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Systematic method to study the general structure of Bose-Einstein condensates with arbitrary spin
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We develop a systematical method by which the investigation of the general structure of Bose-Einstein
condensates with arbitrary spin has been reduced to solving a one-order linear partial-differential equation of
a very simple form. Its general solutions for arbitrary spin are studied and a procedure is also developed to seek
systematically the building blocks for constructing the general structure of Bose-Einstein condensates with
arbitrary spin.

PACS numbsg(s): 03.75.Fi, 05.30.Jp

Over the last few years there has been much theoreticathereF _=F,—iF is the spin-lowering operator.
effort focused on Bose-Einstein condensates with multiple To relate the statels=,F,=F) with the states created by
internal spin degrees due to their wide and important appliapplying the creation operatoﬁ to the spin vacuum state
cations[1-5]. The mean-field theory for a vectorial Bose- lvad) defined bya ,|vac)=0 for all 2f + 1 subscriptsu, we
Einstein co_ndensqte has been developed_ by seve_zral_ grOUPSéQpress the—comgonent operatd¥,, of the angular momen-
predict various spin textures and topolqglcal excitatighls _tum and corresponding spin-raisifipwering operatorF .
Law et al. [2] have utilized an algebraic method found in (F_) in terms of the spin creation and annihilation operators
guantum opticg6,7] to study many-body states of spin-1 foll R P D d E
Bose-Einstein condensate in the absence of external field®_, '0'OWS: 2= %j--113;8; —\/_i:—._fln&._a” +
and found rather complicated dynamical behaviors that the& >j--8j&j+18=F- with g;=(f—j)(f+j+1). Here
mean-field theory fails to capture. Subsequently, Koashi an@nd hereafter, the notatioB/__; denotes the summation
Ueda[3] have discussed the magnetical response of spin-aver the rangé=—f,—f+1,—f+2,...f so as to cover
and spin-2 Bose-Einstein condensates by explicitly conthe cases of both integer and half-integer spins. Note that
structing exact eigenspectra and eigenstates. Recently, H=0 and hencg =f in the summation of, is in fact
and Yin have developed an elegant generating functiombsent. It is easily checked that these introduced operators
method to deal with the general structure of Bose-Einsteifindeed satisfy the usual commutation relations for angular
condensates with arbitrary spin and its building blop%s  momentum operatorsF, ,F_]=2F, and[F. ,F,]=TF.
However, there appears not to be any systematical methogk they should be. In addition the squared angular momen-

yet to express the states of the angular momengunpar- s . . .
ticular the building blocks of Bose gases in terms of the tum operatoi-* can easily be expressed in terms of the spin

Fock states describing hyperfine spin states of their particle§reation and annihilation operators by the relatiéi
which will be the subject of the present paper. By establish=F _F . +F>+F,. Obviously, all the statel§",F,= F) with

ing a relation of the raising operator of Bose gases’ angulamaximum spin projections satisfy, |F,F,=F)=0 and vice
momentum with the creation and annihilation operators deversa. In other words, any eigenstéie) of the operatoir,
scribing their hyperfine spin states, the problem of investi-must be one of the stat¢g,F,=F) if it satisfies the relation
gating the general structure of Bose-Einstein condensatgs, |¥')=0 and the reverse is also true. Any common eigen-
with arbitrary spin is reduced to investigating the solutions ofstate of bottF, and the total particle numbét= Ej-f?fnj is

a one-order partial-di_fferentia_ll equation. We also present Q¢ the typel'|vad with I' being a polynomial with each of
procedure to solve this equation and make some conclusmnS terms having the fornﬂ}jfﬁagnj. Heren; are 2+1

concerning the building blocks and the general structure o L _ _

Bose gases withrbitrary spin. non-nfegat_lve mtegers_ _sgbject to two rglan(Eljinnj:N
We consider a Bose-Einstein condens&EC) of N spin-  andZj_ _¢jn;=F,. Utilizing the expression oF . in terms

f particles all in BEC'’s lowest external modthe zero mo-  Of aM,aL, and notingF ., |[vag =0, [a] ,T']=—dT'/da;, and

mentum mode in the case of an untrapped BEC or lowedta; ,F]=&F/aa}r, it is obvious that constructing the states

