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Noninteracting fermions in a one-dimensional harmonic atom trap:
Exact one-particle properties at zero temperature
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One-particle properties of noninteracting fermions in a one-dimensional harmonic trap and at zero tempera-
ture are studied. Exact expressions and asymptotic results for a large fermion nirabergiven for the
particle density distributiomy(z,N). For largeN and near the classical boundary at the Fermi energy, the
density displays increasing fluctuations. A simple scaling of these tails of the density distribution with respect
to N is established. The Fourier transform of the density distribution is calculated exactly. It displays a small
but characteristic hump neakg, with ke being a properly defined Fermi wave number. This is due to Friedel
oscillations, which are identified and discussed. These quantum effects are missing in the semiclassical ap-
proximation. Momentum distributions are also evaluated and discussed. As an example of a time-dependent
one-particle problem, we calculate exactly the evolution of the particle density when the trap is suddenly
switched off, and find a simple scaling behavior, in agreement with recent general results.

PACS numbgs): 03.75.Fi, 05.30.Fk, 71.10.Pm

[. INTRODUCTION using a general approadi2]. The latter results are not
available in closed form, and require numerical evaluation. A
Recent years brought about spectacular successes in tfigite series representation for the free energy of one-
study of dilute bosonic quantum gases confined to atomiglimensional noninteracting spin-polarized Fermions con-
traps at extremely low temperatures. These and experimentined by a harmonic potential was given in REf3].
details were reviewed in Ref1]. In view of the feasibility of realizing one-dimensional fer-
The next stage of investigations will incorporate fermi- mions at ultralow temperatures, it seems worthwhile to
onic quantum gases. Fermi degeneracy of potassium atorg§PPlement these works by studying the strictly one-
(%) was recently observed in Rd2]. The effects of inter- dimensional case of noninteracting }‘erm|ons at zero tempera-
actions between neutral atoms are of particular interest. The re when a number of exact explicit results can be obtained.

can give rise to collective ground states like superfluid teractions between SP'”'PO"?”ZGO' |c_1ent|cal ferm|o_ns are
phases. weak, because the Pauli principle forbslgrave scattering.

. ... On the other hand, the theory of Luttinger liqui@d., e.g.,
Another development regards the construction of hlgthRef. [14] for a review showsythat eveng sma?ll i(r?eracgt}ions
anisotropic traps, e.g., the microtraps in Ré&-7]. Mag-

; ing field be tailored ke th change a one-dimensional Fermi system substantially. Nev-
netic trapping fields can be tailored so as to make the Cofgeless, it is useful to have results for the noninteracting
fining potential harmonic. If the longitudinal confinement 556 with which to compare the effect of interactions. The

frequencyw, is smaller than the radial frequeney, by @ yesyits that we present below show features specific for one
factor , it is possible to fill the firstN longitudinal states, spatial dimension.

while the radial wave functions of the fermions are still those |n existing microtraps magnetic gradients of up to 30
of the ground state, provided<1/\ holds. T/cm were already realizg@®] resulting in a periodic motion
From the semiclassical theory or local-density approximaof the trapped atoms on a time scale of microseconds. Ver-
tion (LDA), it is well known (cf., e.g.,[8]), that a Fermi  sjons of microtraps based on microfabricated current conduc-
wave numbeke=\(2N—1)mw /% can be associated with tors achieve even higher gradients, with an expected radial
a one-dimensional Fermi gas of atomic massn a har-  atomic oscillation frequency of above 1 MHB8]. For the
monic trap. It is noted that the conditidd<<1/\ is roughly  longitudinal oscillation a frequency of 1 Hz appears to be a
in line with the standard estimakg <1/ for a Fermi system reasonable lower limit, because time scales longer than 1 sec
which is confined to a transverse widthto be quasi-one- give rise to experimental difficulties due to seismic and
dimensional, provided the lengthis identified with the ex- acoustic noise. Thus the maximum value which is currently
tensionl, = \%/maw, of the radial ground state wave function feasible forx is 106, and would limit the number of atoms
in the trap. inside the trap to about 1000000. The main experimental
Noninteracting fermions in anisotropic harmonic trapsdifficulty, however, is to fill the 10 states of the microtrap
were studied recentlj8—10] using exact and semiclassical with a substantial number of atoms. Starting from an opti-
methods. The thermodynamics of harmonically confinedcally cooled sample of atoms with a phase-space density of
spin-polarized fermions in any spatial dimension, including atypically 10 [15], a phase-space compression of six orders
harmonic two-particle interaction, was studied in Réfl]  of magnitude is required to completely fill up the wave
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guide. Such a compression is possible with state-of-the-art ©

