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Noninteracting fermions in a one-dimensional harmonic atom trap:
Exact one-particle properties at zero temperature
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One-particle properties of noninteracting fermions in a one-dimensional harmonic trap and at zero tempera-
ture are studied. Exact expressions and asymptotic results for a large fermion numberN are given for the
particle density distributionn0(z,N). For largeN and near the classical boundary at the Fermi energy, the
density displays increasing fluctuations. A simple scaling of these tails of the density distribution with respect
to N is established. The Fourier transform of the density distribution is calculated exactly. It displays a small
but characteristic hump near 2kF , with kF being a properly defined Fermi wave number. This is due to Friedel
oscillations, which are identified and discussed. These quantum effects are missing in the semiclassical ap-
proximation. Momentum distributions are also evaluated and discussed. As an example of a time-dependent
one-particle problem, we calculate exactly the evolution of the particle density when the trap is suddenly
switched off, and find a simple scaling behavior, in agreement with recent general results.

PACS number~s!: 03.75.Fi, 05.30.Fk, 71.10.Pm
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I. INTRODUCTION

Recent years brought about spectacular successes i
study of dilute bosonic quantum gases confined to ato
traps at extremely low temperatures. These and experime
details were reviewed in Ref.@1#.

The next stage of investigations will incorporate ferm
onic quantum gases. Fermi degeneracy of potassium a
(40K) was recently observed in Ref.@2#. The effects of inter-
actions between neutral atoms are of particular interest. T
can give rise to collective ground states like superfl
phases.

Another development regards the construction of hig
anisotropic traps, e.g., the microtraps in Refs.@3–7#. Mag-
netic trapping fields can be tailored so as to make the c
fining potential harmonic. If the longitudinal confineme
frequencyv l is smaller than the radial frequencyv r by a
factor l, it is possible to fill the firstN longitudinal states,
while the radial wave functions of the fermions are still tho
of the ground state, providedN,1/l holds.

From the semiclassical theory or local-density approxim
tion ~LDA !, it is well known ~cf., e.g., @8#!, that a Fermi
wave numberkF5A(2N21)mv l /\ can be associated wit
a one-dimensional Fermi gas of atomic massm in a har-
monic trap. It is noted that the conditionN,1/l is roughly
in line with the standard estimatekF,1/l t for a Fermi system
which is confined to a transverse widthl t to be quasi-one-
dimensional, provided the lengthl t is identified with the ex-
tensionl r5A\/mv r of the radial ground state wave functio
in the trap.

Noninteracting fermions in anisotropic harmonic tra
were studied recently@8–10# using exact and semiclassic
methods. The thermodynamics of harmonically confin
spin-polarized fermions in any spatial dimension, includin
harmonic two-particle interaction, was studied in Ref.@11#
1050-2947/2000/62~6!/063602~10!/$15.00 62 0636
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using a general approach@12#. The latter results are no
available in closed form, and require numerical evaluation
finite series representation for the free energy of o
dimensional noninteracting spin-polarized Fermions c
fined by a harmonic potential was given in Ref.@13#.

In view of the feasibility of realizing one-dimensional fe
mions at ultralow temperatures, it seems worthwhile
supplement these works by studying the strictly on
dimensional case of noninteracting fermions at zero temp
ture when a number of exact explicit results can be obtain
Interactions between spin-polarized identical fermions
weak, because the Pauli principle forbidss-wave scattering.
On the other hand, the theory of Luttinger liquids~cf., e.g.,
Ref. @14# for a review! shows that even small interaction
change a one-dimensional Fermi system substantially. N
ertheless, it is useful to have results for the noninteract
case with which to compare the effect of interactions. T
results that we present below show features specific for
spatial dimension.

In existing microtraps magnetic gradients of up to
T/cm were already realized@3# resulting in a periodic motion
of the trapped atoms on a time scale of microseconds. V
sions of microtraps based on microfabricated current cond
tors achieve even higher gradients, with an expected ra
atomic oscillation frequency of above 1 MHz@6#. For the
longitudinal oscillation a frequency of 1 Hz appears to be
reasonable lower limit, because time scales longer than 1
give rise to experimental difficulties due to seismic a
acoustic noise. Thus the maximum value which is curren
feasible forl is 1026, and would limit the number of atom
inside the trap to about 1 000 000. The main experimen
difficulty, however, is to fill the 106 states of the microtrap
with a substantial number of atoms. Starting from an op
cally cooled sample of atoms with a phase-space densit
typically 1026 @15#, a phase-space compression of six ord
of magnitude is required to completely fill up the wav
©2000 The American Physical Society02-1



