for example,
section 2.1 of chapter 8 of@16#. Some people might prefer to re
places by is in the action~3.1!, so that the imaginary-time pat
integral fors is convergent, but it matters not at all for the purpo
of largeN perturbation theory.
06360
n

.
e

S05E
p
@ 1

2 f2pp2fp1 1
2 s2p~2NFp

21!sp#, ~3.2b!

Ssubtractions5E
p
@ 1

2 rf2pfp1 1
2 s2pNS̃0~p!sp#, ~3.2c!

with Fp and S̃0 given by Eq.~2.2!. The terms designated
Ssubtractionsmay be ignored if one follows the previousRule 1
as well as the following.

Rule 2. Do not include any diagrams that have the on
loop bubble, Fig. 6, as a subdiagram.

Note that Rule 1 eliminates any tadpole subdiagram
such as Fig. 7. Formal large-N counting of diagrams is sim
ply to count a factor ofN21 for eachs propagator and a
factor ofN for eachf loop. The important momentum sca
of the problem will be the scalep;Nu5O(N0), where the
s propagator~2.1! makes the transition from its small-p be-
havior (Fp}p) to its large-p behavior (Fp→const). Some
authors like to completely integratef out of Eq. ~3.1!, but
we prefer to retain it, as there is then a more transpa
relationship between Feynman diagrams and the corresp
ing Feynman integrals.

In evaluating the diagrams of Fig. 4, we shall borro
techniques from Ref.@17#, where somewhat related diagram
were evaluated in gauge theories with large numbers of
lars. Our strategy will be to do thef loop integrals first, and
then tackle the remaining integrals associated withs propa-
gators.

A. Diagram a

Let us start with Fig. 4~a!. The corresponding integral is

od

ly
fe
f

FIG. 4. Next-to-leading order diagrams forD^f2&. p,q,l,l8 la-
bel loop momenta, as used in the main text.
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FIG. 5. Diagrams for thes self-energyS(p) at O(N0).
b
n
t

an

-
-

en
are
be

f

te
D^f2&a5N21E
pq

FpFqE
l

1

l 6 F 1

u l1pu2
2

1

p2G
6

3F 1

u l1qu2
2

1

q2G
6

. ~3.3!

As written, this integral is absolutely convergent and can
evaluated, without regularization, directly in three dime
sions. To do thel integration, however, we find it convenien
to temporarily introduce an IR regulator massM. We may
then separately integrate each of the terms of the integr
which are not individually IR convergent. We can also useM
as a trick for reducing powers ofl 22. Specifically, we re-
write the l integral as theM→0 limit of

E
l

1

~ l 21M2!3 F 1

u l1pu2
2

1

p2G
6

F 1

u l1qu2
2

1

q2G
6

5
1

2

d2

d~M2!2El

1

~ l 21M2!
F 1

u l1pu2
2

1

p2G
6

F 1

u l1qu2
2

1

q2G
6

5
1

2

d2

d~M2!2 F I 1~p,q;M !2p22J1~q;M !

2q22J1~p;M !1p22q22S 2
M

4p D G
6

, ~3.4!

where

I 1~p,q;M ![E
l

1

~ l 21M2!u l1pu2u l1qu2
, ~3.5!

J1~p;M ![E
l

1

~ l 21M2!u l1pu2
, ~3.6!

and7

7The integral* l( l
21M2)21 is 2M /4p plus anM-independent

UV divergence, andM2 derivatives of the latter vanish. It is o
course not necessary to introduce* l( l

21M2)21 and this spurious
UV divergence; one could simply evaluate* l( l

21M2)23 directly.
But we find it convenient to consolidate the treatment of such in
grals with that of the other terms in Eq.~3.4!.
06360
e
-

d,

E
l

1

~ l 21M2!3
5

1

2

d2

d~M2!2El

1

l 21M2

5
1

2

d2

d~M2!2 S 2
M

4p D . ~3.7!

The integralJ1 is straightforward to evaluate. A particu
larly simple way to evaluateI 1 is to make a conformal trans
formation which reduces it to the form ofJ1. The results of
both integrals, and the conformal transformation betwe
them, are discussed in the Appendix. All we need here
the small-M expansions of those results, which turn out to

I 1~p,q;M !5
1

8pqup2qu
2

M

4pp2q2
2

M2p•q

8p3q3up2qu

1
M3~p214p•q1q2!

12pp4q4
1

M4@3~p•q!22p2q2#

16p5q5up2qu

1O~M5!, ~3.8!

J1~p;M !5
1

8p
2

M

4pp2
1

M3

12pp4
1O~M5!. ~3.9!