techniques of evaporative coolifi@6]. Thus a conservative Ho= >, (hw,—um)clcy (4)
estimation for realistic experimental conditions would as- n=0

sume a one-component fully spin-polarized Fermigas with

radial frequency inside the microtrap of*1Biz. The longi- With one-particle energieBwy=fo,(n+1/2)n=01, ...

tudinal frequency can be set at 10 Hz, giving 10 *. Thus The Chen}'fal potential 'S_ denotqd '[he fermion cregtpn
N=10" quasi-one-dimensional fermions can be accommoopPerators™ and destruction operatocsobey the fermionic

dated inside the trap. Assumirfiii atoms (in the hyperfine  algebrac,,cl+clcn=8mnn. This ensures that eadhonde-
state|mg=1/2/m;=1) the inverse harmonic-oscillator length generateenergy levek,=%w,, with a(rea) single-particle

a according to wave function
a=\mw,/h (1) a
‘ D=\ oo “ERH (az) ®)
is estimated agr~8X 10° cm !, leading to a Fermi wave 2intar

numberkg~10° cm™ 1.

Obviously the quasi-one-dimensional Fermi enekgy,
i.e., the energy of the highest occupied state without the r
dial contribution, is

(normalized according tom|n) = &, ) is at most singly oc-
cupied. The intrinsic length scale of the system is the oscil-
Fator lengthl = a1, wherea is defined by Eq(1). H, de-
notes a Hermite polynomial.

1 We consider the spatial density of one-dimensional fermi-
ee=hw,|N—=|. (2 ons in the harmonic trap, i.e., the one-particle distribution
2 .
function

Under the above assumptioas corresponds to about &K,
and this temperature must be larger than the physical tem-
perature in order to achieve degeneracy of the Fermi gas.

Another relevant quantity is the spatial extension of the
inhomogeneous Fermi gas. The appropriate measure is twide
that later given in Eq(14), and leads to a characteristic ex- o
tension of 0.4 cm and to an average Fermion density of about ,}(z) = E ¢n(z)6n_ (7)
3x10* atoms per cm. The radial widthl2is about 3 n=0
X 10 ° cm. Thus the tonks gas limfi.7] is avoided and the
fermionic atoms can be treated as point particles.

The exact quantum-mechanical results usually give only
small corrections to the corresponding LDA predictions.
Some of them are, however, of qualltgtlve nature, ar}d Wortr\]/vith Z=Trexd —BH,]. A standard textbook exercise then
pointing out. Among these are diverging density oscillations_.
near the classical boundary of the trap for large fermior® " o>
numbers, and the general feature of Friedel oscillatjda$ o
of the density. The paper is organized as follows. Section I No(zT. )= > 2(2)Pm(T 1), (9)
presents the basic theory. Sec. lll discusses the relevant m=0
lengths and energy scales of the one-dimensional Fermi gas
in the harmonic trap. In Section IV we compile results for WNere
the zero-temperature one-particle density distribution. Sec- P( T, ) ={€Phom=sm) 4 111 (10)
tion V is concerned with the Fourier transform of the density
distribution. Section VI discusses momentum distributionsjs the thermal occupation number of the single-particle state
and in Sec. VIl we calculate the expansion of the particley,,.
density distribution when the trap is suddenly switched off. The present paper deals with the c@se 0, when a num-

An Appendix summarizes the mathematical formulas used imer of analytical results are available. The important simpli-
our calculations. fication results from the fact that far—0 the firstN levels
are completely filled while all others are empty, i.e.,

n(zT,u)=Trpd"(2)d(2). (6)

In Eq. (6) the operator)(z) destroys a fermion at position
It can be expanded as

The density operator is

p=2"te Ao ®

Il. BASIC THEORY
Pm(T—0,u)—O(N-1-m) (11
We consider a gas of spinless noninteracting fermions in
one spatial dimension and trapped in a harmonic potential and x becomes the Fermi energy :

V(z)=1m 222 3 =# N—1 12
5> Mwyz". ©) u—eg=hw, 5| (12)

The Hamiltonian in second quantization and for the grandThe density ng(z;T—0,u), which we henceforth denote
canonical ensemble is no(z,N), takes the form
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a quantity frequently appearing later. The positians
€ \ / *Lg are classical turning points for a fermion with energy
Fol\ / er . The lengthL; is the largest length of the problem fol-
\\ 7 lowed by &1, which is associated with the zero point en-
\ / ergy.

