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Systematic method to study the general structure of Bose-Einstein condensates with arbitrary spi
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We develop a systematical method by which the investigation of the general structure of Bose-Einstein
condensates with arbitrary spin has been reduced to solving a one-order linear partial-differential equation of
a very simple form. Its general solutions for arbitrary spin are studied and a procedure is also developed to seek
systematically the building blocks for constructing the general structure of Bose-Einstein condensates with
arbitrary spin.

PACS number~s!: 03.75.Fi, 05.30.Jp
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Over the last few years there has been much theore
effort focused on Bose-Einstein condensates with mult
internal spin degrees due to their wide and important ap
cations@1–5#. The mean-field theory for a vectorial Bos
Einstein condensate has been developed by several grou
predict various spin textures and topological excitations@1#.
Law et al. @2# have utilized an algebraic method found
quantum optics@6,7# to study many-body states of spin-
Bose-Einstein condensate in the absence of external fi
and found rather complicated dynamical behaviors that
mean-field theory fails to capture. Subsequently, Koashi
Ueda @3# have discussed the magnetical response of sp
and spin-2 Bose-Einstein condensates by explicitly c
structing exact eigenspectra and eigenstates. Recently
and Yin have developed an elegant generating func
method to deal with the general structure of Bose-Eins
condensates with arbitrary spin and its building blocks@4#.
However, there appears not to be any systematical me
yet to express the states of the angular momentum~in par-
ticular the building blocks! of Bose gases in terms of th
Fock states describing hyperfine spin states of their partic
which will be the subject of the present paper. By establi
ing a relation of the raising operator of Bose gases’ ang
momentum with the creation and annihilation operators
scribing their hyperfine spin states, the problem of inve
gating the general structure of Bose-Einstein condens
with arbitrary spin is reduced to investigating the solutions
a one-order partial-differential equation. We also presen
procedure to solve this equation and make some conclus
concerning the building blocks and the general structure
Bose gases witharbitrary spin.

We consider a Bose-Einstein condensate~BEC! of N spin-
f particles all in BEC’s lowest external mode~the zero mo-
mentum mode in the case of an untrapped BEC or low
self-consistent mode that the system condenses into in
trapped case!, denoted by the annihilation operatorsaj with j
labeling the 2f 11 spin components@4#. The angular mo-
mentum operator then becomesFmn5am

† fmnan , wherefmn is
the spin matrix for a spin-f particle @4#. To construct the
angular momentum eigenstates, it is sufficient to focus on
statesuF,Fz5F& with maximum spin projections since othe
statesuF,Fz5m& with m,F can be obtained by the formul

uF,m&5
1

A~2F !!
A~F1m!!

~F2m!!
F2

F2muF,F&, ~1!
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whereF25Fx2 iF y is the spin-lowering operator.
To relate the statesuF,Fz5F& with the states created b

applying the creation operatorsam
† to the spin vacuum state

uvac& defined byamuvac&50 for all 2f 11 subscriptsm, we
express thez-component operatorFz of the angular momen-
tum and corresponding spin-raising~lowering! operatorF1

(F2) in terms of the spin creation and annihilation operat
as follows: Fz5( j 52 f

f ja j
†aj[( j 52 f

f jn j and F1

5( j 52 f
f b jaj 11

† aj[F2
† with b j5A( f 2 j )( f 1 j 11). Here

and hereafter, the notation( i 52 f
f denotes the summatio

over the rangei 52 f ,2 f 11,2 f 12, . . . ,f so as to cover
the cases of both integer and half-integer spins. Note
b f50 and hencej 5 f in the summation ofF1 is in fact
absent. It is easily checked that these introduced opera
indeed satisfy the usual commutation relations for angu
momentum operators@F1 ,F2#52Fz and @F6 ,Fz#57F6

as they should be. In addition the squared angular mom
tum operatorF̂2 can easily be expressed in terms of the s
creation and annihilation operators by the relationF̂2

