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T, for dilute Bose gases: Beyond leading order in/N
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Baym, Blaizot, and Zinn-Justin have recently used the I&gapproximation to calculate the effect of
interactions on the transition temperature of dilute Bose gases. We extend their calculation to next-to-leading
order in 1N and find a relatively small correction ef 26% to the leading order result. This suggests that the
largeN approximation works surprisingly well in this application.

PACS numbes): 03.75.Fi, 11.15.Pg, 64.70p

[. INTRODUCTION sult is surprising because it seems to work much better than
the largeN expansion of critical exponents. For example, for
Second-order phase transitions have universal behaviof(N) theory, the susceptibility critical exponemtis [9]*
associated with long-wavelength fluctuations, for which criti-

cal exponents and other universal quantities can often be 24 64 (44

successfully calculated using renormalization-group tech- v=2-y2t W(g—ﬂ +O(N73)

nigues. For most such systems, the short distance physics is "

hopelessly complicated. In contrast, the phase transition of a 2 22

dilute, interacting Bose gas provides a fascinating example =2—1.216<N) —0.812{N +O(N73). 1.3

where physics becomes simpler, and perturbativeyeda-
tively) small distance scales. For this system, it should bel.hiS is not a marvelous expansion =2, for which the
possible to marry techniques for treating long-distance criti- o '
. . : actual value isy=1.32.
cal fluctuations to a perturbative treatment of short-distance In this paper, we calculate tf@(N‘l) relative correction
physics, and so compute nonuniversal characteristics of th Eq. (1.1) We’ find
phase transition. A simple example of such a nonuniversa e
quantity is the phase-transition temperattite and the ef-
fect of interactions ofl; has been explored by several au- 1 —1,
thors [1-6], with a wide variety of theoretical results. In
particular, the transition temperature has recently been calcu-
lated by Baym, Blaizot, and Zinn-Just|@] in the largeN
approximation. For simplicity, they implicitly focus on the
case of Bose gases with a single spin state, where the low-
energy cross section for atomic collisions can be paramsettingN=2, this is only a 26% correction to the leading
etrized by a single scattering lengta, As will be briefly largeN result for AT./To. We now have AT./T,
reviewed below, the problem is first reduced to a calculation._ 1 714 41/3 Though this does not agree as well with the
in a three dimensional @) scalar field theory at its critical gy0ted simulation result, the moderately small size of the
point. Replacing that by an @) theory withN=2, they  correction supports the proposition that the laly@xpan-
find sion works surprisingly well foff ..

87 ) 0.527198 -
1+ ————an¥1- —————+0O(N"?
37(3/2)%3 N

+0((an®?)|. (1.9

T=Tol 1

+————an{1+O(N"H]+ O((an1’3)2)]
34(3/2) IFor Bose gases, a more physical example of a critical exponent is

(1D ,—1-0.540(2N) - 0.470(2N)2+ O(N~?), whose actual value is

in the dilute limit, wheren is the number density ang, is v=0.67 forN=2. The fact that @) critical exponents should be

the transition temperature of a noninteracting Bose gas, identified with Bose-gas exponents is not gompletely t“_v'al' A uni-
form, nonrelativistic Bose gas is a constrained system: the particle

27h? n \?8 densityn is fixed. This constraint causes the critical exponents

TO:kB—m §(3/2)) (1.2 =(%,8,7,7) of the actual system to be relatgtD] to the standard
exponentsx=(«,f,y,v) of the field theory by(i)) a=—a/(1
For simplicity, we consider a uniform Bose gas, wharis —a), andx=x/(1—a) for the others, ifa>0, or (i) X=x if a

fixed. Alternatively, in an arbitrarily wide harmonic trap, <0. The actual value o for the O2) model is believed to be
should be interpreted as the actual density at the center of the0.007+0.006[11]. If negative, there is no difference between the
trap at the transition temperature. exponents; if positive, there is in principle a very tiny difference.
Baym etal's result (1.1) of AT /To=(T.—Ty)/Ty  This relation explains, by the way, the difference between mean-
~2.3%n" is in good agreement with recent numerical field theory exponents for the (@ model (e.g., «=3) and the
simulations[6] that give AT,/Ty~(2.2+0.2)an*3 The re-  exponents of a noninteracting Bose dagy.,a=—1).
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In the remainder of this Introduction, we review the long- the sense of the renormalization grodsuch as ¢* )% and
distance @) effective theory for Bose condensation and ¢* V*y. However, higher and higher dimension operators
then review the arguments §5,7] about how to calculate are parametrically less and less important if the distance
AT./T.. In Sec. ll, we review the leading-order calculation scales of interest are large compared to the characteristic
in largeN as done i 7]. In Sec. lll, we go on to calculate scalega) of the atomic interactions. The/t )2 term in the
the next order in M. An Appendix explains how to calcu- Lagrangian(1.6) is in fact the lowest-dimension irrelevant
late some of the basic three-dimensional integrals that appearteraction, and it is adequate for computing the leading-
at that order. order effects of interactions in the diluteness expangieor.