Y 7 Equation(A8) of the Appendix shows that a wave func-
tion ¢, behaves as a standing wave with wave vedpr
=a+/2n+1 in the middle of the trap, provided tha 1. At
the Fermi energy the wave number becomés
-Lp Lg =ayJ2N—1. Together with Eq.(12) this leads to er
=#2k2/2m, as suggested in Ref[8] for the three-
dimensional anisotropic case. The Fermi wave nunier

FIG. 1. N=10 noninteracting spinless fermions filling the low- is the shortest length scale of the problem, and the Fermi
est single-particle levels in the harmonic trap at zero temperatureenergy the largest energy.

er denotes the Fermi energy, abg the half-width of the Fermi What is the relation betweek: and the particle density?
system. In a one-dimensional fermion gas of spatial extensiag 2
with periodic or operinfinite potential well boundary con-
N—1 ditions, the relation in both cases is
no(zN)= > ¥i(2). (13
n=0 N

kO=rmny=7-— (15)
The zero-temperature case is depicted in Fig. 1. Equation 2Lg
(13) is the main object of the present study. Under the con-

dition kg T< € it correctly describes the density of noninter- In the present inhomogeneous situatignincreases ahl'’?,
acting Fermions in a harmonic trap. Figure 2 shows the denpecause the width 12 of the trap also increases &'’

sity profile with the characteristic ripples on top. This is in However, we can discuss the peak densify and average

contrast to an infinite Fermi gder one with periodic bound- densityﬁo [or even higher moments af,(z,N)]. The peak

ary conditiong, where the density is homogeneous. Thedensity is clearly found nea=0. Using the asymptotic re-
ripples appear here as a finite-size effect. In the center of theyit [Eq. (A9)]

trap they will be identified below as Friedel oscillatidis].

ke 1
_ _ - _(_ N
Ill. LENGTHS AND ENERGY SCALES No(zN)=—+ 27T|_F[1 (=1)TcosXgz]  (16)

In this section we summarize the relevant scales of a one-.
dimensional fermion gas in a harmonic trap. They are ex8!Ves
pressed in terms of the basic quantitigsw -, andN. One of
them is clearly the Fermi energy according to Eq(12). At ®) Ke
the Fermi energy the filled Fermi sea has a spatial extension Mo~ P (17)
2L according tomw?LZ/2=%w,(N—1/2) or

. The sign~ here and further on denotes an asymptotic cor-
T oN—T— respondence foN>1. Note that this asymptotic limit does
Le=gVeN=1=bon-1, 19 ot imply a semiclassical approximation.
From (17) it is seen that the usual relatidiq. (15)]

betweenkr and the one-dimensional particle density refers

1} N=6 here to its peak value near the center. It is more difficult to
= discuss the average density, since an averaging length is
- N=5 needed. Equation&0) or (21) only give the obvious sum
< rule
[=

0 J dz ny(z,N)=N. (18

-2 0 2 -
oz

We thus resort to the semiclassical approximation, where the
FIG. 2. Particle density distribution functions in units of the local density is giveri8] by
inverse oscillator lengtlr for N=5 andN=6 fermions in a one-

dimensional harmonic trap and at zero temperature. The added fer- ke(z) kK 72
mion resides in the area between the two curves. The density oscil- Ne(z,N)= R _CF — (_> , (19
lations near the center can be identified as Friedel oscillations. ™ T Le
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which is zero outsidéz|<Lg. The corresponding average Using the recurrence relations for the wave functigngcf.
density clearly is,=kg/4, and is only slightly smaller than the Appendiy, this expression can be brought into another
the peak density. useful form:

The sum rule fomg, givesN—1/2, i.e., half a fermion is
missing under the curve,.. This is due to the neglect of the No(z,N) =Ny _1(2) = VN(N— 1) ¢h(2) o 2(2).
fermion density leaking out of the classical regi@h<L (21
by tunneling. One might conclude that the number of fermi-
ons in the oscillations is about one-half. This is not correctThis shows that the density distribution must be a poly-
for a large fermion numbeK when the difference between nomial of order N—1 in «?z? times the exponential
no(z,N) andng(z,N) near the boundaries becomes signifi- exp{—a°Z}, since the density is an even functionof
cant due to increasing oscillations in the exact density, as Formulas(20) and(21) admit a number of exact conclu-
detailed in the next Sec. IV. sions as well as some remarkable asymptotic results with

Finally, using formula(A9) immediately allows the iden- respect to the fermion numbét. Differentiating Eqs.(20)
tification of the ripples imy(z,N) near the center with the and(21) with respect tez, and using the recurrence relations
well-known Friedel oscillation§18] of wave number R (Al) and(A2), gives
around an impurity in the degenerate Fermi sea. In a naive
interpretation these oscillations result from the superposition dng(z,N)
of incoming and reflected parts of the uppermost wave func- oz a 2N yn(2) -1 (2),
tion, which both have a wave numblkg¢ near the center of
the trap. A more subtle interpretation refers to the inherent 5
instability of the degenerate free Fermi gas toward static lon- I No(z,N) _
gitudinal perturbations of the wave numleer 2k . A well- 9zZ2
studied example are free electrdi$, e.g., Ref[19]). While
in three dimensions only a logarithmic singularity in the de-This shows that the density distribution(z,N) has (i) N
rivative with respect tog appears in the susceptibility, it maxima at theN zerosz™ of yy(2), (v=1, ... N), and(ii)
becomes a _Iogarlth_mlc singularity in one dlm_en5|on _due tN—1 minima at theN—1 ZerOSZSINfl) of ¥n 1(2), (v
perfec_t_nestlng. This causes _cha_rge- an_d spin-density-wave 1,...N—-1). As a consequence the minima i§(z,N
instabilities vvhen bgck.scattermg interactions are present. In. 1) touch the maxima afio(z,N) at the pointe™ . This is
bounded Luttinger liquidécf. Refs.[20,21]) the interactions h in Fig. 2 forN=5. Th bet nV 6 d
modify the divergence of the density oscillation near the>'OWN 1N FIg. 2 Torit=o. 1€ area betwee 0(2,6) an .

nq(z,5) contains precisely one fermion. In this way the Pauli

boundary. ; : . . . exclusion principle is optimally implemented. The above
But even without interactions, breaking of translational . ; ot
considerations also show that about half a fermion is con-

Invariance by mhqmogenelt!es like impurities and bourld_tained in the ripples of the density distribution. The density
aries triggers density oscillations of the wave vectkg 2In R

. . ) ; : . at the maxima is given by
one dimension this effect is well known for noninteracting
fermions with open boundary conditions. While in one di- (N) Ny Ny g2 (N)
mension the effect is most pronounced it is, nevertheless, No(z,” \N)=N ¢ _1(z,7), (23
possible to identify the oscillations in the isotropic density
calculated in Ref[9] as three-dimensional Friedel oscilla- and at the minima it is
tions. Since the one-dimensional Friedel oscillations contain
only about one atom, it will be difficult to detect this effect no(zZN"Y N)=(N—1) ¢2_,(zN71). (24)
experimentally. However, it is conceivable to use an array of
shorter microtraps, each filled with a reduced number of atbue to the knot theoreni€2] the topological features inher-
oms. The oscillations within each trap then add up, and leadnt in the above statements carry over to arbitrary concave
to a total effect that is enhanced by the number of trapspotentials. Thus counting the number of maxima of the den-
Using microfabrication techniques it should be possible tosity distribution gives the number of Fermions in any con-
combine 100 traps on one substrate, leading to a signal thatve trap.
may become within reach of advanced imaging techniques. We now come to asymptotic results fide>1. In practice,
Friedel oscillations though difficult to observe are a funda-N~20 is a good lower bound. In the asymptotic region the
mental property of the degenerate Fermi gas which eludegowerful formula (A4) is available for the full rangdz|