5F2F11Fz
21Fz . Obviously, all the statesuF,Fz5F& with

maximum spin projections satisfyF1uF,Fz5F&50 and vice
versa. In other words, any eigenstateuC& of the operatorFz
must be one of the statesuF,Fz5F& if it satisfies the relation
F1uC&50 and the reverse is also true. Any common eige
state of bothFz and the total particle numberN5( j 52 f

f nj is
of the typeGuvac& with G being a polynomial with each o
its terms having the form) j 52 f

j 51 faj
†nj . Here nj are 2f 11

non-negative integers subject to two relations( j 52 f
f nj5N

and( j 52 f
f jn j5Fz . Utilizing the expression ofF1 in terms

of am ,am
† , and notingF1uvac&50, @aj

† ,G#52]G/]aj , and
@aj ,G#5]G/]aj

† , it is obvious that constructing the state
uF,Fz5F& is equivalent to seeking all the possible nonze
polynomial solutionsG(a2 f

† ,a2 f 11
† , . . . ,af 21

† ,af
†) to the

one-order partial-differential equation~derived from
F1Guvac&5@F1 ,G#uvac&50) ( j 52 f

f b jaj 11
† ]G/]aj

†50 or

(
j 52 f

f

~12d j f !xj 11

]G

]xj
50, ~2!

where xf5af
† . Other 2f variables xj are given by aj

†

5(b jb j 11 . . . b f 21)xj with b j5A( f 2 j )( f 1 j 11), andG
©2000 The American Physical Society03-1
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is linear combinations of the terms) j 52 f
j 51 fxj

nj with the non-
negative integersnj subject to the constraintsN5( j 52 f

f nj

andF5( j 52 f
f jn j . Each nonzero polynomial solutionG re-

sults in a nonzero ket vectorGuvac& which is one of the
statesuF,Fz5F&. We have now completely turned the pro
lem of investigating the general structure of Bose gases w
arbitrary spin into finding the solutions to a one-order line
partial-differential equation of a very simple form.

Our next task is to investigate the general features of
solutions to the partial-differential equation~2!. Throughout
the rest of this paper, we shall use the notationGF(N) to
denote one of the polymonial solutions to Eq.~2! with N
particles andFz5F. We shall, for the time being, neglect th
operator-type characteristic of Eq.~2! by regarding its 2f
11 operator variablesxk as c-number variables. The stan
dard textbook theory of differential equations manifests t
the general solution to ac-number partial-differential equa
tion of the type in Eq.~2! has the formG(C1 ,C2 , . . . ,C2 f)
with 2 f functions Ck[Ck(xf ,xf 21 , . . . ,x2 f) forming a
complete solution set, i.e., all the 2f functionsCk are mutu-
ally functional independent solutions to Eq.~2! and any
solution to Eq. ~2! can be expressed as a function
them. They can be obtained by the conditi
Ck@xf(t),xf 21(t), . . . ,x2 f(t)#5const along the trajectory
xk(t) determined by a set of equationsdxf /dt50,dxj /dt
5xj 11 for j Þ f , or in matrix formdX(t)/dt5AX(t) by in-
troducing X(t)5(xf ,xf 21 , . . . ,x2 f)

T, and Ai j 5d i 11,j ,i , j
52 f ,2 f 11, . . . ,f . We now explicitly construct a set o
polynomial solutionsCk . The solution to the equation
dX(t)/dt5AX(t) is X5exp(At)X0 with X0

5(xf
(0) ,xf 21

(0) , . . . ,x2 f
(0))T being at-independent column vec

tor. The solution gives immediatelyxf5xf
(0) and xf 21

5xf
(0)t1xf 21

(0) . xf 21
(0) can be taken as zero by translatingt,

and henceX05exp(2At)X with xf 21
(0) 50 andt5xf 21 /xf

(0) .
Using exp(2At)5(k50

2f (2t)kAk/k! ~since Am50 for m>2 f
11) and (Ak) i j 5d i 1k, j , we obtain xf5xf

(0) and (k50
f 2 i

(21)k(xf)
f 2 i 212k(xf 21)kxi 1k /k! 5xi

(0)(xf
(0)) f 2 i 21, i 52 f ,

2 f 11, . . . ,f 22. It can be shown that the 2f polynomial
functions in the left-hand side of the above equations
indeed mutually functional independent and hence can
taken asCk , respectively. What is more, these 2f functions,
when one considers 2f 11 variablesxm as operatorsaf

†

5xf ,aj
†5(b jb j 11•••b f 21)xj , j Þ f , are obviously also the

independent solutions to the operator-type partial-differen
equation~2!. Therefore, 2f independent operator-type poly
nomial solutions to Eq.~2! have been obtained by us an
they can be written in terms ofam

† as follows:

GF5 f~N51![af
† , ~3a!

GF5 j ( f 21)~N5 j !