Putting everything together,

E
l

1

~ l 21M2!3 F 1

u l1pu2
2

1

p2G
6

F 1

u l1qu2
2

1

q2G
6

5F p̂•q̂

8pMp3q3
1

3~ p̂•q̂!221

16p3q3up2qu
G

6

1O~M !

5F 3~ p̂•q̂!221

16p3q3up2qu
G

6

1O~M !. ~3.10!

We can now setM50. All that will matter in the integral
~3.3! is the averagê &u over the angle betweenp and q,
which is

-
FIG. 6. The one-loop bubble diagram.
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K El

1

l 6 F 1

u l1pu2
2

1

p2G
6

F 1

u l1qu2
2

1

q2G
6

L
u

5
1

40p.
6 p,

,

~3.11!

where

p.[max~p,q!, p,[min~p,q!. ~3.12!

We are left with

D^f2&a5
1

N
E

pq

FpFq

40p.
6 p,

5
1

2p4N
E

0

`

p2dpE
0

p

q2dq
FpFq

40p6q
.

~3.13!

The remaining integrals are easy to do, with the result

D^f2&a5
u

15p4S p2

6
2

5

4
D . ~3.14!

B. Diagram b

Figure 4~b! corresponds to

D^f2&b5N21E
pq

FpFqBpq , ~3.15a!

Bpq[E
l

1

l 4 H 1

u l1pu4
F 1

u l1p1qu2
2

1

q2G
2

1

p4F 1

up1qu2
2

1

q2G J
6

. ~3.15b!

This contribution toD^f2& is again absolutely convergent
the subscript6 is taken to mean averaging overp→2p and
also overq→2q. It is convenient now to rewrite thel inte-
gral as theM1 ,M2→0 limit of

FIG. 7. Example of a tadpole diagram.
06360
E
l

1

~ l 21M1
2!2 H 1

~ u l1pu21M2
2!2 F 1

u l1p1qu2
2

1

q2G
2

1

~p21M2
2!2 F 1

up1qu2
2

1

q2G J
6

5
d

d~M1
2!

d

d~M2
2!

H I 2~p1q,q,M1 ,M2!

2
1

q2
J2~p;M1 ,M2!2

1

~p21M2
2!

F 1

up1qu2

2
1

q2G S 2
M1

4p
D J

6

, ~3.16!

where

I 2~p,q;M1 ,M2![E
l

1

l 2~ u l1pu21M1
2!~ u l1qu21M2

2!
,

~3.17!

J2~p;M1 ,M2![E
l

1

~ l 21M1
2!~ u l1pu21M2

2!
. ~3.18!

The results forI 2 andJ2, and their smallM1 ,M2 expansions,
are given in the Appendix. The final result for thel integra-
tion, after taking theM1 ,M2→0 limit, is

Bpq5Fq22p~ p̂•q̂!23q~ p̂•q̂!2

8p3q2up1qu3 G
6

, ~3.19!

with angular average

^Bpq&u5
u~p2q!

4p6q
, ~3.20!

where u(p2q) is the step function~1 for p.q; 0 for p
,q). The remaining integrals are easy to do, giving

D^f2&b5
u

3p4S p2

6
2

5

4
D . ~3.21!

C. Diagram c

Figure 4~c! can be evaluated as the others, but the fi
integrals are a bit more complex. The diagram gives

D^f2&c5N21E
pq

FpFqCpq , ~3.22a!

Cpq[E
l

1

l 4 F 1

u l1pu2u l1qu2u l1p1qu2
2

1

p2q2up1qu2
G

6

.

~3.22b!
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The l integration can be performed using methods similar
before:

Cpq52 lim
M→0

d

d~M2!
FH~p,q;M !2

1

p2q2up1qu2
S 2

M

4p
D G

6

,

~3.23!

H~p,q;M ![E
l

1

~ l 21M2!u l1pu2u l1qu2u l1p1qu2
.

~3.24!

H can be reduced to the basic integralsI 1 and J1 encoun-
tered previously by rewriting the numerator 1 in Eq.~3.24!
as

15
1

2p•q1M2
@~ l 21M2!1u l1p1qu22u l1pu22u l1qu2#

~3.25!

and then expanding the integrand into the corresponding
terms:

H~p,q;M !5
1

2p•q1M2
@ I 1~p,q;0!1I 1~p,q;M !

2I 1~p1q,q;M !2I 1~p1q,p;M !#.

~3.26!

Using the expansion~3.8! of I 1, one obtains

Cpq5F 1

16p3q3
@11~ p̂•q̂!22#S 1

up2qu
2

1

up1qu
D

1
p̂•q̂2~ p̂•q̂!21

8p2q2up1qu3
G

6

. ~3.27!

