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We present a quantum-mechanical study of multiple-electron transfer processes in collisions between a
highly charged ion and an atom, taking®ArAr collisions as an example. We employ time-dependent mean-
field theories for this purpose, with different levels of approximation for the exchange effect. The time-
dependent single-electron equation is solved directly by a discretization of the three-dimensional Cartesian
coordinate into a uniform mesh. Calculations for various physical situations specified by the incident energy
and the impact parameter are presented to elucidate the reaction mechanisms. They provide us with intuitive
pictures of the electronic dynamics as well as a microscopic understanding of the reaction mechanisms. We
also compare results with different treatments of the exchange effect to learn the sensitivity of our results on
the possible uncertainty of the theories.

PACS numbdps): 34.70+e, 34.10+x, 31.15.Fx

[. INTRODUCTION same exchange and correlation potential as that for the static
problem is known as the adiabatic local-density approxima-
Multiple charge-transfer processes which take place in th&on, and has been successful in describing the optical re-
collisions of highly charged ions provide an interesting op-sponses of various systems including atdi molecules,
portunity to investigate the time-dependent many-electrortomic clusterg6], and dielectric function§7]. Recently, it
dynamics. Basic features of the charge-transfer process¥xs also applied to the dynamics beyond the perturbative
have been well described by the molecular classical overbaff€atment such as the ionization of atoms and clusters by a
rier model[1] in which the electron motion is assumed to be Short pulse lasef8] and by a highly charged iof8].
governed by a one-body field for electrons. The potential N the simplest local-density approximati¢hDA), the

barrier height as well as the ionization potential are the basig€/-consistent potential falls off exponentially at large dis-
elements in the model. tance, and does not show the correct asymptotic behavior.

Theoretically, a fully quantum-mechanical cIose-coupIingAISO the highest occupied orbital energy of the static Kohn-

) . . Sham orbital does not coincide with the ionization potential.
calculation has been rapidly developing. Analyses, however,

- Since the asymptotic Coulomb potential and the ionization
were limited to one- and two-electron-transfer processes. A ymp b

| . heori ired to d i hf)otential are the basic elements of the classical overbarrier
parently, approximate theories are required to describe the,,qe| treatments beyond the simple LDA are highly desired

dynamics of multiple electron-transfer processes. Severgy, ciarify the reliability of the calculated results. Indeed, the
frameworks based on the time-dependent mean-field picturgensitivity of the results on the treatment of the exchange
have been applied so far. For example, the time-dependeqfas stressed recently for one- and two-electron-transfer pro-
Hartree-FocK TDHF) theory has been applied to the dynam- cesse$10].
ics of two-electron systeng]. In this paper, we report two calculations with an improved
We recently reported on a calculation of the multiple treatment of exchange beyond the simple LDA. One is an
charge-transfer process in the time-dependent local-densigpproach based on the self-interaction correction combined
approximation, taking A¥" + Ar collisions as an example with an approximate construction of the optimized effective
[3]. In that report, we focused upon showing the feasibilitypotential[11]. The other is an exact treatment of the nonlocal
of the calculation as well as a reasonable reproduction of thexchange potential in the time-dependent Hartree-Fock
measurements. The purpose of the present paper is to prtheory. We will discuss the accuracy of the local-density
vide a detailed explanation of the method and to investigatapproximation for the charge-transfer dynamics from these
the electronic dynamics for various physical conditions. Incalculations.
particular, we will compare results with different levels of  The outline of this paper is as follows. In Sec. II, we
approximation for the nonlocal exchange effect, and discuspresent basic equations of the time-dependent mean-field
their significance on observables of the charge-transfer reatheories, and a method to evaluate the charge-transfer prob-
tion. ability. We also describe our numerical method to solve the
The time-dependent local-density — approximationequation, the real-space and real-time method in detail. In
(TDLDA) is considered as an extension of static density-Sec. Ill, we give our calculated results. We first present the
functional theory, so as to treat the time-dependent dynamicEDLDA calculations to show the electronic dynamics in the
of many-electron systenjd]. The calculation employing the collision. We also discuss numerical aspects and the accu-

1050-2947/2000/68)/06272110)/$15.00 62 062721-1 ©2000 The American Physical Society



R. NAGANO, K. YABANA, T. TAZAWA, AND Y. ABE PHYSICAL REVIEW A 62062721

racy and convergence of our calculations. We then present Vps(F, 1) =010c(r) 8(r—r")

results with an improved treatment of the exchange effect,

and discuss the significance of the nonlocal nature of the AvP(r) gl (r) ¢Px(r' ) AvP(r")
exchange. Finally in Sec. IV, a summary is presented. +> . (3

" arlanPacke)

II. FORMULATION

A. Time-dependent mean-field equations The pseudopotential is constructed for each partial wave
specified by the angular momenturasvP(r). ¢f,(r) is the

atomic wave function for the partial wavm calculated with

g;ee%?::)iin;xsgl?glt(l?p:gslﬂ;ir?gl;CtﬁL\jTredf :’Xee ;:azztﬁ;girgnvgznc?he pseudopotential. We calculate these upl$c02, and
the target atom as an inert core. We employ the normphoose a certain componesf(r) as a local parbie(r).