But first, we should mention some experimental data ora discussion of analyzing corrections in this language, see
the “He-Vycor systeni8]. As alluded to earlier, there have Ref. [13], which extended earlier work on corrections by
been several different theoretical results and simulation reRefs. [14]. A similar discussion for Fermi gases may be
sults forAT./T,, obtained by various methods.g.,[1-4]),  found in Ref.[15].)
giving a large range of values for the coefficientaof* in Now treat the system at finite temperature using the
AT./T,. Superficially, the*He-Vycor data seem to fit well imaginary time formalism. The field can then be decomposed
an early theoretical estimate of Std&], which isAT./T, into frequency modes with Matsubara frequencieg
=(16m/3){(3/2) *2an'®=4.66an'° (exactly twice the =2wnkgT/%. At sufficiently large distance scales>{.),
leading-order largd resul). However, the detailed interpre- and small chemical potentia) 4| <kgT), the — (£2/2m)V?2
tation of this data is unclear. In that experiment, the helium—u terms in Eq.(1.6) become small compared to the
atoms are confined to an interconnected network of channel3(% w,) time derivative term, provided#0. The nonzero
in the porous Vycor glass, and, for the low-density data thaMatsubara frequency modes then decouple from the dynam-
appear to fit Stoof, the interparticle spacing is the same ordecs, leaving behind an effective theory of only the zero-
of magnitude as the widths of the channels. ReferdB¢e frequency modess,. Roughly,
simply assumes that the system can be modeled by a free
Bose gas with(i) an effective mass for the atoms that is 1 (ne 3 3
extracted experimentally, bdii) the same scattering length %fo dtf d x£—>,8f d*x
as for bulk helium, which is moreover taken from theoretical

hZ
wz;( _ﬁvz_ﬂ)l/fo

modeling. Because of these assumptions, the apparent agree- 27h?a . 2
ment with the early work of Stoof should be treated with + m (¥ o) 7
caution.

with 8=1/kgT. In detail, the parameters ¢1.7) are renor-

malized by coupling to the nonzero modes, and there are

again corrections in the form of irrelevatéand even mar-
The basic assumption throughout will be that the averagginal) interactions. However, these effects are all suppressed

separatiom '3 of atoms is large compared to the scatteringin the dilute limif and do not affect the computation of

lengtha. This can also be expresseddd,)>a, wherex is  AT./T at leading order iran'’,

the thermal wavelength It is then convenient to writeyo=% " *(mkgT) Y3,

+i¢,) so that the effective actioB=H/T becomes a con-
27Tﬁ2> 1/2

ventionally normalized @) field theory:
mkgT

A. Review of effective theory

MT)=< (1.9

It Ik that. at dist les | dtoth 2At short distances, theé, and V2 terms of the actionf dtd®x.
IS We. nown that, at dis ancfe scales ‘.""ge compare 0, Hetermine that times scales as (lendtaind the scaling dimension
scattering lengtta, an appropriate effective theory for a di- ¢ o is (lengthy 32

lute Bose gas is the second-quantized Sdimger equation,
together with a chemical potential that couples to particle
number density/* ¢, and a|¢|* contact interaction that re-
produces low-energy scattering. The corresponding Lagran
ian is

SFor the three-dimensional effective theo(.7), the short-
distance scaling dimension @f, is (length ~¥2, the (/¢ )2 in-
eraction is relevant, and asj o) ® interaction would be marginal.

ven though marginal, this last interaction can be ignored at the
order of interest in the diluteness expansion because it has a small
coefficient. For example, consider the term that would arise directly

52 522 from the presence of a correctiapy(* )° to the original La-

. i 3 H

L=y*| —ihd— —VZ—,u s (* ¢)2_ gra_nglan(1.6). That_would lead to ags(¢f ¢o)°® term in (_1.7)
2m m which, after rescaling, would become a term proportional to

(1.0 (mgg /A% (4?2 in Eq. (1.8). Sincex=\(Tg)=n" 2 at the tran-
sition, the coefficient of this term is high order in the diluteness
expansion im*3, Similarly, an effective ¢ ) term arising from

In this context, the corresponding mean-field equation of mothe four-point interactionsy* ¢)2 and from integrating out physics
tion is called the Gross-Pitaevskii equatidffor a review, at the scale (due, for example, to nonzero Matsubara modes
see[12].) As with any effective theory, there are correctionswould give rise to a $2)° term in Eq.(1.8) with coefficient pro-
represented by higher-dimensional, irrelevant interactioms  portional tou®\3sc\ ~3,
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1 1 u no(T) represents the densityn@ninteractingBose gas has if
S:f d®x §|V¢’|2+ §r¢2+ ﬂ(‘f’z)z (1.8 s transition temperature i. It is given by inverting Eq.
(1.2:
where ¢ is understood to be a two-component real vector
,¢,) and £(312)
(¢1.62) no(T)= ot (114
A°(T)
2mu 967%a
r=————, u= . (1.9