2a’N[Y2(2)— Y3_1(2)]. (22)

the semiclassical approximation. <Lg. Inserting Eq(A4) into Eq.(21) gives

IV. ONE-PARTICLE DENSITY DISTRIBUTION 3 (—tN_1)1/2 1

: - MN)~Ket | 1+ — | ———Ai%(ty_ ) —| 1+ —

With the help of Eq(A3) the summation in Eq(13) can Mo(Z,N) ~ke ( 4N) singy_1 UNSY 4N
be performed for ang andN, with the result
(taty-2) )
No(z,N)=NyR(2) = VN(N+1) iy 1(2) hn-1(2). x\/+A|(tN)A|(tN72) : (25
(20) singnsingy-»
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The functionst,(z) and ¢,(z) are defined in Eq(A5) and

Eq. (A6). The advantage of this formula lies in the fact that
the indices of the wave functions moved into the arguments

of the Airy functions.

PHYSICAL REVIEW A 62 063602

f
WSN\/Ef, (35

ity ~2N23
N-1 al

Evidently, the positiong!™) of the maxima are now found Which is independent dX.

from

Ai(tn(20)=0. (26)

We are interested in the positions of the last maximum, i.e.,
those lying in the neighborhood &f- . The asymptotic ex-

pansion ofty in the regionz<Lg~ (2N)Y? is

Z
—ty~2 N2’3(1——). (27
Le

One also finds

tn-py=1~tnor TN (28)

ProvidedNY3 is much larger than unity, this leads tthe
prime means the derivatiye

No(ZV,N) ~ a2 N¥AI 2ty 1(ZM))

~ a2 NYBAI (ty(ZM))2. (29
Specifically, we consider the last maximumzgt’ . It corre-
sponds to the first zero of the Airy function A)(which is at
tn(zM)=-2,33....

This gives

In S(N) the density{Eq. (25)] can be drastically simpli-
fied to read

No(z,N)~ a2 NYAI" (—ty_1(2))?
— Aty 1(2)AI" (ty_1(2)}-

Thus Eq.(29) leads to a self-similarity of the tails of the
density for ze S(N) defined above: Callingng(Ax,N)
=ng(z=Lg—Ax,N), the graph ohy(Ax e S(N,),N,) maps
precisely onto that afig(Ax e S(N;),N;) when the density is
rescaled according toN; /N,)® and the positionAx ac-
cording to (N,/N;)¥8. Note thains(Ax,N) also satisfies the
scaling inS(N).

Finally we exploit the approximatiohEq. (A7)] which
holds for large values of<{t), i.e., slightly away from the
classical turning pointg= £ L. We are interested in results
for |z|<Lg which better the resultEq. (A9)] valid in the
very middle of the trap.

Using the expansion

(36)

1 z

——l (37)
2N-1 252

dN-1)=1~ D1 T

which requires distanceAx/« away from the boundary to

1.17 be much larger thahl =6, we find
N) _
200~ Le| 1- —2 | =Le—Axy (30)
N No(z,N)
Note that 1 1
=ng(z,N)+ -
117 1.65 > 2l (zLp)? 27le
AXN""@ FN_Nl/G’ (31)
@ ><sin{(zN—l)[\/1—(z/LF)Zz/LF—arccosz/LF)]}
while the density at the maximum is V1—(2/Lg)? '
No(z{" ,N)~0.7a N*/®, (32 (39

In the same way the distantez{" — z{{"; between the last Equation(38) separates the slowly varying backgroung
two maxima can be calculated. It determines the smalledfOm an increasing and spatially oscillating part due to quan-

local wave numbek(™™W=2+/I, which is found to be tum effects. . _
It is also seen that the oscillating part increases toward the

boundariesz=*Lg. A naive extrapolation would give an
envelope

kM)~ 277 0.8N, (33

It requires more thamN=50 fermions to make&(™" |ess
than half the maximal wave numbkf"¥= 2k appropriate
for the central part of the trap. When we define a shrinking
regionS(N) nearLg according to

E(2)~ (39

1
mLeVl—(Z/Lg)?

of these oscillations which formally diverges néar as[1
—(Z/Lg)?] Y2 In view of the range of validity of Eq(38)

this is, however, unwarranted. Nevertheless, it raises the
question of how the oscillating part diverges at the bound-
aries whenN diverges.