conserving pseudopotential as an effective electron-ion intelj-zzp will be used. Iater.AgP(r) IS deflped by AuP(r)
action. The reason for using the pseudopotential is closely Ui (') ~Vioc(r). Since the ion moves with a constant ve-
related to our numerical method to solve the time-dependeriCity, the atomic wave functiosf;,(r) needs to be boosted,
Schralinger equation. To represent the single-electron wave

function, we employ a three-dimensional uniform Cartesian imVion- I
mesh. The description of core orbitals in the mesh represen- ¢,"m(r)=ex;{T
tation requires an extremely fine mesh, and cannot be ac-
cepted from the computational viewpoint. The use of the D . i ) i
norm-conserving pseudopotential is a common technique i¥Nereur(r) is a radial wave function of the atomic orbital.
the electronic structure calculations of molecules and solidsYion indicates the velocity of the ions, eith®/2 or —V/2

We assume the spin independence of the single—particl@r the _pr_o_Jectlle or target, respectively. _ _

dynamics: two electrons occupy one spatial orbital through- The initial condition is prepared by solving the static so-
out the collision. We thus treat four spatial orbitals. The timelution for the target Ar atom, putting projectile and target

evolution is described by the following equation for the ions at certain initial positions. However, if we naively solve
single-electron wave functions: the static equation including both potentials by the projectile

and target ions, the ground-state configuration would be such
9 52 that both the projectile and target orbitals would be equally
i —i(r,t)=1 — 5=V2+vp[r—Rp(t)]+v[r—Ry(t)] occupied by four electrons. To prepare the initial condition
ot 2m ) - . . X .
in which the target atom is occupied by eight electrons while

We describe the & -Ar collision in the effective time-

uP(r) Y m(r), (4)

(r'.1) the projectile has no electron, we solve the initial wave func-
+92f drrp_’ W ¢i(r,1). (1)  tion within a spatial area excluding the region of the strong
r—r’| field of the projectile ion. We thus obtain the initial orbitals

of target Ar atom which is distorted by the Coulomb field of

Herevp anduy represent the pseudopotential of the highlythe projectile ion. At the beginning of the time evolution, the
charged projectile ion and that of the core of the target, reinitial wave functiong;(t=Tin;) is given by the static solu-
spectively. The density(r,t) is evaluated with the time- tions ¢;*" boosted with the velocity-V/2:

dependent wave function as

_static_ (5)

—imV-r
Hi(t=Tiy ):eXF{—}qﬁ
p(r,t)=22i |i(r,1)]2. 2) ! 2%

. B. Treatment of exchange and correlation
W in Eq. (1) represents the effects of exchange and correla- ) . ) ,
We will consider three kinds of time-dependent mean-

tion. Its explicit form will be given in Sec. II B. , ) . . .
The theories we employ respect the Galilean invarianceli€ld theories to describe the electronic dynamics of charge-

We solve the equation in the frame where the projectile andfansfer processes. The first is the TDHF theory, which is

target have velocities of the same magnitude and opposite®nceptually simple. We assume that the wave function of
directions, to save the computational resourcBg{t) the system s given by a smgl_e Slater defcermmant throughout
= Vt/2+b/2 andR(t) = — Vt/2— b/2—whereV is the inci- the collision. The time evolution of the single-electron wave

dent relative velocity between the projectile ion and targelfunctions is determined by the variational consideration. The

atom. b represents the impact parameter vector. A straight/familtonian, however, includes a nonlocal Fock term whose
omputation requires much computational time. Wieop-

line trajectory is assumed, and is appropriate for the incident ) 1HITE o
energy region of our present interest. erator in Eq.(1) is given explicitly by

We employ the norm-conserving pseudopotential pro- o ,
duced with the procedure of Ref13] in a separable form iy (1 t)= — 2> f dr’¢j (r,H&i(r',y .
[14] for vp andv in Eq. (1). The separable potential has the Y ] [r—r'| e
following form: (6)
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The second theory is the adiabatic time-dependent local- Ng— L
density approximation, which we abbreviate as the TDLDA. Y (oM ) (S =Vie) =Vje—Vjq
This is the easiest means from a computational point of view. =1
W in Eq. (1) is a simple multiplication of the local potential, )

i=1,...N,—1, (12
Webi (1) = peclp(r. 1) i(r 1), @) whereN, is the number of orbitals for spiar electrons, and

where u,. represents the same function of density as the Pio(N)pia(r)
static exchange-correlation potential. In practical calcula- f dr 22—~ (13
tions, we use the function proposed in Ref5]. Polr)