This formula cannot be derived directly in the effective
theory(1.8), but the differencen-ng in Eq. (1.13 is insensi-
tive to the UV and so can be.
The above constraints are entirely adequate to systemati-
Our effective theory depends on two as yet undeterminegally determineAT, in the largeN expansion, but there is a
parameters+ and u, or equivalentlyx and T. One con- convenient way to simplify the bookkeeping a bit. Baym

7\2

B. Review of AT./T,

straint comes from fixing particle number density et al. give a simple argument that, to leading order in the
density expansion,
n:<l/f*ilf>:kaT<¢2> (1.108 AT 2 [n=ny(Ty]
52 : ) c__= #’ (1.15

T, 3 n
At the critical temperature, the system will have infinite cor-

relation length. It will also have an infinite susceptibiligy
which we use as our second constraint:

where the factor of 2/3 in Eq1.13 arises from the relation
Toxn3®. Combining Eq.(1.19 with Eq. (1.13, we can
summarize as

“l=r+11(0)=0, 1.10
X © (1.109 AT,  2mksT, 1 1

wherell(p) is the proper self-energy of thg field. The two To - 342n fp p?+r+11(p) N ?
equations(1.10 determine the two unknownsandu, and
henceT.. As noted by Baymet al, the density equation 2mkg Ty 1 11
1.10@ can be rewritten as == f -
(1102 3h%n Jp| p*+[I(p)—11(0)] p?

£2n _f 1 _J’ 1 (1.16

mksT ~ Jp p*+r+11(p) Jp p*+[11(p)—I1(0)]’

(1.11) to leading order inan'. It is also useful to rephrase this,
' again in terms of the fieldg of the effective theory, as
where the last equality uses EL.10H. Throughout this

aper, we will use the notational shorthand AT 2mkgT
pap e OA(¢?), (1.17)
To 3A°n
_ [
fpzf (2m)3 (112 \yhere
2\ — 2 2
for momentum integrals(Technically,p is a wave number A(¢%)=(¢") = (0. (1.1

rather than a momentum, but we will use conventiohal

. 2 _
—1 nomenclature, even though we have not/séo 1) Note that the problem of calculating(¢~) from the ac

. L . . tion (1.8), subject to the constraintl.10b, has only one
Expression(1.11) for the density is ultraviole(UV) di- dimensionful scale in itu. The length scale of this problem,

vergent and so receives contributions from Sho.rt'd'StanC‘\?vhich will be the length scale of the physics that determines
scales where the effective theory breaks down. This could b T /T is therefore
[}

handled by appropriately regulating the effective theory an
then perturbatively correcting the UV contribution. As A2
pointed out by Baynet al, it is simpler instead to consider ul~— (1.19
the differencen-ny(T), whereny(T) is the same expression a

in the absence of interactioifise., with I1 set to zern by dimensional analysis. In the dilute limit(T.)>a, this

length scale is large comparedxowhich justifies use of the

2
Afn—no(M] _ f 1 1 0(2) effective theory(1.9).
mkgT plp2+r+II(p) p?
L L Il. REVIEW OF LEADING ORDER IN'1 /N
= - We now review the leading large-calculation of( ¢2
fp P2+ [T1(p)~T1(0)] pzl g largs (4

—(#*n_o, and hence oAT./T,, by Baymet al. The de-
(1.13  talls of our calculation are slightly different from theirs, and
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e > = X+ DOHOKK
SO0 + -

FIG. 2. Bubble chains. Unbroken lines denote flavor index con-
tractions.

1
= Fo=3 (229
I Ny 2P

FIG. 1. Diagrams contributing ta({¢?) at leading order in M.

andio(p) represents the basic massless bubble intdguil

we will introduce techniques needed to proceed to highefummed over flavoys

order. We start with the standard larijegeneralization of

the Q2) scalar field theory1.8) to an ON) scalar theory: io(p)E Ef 1 _ (2.2b

replaces by anN-component vector and trehitu as fixed in 2J1121+p|?

the N—o [imit. The reader should keep in mind thatis

therefore order N. StandarcdN power counting of Feynman In d=3 dimensions,

diagrams consists of a power of-1/N for each four-point 1

vertex and a power dfl for each flavor trace. io(P): - (2.3
The set of diagrams that determing ¢?) at leading or- 16p

der in 1N is depicted in Fig. 1, where the dashed line de-

notes bubble chains, as shown in Fig(R2or comparison, the Putting everything together, the diagram of Fig. 1 gives

diagram for{ ¢?)j;_ ¢ is shown in Fig. 3. The cross denotes E 1
an insertion of the operatap?, whose expectation we are A<¢2)=—f —4p 5T % +O(N7Y. (2.9
computing. There is a simple way to summarize the effect on 14 [1+p] p

diagrammatic perturbation theory of the)? term in the ac- . . . .
tion (1.8) and the constraintL. 108 thatr = —I1(0). As pointed out by Baynet al.in [7], the above integral is