5
af 21

† j

j ~ j 22!!
1 (

k50

j 22

~21! j 212kA~2 f ! j 2k~2 f 2 j 1k!!

~k! !2~2 f !! ~ j 2k!!
i

3~af
†! j 212kaf 21

†k af 1k2 j
† , ~3b!
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where j 52,3, . . . ,2f ~note that there exists no possiblej for
f 5 1

2 ). It is emphasized that we can always neglect the
erator characteristic of Eq.~2! by considering itsxm as 2f
11 c-number variables in seeking itspolynomialsolutions
as we have done in obtaining results given in Eq.~3!, which
greatly simplify the solving procedure. However, i
operator-type characteristic does make some difference
explained below. In neglecting its operator-type characte
tic, the textbook theory ofc-number differential equations
tells us that the 2f indepedent solutionsGFk

(N5Nk) given

by Eq. ~3! completely determine the general structure of s
lutions to Eq.~2! because any solution to Eq.~2! can always
be expressed as their function and any function of them
also its solution. Obviously, the counterpart conclusion
the operator-type equation~2! is that any polynomial solu-
tion can always be expressed as a function of the 2f inde-
pendent operator-type solutionsGFk

(Nk) given by Eq. ~3!

but the reverse may be wrong because a function of th
does not need to be apolynomialand may, even worse, no
be well defined~note that a function of the 2f independent
operator-type solutions, no matter whether it is involved
any seeming ill-defined operation or not, represents an
propriate solution if the final form of the function can be p
into a polynomial of the 2f 11 variablesxm , see the para-
graph discussing the spin-2 case!. For instance, both
@GF(N)#1/5uvac& and @GF(N)/GF1

(N1)#uvac& may have no
meaning at all. Nevertheless, a seemingly ill-defined divis
operation can in fact be avoided when one considers o
polynomial solutions, which is what we are concerned ab
in this paper. LetG5G/H be a polynomial solution withG
and H being two polynomial functions of the solution
GFk

(Nk) given by Eq.~3! @note that the solutionG must be a

function of the solutionsGFk
(Nk)#, thenG must have a fac-

torized form with its two factorsH andG ~which can easily
be understood by taking all 2f 11 operatorsxm in H, G, and
G as complex variables!, and therefore the division operatio
does not occur at all. The fact that each of the aboveG and
H themselves may be certainGFk

(Nk) also suggests the
problem of factorized and nonfactorized solutions which
shall now pay our attention to. Inspecting Eq.~2! leads ob-
viously to the property that the product of two polynomi
solutions must also be a polynomial solution, i.e., to be m
specific, GF1

(N1)GF2
(N2)5GF5F11F2

(N5N11N2). This
property introduces a concept of the so-called build
blocks~those polynomial solutions unable to be expressed
the product of two polynomial solutions! which certainly
play an important role in investigating the general struct
of Bose-Einstein condensates with arbitrary spin. In addit
it also tells us that building blocks tend to have smallN, and
hence we shall in the next paragraph seek them in a
beginning withN51, thenN52, nextN53, and so on. We
can thus avoid annoying division operations by choosin
solution set composed of 2f independent building blocks
found in this way. Nevertheless, we still face the problem
the radical operation which tends to make the number of
complete solution set be greater than 2f . For instance, if a
nonfactorized polynomial solutionG is unable to be ex-
3-2
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pressed as a polynomial function of 2f independent building
blocks but its fifth power can, i.e.,G5A1/5 with A being a
polynomial function of the 2f building blocks, then this non
factorized polynomial solutionG should be added to the so
lution set to make the set complete. Nevertheless, suc
nonfactorized polynomialG can only appear finite times~at
most four times forG5A1/5) in constructing the genera
structure of Bose gases and therefore has no thermodyn
significance. From above discussions, though we are un
to prove it rigorously for arbitraryf at present, it seems rea
sonable to make the conjecture:A complete solution set de
scribing the general structure of a Bose-Einstein condens
with arbitrary spin contains at most2 f independent building
blocks of thermodynamic significance.