self-consistent mode that the system condenses into in tH&,F,=F) is equivalent to seeking all the possible nonzero

trapped case denoted by the annihilation operatagswith j  polynomial solutionsI'(a’,a"(,,, ... al ;,al) to the

labeling the Z+1 spin component§4]. The angular mo- one-order partial-differential equation(derived from

mentum operator then becomégs,=a'f,,a,, wheref,,is  F,T|vag=[F, I'llvag=0) S/__(g;al,,al'/da/=0 or

the spin matrix for a spir- particle [4]. To construct the

angular momentum eigenstates, it is sufficient to focus on the f g

stategF,F,=F) with maximum spin projections since other 2 (1= 8j)%j+1--=0, 2

state§ F,F,=m) with m<F can be obtained by the formula j=-f 28

IF,m)= 1 /(F+m):rf‘m|F,F>, 1) where xf=a;r. Other 2f variablesx-. are .given byajJr
J2F)r Y (F—m)! =(BiBj+1- - -Br—1)x; with g;=(f=[)(f+j+1), andl’
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is linear combinations of the termi|~“{x with the non- ~ wherej=2.3, ..., (note that there exists no possilléor

negative integers; subject to the constraint==!__n; f=3). It is emphasized that we can always neglect the op-

anszEJf:_fjnj. Each nonzero polynomial solutidh re- ~ €rator characterls.uc of Ec(2) by_congdenng itsx,, as X

sults in a nonzero ket vectdr|vad) which is one of the ~+1 c-number variables in seeking ifolynomialsolutions

stategF,F,=F). We have now completely turned the prob- @s We have done in obtaining results given in &), which

lem of investigating the general structure of Bose gases wit§reatly simplify the solving procedure. However, its

arbitrary spin into finding the solutions to a one-order linearoperator-type characteristic does make some difference as

partial-differential equation of a very simple form. explained below. In neglecting its operator-type characteris-
Our next task is to investigate the general features of théic, the textbook theory ot-number differential equations

solutions to the partial-differential equati¢®). Throughout tells us that the 2 indepedent solutionkr, (N=N,) given

the rest of this paper, we shall use the notatigr(N) to  py Eq.(3) completely determine the general structure of so-
denote one of the polymonial solutions to H@ with N |ytions to Eq.(2) because any solution to E(®) can always

particles and=,=F. We shall, for the time being, neglect the pe expressed as their function and any function of them is
operator-type characteristic of EQ) by regarding its 2 5154 its solution. Obviously, the counterpart conclusion for

+1 operator variableg, as c-number vari_ables. The stan- ihe operator-type equatiof?) is that any polynomial solu-
dard textbook theory of differential equations manifests thag;q, can always be expressed as a function of thér@le-

the general solution to enumber partial-differential equa- pendent operator-type squtiorPst(Nk) given by Eq.(3)

f/i/?t?] O;h?utr):crz)t?olr:lsE\lclizi Q,i?;?i:omf(q’;’q:)z for m|\rI1,ng)a but the reverse may be wrong because a function of them
- ’ —1 N H
complete solution set, i.e., all thé Zunctions¥ are mutu- does not nged to bepaolynomlala_nd may, even worse, not
ally functional independent solutions to E(2) and any be well defmed(notg that a function of thef2_mdependent .
solution to Eq.(2) can be expressed as a function of OPerator-type solutions, no matter whether it is involved in
them. The .can be obtained bv the condition®" seeming ill-defined operation or not, represents an ap-
v [x.(t) X y(t) x_(t)]=const alor{g the trajectory propriate solution if the final form of the function can be put
KLXf(1) X —1(1), - oo X (D) [= ! ) .