The TDLDA has been applied successfully to excited
states of various systems. However, there are several short- 2 P,g(f)v jo(1) 14
comings in the simple local-density approximation. One is bio =1 peln) Pic | - (14

the incomplete cancelation of the self-interaction. This in-
duces the self-consistent potential which damps exponen- o i
tially instead of a proper Coulomb tail. Another difficulty is C. Charge-transfer probability and cross sections
the electronic excitation around the threshold region. In the The description of the charge-transfer processes in the
LDA, the orbital energy of the highest occupied state istime-dependent mean-field equation is deterministic; we
much smaller than the ionization potential. Closely related tchave one solution for a given impact parameter and incident
this fact, the excited states of molecules around the thresholghergy. When the two ions are well separated after collision,
region appears at too low an excitation endrt§]. Since the  the electron density distribution is usually well localized in
electron-transfer dynamics is sensitive to the orbital energyhe two spatial regions, around the projectile and the target
and the potential tail, we will examine in detail the influenceions, as we will see below. However, each single-electron
of these shortcomings of the TDLDA on the charge-transfegvave function is not localized in one region but separated
processes. into spatial regions of the projectile and target ions. As a
In the TDHF calculation, the self-interaction is correctly consequence, the Slater determinant wave function is not a
canceled between the Hartree and Fock terms. As an aproduct of two Slater determinants, one around the projectile
proximate method to satisfy the self-interaction cancelleraion and the other around the target ion, but is a superposition
tion in the local form, a prescription of self-interaction cor- of such products. If one considers the Slater determinant
rection(SIC), has been widely used. For the time-dependentvave function in a restricted spatial area, for example, inside
problem, the combined use of the SIC with the optimizeda sphere of a certain radius around the target ion, it is not an
effective potentia(OPM) was proposed11,12. The OPM  eigenstate of any operators of the target ion, even of the
is approximately constructed with the procedure proposed byiumber operator of electrons.
Krieger, Li, and lafratg KLI) [17]. The computational cost In a correct many-body description, the many-body wave
of this KLI-SIC approach is modest, a few times that of thefunction after collision should extend to many final channels
TDLDA. In the KLI-SIC approach, the operation W is the specified by the internal states of the projectile and target
multiplication of a local potential constructed by the proce-ions. It may be natural to relate the components of the Slater
dures[11,12 determinant specified by the internal states of projectile and
target ion to the respective channel components. However,
pio(r,t — we should note that there remains a spurious coupling among
:“ftlzcu 2 p.(1,1) {v,U(r t)+[;§cl,?a(t)_via]}y (®) channels in the time-dependent mean-field description
through the mean-field potential, which mixes electron den-
sities of different channels, although there should be no in-
teraction among different channels in a correct quantum-
mechanical description of the asymptotic region. This is a
well-known limitation of the one- theories in ribin
5EXC[pT vpl] _f dr,pi(r(r,:t) . 5Exc[pimo] thee rea(():tion_ aton© e one bOdy eores describ 9
Opg [r—r’] opic Furthermore, since we are solving one-body dynamical
(9) equation, there is, in principle, no guarantee that the correla-
tions obtained from the calculation beyond the one-body cor-
;)?(I:,?a-(t):<¢i0'|ﬂ)?(lz,co-(r1t)| bio), (10) relation can be physically _re_liabl_e. In fact, in a descriptic_m _of
the nucleus-nucleus collision in the TDHF theory, it is
— known that the measured variance of the transferred nucleons
Vig() =(Bis|vio(r, D) dig)- (11)  cannot be described adequately, though the measured mean
value can b¢18]. We should also note that, in contrast to the
Exdpy.p ] is the exchange-correlation energy density forrpHE method, the Slater determinant wave function is only
spin-polarized electron gas. In the practical calculationjnroduced as a reference state to represent the density in the

where p;,. is the density ofith orbital and spino. Other
quantities are defined by

Uia’(rrt):

[;fc'?o(t) v,(,] of Eq. (8) is calculated by solving the alge- density-functional theory, and is not considered as an ap-
braic equation proximation to the many-body wave function. Nevertheless,
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we consider that procedure proposed in R&8)] is the most  As discussed in Ref.19], the above probability can be cal-
natural way to extract various reaction probabilities from theculated in terms of the single-electron matrix elements in the
calculation. following way,
We denote the Slater determinant wave function at the
final stage of calculation a¥(x,, ... Xy;b) for a specific
incident energyE and impact parametds. N is the number <',//1|l//1>rs1 <¢1|¢N>Tsl
of electrons,N=8 in our casex; denotes spatial and spin P()y= > : :
coordinates of théth electron. Let us consider the probabil- " S(TATN-y
ity that n electrons out of totalN are removed from the target (¢l $1>TSN ERERCN ¢N>TSN
atom. This is given by integrating the square of the Slater (16)
determinant with respect to coordinates df-n electrons
over the spatial are@ around the target ion and the coordi-

nates ofn electrons over the spatial ar@awhich is outside Herer, represents either orT, andrq, ...,7y Specifies the
the spatial ared: sequence of the spatial area in calculating the matrix ele-
ment. Summation over(?‘TN‘”) indicates that all the pos-
Pn(b):NCnJ—d“Xl' - d*x, sible sequences ofy, ... 7y should be considered on the
T condition thatT appeara times andT appeardN—n times

in the sequencay; represents the single-electron wave func-

Xf d*%peg - AN WXy, - Xnib)[2 tion including the spin part. The spatial part of the wave
T function ¢; is denoted ag; , and is the solution of Eq1) at
(15 the final time of calculation. Equatiofi6) then reduces to