Rule 1 Use massleségapless scalar propagators (7 not absolutely convergent in three dimensions, and one must
. . . . 2 . be careful to consistently regulate the theory before proceed-
v_vhen evaluating dlagram_s, Ignoring th¢ term in the ac- ._ing. Integrals that are not absolutely convergent are at best
tion. But whenever there is a or_1e-p_art|cle irreducible SUbd'aé\mbiguous—they depend on the order one chooses to do the
gram X that represents a contribution to teeproper self- integrations. For example, if one evaluates Eg4) directly
energyl1(p), therf replaceX(p) by X(p) - X(0). . in three dimensions, doing the angular integrations first, then
We note for later reference that, for the purpose of thi

| di hat i _ . v b T NiShe integration, and then theintegration, the result is zero.
rule, a diagram that is cut in two pieces only Dy CUtting &g is not in fact the correct answer. We will discuss this
single internaldashedline is still one-particle irreducible,

. . issue in some detail in order to justify the correctness of our
because cutting the bubble chain represented by a dashB cedure for later evaluating higher-order diagrams.
line corresponds to cutting twé lines (Fig. 2).

; A A Baymet al's preferred method for the leading-order cal-
The bubble chain sum shown in Fig. 2 is given by culatign is to uge dimensional regularization gnd evaluate
everything ind=3— e dimensions. This is difficult at next
P 1 order in 1N: the loop integrals we shall encounter are suffi-
=== =-NT"F, (2.3) ciently complicated that evaluation ith=3— e dimensions

where

“This rule is unambiguous for calculating expectations such as
(¢?). It is potentially ambiguous for calculating the free energy—
for example, a diagram like Fig. 1 but without the cross on it. In
that case, it is ambiguous which subdiagrams would be considered
self-energy insertions. A systematic way to treat the perturbation
theory in all cases is to treat thieh? term in the action as a pertur-
bation, include it in Feynman diagrams as a two-point vertex, and FIG. 3. Diagram representing the noninteracting result
then setr = —TII(0) order by order in perturbation theory. (60
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seems hard. Our strategy will be instead always to reduce We now need some sort of infrared regulator. One physi-
diagrams to well-defined three-dimensional integrals, whickcally motivated possibility for consistently regulating the in-
are simpler to evaluate. We imagine starting with some confrared would be to consider the system infinitesimally above
sistent regularization scheme, such as dimensional regulathe critical temperature, so that all the massless scalar propa-
ization, and will now discuss how to manipulate the integralsgators 1p? should be replaced by massive onespi/(
so that they will be absolutely convergent if we det3. We  +M?), whereM? represents a tiny, nonzero, inverse suscep-
assume in what follows that the UV regulator respects paritytibility y . This replacement defines an absolutely conver-
and is invariant under shifig—p+k of loop momenta. gent integral in three dimensions, and the liidit=0 would

Let us look at the divergences that cause absolute convebe taken only after the integrations.
gence of the integra(2.4) to fail in three dimensions. A Massless propagatorspf/ will be much easier to deal
simple one to correct is the behavior fofixed andp— . with, however, in higher-order calculations. As a practical
The largep piece of thep integration then behaves as matter for computing diagrams, we prefer to introduce as few
Jop- I/p*, which is logarithmically UV divergentfrom the  massive propagators as possible. It would be convenient, for
point of view of absolute convergenceThis can be rem- example, to IR regulate E¢2.8) by introducingM only in
edied by rewriting theegulatedversion of Eq.(2.4) by us-  the 112 propagators:
ing the freedom to change the integration varigble —p:

A= tim [ Lp=F)

F
(2.5 M—0Jlp (124+M?)2

1 1 1
A<¢2>LO: - Lp |_4p

+ - .
2|l+p|2 2/l-p]2 P

1 1
I+p? p?)."
2.9

Now, if we throw away the UV regulator, tHdixed, largep o ) .
divergence is gone. This sort of divergence is trivial, easy tc\)/vhere Fp Is .St'” defined in terms of the massless bubble

: o integral, as in Eq(2.2). One might worry that arad hoc
remedy, and will not have much practical impact on our d f ; I Id
calculations(given the order in which we will eventually do procedure of putting masses only on some propagators cou

integrations. We will simply acknowledge the issue in later be inconsistent, so let us argue more carefully. Return to the
grations. v Py acknowledge UV regulated version of Eq2.5) and note that the integral is
calculations, without emphasizing it, by writing EQ.5) as

not sensitive to the region of integration whéiis infinitesi-
mal, because this particular integral is IR convergent. There
, (2.6) is then no reason we cannot modify the infrared behavior of
the integrand for infinitesimal, without affecting the inte-
gral. So, for instance,

where the subscript- means that one should average the
expression wittp— —p (or equivalently withl— —1). f
Ip

Unfortunately, even Eq(2.5) is not absolutely conver- A(¢p?) o=~ “mo
M —

F

1 1
A<¢’2>Lo: - flp |_4p

l+p|2 P?