. , _ . into a polynomial of the 2+ 1 variablesx,, see the para-

X(t) determined by a set of equationisg/dt=0,dx; /dt graph discussing the spin-2 casd~or instance, both

=X; 41 for j#f, or in matrix formdX(t)/dt=AX(t) by in-
troc]iljéing )J<(t)=(xf Xe 1. ... x_f)T( ¢)':1nd A’:%)HYi j [Te(N)]*lvag and [T'e(N)/T¢ (N1)]|vag may have no
=—f,—f+1,...f. We now explicitly congtrucl[ a’]set of Mmeaning at all. Nevertheless, a seemingly ill-defined division

polynomial solutions¥,. The solution to the equation OPeration can in fact be avoided when one considers only
dX(t)/dt=AX(t) is X =exp@AnX, with Xo polynomial solutions, which is what we are concerned about
:(XEO) :X@p o ’X(i)f))T being at-independent column vec- in this paper. Lef’=G/H be a polynomial solution witl

tor. The solution gives immediately<f=x$o) and x;_; and H be_ing two polynomial functions o_f the solutions
=x§°)t+x§°)1. X$0)1 can be taken as zero by translating I“,:k(Nk) given by Eq.(3) [note that the solutioh” must be a

and henceXy=exp(—AbX with Xg@lzo andtzxf,1/x§°). function of the solutionﬂ“Fk(Nk)], thenG must have a fac-
Using expCAt) =32 (—t)*A¥Kk! (since A"=0 for m=2f torized form with its two factor$d andI’ (whiqh can easily
+1) and @k)ij =8k, We obtain xf=x$°) and EL:O be understood by_ taking allf2-1 0perat0rs<.M in H, G, anq
(- 1)k(Xf)f7iflfk(Xf71') kx4 i Ik =xO(x{) =11 = —f, I' as complex variablgsand therefore the division operation
“f41,...f-2. It can be shownlthat thef 200lynomial does not occur at all. The fact that each of the abGvand

functions in the left-hand side of the above equations arg! tNémselves may be certaific, (N,) also suggests the
indeed mutually functional independent and hence can bBroblem of factorized and nonfactorized solutions which we
taken asV, , respectively. What is more, thesé finctions, ~ shall now pay our attention to. Inspecting Eg) leads ob-

when one considers f2-1 variablesx,, as operatorsaI viougly to the property that the product pf two polynomial
=X 1ajT:(ﬂij+l' .-Bs_1)X;, j#f, are obviously also the solutions must also be a polynomial solution, i.e., to be more

independent solutions to the operator-type partiaI-differentia?peCiﬁC' rFl(Nl)FFZ(NZ) =Iep 7, (N=N1N,). Thi§ .
equation(2). Therefore, 2 independent operator-type poly- Property introduces a concept of the so-called building
nomial solutions to Eq(2) have been obtained by us and blocks(those polynomial solutions unable to be expressed as

they can be written in terms @/, as follows: the product of two polynomial solutionsvhich certainly
play an important role in investigating the general structure

of Bose-Einstein condensates with arbitrary spin. In addition
I'e_(N=1)=a], (38 it also tells us that building blocks tend to have snliand

hence we shall in the next paragraph seek them in a way

beginning withN=1, thenN=2, nextN=3, and so on. We

Fe=ji-1(N=]) can thus avoid annoying division operations by choosing a
ol j-2 21 K2 — iK1 solution set composed off2independent building blocks
= 2 (—1)i-1k \/( )X ] )'i found in this way. Nevertheless, we still face the problem of
1-2)! =0 (k12(2F)1(j —k)! the radical operation which tends to make the number of the
el katk ot complete solution set be greater thah Zor instance, if a
X(ay)’ At 18f 4k (3D nonfactorized polynomial solutiof is unable to be ex-
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pressed as a polynomial function of thdependent building Spin4 case.Eq. (2) in this case becomes,;,dI'/9x_ 1,
blocks but its fifth power can, i.el, =AY®> with A being a =0 resulting inT'=I'(x;,) independent of the operator
polynomial function of the 2 building blocks, then this non- x_,,,<a’ ;,,. This immediately leads to the conclusion that
factorized polynomial solutiol” should be added to the so- there exists one £2f) and only one building bloclal,,
lution set to make the set complete. Nevertheless, such @x,,, and hence only possible angular momentum states
nonfactorized polynomial’ can only appear finite time@&t  \with maximum spin projections adeF,Fz>=aLN2|vac> with
most four times forl'=AY®) in constructing the general N=2F.