This simplifies, after applying the@•••#6 prescription, to

Cpq5
p̂•q̂2~ p̂•q̂!21

16p2q2 F 1

up1qu3
2

1

up2qu3G . ~3.28!

Angular averaging yields

^Cpq&u5
1

8p.
7 x2~11x2!

F x1
Sinh21x

A11x2 G , ~3.29!

where

x[p, /p. . ~3.30!

The remaining integrals overp andq are no longer so trivial.
Notice first that for an arbitrary functionf (x) one can rewrite
06360
o

ur

1

N
E

pq

FpFq

p.
7

f ~x!5
1

2p4N
E

0

`

dpE
0

1

dx
FpFxp

p2
x2f ~x!

52
8u

3p4E0

1

dx
x3ln x

~12x!
f ~x!, ~3.31!

so that

D^f2&c52
u

3p4E0

1

dx
x ln x

~12x!
F x

11x2
1

Sinh21x

~11x2!3/2G .

~3.32!

This is easiest to evaluate numerically, giving

D^f2&c5
cu

3p4
, ~3.33!

wherec.0.463 715. We also have an analytic result:8

c5
p2

48
F11

7

A2
ln~11A2!G2

2

3
L~3,x8!, ~3.34!

where

L~s,x8!512
1

3s
2

1

5s
1

1

7s
1

1

9s
2

1

11s
2

1

13s

1
1

15s
1

1

17s
2 . . . ~3.35a!

is a particular case of Dirichlet’sL function, and

L~3,x8!50.958 380 454 563 . . . . ~3.35b!

D. Diagram d

Figure 4~d! corresponds to

D^f2&d52N21E
pq

FpFqF uq2puDpq , ~3.36a!

8Our inelegant, brute force method for obtaining this result
borrowed from a footnote of Ref.@17#. The hard part is the Sinh21

term. We change variables fromx to y5x1A11x2. This turns
Sinh21x into ln y. ln x can be written as a sum of terms of the for
ln(y2a), and the change of integration variable makes the res
the integrand a rational function ofy. We then split this rational
function apart by partial fractions and do each integral, yield
dilogarithms and trilogarithms of various arguments. Finally,
use a zoo of polylogarithm identities@18# to simplify the answer.
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Dpq[E
l8

1

l 82u l81pu2u l81qu2El

1

l 4 F 1

u l1pu2u l1qu2
2

1

p2q2G
6 l

52I 1~p,q;0! lim
M→0

d

d~M2!
F I 1~p,q,M !

2p22q22S 2
M

4p
D G

5
p̂•q̂

64p3q3up2qu2
. ~3.36b!

Here the subscript6 l means we implicitly average overl
→2 l for absolute convergence. Doing the remaining in
grals by brute force, we find

D^f2&d5
u

p4 F 7

12
S z~3!2

p2

6
D 1

1

6
G , ~3.37!

wherez is the Riemann zeta function. It is interesting to no
that p2/6 can also be written asz(2).

E. Diagram e

The final class of diagrams, Fig. 4~e!, corresponds to the
leading-order diagram, Fig. 1, with the replacement

2N21Fp→~2N21Fp!@2S~p!#~2N21Fp![2N21Fp ,
~3.38!

whereS(p) represents the contribution to thes self-energy
at next-to-leading order, shown in the diagrams of Fig.
Making this substitution in the leading-order calculati
~2.13! gives

D^f2&e5
F02F`

32p2
. ~3.39!

The nice feature of this relation is that we only need to c
culateS(p) in the small and largep limits.

The first self-energy diagram in Fig. 5 contributes,

S1~p!52 1
2 E

q
FqF up1qu E

l1

1

l 1
2u l11pu2u l11p1qu2

3E
l2

1

l 2
2u l21pu2u l21p1qu2

. ~3.40!

For smallp, the integration is dominated byl 1 ,l 2;p, and
q;Nu. So we can ignorel1 , l2, andp compared toq and
write9

9For generalp, the result isNuS1(p)524p22z23Re@2 Li2(2z)
22 Li2(21z)1

1
2 p2#, where z[48p/Nu, and Li2(z)[

2*0
zdx ln(12x)/x is the dilogarithm function. One may doubl

check that thep→0 limit agrees with Eq.~3.41!.
06360
-

.

l-

S1~p!→2 1
2 E

q
q24Fq

2F E
l

1

l 2u l1pu2
G 2

52
Nu

48p2p2
.

~3.41!

This diagram has a quadratic IR divergence forp50. In
contrast, the other two diagrams only diverge as linear3 log
when p50, and so behave asp21ln p for small p. In sum-
mary,

S~p!52
Nu

48p2p2
1O~p21ln p! ~3.42!

for smallp. One may check by power counting diagrams a
subdiagrams thatS(`)50. Then

F052
16

3p2
u, F`50, ~3.43!

and

D^f2&e52
u

6p4
. ~3.44!