-a

s
h

o

h

r

em
s.
th
w
x-
o

n
s
r
n
io

n
va
g

or
e
ity
ns
cl
ff

d

s
al

n

cil-

mi-
ion

n

tate

li-

GLEISBERG, WONNEBERGER, SCHLO¨ DER, ZIMMERMANN PHYSICAL REVIEW A 62 063602
guide. Such a compression is possible with state-of-the
techniques of evaporative cooling@16#. Thus a conservative
estimation for realistic experimental conditions would a
sume a one-component fully spin-polarized Fermigas wit
radial frequency inside the microtrap of 105 Hz. The longi-
tudinal frequency can be set at 10 Hz, givingl51024. Thus
N5104 quasi-one-dimensional fermions can be accomm
dated inside the trap. Assuming6Li atoms ~in the hyperfine
stateums51/2,mi51& the inverse harmonic-oscillator lengt
a according to

a5Amv l /\ ~1!

is estimated asa'83102 cm21, leading to a Fermi wave
numberkF'105 cm21.

Obviously the quasi-one-dimensional Fermi energyeF ,
i.e., the energy of the highest occupied state without the
dial contribution, is

eF5\v l S N2
1

2D . ~2!

Under the above assumptionseF corresponds to about 5mK,
and this temperature must be larger than the physical t
perature in order to achieve degeneracy of the Fermi ga

Another relevant quantity is the spatial extension of
inhomogeneous Fermi gas. The appropriate measure is t
that later given in Eq.~14!, and leads to a characteristic e
tension of 0.4 cm and to an average Fermion density of ab
33104 atoms per cm. The radial width 2l r is about 3
31025 cm. Thus the tonks gas limit@17# is avoided and the
fermionic atoms can be treated as point particles.

The exact quantum-mechanical results usually give o
small corrections to the corresponding LDA prediction
Some of them are, however, of qualitative nature, and wo
pointing out. Among these are diverging density oscillatio
near the classical boundary of the trap for large ferm
numbers, and the general feature of Friedel oscillations@18#
of the density. The paper is organized as follows. Sectio
presents the basic theory. Sec. III discusses the rele
lengths and energy scales of the one-dimensional Fermi
in the harmonic trap. In Section IV we compile results f
the zero-temperature one-particle density distribution. S
tion V is concerned with the Fourier transform of the dens
distribution. Section VI discusses momentum distributio
and in Sec. VII we calculate the expansion of the parti
density distribution when the trap is suddenly switched o
An Appendix summarizes the mathematical formulas use
our calculations.

II. BASIC THEORY

We consider a gas of spinless noninteracting fermion
one spatial dimension and trapped in a harmonic potenti

V~z!5
1

2
mv l

2 z2. ~3!

The Hamiltonian in second quantization and for the gra
canonical ensemble is
06360
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n50

`

~\vn2m!ĉn
†ĉn ~4!

with one-particle energies\vn5\v l (n11/2),n50,1, . . . .
The chemical potential is denotedm. The fermion creation
operatorsĉ1 and destruction operatorsĉ obey the fermionic
algebraĉmĉn

†1 ĉn
†ĉm5dm,n . This ensures that each~nonde-

generate! energy levelen5\vn , with a ~real! single-particle
wave function

cn~z!5A a

2nn!p1/2
e2a2z2/2Hn~az! ~5!

~normalized according tômun&5dm,n! is at most singly oc-
cupied. The intrinsic length scale of the system is the os
lator lengthl 5a21, wherea is defined by Eq.~1!. Hn de-
notes a Hermite polynomial.

We consider the spatial density of one-dimensional fer
ons in the harmonic trap, i.e., the one-particle distribut
function

n~z;T,m!5Tr r̂ĉ†~z!ĉ~z!. ~6!

In Eq. ~6! the operatorĉ(z) destroys a fermion at position
z. It can be expanded as

ĉ~z!5 (
n50

`

cn~z!ĉn . ~7!

The density operator is

r̂5Z21e2bĤ0, ~8!

with Z5Tr exp@2bĤ0#. A standard textbook exercise the
gives

n0~z;T,m!5 (
m50

`

cm
2 ~z!pm~T,m!, ~9!

where

pm~T,m!5$eb(\vm2m)11%21 ~10!

is the thermal occupation number of the single-particle s
cm .