(D1l 1) s, 0 s (Dl b, 0
0 (d1ld1)rs, -+ 0 (b1l dm) s,
Pn(b)= 2_n - : : : : , 17)
R <¢M|¢1>TS(N,1) 0 "o <¢M|¢M>TS(N,1) 0
0 (oumldr) sy, - 0 (uldm) s,

whereM is the number of spatial orbitalM = N/2=4 in our

case. Nau(b):N_f drp(r, Ttinar)- (21)
The cross section that electrons are removed from the T

target atom is calculated by integratiig,(b) over the im-

pact parameteb; D. Numerical detail

We employ a finite-difference scheme both for space and
time variables which was originally developed in nuclear
O'n:f db27bP,(b). (18)  theory more than 20 years ag@0]. For static electronic
problems, the finite-difference method combined with the
The total charge-transfer cross section is then obtained as Pseudopotential has been widely ug@d]. One of the au-
thors of the present paper extended the treatment to time-
N dependent electronic dynamics, discretizing the time variable
Trot= D) On. (190  as well[22]. The real space-time method offers an efficient
n=1 scheme to calculate linear-response properties of fj2ig

.. and infinite[ 24] systems, and to simulate collision dynamics
The average number of removed electrons for the collisio q] [24] sy y

specified by the impact parametemay be evaluated as For spatial coordinates, we discretize the three-

N dimensional Cartesian coordinates into a uniform mesh, and
No,(b)= >, nPy(b). (20 the grid points inside a large rectangular box are used to
n=1 represent the single-electron wave functions. In this repre-

sentation, the single-electron Hamiltonian is sparse. The lo-
It is easy to prove that this value coincides with the loss ofcal potential is represented by the diagonal matrix. There are
electrons from the target atom area which is calculated bywo kinds of off-diagonal elements: the kinetic-energy opera-
integrating the electron density inside the spatial drea tor and the nonlocal part of the pseudopotential. We employ
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the higher-order finite-difference scheme, taking nine pointsique was also used to evaluate the exchange matrix ele-
for one direction to approximate the Laplacian operator. Thanents[26,27. The multiplication of the Fock operator to a
treatment of the nonlocal pseudopotential was explained imave functiong(r) may be expressed as

detall in Ref.[21].

From a wave function at tim& ¢;(t), we construct the
Hamiltonian h(t). The short-time evolution of the wave
functions is approximately achieved by this Hamiltonian. We
further make a Taylor series expansion of the time evolutiorwhere we define
operator,

fWWmMWWF;@mwwn,@m

eZ

mun=fm' S DU, (25

r=r]

i
¢i(t+At)wexp{— %At h(t)}q&i(t)
The functionsy;;(r,t) satisfy the Poisson equation

k
¢, (22 V2y,i(r,0) = — 4me? g’ (1,0 Y(r). (26)

Nmax 1 |
~ kZo k_l( - %At h(t)

where we practically takBl,,,=4. The Taylor expansion up We solve this again by the conjugate gradient method. We
to a finite order violates the unitarity of the time evolution. can thus avoid an explicit construction of the Fock operator
However, we found that during the period of our calculationin calculating the time evolution of the wave function, al-
here, the orthonormalization of the single-electron wavethough we need to solve the Poisson equation many times.
function is kept to high accuracy during the time evolution
without an explicit orthonormalization procedure. Since this . RESULTS AND DISCUSSIONS
method of time evolution is a type of explicit method, we
need to use sufficiently small time stepst satisfying
emaAt=<1, whereen,y is the maximum eigenvalue of the Since numerical calculation is the easiest in the TDLDA,
Hamiltonian. The largest eigenvalue is dominated by thewve made extensive calculations with the TDLDA for various
kinetic-energy operator, and is scaled by the inverse squaighysical conditions, and examined the convergence of the
of the mesh size. With a mesh size of 0.25 A, we found thatalculation with respect to several computational parameters.
At/4=0.002 eV ! gives a stable time evolution. We take In the short note of Refl3], we presented TDLDA results
thexy plane as the reaction plane, and takeytlibrection as  stressing a comparison with measurements.
the incident direction. As an initial condition, we usually put  To illustrate the electronic dynamics intuitively, we first
two ions separated by 10 A in thyedirection and two sepa- show contour plots of the electron-density distribution during
rated by the distance of the impact parameter inxtldirec-  collision for various incident ion energies and impact param-
tion. The time evolution is calculated until the two ions areeters. In Fig. 1 we show the time evolution of the electron
separated again by 10 A in thyedirection. density in the reaction plane, tixey plane, for three incident

At each time step, we need to construct the Hartree poion energies: 18.4, 400, and 3200 keV. These correspond to
tential. Instead of integration over grid points, we calculateincident ion velocities in atomic units, of 0.14, 0.64, and 1.80