Fp

1 1}
2 2\2 2 2
gent. There is still a logarithmic UV divergence associated (IF+MH%LI+p* p *
with | and p simultaneoushjbecoming large l(~p—«), as (2.10
can be seen by simple power counting and the fact fat . .
approaches a nonzero constant for lagog&eturn to consid- But now, again rewritingF,=(Fy,—F.)+F., the same
ering Eq.(2.5 with a UV regulator still in place. We can Steps as before reproduce E2.9).

eliminate the UV divergence by rewriting Now that we have an absolutely convergent inte(®e),
we can do the integration in three dimensions and in any
(F—-F.)[ 1 1 order we choose. It is convenient to do thiategral first:
A<¢2>Lo:_fl p|4 I |2_F}
P P = f 1 11| 1 1
J' F.l 1 1 L (124M?)2||I+p|?> p?|, 87M(p*+M?) 8wMp?
| T = 2.7 -
|4 2 2 (
Ip [I+p2 P M
= Bl D) 219
The second integral vanishes, as can be seen by changing the 8mpi(p°+M?)

integration variablgp—p—1 in its first term. So
The “+" prescription makes no difference to this particular

(Fp—F.) 1 integral, because tHdntegration by itself is completely con-
A P?) o= — f 2 5T (2.8)  vergent without it. Note that naively setti\ to zero at this
Ip ! I+pl* p + stage would give the incorrect, zero result mentioned earlier.

Instead, we have
This is now UV convergent becausg,—F..—0 asp—c.

However, we have traded the logarithmic UV divergence for M
a logarithmic infrared(IR) divergence, associated with Al D), ~= lim f(F ~F.)——————. (212
~1-0. (#%ho M—olp " 8mp?(p%+M?)
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The overall factor ofM in the numerator is canceled by a
linear IR divergence in thp integration, which is cut off by
M.

For smallM, the integral(2.12 is dominated by p~M.
So, in the limit of M—0, we can simplify the calculation
slightly by replacingF,—F.. by Fo—F... So

M Fo—F..

A<<152>|_o:(|:0_|:oo)fp 8mp?(p2 M) = o2

Nu

=— SR (2.13

When combined with the formul@.17) for AT, this repro-
duces Baynet als leading largeN result(1.1), in which N
has been set to 2.

(d) (e)

ll. NEXT ORDER IN 1 /N FIG. 4. Next-to-leading order diagrams fax ¢2). p,q,l,l" la-

The diagrams which contribute t ¢?) at next order in  bel loop momenta, as used in the main text.
1/N are shown in Figs. 4 and 5. The diagrammatic expansion
comes from the standard introduction of an auxiliary field
represented by the dashed lifeShe O(N) action of Eq. So= f [3¢-pp?ppt30_p(~NF Yoyl  (3.2b
(1.8) is rewritten as P

S= f d3x

The o propagator is then turned into the bubble chain of Fig.
2 by resumming the basic massless bubble of Fig. 6 into the

o propagator. Technically, this is accomplished by trivially \yith F, and io given by Eq.(2.2). The terms designated

. (3.

1 1 1 1
- 2 P B — o2

Ssubtractions™ fp[%rd’—p(ﬁp""%U—pNEO(p)Up]v (3.209

rewriting Eq.(3.1) as ScubtractiondNay be ignored if one follows the previoile 1
as well as the following.
S=S.+ , +f d3xL p20, 32 Rule 2 Do not include any diagrams that have the one-
S0+ Ssubvacions 2470 (329 loop bubble, Fig. 6, as a subdiagram.

Note that Rule 1 eliminates any tadpole subdiagrams,
such as Fig. 7. Formal largé-counting of diagrams is sim-
5Some readers may worry that the integi@tl2 is dominated by ~ ply to count a factor ofN~ ! for eacho propagator and a
arbitrarily smallp~M— 0. They may worry because at sufficiently factor of N for each¢ loop. The important momentum scale
small momentum our perturbative propagators are no longer googf the problem will be the scalp~Nu=0(N°), where the
?pprOXimaI“O”S tto Te fuIIlprlc_JIE)algie;tgrs.t;fmlt;calz;r/?pr?page}:?rs, o propagator(2.1) makes the transition from its smadlbe-
Oor example, actual Scale like ratner than at sma H H H
(2R, e e e xpony < OV 1. T arence r=F) 51 a0 bevauar € Ceonsp. Some

becomes significant whdre Nu exp(— 7)=Nuexg —O(1/N)]. One L .
might worry that the sensitivity of Eq2.12 to p—0 is a sign that we prefer to retain it, as there is then a more transparent

naive largeN perturbation theory must break down. It is important "€lationship between Feynman diagrams and the correspond-
to realize, in the present case, that this infrared sensitivity is simply"d Feynman integrals.

an artifact of our mathematical manipulations on the infrared-safe In evaluating the diagrams of Fig. 4, we shall borrow
expression(2.9). Regardless of whether one used some sort oftechniques from Ref17], where somewhat related diagrams
infrared-improved propagator in Eq2.9), that expression is not were evaluated in gauge theories with large numbers of sca-

sensitive to far-infrared momenta. It is sensitive to momenhéu, lars. Our strategy will be to do th¢ loop integrals first, and
for which there is nothing wrong with a lardgé-expansion based on  then tackle the remaining integrals associated withropa-
perturbative propagators. gators.