The present paper deals with the caseT→0, when a num-
ber of analytical results are available. The important simp
fication results from the fact that forT→0 the firstN levels
are completely filled while all others are empty, i.e.,

pm~T→0,m!→Q~N212m! ~11!

andm becomes the Fermi energyeF :

m→eF5\v l S N2
1

2D . ~12!

The densityn0(z;T→0,m), which we henceforth denote
n0(z,N), takes the form
2-2
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n0~z,N!5 (
n50

N21

cn
2~z!. ~13!

The zero-temperature case is depicted in Fig. 1. Equa
~13! is the main object of the present study. Under the c
dition kBT!eF it correctly describes the density of noninte
acting Fermions in a harmonic trap. Figure 2 shows the d
sity profile with the characteristic ripples on top. This is
contrast to an infinite Fermi gas~or one with periodic bound-
ary conditions!, where the density is homogeneous. T
ripples appear here as a finite-size effect. In the center of
trap they will be identified below as Friedel oscillations@18#.

III. LENGTHS AND ENERGY SCALES

In this section we summarize the relevant scales of a o
dimensional fermion gas in a harmonic trap. They are
pressed in terms of the basic quantitiesm, v l , andN. One of
them is clearly the Fermi energyeF according to Eq.~12!. At
the Fermi energy the filled Fermi sea has a spatial exten
2LF according tomv l

2LF
2/25\v l (N21/2) or

LF5
1

a
A2N21[Ln5N21 , ~14!

FIG. 1. N510 noninteracting spinless fermions filling the low
est single-particle levels in the harmonic trap at zero temperat
eF denotes the Fermi energy, andLF the half-width of the Fermi
system.

FIG. 2. Particle density distribution functions in units of th
inverse oscillator lengtha for N55 andN56 fermions in a one-
dimensional harmonic trap and at zero temperature. The added
mion resides in the area between the two curves. The density o
lations near the center can be identified as Friedel oscillations.
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a quantity frequently appearing later. The positionsz5
6LF are classical turning points for a fermion with ener
eF . The lengthLF is the largest length of the problem fo
lowed by a21, which is associated with the zero point e
ergy.

Equation~A8! of the Appendix shows that a wave func
tion cn behaves as a standing wave with wave vectorkn

5aA2n11 in the middle of the trap, provided thatn@1. At
the Fermi energy the wave number becomeskF

5aA2N21. Together with Eq.~12! this leads to eF

5\2kF
2/2m, as suggested in Ref.@8# for the three-

dimensional anisotropic case. The Fermi wave numberkF
21

is the shortest length scale of the problem, and the Fe
energy the largest energy.

What is the relation betweenkF and the particle density?
In a one-dimensional fermion gas of spatial extension 2LF ,
with periodic or open~infinite potential well! boundary con-
ditions, the relation in both cases is

kF
(0)5pn05p

N

2LF
. ~15!

In the present inhomogeneous situationkF increases asN1/2,
because the width 2LF of the trap also increases asN1/2.
However, we can discuss the peak densityn0

(p) and average

densityn̄0 @or even higher moments ofn0(z,N)#. The peak
density is clearly found nearz50. Using the asymptotic re
sult @Eq. ~A9!#

n0~z,N!5
kF

p
1

1

2pLF
@12~21!Ncos 2kFz# ~16!

gives

n0
(p);

kF

p
. ~17!

The sign; here and further on denotes an asymptotic c
respondence forN@1. Note that this asymptotic limit doe
not imply a semiclassical approximation.

From ~17! it is seen that the usual relation@Eq. ~15!#
betweenkF and the one-dimensional particle density refe
here to its peak value near the center. It is more difficult
discuss the average densityn̄0, since an averaging length i
needed. Equations~20! or ~21! only give the obvious sum
rule

E
2`

`

dz n0~z,N!5N. ~18!

We thus resort to the semiclassical approximation, where
local density is given@8# by

nsc~z,N![
kF~z!

p
5

kF

p
A12S z

LF
D 2

, ~19!

e.

er-
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which is zero outsideuzu<LF . The corresponding averag
density clearly isn̄05kF/4, and is only slightly smaller than
the peak density.

The sum rule fornsc givesN21/2, i.e., half a fermion is
missing under the curvensc . This is due to the neglect of th
fermion density leaking out of the classical regionuzu<LF
by tunneling. One might conclude that the number of ferm
ons in the oscillations is about one-half. This is not corr
for a large fermion numberN when the difference betwee
n0(z,N) andnsc(z,N) near the boundaries becomes sign
cant due to increasing oscillations in the exact density,
detailed in the next Sec. IV.