A. TDLDA calculation

this by solving the Poisson equation a.u, respectively. The impact parameter is fixed at 4 A. The
calculations are achieved by taking grid points inside a rect-
V2VH(r,t)=—4me?p(r,t). (23)  angular box of 2&40x12 A2 for xXyxz, and a mesh

spacing of 0.25 A. Four plots are shown at distances of two

We employ the conjugate gradient method to solve this equéaens in a longitudinal direction specified byy2The elec-
tion. Since we are working in a finite box area, the iterativetronic dynamics is seen to change considerably across an
method requires a boundary value of the Hartree potentidhcident ion velocity of about 1 a.u. In the two cases of lower
constructed by other method. For finite systems, the multiincident ion energies, 18.4 and 400 keV, almost all the elec-
pole expansion method is useful for this purpose. In the colirons removed from the target atom transfer to the projectile
lision problem, the electron distribution is located aroundion, while very few electrons are emitted to the continuum.
both projectile and target ions. Therefore, at each time stefhe electron density is almost axially symmetric at each time
we divide the whole spatial area into two areas, and makstep in the 18.4-keV case. These features are consistent with
multipole expansion of the electron density around each ionthe picture of a classical overbarrier model, in which the

The time evolution of the TDHF equation requires an-electron-transfer process is considered in a static picture. The
other technique. An explicit construction of the nonlocalaxial symmetry is violated at a higher incident energy, re-
Fock operator in the coordinate space representation is ndlecting the growing importance of the incident velocity ef-
appropriate because the number of grid points is very largdect. In the 3200-keV case, we find a large electron flux
In Ref.[2], the exchange potential is treated by solving theoutgoing in the transverse direction. At the right box bound-
Poisson equation without an explicit construction of the non-ary in the bottom panel of the figure, a fictitious reflection of
local Fock operator. A similar method was recently dis-the electron flux is seen. The electron density during the
cussed to solve the static and time-dependent Hartree-Fodllision also strongly violates the axial symmetry. Since the
equations in a coordinate mesh representd@ah The tech-  velocity of the incident ion is faster than the typical velocity
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18.4keV , 400keV 3200keV be2A bodh b=6A

y=-2/:\

dy=-2A

| T O T | _20
-10-560 510

dy=0A

y=+2A

dy=+2A

y=+57\

FIG. 2. The time evolution of the electron density of arif Arr
collision for three impact parameters at an incident ion energy of
400 keV. Other features are the same as in Fig. 1.

dy=+8A

projectile ion, which are approximately degenerate to the ini-
tial orbital of the target atom. For a highly charged ion, these
FIG. 1. The time evolution of the electron-density distribution orbitals correspond to highly excited ones.
of an AB*-Ar collision for three incident energies at an impact  The calculations given in Fig. 2 are achieved by employ-
parameter of 4 A. The reaction proceeds from top to bottom. Fouing a spatial area of 2020x 10 A% and a mesh size of 0.25
snapshots of the electron density in the reaction plane are shown A The spatial area is smaller than that in Fig. 1. We found
the distance of two ions in the longitudinal direction specified in thephysical quantities, such as the number of electrons removed
left. The electron contour plots are drawn at 1.0, 0.04, 0.0016, an¢fom the projectile ion, coincide well between two calcula-
0.000064 A" by solid curves, and at 0.2, 0.008, 0.00032, andtions. We thus see that the calculation of the present box size
0.0000128 A by dashed curves. is large enough to obtain convergent results.

We next show, in Fig. 3, the average number of electrons
of valence electrons in the target in this case, the electronsround the projectile and target ions during the collision. We
cannot follow the Coulomb field of the projectile ion, and aretake a sphere of radilR around each ion, and integrate the
emitted to the continuum. electron density inside the sphere. We plot the calculated

In Fig. 2 we show the time evolution of the electron den-number of electrons around the projectile ion in Figa)3
sity for different impact parameter collisions=2, 4, and 6  and that around the target ion in Figb8 as functions of the
A, for a fixed incident ion energy of 400 keV. At the small longitudinal distance between the projectile and target ions.
impact parameten=2 A, both the target and projectile ions The collision energy and impact parameter are fixed at
are seen to be highly excited after collision. We also see thé00 keV and 4 A, respectively. This corresponds to the
electron distribution extending to the whole spatial areamiddle plots of Figs. 1 and 2. Four spheres of radii 3, 4, 5,
Though the time length of our calculation is not long enoughand 6 A are used to calculate the electron number. From Fig.
to see the final result of the collision, we may expect that3(b), we see that all the electrons are inside a sphere of 3 A
some part of the electrons is emitted to the continuum eveif the longitudinal distance of two iongis greater than 4 A.
when the incident energy is rather low. For an impact paramReflecting the spatially extended density distribution of the
eter of 4 A and outside, the target ion remains at a lowprojectile ion after collision, a sphere of more than 4-A ra-
excitation while the projectile ion has a spatially extendeddius gives a convergent number of electrons around the pro-
highly excited structure. The formation of the highly excitedjectile, as seen in Fig.(8). We see that the number of elec-
state in the projectile ion after collision is again consistentrons transferred to the projectile ion is to a high accuracy
with the picture in the classical overbarrier picture. That is,independent of time after two ions are separated in a longi-
the electrons in the target atom transfer to the orbitals of theudinal direction greater than 4 A. This indicates that elec-
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show the number of electrons gained by the projectile ion
with asterisks, and the number of electrons lost by the target
ion with boxes. Inside an impact parameter of 2 A, both the
numbers of electrons around the projectile and the target ions
are approximately equal to four, half the number of valence
target electrons. This is again consistent with the picture of
the classical overbarrier model. In this model, the formation
of a moleculelike configuration is assumed during the colli-
sion. For small impact parameter collisions, all the valence
electrons take part in the formation of a molecularlike state,
and the information about the incident channel is lost at that
stage. The electrons are then separated equally into a projec-
tile and a target. We also note that the numbers of removed
electrons and transferred electrons are very close, confirming
that a very small fraction of electrons is emitted to the con-