SFor a very quick review of standard lardé see, for example,
section 2.1 of chapter 8 dfl6]. Some people might prefer to re-
placeo by io in the action(3.1), so that the imaginary-time path
integral foro is convergent, but it matters not at all for the purpose
of largeN perturbation theory. Let us start with Fig. &). The corresponding integral is

A. Diagram a
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FIG. 5. Diagrams for ther self-energy? (p) at O(NY).

1l 1 1 1 1 @ 1
2y -1 -l = =5
A(¢%)a=N quFquJ’lle 1+ p|2 DZL ﬁ (124+M?)3 Zd(l\/lz)zfllerM2
1 1 1 d? ( M)
o q] 7 Zawy a2

. . . The integrald, is straightforward to evaluate. A particu-
As written, this integral is absolutely convergent and can bqar dravs g P

. o _ : ; ly simple way to evaluatk, is to make a conformal trans-
eyaluated, W'thO.Ut regu_larlzatlon, d|rectly' N .three dlr,nen'formation which reduces it to the form df. The results of
sions. To dq th¢|ntegrat|on, however, we find it convenient both integrals, and the conformal transformation between
to temporarily m_troduce an IR regulator mals We_may a:em, are discussed in the Appendix. All we need here are
the_n separate!y Integrate each of the terms of the integran e smallM expansions of those results, which turn out to be
which are not individually IR convergent. We can also Mse
as a trick for reducing powers df 2. Specifically, we re-

write thel integral as theM —0 limit of N 1 M M?p-q
Il(pquM)_S _ - 2 2_ 3.3
palp—al  4mp2q? 8p3qg3|p—q|
f 2 - 23 : z—iz] — Z—izl L M(p*+4p-a+q®)  M3(p-a)°~p*a”]
I(I +M ) ||+p| p + |I+q| q + 127Tp4q4 16p5q5|p_q|
+0(M®), (3.8
1 d f 1 1 1 1 1
2dM2)2)i (12+m?) [ |1+p2 P71+ @), VIR VE
- - Ji(p;M)= —— + +0(M®. (3.9
1(p;M) 8p 4mp?  12mpf (M. (39
1 d L
=5 a2 (P, ;M) —p~“J1(q; M) Putting everything together,
_ P M 1 1 1 1 1
—q 2J(p;M)+p~%q 2(—5” , (3.4 f ——— 2——2] 2——21
= LIE+EMA2[[I+p[* p?) [[1+al* a%),
where _- p-q 3(p-q)%—-1
~|smvpia Topigtpgl] O™
|87Mp%g®  16p°%¢%p—q ],
1 .
pam)= | SNEY T
(12 M2)[1+ |21+ 2 (SR o), (3.10
L 16p°a°[p—al],
1
Jl(p;M)EJ —— (3.6) We can now seM=0. All that will matter in the integral
L (1%+M2)[1+p| (3.3 is the averagd ), over the angle betweep and g,

which is

and

The integralf,(I12+M?)~! is —M/4= plus anM-independent
UV divergence, andM? derivatives of the latter vanish. It is of
course not necessary to introdufgl>+M?) ! and this spurious
UV divergence; one could simply evaluafg!?+ M?) 2 directly.

But we find it convenient to consolidate the treatment of such inte-
grals with that of the other terms in E(B.4). FIG. 6. The one-loop bubble diagram.
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FIG. 7. Example of a tadpole diagram.

f 1| 1 1 1 1 1
e+l L +al® e?), ) 4opSps
(3.11)
where
p-=maxp,dq), p-=min(p,q). (3.12

We are left with

F
2y — 2d
A(d%)a fq40p>p< 2774pr pfq q40pq

(3.13

The remaining integrals are easy to do, with the result

A @p?) = u (™5 (3.19
* 1574 6 4 '
B. Diagram b
Figure 4b) corresponds to
A<¢2>b:NlquFququ, (3.153
5 _f 1 1 1 1
o +plt 1+ p+al? g
1 1 1 ] 3.15
p*lp+al? a?]) . '

This contribution toA( ¢?) is again absolutely convergent if
the subscript- is taken to mean averaging oyer —p and
also overg— —q. It is convenient now to rewrite thleinte-
gral as theM;,M,—0 limit of

PHYSICAL REVIEW A 62 063604

1 1 1 1
fl (124 M2 | (|I+pl+M3)2 ||+p+q|2_¥}
1 1 1
(p2+M3)? |p+q|2_¥]
d d

IZ(p+q1q1Ml=M2)

d(M2) d(M3)
L MMy — !
— —J2(Pi M, M) —
q? (p?+M3)[|p+dl?
i M (3.16
q2 4 ' .
where
A 1
AP A= 2 pPr M (1 g+ M)
(3.17)
3,(p:MyM )_f ! (3.18
AP | M (e pemg) T

The results fot, andJ,, and their smalM ;,M, expansions,
are given in the Appendix. The final result for thantegra-
tion, after taking theM ;,M,—0 limit, is