Finally, using formula~A9! immediately allows the iden
tification of the ripples inn0(z,N) near the center with the
well-known Friedel oscillations@18# of wave number 2kF
around an impurity in the degenerate Fermi sea. In a na
interpretation these oscillations result from the superposi
of incoming and reflected parts of the uppermost wave fu
tion, which both have a wave numberkF near the center o
the trap. A more subtle interpretation refers to the inher
instability of the degenerate free Fermi gas toward static l
gitudinal perturbations of the wave numberq52kF . A well-
studied example are free electrons~cf., e.g., Ref.@19#!. While
in three dimensions only a logarithmic singularity in the d
rivative with respect toq appears in the susceptibility,
becomes a logarithmic singularity in one dimension due
perfect nesting. This causes charge- and spin-density-w
instabilities when backscattering interactions are presen
bounded Luttinger liquids~cf. Refs.@20,21#! the interactions
modify the divergence of the density oscillation near t
boundary.

But even without interactions, breaking of translation
invariance by inhomogeneities like impurities and boun
aries triggers density oscillations of the wave vector 2kF . In
one dimension this effect is well known for noninteracti
fermions with open boundary conditions. While in one d
mension the effect is most pronounced it is, neverthel
possible to identify the oscillations in the isotropic dens
calculated in Ref.@9# as three-dimensional Friedel oscilla
tions. Since the one-dimensional Friedel oscillations con
only about one atom, it will be difficult to detect this effe
experimentally. However, it is conceivable to use an array
shorter microtraps, each filled with a reduced number of
oms. The oscillations within each trap then add up, and l
to a total effect that is enhanced by the number of tra
Using microfabrication techniques it should be possible
combine 100 traps on one substrate, leading to a signal
may become within reach of advanced imaging techniqu
Friedel oscillations though difficult to observe are a fund
mental property of the degenerate Fermi gas which elu
the semiclassical approximation.

IV. ONE-PARTICLE DENSITY DISTRIBUTION

With the help of Eq.~A3! the summation in Eq.~13! can
be performed for anyz andN, with the result

n0~z,N!5NcN
2 ~z!2AN~N11!cN11~z!cN21~z!.

~20!
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Using the recurrence relations for the wave functionscn ~cf.
the Appendix!, this expression can be brought into anoth
useful form:

n0~z,N!5NcN21
2 ~z!2AN~N21!cN~z!cN22~z!.

~21!

This shows that the density distribution must be a po
nomial of order N21 in a2z2 times the exponentia
exp$2a2z2%, since the density is an even function ofz.

Formulas~20! and ~21! admit a number of exact conclu
sions as well as some remarkable asymptotic results w
respect to the fermion numberN. Differentiating Eqs.~20!
and~21! with respect toz, and using the recurrence relation
~A1! and ~A2!, gives

]n0~z,N!

]z
52aA2N cN~z!cN21~z!,

]2n0~z,N!

]z2
52a2N@cN

2 ~z!2cN21
2 ~z!#. ~22!

This shows that the density distributionn0(z,N) has ~i! N
maxima at theN zeroszn

(N) of cN(z), (n51, . . . ,N), and~ii !
N21 minima at theN21 zeroszn

(N21) of cN21(z), (n
51, . . . ,N21). As a consequence the minima ofn0(z,N
11) touch the maxima ofn0(z,N) at the pointszn

(N) . This is
shown in Fig. 2 forN55. The area betweenn0(z,6) and
n0(z,5) contains precisely one fermion. In this way the Pa
exclusion principle is optimally implemented. The abo
considerations also show that about half a fermion is c
tained in the ripples of the density distribution. The dens
at the maxima is given by

n0~zn
(N) ,N!5N cN21

2 ~zn
(N)!, ~23!

and at the minima it is

n0~zn
(N21) ,N!5~N21! cN22

2 ~zn
(N21!. ~24!

Due to the knot theorems@22# the topological features inher
ent in the above statements carry over to arbitrary conc
potentials. Thus counting the number of maxima of the d
sity distribution gives the number of Fermions in any co
cave trap.

We now come to asymptotic results forN@1. In practice,
N'20 is a good lower bound. In the asymptotic region t
powerful formula ~A4! is available for the full rangeuzu
<LF . Inserting Eq.~A4! into Eq. ~21! gives

n0~z,N!;kFH S 11
3

4N
D ~2tN21!1/2

sinfN21

Ai2~ tN21!2S 11
1

4N
D

3
~ tNtN22!1/4

AsinfNsinfN22

Ai ~ tN!Ai ~ tN22!J . ~25!
2-4
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The functionstn(z) and fn(z) are defined in Eq.~A5! and
Eq. ~A6!. The advantage of this formula lies in the fact th
the indices of the wave functions moved into the argume
of the Airy functions.