FIG. 3. The number of electrons inside a sphere of radus tinuum for all impact parameter regions.

around the projectile iofa) and around the target iotb) as a

We finally discuss the numerical checks we achieved for

function of the longitudinal distance between the projectile and tarsome numerical and physical parameters to see the reliability
get ions. The incident energy and impact parameter are set to 408 our results. As discussed in Figs. 1 and 2, we compared
keV and 4A, respectively.

results between different box sizes to confirm that the artifi-
cial box boundary does not play a role. We also calculated

trons are not emitted to the continuum after two ions are wellyith different mesh sizes. Calculations with mesh sizes

separated, at least within the time period of the present cabf h=0.3 and 0.25 A were found to give basically the same
culation. Therefore, although the calculated projectile ionresult for the charge-transfer probabilities and cross sections,
shows a spatially extended, highly excited electronic structhough details of the time evolution of the electron density
ture, no Auger emission of electrons is described in thenay differ slightly, especially around spatial regions close to
present TDLDA calculation. This may be expected, since thehe ion. We also achieved calculations with different time
TDLDA is a kind of mean-field theory which does not allow steps. As we noted, the time step should be smaller than the
any change of the occupation of the orbitals. To describgnverse of the maximum eigenvalue of the Hamiltonian for a
Auger emission processes, a treatment beyond the mean-fiedghable iteration. As long as we used a time step small enough
theory would be necessary, on which introduces an electrorfor stable iteration, we found that the results depend little on
electron collision term, for example.
In Fig. 4 we show the number of electrons around the \We next discuss the construction of the electron-ion inter-
projectile and target ions as a function of the impact paramaction. Although the construction of the norm-conserving
eter for the incident ion energy of a 400-keV collision. We pseudopotential is a well-established issue in condensed-
take spheres of radiu5 A around two ions, which is large matter theory, we employ it in rather different situation. That
enough to obtain convergent results, as we saw in Fig. 3. Wg, two ions move toward each other with velocities of

Average electron number

5

¥

Impact parameter [A]

4 6

the choice of the time step.

around 1 a.u. Furthermore, two ions may come close to each
other during the collisions, even inside the radius of the core
electrons. How the core electrons affect the electronic dy-
namics in such situations is beyond our present approach.
We simply anticipate that, since the radius of the core elec-
trons is not very large, about 1 A, only a limited cross sec-
tion is influenced by the core electron dynamics, at most
m(2Reore) 2~ 12 A2

We usually employ a psuedopotential constructed with a
radius of connection at 1.05A. To see the sensitivity of our
results on the choice of this radius, we calculated the cross
section of the charge transfer with a pseudopotential of larger
connection radius, 1.61 A. A comparison between different
choices of pseudopotential is summerized in Table I. We see
that the difference is very small.

In the construction of a separable pseudopotential in Eq.
(3), we choose one of the partial-wave potentials to be used
as a local part. We usually use the largest angular momentum

FIG. 4. The number of electrons removed from the target atonfomponent =2. We made calculations with other angular
is shown by boxes, and the number of electrons transferred to th@omentum components as a local part, and compared results
incident ion is shown by asterisks, as a function of the impactn Table I. The difference is again very small. Therefore, the
parameter. The incident ion energy is set to 400 keV.

calculation depends little on the construction of the electron-
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TABLE I. The dependence of results on the construction of the TDHF TDKLI (xc) TDLDA
pseudopotential. The cross sections of total as well as one to eigh
electron removal from the target atom are compared. Three differ-
ent angular momentum componentslef0, 1, and 2 are used as y=-2A
local potentials in the three left columns with a pseudopotential
constructed with radius 1.05 A. The last column is with the pseu-
dopotential of larger radius of 1.61 A. The incidentArenergy is
set to 400 keV, and the impact parameter to 4 A.