—2p(p-9)—3q(p-q)?
B q |0(|D3 (1) q(sp q)} , (3.19
8pa*|p+d .
with angular average
6(p—q)
B = 3.2
< pq>9 4p6q ( Q

where 6(p—q) is the step functionl for p>q; 0 for p
<(q). The remaining integrals are easy to do, giving

u (@ 5
NRETE

3.2
6 4 (320

C. Diagram ¢

Figure 4c) can be evaluated as the others, but the final
integrals are a bit more complex. The diagram gives

A<¢2>c:N71J’ FoFqCpq: (3.229

Pq

L - 1

e pl+ g+ pal? p2aPptal? .
(3.228
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Thel integration can be performed using methods similar to 1

before:
. ( 1 M
=—1i POM) - ————| - —
M vsed(M?) p’q?lp+al?\ 4w/,
(3.23
Hp.giM) = | -
S NN VE RS ETIrEy
(3.24)

H can be reduced to the basic integrijsand J, encoun-
tered previously by rewriting the numerator 1 in E§.24)
as

PHYSICAL REVIEW A 62 063604

FoF 1
= ALY —— f pf dx_Pxe pxp X2 ()
NJpa p< 27N

8u ld x3lnxf( ) (3.30
=———| dx X), .
37*Jo (1-x)
so that
A= j xInx | x Sinh‘lx
¢ 1+x? (1+x2)3’2 '
(3.32
This is easiest to evaluate numerically, giving
, _ cu
Ade >c—g. (3.33

and then expanding the integrand into the corresponding fouvherec=0.463 715. We also have an analytic redult:

1
1=———[(I>+M?)+|l+p+q|?—|I+p|>—|l+q|?
2p~q+M2[( )+ [1+p+al*—[I+p|*~[1+q|*]
(3.2
terms:
H(p,g:M)= 11(p,g;0)+14(p,o; M
(P.G;M) Zp.q_’_Mz[l(pq) 1(P.g;M)
—l1(p+9,q;M) —13(p+q,p;M)].
(3.26)
Using the expansiof3.8) of |, one obtains
c [ : [1+( )2]( !
= p-q
" | 16p%° lp—dl [p+al
A.A— A.A 71
p q2 2(|0 a) i (327
8p“q°lp+al” |,

This simplifies, after applying the- - - ] prescription, to

0-d—(p-a)~ i 1
e L
16p“q lp+al®  [p—a
Angular averaging yields
. 1 Sinh™x 329
C = X+ , 3.2
Pare 8p x3(1+x?) V1+x2
where
Xx=p-/p-. (3.30

The remaining integrals ovgrandq are no longer so trivial.

Notice first that for an arbitrary functiof(x) one can rewrite

Tt e |“ LBy, (334
c=— —=In ——L(3.xs), .
8 \/5 3 X8
where
L =1 1 L1 1 1 1 1
S, frd _———_—— _—— —_———
xe $ 5 7o 1F 15
! + 1 (3.3539
15 17 '
is a particular case of Dirichlet’s function, and
L(3,xg)=0.95838045458. . . . (3.35H

D. Diagram d
Figure 4d) corresponds to

A<¢2>d:_ _1quFquququ, (336a

80ur inelegant, brute force method for obtaining this result is

borrowed from a footnote of Ref17]. The hard part is the Sintt
term. We change variables fromto y=x+\1+x?. This turns
Sinh™*x into Iny. Inx can be written as a sum of terms of the form

In(y—a), and the change of integration variable makes the rest of

the integrand a rational function gf We then split this rational

function apart by partial fractions and do each integral, yielding
dilogarithms and trilogarithms of various arguments. Finally, we

use a zoo of polylogarithm identiti¢48] to simplify the answer.
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D_j 1 jl 1 1 S.(p) 1‘[74F2J’ 1
pg— L |12||/+p|2||/+q|2 ||4 1(P 2 qq q |

I+pPi+a? pPa?)., 12|1+p|2
. H d
:_Il(p’q’o).uTod(Mz) l1(p.a,M) This diagram has a quadratic IR divergence for0. In
contrast, the other two diagrams only diverge as lidag
whenp=0, and so behave gs !Inp for small p. In sum-

2_ Nu

 a8r?p?
(3.42)

M
-p g3 - — mary,
p2q . y
p-§ S(p)=-—t0(plnp) (342
= (3.36h p)=- 2.2 p-inp :
64p°q°[p—q? 48m°p

Here the subscript-l means we implicitly average ovér for smallp. One may check by power counting diagrams and
— —| for absolute convergence. Doing the remaining inte-subdiagrams tha,(«)=0. Then
grals by brute force, we find

ul7 ™) 1 F=— 224 F=0 (3.43
MPAg=—|—| (3)— —|+=|, 3.3 L R e -
(¢%)a — 12(4( ) 575 (3.37) 37
where/ is the Riemann zeta function. It is interesting to noteand
that 772/6 can also be written a&(2).
u
E. Diagram e A{p?)e=— — (3.49
67

The final class of diagrams, Fig(e}, corresponds to the

leading-order diagram, Fig. 1, with the replacement One may also check this answer by direct, brute-force calcu-