f

N’ (34

AX=Lg—z=

with—say—f varying from 1 to 10, then we have
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N noninteracting fermions in a one-dimensional box of
width L confined betweez=0 andz=L, and with infinite S
barriers(open boundary conditionshave the density distri- N 0.1
bution (for N>1) = 0
k©® wz\ sin 2k®z )
No(z,N)=—| 1—cot —|——<—/. (40) & -0.1
L8
Using Eq.(15), i.e., kY= 7N/L, this gives an envelope for
z<L according to 10 15
11 k/a
E(Z)NE:;Y (4D FIG. 3. Part of the Fourier-transformed density distribution

function for N=20 noninteracting fermions at zero temperature.
We conjecture that in our case of a soft boundary the limitingNote the small hump near the wave numbés: Ziue to Friedel

behavior near the right boundary for very lanyds oscillations which provide the shortest length scale of the problem.
The dotted line is the semiclassical approximation lacking that fea-
1 ture.
E(z=sLg)~ (42

_ 3(N)
2rle(1=2lle) Flno(k,N)]=e 4L (D (k2/242). (45)
There is numerical evidence f@i(N—»)—1, though in a
very slow approach §(N)~1—1/InN]. This would imply  The Fourier transform of the semiclassical expres$oq.
that the integrated absolute fluctuations (19)] can also be given in closed form involving a Bessel

function:
LF

5N=J' dzng(z,N)—ng(z,N)|, K
- FLNad(k,N) 1= 7 1(K¥/2a?). (46)
i.e., the numbeN of fermions in the density oscillations,
diverges logarithmically witiN as it does for ideal fermions
in a box. The mathematical problem in clarifying this point
lies in the enormous difficulty in subtracting out the oscillat- " -
ing part in the boundary region—Lg(N>1) which is out- j dk F[no(k,N)]zszzJ’ dk F[ng(k,N)] (47)
side the bounds of approximati@f7). In the case of inter- - -
acting spinless one-dimensional fermions in a box, it is
known that the exponent is given by the coupling constant and the limits
K [20].

Note the sum rules

1
V. DENSITY PROFILE IN FOURIER SPACE FIno(k=ON)J=N, - FIne(k—0N)]=N~ 2 (48)

With possible application to optical detection, we discussThe basic difference between the exact restt]. (45)]

the Fourier transform offiy(z,N): which takes care of the ripples in the density profile and the
semiclassical forniEq. (46)] is a hump somewhat below the
— - ikz wave number R, as shown in Fig. 3. For larger wave
Fno(k,N)] jfocdz & No(z.N). “3 numbers F[ny(k,N)] drops to zero whileF[ng(k,N)]

_ _ _ shows a multitude of oscillations similar to that produced by
It can be evaluated exactly in the following way: The inte- a slit of spatial width 2 . Fork<2kg, however, the exact
gral in Ref.[23] can be converted to the form result and the semiclassical approximation agree very well.
J dz é%y(2) n(2) VI. ONE-PARTICLE MOMENTUM DISTRIBUTIONS
Even for a confined system one can define a momentum
A R density distribution b
— o K24a? n_;LETr:—m)(kzlzaz) y y

2a? ~n
4 p(k)=(clcy). (49)

(n=m), whereL , denotes a Laguerre polynomial. Applying The operatoc, annihilates a fermion witficontinuoug mo-
Eq. (44) to Eq. (21), and using recursion relations for La- mentum#%k. It can be decomposed into fermionic annihila-
guerre polynomial$31], gives tion operators for the harmonic oscillator according to
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. * A Some general remarks may be useful: The centered mo-
=2, (— 1)"fkc,, (500  mentum distributiof Eq. (55)] can be expressed as
n=0
with the transformation function P(k;N,T)=f dk’<6l6k,). (59
im
fkm=g¢;m(z= kla?). (51 In the case of translational invariance, the integrand in Eq.
(59) becomes
The momentum densitp, of noninteracting fermions in a g _ ,
harmonic trap and at zero temperatures thus becomes (ckCir)=P(KGN, T) 5(k—k'). (60)
o Under periodic boundary conditions both definitig#8) and
po(k;N,T=O)=mZ:O () * fKO(N—1—m) (55) coincide.
N—-1 VII. FREE EXPANSION OF PARTICLE DENSITY
=2 (=DK% (52) . . o .
=0 Expansion of a particle cloud is an important tool to in-