Rps 1.05 A Rps 1.05 A Rps 1.05 A Rps 1.61 A

y= oA
(1=0) (1=1) (1=2) (1=2)
1 34.30 33.84 34.18 33.69
2 16.13 16.18 16.18 15.69
3 8.94 9.33 9.00 9.27
4 5.28 5.60 5.43 6.30
5 3.00 3.15 3.18 3.70 y=+2A
6 1.38 1.40 1.44 1.54
7 0.40 0.39 0.39 0.39
8 0.05 0.05 0.05 0.04
Total 69.48 69.94 69.84 70.76

y=+4A

ion potential, so long as the core electrons do not play an
important role.

FIG. 5. The time evolution of the electron density of arf AAr
B. Improved treatments of the exchange potential collision by three different treatments of exchange. The incident ion
energy is set to 400 keV, and the impact parameter is 6 A. Other
features are the same as those in Fig. 1 except that the lowest
ontour line is not drawn.

In this section, we discuss calculations with improved
treatments of the exchange effect. We will consider, beyon
the TDLDA, the self-interaction correction method in the
time-dependent optimized effective potential approddt-
SIC approach) and a full calculation of the nonlocal ex- Ar atom: 15.76 eV. In the Hartree-Fock calculation, the 3
change potential in the TDHF approach. Since the TDHForbital energy is 16.10 eV, close to the experimental ioniza-
calculation requires much more computational time than théion potential. We made calculations of the optimized effec-
TDLDA calculation, the results shown below are calculatedtive potential in the KLI procedure with the self-interaction
with a smaller box size and coarser mesh spacing. The bozorrection Hamiltonian. We achieved two calculations, with
area is 14A<14Ax 7A, and the mesh spacing is 0.3A. Even and without the correlation effect as a local potential, and
at this box size, the charge-transfer probabilities do not diffeshow these in the table. The KLI-SIC calculation givespa 3
much from calculations with a larger box size. As we nOted,orbita| energy close to the ionization potentiaL and is re-
the results also do not change much from those found agaarded as a good approximation of the Hartree-Fock calcu-
smaller mesh sizes, though the details of the dynamics, suqRtjon.
as the electron-density distribution around the ion, may |, Fig. 5 we show the time evolution of the electron-

change slightly. _ _ _ _density distribution calculated with the three methods. The
We first show the orbital energies of the isolated atom IMncident ion energy is set at 400 keV, and the impact param-

Table |l The LDA calculation gives agBorbital energy of eter is 6A. The three calculations used the TDHF, and KLI-

10.33 eV, much smaller than the ionization potential of theSIC methods, in which the correlation effect is included as a

_ _ _ _ local potential, and the TDLDA. Basically they give very
TABLE II. Orbital energies of static calculations by the Hartree- gimj|ar results to each other. Looking into details, the spatial
Fock (HF) method, the self-interaction correction method with gyiension of the electron distribution around the projectile
exchange-onlyKLI-SIC, X), and exchange and correlatiokLl- o, s more extended in the TDLDA calculation than the
SIC, XO), and the local-density approximatidhDA) are com-  whers  This may be understood as originating from the

pared. smaller orbital energy in the static LDA calculation. In the
classical overbarrier picture, the electrons are expected to
KLI-SIC KLI-SIC . L . .
HE ) (XC) LDA transfer to the orbitals of projectile ion, which are approxi-
mately degenerate to the initial target orbital. Therefore, the
3s 34.93 28.61 20.41 24.18 smaller binding in the LDA calculation gives a transfer to the
3p 16.10 14.70 15.49 10.33 orbitals of smaller binding in the projectile ion, which in turn

gives a spatially extended density distribution.
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0.6 T T T T TorF —— TABLE Ill. The cross septiops of electron removal from the
KLI-SIC(x) —----- target atom are calculated with different treatments of the exchange.
05 | KLl
No. of KLI-SIC KLI-SIC
electrons TDHF (X only) (XC) TDLDA
04 1 28.09 31.42 30.24 34.36
2 14.78 14.80 14.43 15.83
03 Vi T 3 7.88 8.07 7.95 8.53
/ 4 4.67 4.85 4.80 4.98
02} /) - 5 2.78 2.95 2.93 2.96
/ 6 1.34 1.49 1.48 1.47
o1 L i 7 0.41 0.48 0.48 0.47
8 0.06 0.07 0.07 0.07
0 1 1 Total 60.00 64.13 62.39 68.68
0 1 2 8

Impact parameter [A] - . .
transfer probability from the KLI-SIC calculation is not very

FIG. 6. One-electron removal probability from the target atomclose to the TDHF calculation, but lies around the middle
as a function of the impact parameter. Calculations with differenthetween the TDHF and TDLDA calculations. Therefore, we
treatments of exchange are compared. The incident ion energy is sepnclude that the KLI-SIC method is not a very good ap-
to 400 keV. proximation to the TDHF for the charge-transfer probability,

We next show, in Fig. 6, the probability of one-electronthough it works to improve the TDLDA result to some ex-

removal from the target atom as a function of the impacttent'

parameter for a fixed energy collision at 400 keV. The large In Table Ill we show the cross sections of electron re-
difference is seen in collision at a large impact parameterr.noval from the target atom calculated by different theories.