Evidently, the positionszn
(N) of the maxima are now found

from

Ai „tN~zn
(N)!…50. ~26!

We are interested in the positions of the last maximum,
those lying in the neighborhood ofLF . The asymptotic ex-
pansion oftN in the regionz<LF;(2N)1/2 is

2tN;2 N2/3S 12
z

LF
D . ~27!

One also finds

t (N21)61;tN217N21/3. ~28!

ProvidedN1/3 is much larger than unity, this leads to~the
prime means the derivative!

n0~zn
(N) ,N!;aA2 N5/6Ai2

„tN21~zn
(N)!…

;aA2 N1/6Ai 8„tN~zn
(N)!…2. ~29!

Specifically, we consider the last maximum atzN
(N) . It corre-

sponds to the first zero of the Airy function Ai(t) which is at
tN(zN

(N))522,33 . . . .
This gives

zN
(N);LFS 12

1.17

N2/3D [LF2DxN . ~30!

Note that

DxN;
1.17

N2/3
LF;

1.65

aN1/6
, ~31!

while the density at the maximum is

n0~zN
(N) ,N!;0.7a N1/6. ~32!

In the same way the distancel[zN
(N)2zN21

(N) between the las
two maxima can be calculated. It determines the smal
local wave numberk(min)[2p/ l , which is found to be

k(min);2pa 0.8N1/6. ~33!

It requires more thanN550 fermions to makek(min) less
than half the maximal wave numberk(max)[2kF appropriate
for the central part of the trap. When we define a shrink
regionS(N) nearLF according to

Dx[LF2z5
f

aN1/6
, ~34!

with—say—f varying from 1 to 10, then we have
06360
t
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2tN21;2N2/3
f

aLFN1/6
;A2 f , ~35!

which is independent ofN.
In S(N) the density@Eq. ~25!# can be drastically simpli-

fied to read

n0~z,N!;aA2 N1/6$Ai 8„2tN21~z!…2

2Ai „tN21~z!…Ai 9„tN21~z!…%. ~36!

Thus Eq.~29! leads to a self-similarity of the tails of th
density for zPS(N) defined above: Callingñ0(Dx,N)
5n0(z5LF2Dx,N), the graph ofñ0„DxPS(N2),N2… maps
precisely onto that ofñ0„DxPS(N1),N1… when the density is
rescaled according to (N1 /N2)1/6 and the positionDx ac-
cording to (N2 /N1)1/6. Note thatñsc(Dx,N) also satisfies the
scaling inS(N).

Finally we exploit the approximation@Eq. ~A7!# which
holds for large values of (2t), i.e., slightly away from the
classical turning pointsz56LF . We are interested in result
for uzu,LF which better the result@Eq. ~A9!# valid in the
very middle of the trap.

Using the expansion

f (N21)61;fN216
1

2N21

z

ALF
22z2

, ~37!

which requires distancesDx/a away from the boundary to
be much larger thanN21/6, we find

n0~z,N!

5nsc~z,N!1
1

2pLFA12~z/LF!2
2

1

2pLF

3
sin$~2N21!@A12~z/LF!2z/LF2arccos~z/LF!#%

A12~z/LF!2
.

~38!

Equation~38! separates the slowly varying backgroundnsc
from an increasing and spatially oscillating part due to qu
tum effects.

It is also seen that the oscillating part increases toward
boundariesz56LF . A naive extrapolation would give an
envelope

E~z!;
1

pLFA12~z/LF!2
~39!

of these oscillations which formally diverges nearLF as @1
2(z/LF)2#21/2. In view of the range of validity of Eq.~38!
this is, however, unwarranted. Nevertheless, it raises
question of how the oscillating part diverges at the bou
aries whenN diverges.
2-5
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N noninteracting fermions in a one-dimensional box
width L confined betweenz50 andz5L, and with infinite
barriers~open boundary conditions!, have the density distri-
bution ~for N@1)

n0~z,N!5
kF

(0)

p F12cotS pz

L D sin 2kF
(0)z

2N G . ~40!

Using Eq.~15!, i.e., kF
(0)5pN/L, this gives an envelope fo

z!L according to

E~z!;
1

pz
[

1

pzd
. ~41!