structure of Bose gases and therefore has no thermodynamic gpin2 case.In this case, we have already found three

significance. From above discussions, though we are unable- 2f) independent building blocks given, respectively, by
to prove it rigorously for arbitrary at present, it seems rea- gq (3g) (one-particle, Eq.(4) (two-particle, lettingf = ¢ and
sonable to make the conjecturé:complete solution set de- y—1) and Eq.(3b) (three-particle, letting =2 and j = 3).
scribing the general structure of a Bose-Einstein condensate;nhey are rewritten here as followE; _ y,(N= 1)235/2, and
with arbitrary spin contains at mo&f independent building
blocks of thermodynamic significance 1

Let us now consider the building blocks for smilll It is I'e_1(N=2)= E[a{,zz— V3alal ., (59
worthwhile to point out that one significant advantage of our
method, which turns investigating the general structure of
Bose gases with arbitrary spin into finding the solutions to a
one-order linear partial-differential equatid®), is to allow
us to obtain analytically all the polynomial solutions, includ-
ing the building blocks by a simpl@ATHEMATICA program  Ho and Yin[4] have found that there exist four basic build-
whose spirit is outlined in Refl8]. The program obtains ing blocks in this case. Though they have not derived their
required resultguickly so long asN or f is not too big. Here  explicit expressions, Ho and Yin have indeed designated
we only list the results foN=1,2. The unique building their F andN values. Three of them have already been de-
block for N=1 is I'r_¢(N=1)=aj. For N=2, all rived by us and are explicitly expressed above while the
the building blocks are given byI'r_,_,(N=2)  fourth one in our notation i$'r_o(N=4), which is easily
:WkE}(:—k(_1)fo—k+jxf—k—j with W, being constant and obtained by thenATHEMATICA program and is given as fol-
the range of integerk being written immediately after Eq. lows:
(4). Utilizing the relation between; and a}r given immedi- f2 12 f ot 4y
ately after Eq(2), and taking Pe_o(N=4)=a 38351 28" 38" 183817

W= (Bi—kBi—kr1- - Br-1)%12,

V3

1
Paa(3)=3 ajpt - ( ajialy—alayaly). (5b)

1 4
t2 . t2 o ot3, 13 ot
+sa9a algpaptalypsn).
3 1/291/2 3 /—3 ( 3/291/2 3/293/2

we obtain
(6)
Proot-2(N=2) o _ .
The fact that the existing four=2f+1) basic building
K (—1) \/(k!)Z(Zf—k—j)!(Zf—k+j)! blocks listed above does not contradict our conjecture of a
=Z _ ) . 2 complete solution set describing the general structure of
=0 1+ 5o (k=D kLT =t Bose gases contains at modt iidependent building blocks
Xag_kﬂa;f_k_j, (4) of thermodynamic significance because Ho and Yin have
found thatl';,(3) can appear at most on¢é]. However,
wherek=1,2, ... fif f=1,2,..., nopossiblek exists for this indeed represents an annoying circumstance because if

f=2 (i.e., no any two-particle building block exists fér e did not know the results of Ho and Yin, we would most

=1) while k=1,2,...f—} for other half-integer f likely have ceased seeking four-particle building biatke-

(=3,3,%,...). Wehave presented all the building blocks cause we already had found three Zf=3) N-particle in-

for N<2 and for arbitrary spirf. In addition we have ob- dependent building blocks fdi<3.

tained a three-particle building block fée1 given by tak- Spin-1 caseEquations3a) and(4) give the two indepen-

ing j=3 in Eq. (3b). (Note that no possibl¢ exists forf  dent building blocks'r_;(N=1)=a] andT'o(2)=(a})?/2

=1.) Apart from this one, all other possibiN:particle build- —aJ{ail, respectively. As has been shown by Wi and

ing blocks forN=3 can be obtained by a very simplaTH- subsequently by otherf2—4], the possible state$F,F,

EMATICA program whose spirit is outlined in R¢B8]. =F) must have the formg})[T'o(2)]N"P"vac with N
Now, we apply the above general results and discussions F being non-negative even integers. Therefore these two

for arbitrary spinf to some concrete values 63,3 and (= 2f) building blocks form a complete set.