vestigate Bose-Einstein condensatet Refs.[24,1]). De-
leading to the remarkable result tailed theories are available for this expansion based on the
Gross-Pitaevskii equatiof24—28. In the simplest case the
_ o 2 2 trap is suddenly switched off and the condensate expands
Po(k;N, T=0)= ; mzo Pm(z=Kkla®) freely. Non-interacting boson condensates display universal
length scaling 25] in all spatial dimensions. The same has

N—-1

1 also been shown recently for non-interacting fermifb@.
=—Ng(z= k/a?;N,T=0). (53 When patrticle interactions dominate the kinetic energy,
« the transverse scaling function in a highly anisotropic trap is
The momentum density is isomorphic to the particle density N
with kg replacingL . Obviously, it satisfies the general sum br()=V1+ort 6D
rule while the longitudinal expansion is more complica{@®).
" This was confirmed experimentally in full detail in Refs
f dk p(k;N,T)=N. (54 [29,30.
— In accord with Ref[10], we find that a freely expanding

degenerate one-dimensional gas of noninteracting fermions
behaves according to E¢61), with w, replacingw,. The
- calculation is fully quantum mechanical, and supplements
p(k;N,T:o)EJ dz “*("(2)9(0))N), (55  the approach in Ref10].

- The quantity to be calculated is

Alternatively, we can study the momentum probability

which is also appropriate for symmetric confining potentials T o T
centered ap—0 n(z,t)=Trp(t) ' (2)4(2). (62)
For noninteracting fermions at zero temperature in th

harmonic trap, we can use EgA3) to find %Nherep(t) is the density operator of the freely expanding

gas. It is given in terms of the statistical operaggd) im-
. A o - mediately before the trap is opened at time0 by
(#'(2) ¢<0>>6”)=Te*“ 7 {n.ams1Lii P a?2?) . I
m M p(t):eleOOt/hp(O)elHoot/h. (63)
(12) [ 22
+onambi=1(a"Z)} (56 The free expansion of noninteracting one-dimensional fer-

In the limit N>1, this reduces to the simple expression ~ Mions is governed by the Hamiltonian

sinkgz 1 i _f‘” dkﬁATA 64
@ oy~ +0(J—N R o= | dicpr &l 64
The corresponding discrete momentum distribution for thel he operators{ andc were introduced in conjunction with
harmonic oscillator is the well known step function Eq. (49). Equation(62) can also be written as
Po(kiN>1,T=0)=0 (ke —k), (58) n(z,)=Trp(0) ' (z,) f(z.1), (65)
with k=k,=a\2n+1. with
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Wz t)=eFod/h (7 Hodti= = | g dkz=dg,
aJ —x

(66)
and
hk?
o= (67)
We now use Egqs50) and (51) to find
No(z,t)= %f:dk dk e~ izk=k)+i(er— @)t
Xm;:() (—1)™ () £ Tr p(0) el e,
(68)

For a harmonic trap which is initially in thermal equilibrium,

the statistical operatqs(0) is Eq.(8), and, at zero tempera-
ture,
Trpclcn=6mn®(N—1—m) (69)

holds. We thus find

1 (= o
No(z,t;T=0)= Zf dk dk x e~ kK Hilow)t

2ma
N-1

x[ }_}o Pm(Kl@?) (K 1 @?) } (70)

PHYSICAL REVIEW A 62 063602

a—(1+ 02t?) " Pa=alb(t). (73
SinceF[ng(k,t)] andng(z,t) are related via a Fourier trans-
formation, the final result is

1
——nNy(2/b(t),N).

Nng(z,t;T=0)= b(D)

(74)

Thus a free longitudinal expansion proceeds via a simple
length rescaling involving the factdy(t). In the course of
time the initial density distributior(Fig. 2) decreases and
broadens according to the factb(t), but preserves its to-
pology including the Friedel oscillations, which correspond-
ingly increase their wave length.