We conjecture that in our case of a soft boundary the limit
behavior near the right boundary for very largeN is

E~z<LF!;
1

2pLF~12z/LF!d(N)
. ~42!

There is numerical evidence ford(N→`)→1, though in a
very slow approach@d(N)'121/lnN#. This would imply
that the integrated absolute fluctuations

dN5E
2LF

LF

dzun0~z,N!2nsc~z,N!u,

i.e., the numberdN of fermions in the density oscillations
diverges logarithmically withN as it does for ideal fermions
in a box. The mathematical problem in clarifying this poi
lies in the enormous difficulty in subtracting out the oscilla
ing part in the boundary regionz→LF(N@1) which is out-
side the bounds of approximation~37!. In the case of inter-
acting spinless one-dimensional fermions in a box, it
known that the exponentd is given by the coupling constan
K @20#.

V. DENSITY PROFILE IN FOURIER SPACE

With possible application to optical detection, we discu
the Fourier transform ofn0(z,N):

F@n0~k,N!#[E
2`

`

dz eikzn0~z,N!. ~43!

It can be evaluated exactly in the following way: The int
gral in Ref.@23# can be converted to the form

E
2`

`

dz eikzcm~z!cn~z!

5e2k2/4a2S 2k2

2a2 D (n2m)/2

Am!

n!
Lm

(n2m)~k2/2a2!

~44!

(n>m), whereLn denotes a Laguerre polynomial. Applyin
Eq. ~44! to Eq. ~21!, and using recursion relations for La
guerre polynomials@31#, gives
06360
f

g

s

s

F@n0~k,N!#5e2k2/4a2
LN21

(1) ~k2/2a2!. ~45!

The Fourier transform of the semiclassical expression@Eq.
~19!# can also be given in closed form involving a Bess
function:

F@nsc~k,N!#5
kF

k
J1~k2/2a2!. ~46!

Note the sum rules

E
2`

`

dk F@n0~k,N!#52kF5E
2`

`

dk F@nsc~k,N!# ~47!

and the limits

F@n0~k→0,N!#5N, F@nsc~k→0,N!#5N2
1

2
. ~48!

The basic difference between the exact result@Eq. ~45!#
which takes care of the ripples in the density profile and
semiclassical form@Eq. ~46!# is a hump somewhat below th
wave number 2kF , as shown in Fig. 3. For larger wav
numbers F@n0(k,N)# drops to zero whileF@nsc(k,N)#
shows a multitude of oscillations similar to that produced
a slit of spatial width 2LF . For k!2kF , however, the exac
result and the semiclassical approximation agree very w

VI. ONE-PARTICLE MOMENTUM DISTRIBUTIONS

Even for a confined system one can define a momen
density distribution by

p~k![^ĉk
†ĉk&. ~49!

The operatorĉk annihilates a fermion with~continuous! mo-
mentum\k. It can be decomposed into fermionic annihil
tion operators for the harmonic oscillator according to

FIG. 3. Part of the Fourier-transformed density distributi
function for N520 noninteracting fermions at zero temperatu
Note the small hump near the wave number 2kF due to Friedel
oscillations which provide the shortest length scale of the probl
The dotted line is the semiclassical approximation lacking that f
ture.
2-6



sit
m

al

th

th

mo-

Eq.

n-

the

nds
rsal
as

gy,
is

fs

ions

nts

g

fer-

NONINTERACTING FERMIONS IN A ONE- . . . PHYSICAL REVIEW A 62 063602
ĉk5 (
n50

`

~21!nf n
kĉn , ~50!

with the transformation function

f m
k 5

i m

a
cm~z5k/a2!. ~51!

The momentum densityp0 of noninteracting fermions in a
harmonic trap and at zero temperatures thus becomes

p0~k;N,T50!5 (
m50

`

~ f m
k !* f m

k Q~N212m!

5 (
m50

N21

~21!m~ f m
k !2, ~52!

leading to the remarkable result

p0~k;N,T50!5
1

a2 (
m50

N21

cm
2 ~z5k/a2!

[
1

a2
n0~z5k/a2;N,T50!. ~53!

The momentum density is isomorphic to the particle den
with kF replacingLF . Obviously, it satisfies the general su
rule

E
2`

`

dk p~k;N,T!5N. ~54!

Alternatively, we can study the momentum probability

P~k;N,T50![E
2`

`

dz eikz^ĉ†~z!ĉ~0!& (N), ~55!

which is also appropriate for symmetric confining potenti
centered atz50.