f=1,2,3. It is pointed out that for arbitrary spin there Spin-2 case.Four (=2f) independent building blocks

exists only one one-particle building bloei{, and all the have already been explicitly given, respectively, by B3

two-particle building blocks, if any, are given in E@L). In (a one-particle block Eq. (4) (two two-particle blockys and
addition there has been found a three-particle building blockEg. (3b) (a three-particle blogk They are explicitly written
(for f=1) given by takingj=3 in Eq. (3b). here as foIIowsTF=2(N=1)Ea£ and
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I'e_o(N=2)=3a}’-ala’ +aja’,, (78)
I'e_p(N=2)=1al?- a], (7b)

e (N=3)=1lal3+2 TZT_\/Z tafal (7
F:3( ) 3a1 3a2 a_j_ 3 azalao. ( C)

Again, an annoying situation similar to the sginease oc-
curs, i.e.,I'r_3(N=3) can appear at most onf4] and we
need to supply another building block

Te_o(N=3)=2ala’ ,al+ala’ ;al—3a}?

2 2
—VialZa' ,— \/gagail, (8)

which is easily obtained by th@ATHEMATICA program, and
also explicitly given by Ho and Yirithey use different no-
tation) [4]. Once again there only exisf 2ndependent build-
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function of the =4 solutionsag, IM'e—2(N=2), T'e—o(N
=2), andI'r_o(N=3). The latter fact also explains why
I'e_3(N=3) can appear at most once.

Spin-3 caseFour independent building blocks have al-
ready been found and a@ and three two-particle blocks
FF:()(N:Z), FF:2(N:2), and FF:4(N:2). A” these
three two-particle blocks are explicitly given in E).
Since we can obtain a stat€,F) with N=3 and F=6
corresponding tagzl“on(N= 2), we therefore do not count
the three-particle blocKr_¢(N=3) explicitly given by tak-
ing j=3 in EqQ. (3b) as a basic building block. Ho and Yin
[4] have claimed to have sever=@f+1) basic building
blocks in this case. Besides the four bloczk& and I'e(N
=2), F=0,2,4 listed above, the other three & our no-
tation) I'e_o(N), N=4,6,8, though they have not derived
the explicit expressions of all the seven blocks. Once again,

ing blocks of thermodynamic significance. At this time, letwe do not countl’r_o(N), N=4,6,8 as basic blocks be-
us explain the reason why such an annoying situation wilbausd“‘ézo(N=2), k=2,3,4 can produce stats,F) with
appear here in the spicase as well. The reason is that aN=4 andF=4,6,8. Therefore the four<2f=6) one and
function of 2f independent operator-type solutions, no mat-two-building blocks seem to be able to describe completely
ter whether it involves any seeming ill-defined operation orthe general structure of Bose gases with spin-3 particles.

not, represents an appropriate solution if the final form of the

function can be put into a polynomial of thé 2 1 variables

In summary, we have shown that the general structure of
Bose-Einstein condensates with arbitrary spin can be inves-

X, or aL. Let us take the spin-2 case as an exampldigated by solving a one-order linear partial-differential equa-
to illustrate this statement. It can be shown from Egstion of a very simple form. We have also provided a system-

(7) and (8) that 4y2a)*I'r_o(N=3)=—93[I'r_5(N
=3)]°+8V3[['r-»(N=2)]*~ 8I'r_,(N=2)T'r_o(N=2)

atic, and in our view the simplest, procedure to establish
explicitly the relations of all the states of the total angular

T .
=42G (see also the second to last paragraph of p. 2304 gfiomentum with the Fock staté¥{a, })|vag. In particular,

Ref. [4]). From this relation, we realizd z_y(N=3)
=G/a§3, whose right-hand side involves seeminglyill-
defined division but its final outconé:_o(N=23) is a poly-
nomial function of the 2+1 variablesaL and hence a well-

combining our method with the elegant generating function
method developed by Ho and Yjd4] produces a very pow-
erful tool to deal with the general structure of Bose-Einstein
condensates with arbitrary spin.

defined solution. Note that this fact reflects our general

conclusion that any polynomial solution to E@) must be
able to be expressed as the function of aryiridependent
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solutions. On the other hand, this relation can also be exmnstitute of Theoretical Physics, The Chinese Academy of

pressed ad'r_3(N=3)= JA with A being a polynomial
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