Let us now consider the building blocks for smallN. It is
worthwhile to point out that one significant advantage of o
method, which turns investigating the general structure
Bose gases with arbitrary spin into finding the solutions t
one-order linear partial-differential equation~2!, is to allow
us to obtain analytically all the polynomial solutions, inclu
ing the building blocks by a simpleMATHEMATICA program
whose spirit is outlined in Ref.@8#. The program obtains
required resultsquicklyso long asN or f is not too big. Here
we only list the results forN51,2. The unique building
block for N51 is GF5 f(N51)[af

† . For N52, all
the building blocks are given byGF52 f 22k(N52)
5Wk( j 52k

k (21) j xf 2k1 j xf 2k2 j with Wk being constant and
the range of integersk being written immediately after Eq
~4!. Utilizing the relation betweenxj andaj

† given immedi-
ately after Eq.~2!, and taking

Wk5~b f 2kb f 2k11•••b f 21!2/2,

we obtain

GF52 f 22k~N52!

5(
j 50

k
~21! j

11d j 0
A~k! !2~2 f 2k2 j !! ~2 f 2k1 j !!

~k2 j !! ~k1 j !! @~2 f 2k!! #2

3af 2k1 j
† af 2k2 j

† , ~4!

wherek51,2, . . . ,f if f 51,2, . . . , nopossiblek exists for
f 5 1

2 ~i.e., no any two-particle building block exists forf
5 1

2 ) while k51,2, . . . ,f 2 1
2 for other half-integer f

(5 3
2 , 5

2 , 7
2 , . . . ). We have presented all the building block

for N<2 and for arbitrary spinf. In addition we have ob-
tained a three-particle building block forf >1 given by tak-
ing j 53 in Eq. ~3b!. ~Note that no possiblej exists for f
5 1

2 .) Apart from this one, all other possibleN-particle build-
ing blocks forN>3 can be obtained by a very simpleMATH-

EMATICA program whose spirit is outlined in Ref.@8#.
Now, we apply the above general results and discuss

for arbitrary spinf to some concrete values off 5 1
2 , 3

2 and
f 51,2,3. It is pointed out that for arbitrary spinf, there
exists only one one-particle building blockaf

† , and all the
two-particle building blocks, if any, are given in Eq.~4!. In
addition there has been found a three-particle building bl
~for f >1) given by takingj 53 in Eq. ~3b!.
06360
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Spin-12 case.Eq. ~2! in this case becomesx1/2]G/]x21/2
50 resulting in G[G(x1/2) independent of the operato
x21/2}a21/2

† . This immediately leads to the conclusion th
there exists one (52 f ) and only one building blocka1/2

†

}x1/2, and hence only possible angular momentum sta
with maximum spin projections areuF,Fz&5a1/2

†Nuvac& with
N52F.

Spin-32 case. In this case, we have already found thr
(52 f ) independent building blocks given, respectively,
Eq. ~3a! ~one-particle!, Eq.~4! ~two-particle, lettingf 5 3

2 and
k51) and Eq.~3b! ~three-particle, lettingf 5 3

2 and j 53).
They are rewritten here as follows:GF53/2(N51)5a3/2

† , and

GF51~N52!5
1

2
@a1/2

†22A3a1/2
† a21/2

† #, ~5a!

G3/2~3!5
1

3
a1/2

†31
A3

2
~a3/2

†2a23/2
† 2a3/2

† a1/2
† a21/2

† !. ~5b!

Ho and Yin@4# have found that there exist four basic buil
ing blocks in this case. Though they have not derived th
explicit expressions, Ho and Yin have indeed designa
their F and N values. Three of them have already been d
rived by us and are explicitly expressed above while
fourth one in our notation isGF50(N54), which is easily
obtained by theMATHEMATICA program and is given as fol
lows:

GF50~N54!5a23/2
†2 a3/2

†212a23/2
† a21/2

† a3/2
† a1/2

†

1
1

3
a21/2

†2 a1/2
†22

4

3A3
~a23/2

† a1/2
†31a23/2

†3 a3/2
† !.

~6!

The fact that the existing four (52 f 11) basic building
blocks listed above does not contradict our conjecture o
complete solution set describing the general structure
Bose gases contains at most 2f independent building blocks
of thermodynamic significance because Ho and Yin ha
found thatG3/2(3) can appear at most once@4#. However,
this indeed represents an annoying circumstance becau
we did not know the results of Ho and Yin, we would mo
likely have ceased seeking four-particle building block~s! be-
cause we already had found three (52 f 53) N-particle in-
dependent building blocks forN<3.