For noninteracting fermions at zero temperature in
harmonic trap, we can use Eq.~A3! to find

^ĉ†~z!ĉ~0!&0
(N)5

a

Ap
e2a2z2/2(

M
$dN,2M11LM

(1/2)~a2z2!

1dN,2MLM21
(1/2) ~a2z2!%. ~56!

In the limit N@1, this reduces to the simple expression

^ĉ†~z!ĉ~0!&0
(N);

sinkFz

pz
10S 1

AN
D . ~57!

The corresponding discrete momentum distribution for
harmonic oscillator is the well known step function

P0~k;N@1,T50!5Q~kF2k!, ~58!

with k5kn5aA2n11.
06360
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Some general remarks may be useful: The centered
mentum distribution@Eq. ~55!# can be expressed as

P~k;N,T!5E
2`

`

dk8^ĉk
†ĉk8&. ~59!

In the case of translational invariance, the integrand in
~59! becomes

^ĉk
†ĉk8&5P~k;N,T!d~k2k8!. ~60!

Under periodic boundary conditions both definitions~49! and
~55! coincide.

VII. FREE EXPANSION OF PARTICLE DENSITY

Expansion of a particle cloud is an important tool to i
vestigate Bose-Einstein condensates~cf. Refs. @24,1#!. De-
tailed theories are available for this expansion based on
Gross-Pitaevskii equation@24–28#. In the simplest case the
trap is suddenly switched off and the condensate expa
freely. Non-interacting boson condensates display unive
length scaling@25# in all spatial dimensions. The same h
also been shown recently for non-interacting fermions@10#.

When particle interactions dominate the kinetic ener
the transverse scaling function in a highly anisotropic trap

br~ t !5A11v r
2t2, ~61!

while the longitudinal expansion is more complicated@26#.
This was confirmed experimentally in full detail in Re
@29,30#.

In accord with Ref.@10#, we find that a freely expanding
degenerate one-dimensional gas of noninteracting ferm
behaves according to Eq.~61!, with v l replacingv r . The
calculation is fully quantum mechanical, and suppleme
the approach in Ref.@10#.

The quantity to be calculated is

n~z,t !5Tr r̂~ t !ĉ†~z!ĉ~z!. ~62!

where r̂(t) is the density operator of the freely expandin
gas. It is given in terms of the statistical operatorr̂(0) im-
mediately before the trap is opened at timet50 by

r̂~ t !5e2 iĤ 00t/\r̂~0!eiĤ 00t/\. ~63!

The free expansion of noninteracting one-dimensional
mions is governed by the Hamiltonian

Ĥ005E
2`

`

dk
\2k2

2m
ĉk

†ĉk . ~64!

The operatorsĉk
† andĉk were introduced in conjunction with

Eq. ~49!. Equation~62! can also be written as

n~z,t !5Tr r̂~0!ĉ†~z,t !ĉ~z,t !, ~65!

with
2-7
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ĉ~z,t !5eiĤ 00t/\ĉ~z!e2 iĤ 00t/\5
1

A2p
E

2`

`

dk ei (kz2vkt)ĉk

~66!

and

vk5
\k2

2m
. ~67!

We now use Eqs.~50! and ~51! to find

n0~z,t !5
1

2pE2`

`

dk dk8e2 iz(k2k8)1 i (vk2vk8)t

3 (
m,n50

`

~21!m1n~ f m
k !* f n

k8Tr r̂~0!ĉm
† ĉn .

~68!

For a harmonic trap which is initially in thermal equilibrium
the statistical operatorr̂(0) is Eq.~8!, and, at zero tempera
ture,

Tr r̂ ĉm
† ĉn5dm,nQ~N212m! ~69!

holds. We thus find

n0~z,t;T50!5
1

2pa2E2`

`

dk dk83e2 iz(k2k8)1 i (vk2vk8)t

3H (
m50

N21

cm~k/a2! cm~k8/a2!J . ~70!

The summation in curly brackets can be performed using
~A3!. In order to proceed it is convenient to go over to t
Fourier transform and write out the oscillator eigenfunctio
in terms of Hermite polynomials. This leads to

Fn0~k1,t;T50![E
2`

`

dz eik1zn0~z,t;T50!

5A1

p

1

2Nk1~N21!!
e2k1

2(12 iv l t)/2a2

3E
2`

`

dk8e2(k821k8k1)(12 iv l t)/a2

3@HN„~k11k8!/a…HN21~k8/a!

2„N↔~N21!…#. ~71!

Using Ref.@32#, the integration can be performed, giving

F@n0~k,t;T50!#5e2k2(11v l
2 t2)/4a2

LN21
(1)

3„k2~11v l
2 t2!/2a2)…. ~72!