In this picture it is assumed that the fermions remain one
dimensional during the expansion. If the transverse confining
fields are also removed, transverse expansion in any of the
two equivalent transverse directions will also proceed ac-
cording to Eq.(74) taken forN=1 and with the scaling
function [Eq. (61)]. This follows simply from the observa-
tion that each of the two ground-state wave functions for the
transverse directions correspond to a single one dimension-
ally confined Fermion, withw, in place ofw, .

VIIl. SUMMARY

We have exactly calculated one-particle properties of
noninteracting one-dimensional fermions in a harmonic trap.
These are the particle density distribution, including its free
expansion when the trap is switched off, and also two mo-
mentum distribution functions. The exact calculability can be
traced back to two specific mathematical features of the
eigenfunctions of the harmonic oscillator, namely that finite

The summation in curly brackets can be performed using Egums of bilinear expressions can be performed, and that Fou-
(A3). In order to proceed it is convenient to go over to thefier transformation essentially reproduces an eigenfunction.
Fourier transform and write out the oscillator eigenfunctionsFriedel oscillations in the particle density and its analog in

in terms of Hermite polynomials. This leads to

Fno(kl,t;TIO)Ef dz éklzno(z,t;TIO)

_\/I 1
72Nk (N—1)!

Xfx dk/ef(k’2+k’k1)(1fiw/t)/a2

e—k'f(l—iw/t)/zaz

X[Hn((ky+ k) a)Hy -1 (k')

—(N—(N-1))]. (71)

Using Ref.[32], the integration can be performed, giving
F[no(k,t;TZO)]=e_k2(1+w312)/4a2|_§\1121

X (K2(1+ 02t)2a2)). (72

This formula is isomorphic to Eq45) with the inverse
length @ being replaced by the rescaled value

the momentum distribution, as well as diverging density os-
cillations near the classical boundary are basic features of the
degenerate one-dimensional ideal fermi gas.
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APPENDIX

The appendix is a compilation of some mathematical for-
mulas used in the derivation of the results given in the main
part of the paper. An important role is played by the recur-
rence relations for Hermite polynomialsf., e.g., Ref[31]).

Here they are given as recurrence relations for the complete
harmonic oscillator wave functiong,(z). These are

N+ 14 1(2) — az24(2) + g _1(2)=0, (A1)

dizzpn(z)wzz¢n(z>—a@¢n_1<z>=o. (A2)
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The summation of the finite serig&q. (13)] is accomplished  Aj is the Airy function which oscillates for negative argu-
by means of ments. There is a continuation to positive argume(the
tunneling region which we will not discuss.

The tilde ~ denotes asymptotic expansion for large
including all prefactors. Inside the trap, i.e., away from the
classical borders, the form

B n+1['pn+l(zl) Un(Z2) = n(21) n 4 1(25)
=/ — : 1/4
2 | a(2,-2,) wn(2)~\/%(2) 1 co% n 1

(A3) n g, 1272

mE:o Ynl(21) Yl Z2)

n

which is a conversion of a formula in Rg83]. In (A3) the ) T
limit z,—z, can be performed, and the resulting derivatives X(sin2¢n=2¢n)+ 7
converted into harmonic oscillator wave function using Eq.

(A2) and(A1). This leads to Eq(20). An alternative deriva- s yseful. It results by means of the asymptotic expansion of
tion applies induction to Eq21) which is obviously true for  the Airy function Ai(t) for —t>1. In the limit|z|]<L, a

N=1 utilizing the recurrence relatiofEq. (A1)]. further simplification occurs sinces,— 7/2—z/L,,. This
A very useful asymptoticr(>1) expression for the wave |gads to(note thatn>1)

functions can be extracted from Rg81] (Chap. 19.7.

(A7)

2a? L4 nmw
2\ Y4 (=t Yo—|—=| cog knz— — (A8)
n(2)~a| = I_—Ai(t) , (A4) " 2 et )
" n sin2p, " 7
with which is used in Sec. IV. The corresponding fermion density

well inside the trap is

t [3("+1)<2¢ in2¢ )Flg (A5)
LT 55T, n—SIn n k 1
212 4 no(z,N):§+E[1—(—1)Ncosz¢z]. (A9)

and
Here a small systematic error 142 ) of this approxima-
cosd)n:i. (ae)  tion for [z <Lg has been subtracted to bring HA9) into
Ln line with the exact result.
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