Spin-1 case.Equations~3a! and~4! give the two indepen-
dent building blocksGF51(N51)[a1

† and G0(2)5(a0
†)2/2

2a1
†a21

† , respectively. As has been shown by Wu@7# and
subsequently by others@2–4#, the possible statesuF,Fz

5F& must have the form (a1
†)F@G0(2)# (N2F)/2uvac& with N

2F being non-negative even integers. Therefore these
(52 f ) building blocks form a complete set.

Spin-2 case.Four (52 f ) independent building blocks
have already been explicitly given, respectively, by Eq.~3a!
~a one-particle block!, Eq. ~4! ~two two-particle blocks!, and
Eq. ~3b! ~a three-particle block!. They are explicitly written
here as follows:GF52(N51)[a2

† and
3-3
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GF50~N52!5 1
2 a0

†22a1
†a21

† 1a2
†a22

† , ~7a!

GF52~N52!5 1
2 a1

†22Aa0
† , ~7b!

GF53~N53!5 1
3 a1

†31 2
3 a2

†2a21
† 2A 2

3 a2
†a1

†a0
† . ~7c!

Again, an annoying situation similar to the spin-3
2 case oc-

curs, i.e.,GF53(N53) can appear at most once@4# and we
need to supply another building block

GF50~N53!52a2
†a22

† a0
†1a1

†a21
† a0

†2 1
3 a0

†3

2A 3
2 a1

†2a22
† 2A 3

2 a2
†a21

†2 , ~8!

which is easily obtained by theMATHEMATICA program, and
also explicitly given by Ho and Yin~they use different no-
tation! @4#. Once again there only exist 2f independent build-
ing blocks of thermodynamic significance. At this time,
us explain the reason why such an annoying situation
appear here in the spin-3

2 case as well. The reason is that
function of 2f independent operator-type solutions, no m
ter whether it involves any seeming ill-defined operation
not, represents an appropriate solution if the final form of
function can be put into a polynomial of the 2f 11 variables
xm or am

† . Let us take the spin-2 case as an exam
to illustrate this statement. It can be shown from E
~7! and ~8! that 4A2a2

†3GF50(N53)529A3@GF53(N
53)#218A3@GF52(N52)#3 2 8GF52 (N52)GF50 (N52)
[4A2G ~see also the second to last paragraph of p. 230
Ref. @4#!. From this relation, we realizeGF50(N53)
5G/a2

†3, whose right-hand side involves aseeminglyill-
defined division but its final outcomeGF50(N53) is a poly-
nomial function of the 2f 11 variablesam

† and hence a well-
defined solution. Note that this fact reflects our gene
conclusion that any polynomial solution to Eq.~2! must be
able to be expressed as the function of any 2f independent
solutions. On the other hand, this relation can also be
pressed asGF53(N53)5AA with A being a polynomial
06360
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function of the 2f 54 solutionsa2
† , GF52(N52), GF50(N

52), andGF50(N53). The latter fact also explains wh
GF53(N53) can appear at most once.

Spin-3 case.Four independent building blocks have a
ready been found and area3

† and three two-particle blocks
GF50(N52), GF52(N52), and GF54(N52). All these
three two-particle blocks are explicitly given in Eq.~4!.
Since we can obtain a stateuF,F& with N53 and F56
corresponding toa3

†2GF50(N52), we therefore do not coun
the three-particle blockGF56(N53) explicitly given by tak-
ing j 53 in Eq. ~3b! as a basic building block. Ho and Yin
@4# have claimed to have seven (52 f 11) basic building
blocks in this case. Besides the four blocksa3

† and GF(N
52), F50,2,4 listed above, the other three are~in our no-
tation! GF50(N), N54,6,8, though they have not derive
the explicit expressions of all the seven blocks. Once ag
we do not countGF50(N), N54,6,8 as basic blocks be
causeGF50

k (N52), k52,3,4 can produce statesuF,F& with
N54 andF54,6,8. Therefore the four (,2 f 56) one and
two-building blocks seem to be able to describe complet
the general structure of Bose gases with spin-3 particles

In summary, we have shown that the general structure
Bose-Einstein condensates with arbitrary spin can be inv
tigated by solving a one-order linear partial-differential equ
tion of a very simple form. We have also provided a syste
atic, and in our view the simplest, procedure to estab
explicitly the relations of all the states of the total angu
momentum with the Fock statesG($am

† %)uvac&. In particular,
combining our method with the elegant generating funct
method developed by Ho and Yin@4# produces a very pow-
erful tool to deal with the general structure of Bose-Einst
condensates with arbitrary spin.
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