One may also check this answer by direct, brute-force ca
lation of all the diagrams associated with Fig. 4~e!.

We conclude by mentioning one technical subtle
glossed over above, concerning absolute convergence.
integration corresponding to the substitution~3.38! in the
leading-order analysis is

D^f2&e52E
lp

F p

l 4 F 1

u l1pu2
2

1

p2G
6

. ~3.45!

In contrast to the analogous leading-order expression~2.6!,
this integral is not absolutely convergent in the infraredl
;p→0), though it is convergent in the UV. One migh
therefore worry about thead hocintroduction of an IR regu-
lator M in the calculation of this graph. However, this wor
is easily bypassed by rewriting

D^f2&e52E
lp

~Fp2F0!

l 4 F 1

u l1pu2
2

1

p2G
6

, ~3.46!

which should be understood as regulated in the UV. T
UV-regulated integral of theF0 factor vanishes. Equation
~3.46! is now convergent in the IR, but logarithmically d
vergent in the UV, just as the original leading-order integ
~2.6! was. One can now follow through the same argum
as in the leading-order case to introduce an IR regulator
then remove the UV divergence, whereFp in the leading-
order analysis is now replaced byFp2F0. The result is still
Eq. ~3.39!.
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F. Summary

Summing all the diagrams then yields the total NLO co
tribution:

D^f2&NLO5
u

3p4F7

4
z~3!2

3

2
2

17

240
p21

7p2

48A2
ln~11A2!

2
2

3
L~3,x8!G , ~3.47!

with L(3,x8) given by Eq. ~3.35!. Combining with the
leading-order result~2.13!,

D^f2&NLO

D^f2&LO

52
0.527 198

N
, ~3.48!

which is the relative NLO correction we presented forTc in
Eq. ~1.4!.
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APPENDIX: BASIC INTEGRALS

Let us begin with the integralJ2(p;M1 ,M2). This is quite
easy to do by standard methods~for example, by introducing
a Feynman parameter!, and gives
06360
-

s
a
,
.

J2~p;M1 ,M2![E
l

1

~ l 21M1
2!~ u l1pu21M2

2!

5
1

8pp
cos21S ~M11M2!22p2

~M11M2!21p2D
5

1

8p
2

~M11M2!

4pp2
1

~M11M2!3

12pp4
1O~M5!.

~A1!

The integralJ1(p;m) of Eq. ~3.6! is simply the special case
J1(p;M )5J2(p;M ,0).

The integralI 2(p,q;M1 ,M2) of Eq. ~3.17! can be related
to J2(p,q;M1 ,M2) by generalizing a trick presented in Re
@17#. The idea is to change integration variables froml to its
conformal inversion l̃[ l/ l 2. The integration measure
changes as (2p)23d3l 5(2p)23 l̃ 26d3 l̃ . Propagators can be
written in terms of the new variablel̃ as

1

l 2
5 l̃ 2, ~A2!

1

u l1pu21M2
5

l̃ 2

~p21m2!@ u l̃1P̃u21M̃ p
2#

, ~A3!

where

P̃[
p

p21M2
, M̃ p[

M

p21M2
. ~A4!

Making this change of variables,
I 2~p,q;M1 ,M2![
1

~p21M1
2!~q21M2

2!
E

l̃
FU l̃1

p

p21M1
2U2

1S M1

p21M1
2D 2G21FU l̃1

q

q21M2
2U2

1S M2

q21M2
2D 2G21

5
1

~p21M1
2!~q21M2

2!
J2F p

p21M1
2

2
q

q21M2
2

;
M1

p21M1
2

,
M2

q21M2
2G . ~A5!

For the application of this paper, the relevant terms in the smallM1 ,M2 expansion ofI 2 are

I 2~p,q;M1 ,M2!5
1

8pqup2qu
2

1

4pup2qu2
S M1

p2
1

M2

q2 D 1O~M1
2!1O~M2

2!1
M1M2

4pup2qu4
S M1

q2
1

M2

p2 D 1O~M1
4!

1O~M2
4!1M1

2M2
2 @3pq22~p21q2!~ p̂•q̂!1pq~ p̂•q̂!2#

8p2q2up2qu5
1O~M5!. ~A6!

The integralI 1 of Eq. ~3.5! is related byI 1(p,q;M )5I 2(p,p2q;M ,0) and gives
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I 1~p,q;M !5
cos21~2vpq

2 21!

8pM up2qu2Avpq
2221

, ~A7!

where
G

06360
vpq[
M up2qu

A~p21M2!~q21M2!
. ~A8!

The smallM expansion is given in Eq.~3.8!.
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