1 1 P 1 lation of all the diagrams associated with Figey

N (N2 (P (=NTF) = =N, We conclude by mentioning one technical subtlety,
(3.39 glossed over above, concerning absolute convergence. The

where3 (p) represents the contribution to teeself-energy ~ integration corresponding to the substituti@®38 in the

at next-to-leading order, shown in the diagrams of Fig. 5/eading-order analysis is

Making this substitution in the leading-order calculation

(2.13 gives i

A<¢2>e: - flp I_4p

1 1] (3.5
Fo—F. lI+pl? p?f, '

AP = _— (3.39

The nice feature of this relation is that we only need to Cal_ln_cqntrast t(.) the analogous Ieadlng-order. expre.séiﬂm@,
culate3 (p) in the small and large limits. this integral is not absolutely convergent in the infraréd (

The first self-energy diagram in Fig. 5 contributes, ~p—0), though it is convergent in the UV. One might
therefore worry about thad hocintroduction of an IR regu-

1 lator M in the calculation of this graph. However, this worry
S.(p)= _1f F.F is easily bypassed by rewriting
' o TP 21+ pl2l+ g
1 5 (Fo—Fo)| 1 1
X : 3.4 Ade >e:_f -—| ., (346
f'z 13112+ pl?[l2+p+qf? (349 oo 1% [I+pl® p?,

For smallp, the integration is dominated Hy,l,~p, and  \yhich should be understood as regulated in the UV. The
q~_N9u. So we can ignoré;, I, andp compared tag and  yy.regulated integral of theF, factor vanishes. Equation
write (3.46 is now convergent in the IR, but logarithmically di-
vergent in the UV, just as the original leading-order integral
(2.6) was. One can now follow through the same argument
%For generap, the result isNUS,(p) =24 2z 3R 2 Li,(—2) as in the leading-order case to introduce an IR regulator and

—2Liy(2+2)+37?], where z=48p/Nu, and Li(2)= then remove the UV divergence, wheffg in the leading-
— [&dxIn(1—x)/x is the dilogarithm function. One may double order analysis is now replaced By, — F,. The result is still
check that thep—0 limit agrees with Eq(3.41). Eq. (3.39.
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F. Summary 1
. . . 3.(p:My M EJ
, Sqmmmg all the diagrams then yields the total NLO con- J2(P;M1,M>) MR plE M)
tribution:
_ 1 1 (M1+M2)2_p2
17 i 8 M1+My)2+p?
A(p? >NLO_3 (( )_5_27&) \/—In(1+ \/E) mp (Mi+My)“+p
oz 1 (M3+My)  (M3+M)y)°
—= + +0O(M%).
2 8p Amp? 127p*
—-L(3xs) |, (3.47
’ (A1)

The integrald,(p;m) of Eq. (3.6) is simply the special case
J1(p;M) =J5(p;M,0).

The integrall ,(p,q;M1,M,) of Eq. (3.17) can be related
to J,(p,q;M4,M5) by generalizing a trick presented in Ref.
Ao 0527198 [17]. The idea is to change integration variables frota its

> = , (3.48 conformal inversion T=1/12. The integration measure
A(¢%)o N changes as (2) ~3d®l = (27) %1 ~d°T. Propagators can be
written in terms of the new variableas

with L(3,xs) given by Eq. (3.35. Combining with the
leading-order resul2.13),

which is the relative NLO correction we presented Tqrin

Eq. (1.4).
1 .
=12 (A2)
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APPENDIX: BASIC INTEGRALS D M
Let us begin with the integral,(p; M 1,M5). This is quite =32 2 pP= 2 2 (A4)
. . p<+M pc+M
easy to do by standard methodisr example, by introducing
a Feynman parameberand gives Making this change of variables,
2 27-1 2 27-1
1 ~ P ‘ Mj_ ~ q ‘ M2
1(p,q;M4,M,)= J: [+ + I+
2P ;M1 M2) (P2+M2)(g2+ M) |H p2+M2| | p2+ M2 >+ M2 | g+ M2
1 p q M, M,
IV N IV . P IV IV AP IRV AP VY. (AS)
(pe+MD(g°+M3) | p +M7 g°+Mj; p+M7 g+ M3
For the application of this paper, the relevant terms in the sMallM, expansion of , are
1 1 Mi: M, MM, [M; M,
(P, 0 M1, M) = - S| =+ | FOMD+O(M5) + ————| —+—| +O(M])
8pdlp—q| 4m|p—q| 4mlp—q| P
3pg—2(p%+ +
O(ME)+ M2 Mz[ pa—2(p?+0?)(p-q)+pag(p-q)? ]+0(|v|5)_ (A6)

8p?9’|p—q°
The integrall ; of Eq. (3.5 is related byl 1(p,q;M)=1,(p,p—q;M,0) and gives
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. cos }(2w5,—1) A7) M|p—q| 8)
QM) = ) Wpg= .
P VTIIEN "M (P P
where The smallM expansion is given in Eq3.9).
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