The TDLDA calculation gives the largest probability, and The incident energy is fixed at 400 keV. As noted above, the

the TDHF calculation gives the smallest. The KLI-SIC cal- difference is the largest for the one-electron removal, and it
culation with and without local correlation potential lies be- @mounts to about 20% between the cross sections of TDHF

tween the two. The accurate treatment of the nonlocal exand TDLDA methods. The difference is much smaller for the

change potential thus has a large effect on the one-electrdnultiple charge removal. The difference of the total charge
transfer probability at a large impact parameter. In contrastiransfer thus reflects mainly that of the one-electron removal,
the correlation effect treated as a local potential plays a miand is about 10—-15 %.
nor role for this quantity, as we learn from the small differ-  For the multiple electron-transfer process, the second and
ences between the KLI-SIC calculations with and withouthigher ionization potentials are relevant in the classical over-
the correlation effect. For electron-transfer probabilities ofbarrier model. In the static calculations, the difference of the
two and more electrons, the difference is found to be mucthiirst and second ionization potentials reflects mainly the Har-
smaller among the different treatments of exchange. tree potential of the highest occupied orbital. Therefore, the
We see the order of the electron-transfer probability, thedifference between the orbital energy and the ionization po-
largest TDLDA and the smallest TDHF, is the same as thatential in the LDA calculation becomes less significant for
of the static orbital energies shown in Table Il. There are twahe second ionization potential and higher. This fact is con-
aspects of the treatment of the exchange that may be esidered to explain the small difference of the electron re-
pected to affect the charge-transfer probability. One is thenoval cross sections of two and more electrons.
change of the orbital energy. Since the orbital energy be- For singly and doubly charged ions, a much larger differ-
comes lower in the correct treatment of the exchange, thence in the cross sections was reported depending on the
reduction of the charge-transfer probability is expected. Théreatment of exchange effeft0]. We expect that this large
other aspect is the correct behavior of the potential tail. Thalifference originates from the discrete nature of the orbitals
correct treatment of the exchange gives a potential with thef singly and doubly charged projectile ions. That is, for
correct 1f behavior. The increase of the attractive potentialsingly and doubly charged ions, the density of levels in the
is expected to reduce the potential barrier and to increase th@ojectile ion is not high; the final states to be occupied by
charge-transfer probability. Our numerical results indicatehe transferred electrons are rather limited. In this case, the
that the former effect, the reduction of the charge-transfecharge-transfer probability is considered to depend crucially
probability due to the increase of the orbital binding energy,on the difference of the orbital energies in the projectile and
is more crucial for the charge-transfer probability. target. Since the different treatment of exchange causes large
The KLI-SIC approach is known as a good approximationchanges of the orbital energies, it may have a large effect on
of the static orbital calculatiohl7], and indeed reproduces the charge-transfer probability depending on whether or not
rather well the orbital energy by the Hartree-Fock calculathere are orbitals of the projectile ion which are approxi-
tion, as shown in Table IIl. However, we find that the charge-mately degenerate to the orbitals of the target atom. Con-
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versely, in our present study of the electron transfer to ajies and various impact parameters in the adiabatic time-
highly charged ion, the density of states in the highlydependent local-density approximation. For reactions of in-
charged projectile ion is very high and the effects related taident ion velocities below 1 a.u. and not very small impact
the discrete nature of the projectile ion orbitals are expectegarameters, the reaction dynamics is consistent with the pic-
to be small. We thus consider that our conclusion, that difture of classical overbarrier model. At higher incident ener-
ferent treatments of the exchange effect produce the differgies, the change of the dynamics is observed from the trans-
ences in the one-electron removal cross section by 20% dodsr to the continuum emission. To see the significance of the
not contradict Ref[10], which reported a much larger effect correct treatment of the exchange effect, two methods with

for singly and doubly ionized projectiles. improved treatments of the exchange effect have been con-
sidered beyond the simple adiabatic local-density approxi-
IV. SUMMARY mation: a self-interaction correction approach and a full non-

) . local treatment of exchange in the time-dependent Hartree-
- We have presented time-dependent mean-field calculg=qck theory. The correct nonlocal treatment of exchange has
tions of charge-transfer reactions between a highly chargeghe |argest effect on the one-electron transfer probability and
ion and atom, taking A" and Ar as examples. A direct js found to reduce the one-electron removal cross section by

method is employed to solve the time-dependent mean-fielghout 209% compared to the calculation by the adiabatic time-
equation in real-space and real-time. We employ the samgependent local-density approximation.

Hamiltonian as that in first-principles calculations of the
electronic ground states of condensed-matter systems. The
calculation includes no empirical parameter, and we can mi-
croscopically describe the electronic dynamics of the mul-
tiple electron-transfer processes. The time evolution of the This work was supported by the Ministry of Education,
electron-density distribution also provides us with an intui-Science, and Culture, Japan, Contract No. 11640372. We
tive picture of the dynamics. acknowledge the Institute of Solid State Physics, University

We have elucidated basic dynamics of the charge-transfeaf Tokyo, and the Research Center for Nuclear Physics,
processes by showing results for various incident ion ener©saka University, for the use of supercomputers.
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