This formula is isomorphic to Eq.~45! with the inverse
lengtha being replaced by the rescaled value
06360
q.

s

a→~11v l
2 t2!21/2a[a/b~ t !. ~73!

SinceF@n0(k,t)# andn0(z,t) are related via a Fourier trans
formation, the final result is

n0~z,t;T50!5
1

b~ t !
n0~z/b~ t !,N!. ~74!

Thus a free longitudinal expansion proceeds via a sim
length rescaling involving the factorb(t). In the course of
time the initial density distribution~Fig. 2! decreases and
broadens according to the factorb(t), but preserves its to-
pology including the Friedel oscillations, which correspon
ingly increase their wave length.

In this picture it is assumed that the fermions remain o
dimensional during the expansion. If the transverse confin
fields are also removed, transverse expansion in any of
two equivalent transverse directions will also proceed
cording to Eq.~74! taken for N51 and with the scaling
function @Eq. ~61!#. This follows simply from the observa
tion that each of the two ground-state wave functions for
transverse directions correspond to a single one dimens
ally confined Fermion, withv r in place ofv l .

VIII. SUMMARY

We have exactly calculated one-particle properties
noninteracting one-dimensional fermions in a harmonic tr
These are the particle density distribution, including its fr
expansion when the trap is switched off, and also two m
mentum distribution functions. The exact calculability can
traced back to two specific mathematical features of
eigenfunctions of the harmonic oscillator, namely that fin
sums of bilinear expressions can be performed, and that F
rier transformation essentially reproduces an eigenfunct
Friedel oscillations in the particle density and its analog
the momentum distribution, as well as diverging density
cillations near the classical boundary are basic features o
degenerate one-dimensional ideal fermi gas.
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APPENDIX

The appendix is a compilation of some mathematical f
mulas used in the derivation of the results given in the m
part of the paper. An important role is played by the rec
rence relations for Hermite polynomials~cf., e.g., Ref.@31#!.
Here they are given as recurrence relations for the comp
harmonic oscillator wave functionscn(z). These are

An11cn11~z!2azA2cn~z!1Ancn21~z!50, ~A1!

d

dz
cn~z!1a2z cn~z!2aA2n cn21~z!50. ~A2!
2-8
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The summation of the finite series@Eq. ~13!# is accomplished
by means of

(
m50

n

cm~z1!cm~z2!

5An11

2 Fcn11~z1!cn~z2!2cn~z1!cn11~z2!

a~z12z2! G ,
~A3!

which is a conversion of a formula in Ref.@33#. In ~A3! the
limit z1→z2 can be performed, and the resulting derivativ
converted into harmonic oscillator wave function using E
~A2! and~A1!. This leads to Eq.~20!. An alternative deriva-
tion applies induction to Eq.~21! which is obviously true for
N51 utilizing the recurrence relation@Eq. ~A1!#.

A very useful asymptotic (n@1) expression for the wave
functions can be extracted from Ref.@31# ~Chap. 19.7!:

cn~z!;AaS 2

nD 1/4H ~2tn!1/4

sin1/2fn

Ai ~ tn!J , ~A4!

with

2tn5F3

2 S n

2
1

1

4D ~2fn2sin 2fn!G2/3

~A5!

and

cosfn5
z

Ln
. ~A6!
int

R

.

v.

v.

C

06360
s
.

Ai is the Airy function which oscillates for negative argu
ments. There is a continuation to positive arguments~the
tunneling region! which we will not discuss.

The tilde ; denotes asymptotic expansion for largen
including all prefactors. Inside the trap, i.e., away from t
classical borders, the form

cn~z!;Aa

pS 2

nD 1/4 1

sin1/2fn

cosH S n

2
1

1

4D
3~sin 2fn22fn!1

p

4 J ~A7!

is useful. It results by means of the asymptotic expansion
the Airy function Ai(t) for 2t@1. In the limit uzu!Ln a
further simplification occurs sincefn→p/22z/Ln . This
leads to~note thatn@1!

cn→S 2a2

np2D 1/4

cosS knz2
np

2 D , ~A8!

which is used in Sec. IV. The corresponding fermion dens
well inside the trap is

n0~z,N!5
kF

p
1

1

2pLF
@12~21!Ncos 2kFz#. ~A9!

Here a small systematic error 1/(2pLF) of this approxima-
tion for uzu!LF has been subtracted to bring Eq.~A9! into
line with the exact result.
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