
PHYSICAL REVIEW A, VOLUME 62, 062721
Time-dependent mean-field description for multiple charge-transfer processes
in Ar 8¿-Ar collisions
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We present a quantum-mechanical study of multiple-electron transfer processes in collisions between a
highly charged ion and an atom, taking Ar81-Ar collisions as an example. We employ time-dependent mean-
field theories for this purpose, with different levels of approximation for the exchange effect. The time-
dependent single-electron equation is solved directly by a discretization of the three-dimensional Cartesian
coordinate into a uniform mesh. Calculations for various physical situations specified by the incident energy
and the impact parameter are presented to elucidate the reaction mechanisms. They provide us with intuitive
pictures of the electronic dynamics as well as a microscopic understanding of the reaction mechanisms. We
also compare results with different treatments of the exchange effect to learn the sensitivity of our results on
the possible uncertainty of the theories.

PACS number~s!: 34.70.1e, 34.10.1x, 31.15.Fx
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I. INTRODUCTION

Multiple charge-transfer processes which take place in
collisions of highly charged ions provide an interesting o
portunity to investigate the time-dependent many-elect
dynamics. Basic features of the charge-transfer proce
have been well described by the molecular classical over
rier model@1# in which the electron motion is assumed to
governed by a one-body field for electrons. The poten
barrier height as well as the ionization potential are the ba
elements in the model.

Theoretically, a fully quantum-mechanical close-coupli
calculation has been rapidly developing. Analyses, howe
were limited to one- and two-electron-transfer processes.
parently, approximate theories are required to describe
dynamics of multiple electron-transfer processes. Sev
frameworks based on the time-dependent mean-field pic
have been applied so far. For example, the time-depen
Hartree-Fock~TDHF! theory has been applied to the dynam
ics of two-electron systems@2#.

We recently reported on a calculation of the multip
charge-transfer process in the time-dependent local-den
approximation, taking Ar811Ar collisions as an example
@3#. In that report, we focused upon showing the feasibi
of the calculation as well as a reasonable reproduction of
measurements. The purpose of the present paper is to
vide a detailed explanation of the method and to investig
the electronic dynamics for various physical conditions.
particular, we will compare results with different levels
approximation for the nonlocal exchange effect, and disc
their significance on observables of the charge-transfer r
tion.

The time-dependent local-density approximati
~TDLDA ! is considered as an extension of static dens
functional theory, so as to treat the time-dependent dynam
of many-electron systems@4#. The calculation employing the
1050-2947/2000/62~6!/062721~10!/$15.00 62 0627
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same exchange and correlation potential as that for the s
problem is known as the adiabatic local-density approxim
tion, and has been successful in describing the optical
sponses of various systems including atoms@5#, molecules,
atomic clusters@6#, and dielectric functions@7#. Recently, it
was also applied to the dynamics beyond the perturba
treatment such as the ionization of atoms and clusters b
short pulse laser@8# and by a highly charged ion@9#.

In the simplest local-density approximation~LDA !, the
self-consistent potential falls off exponentially at large d
tance, and does not show the correct asymptotic beha
Also the highest occupied orbital energy of the static Koh
Sham orbital does not coincide with the ionization potent
Since the asymptotic Coulomb potential and the ionizat
potential are the basic elements of the classical overba
model, treatments beyond the simple LDA are highly desi
to clarify the reliability of the calculated results. Indeed, t
sensitivity of the results on the treatment of the exchan
was stressed recently for one- and two-electron-transfer
cesses@10#.

In this paper, we report two calculations with an improv
treatment of exchange beyond the simple LDA. One is
approach based on the self-interaction correction combi
with an approximate construction of the optimized effecti
potential@11#. The other is an exact treatment of the nonloc
exchange potential in the time-dependent Hartree-F
theory. We will discuss the accuracy of the local-dens
approximation for the charge-transfer dynamics from th
calculations.

The outline of this paper is as follows. In Sec. II, w
present basic equations of the time-dependent mean-
theories, and a method to evaluate the charge-transfer p
ability. We also describe our numerical method to solve
equation, the real-space and real-time method in detail
Sec. III, we give our calculated results. We first present
TDLDA calculations to show the electronic dynamics in t
collision. We also discuss numerical aspects and the a
©2000 The American Physical Society21-1
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racy and convergence of our calculations. We then pre
results with an improved treatment of the exchange eff
and discuss the significance of the nonlocal nature of
exchange. Finally in Sec. IV, a summary is presented.

II. FORMULATION

A. Time-dependent mean-field equations

We describe the Ar81-Ar collision in the effective time-
dependent single-particle picture. We treat eight vale
electrons explicitly, assuming Ar81 of the projectile ion and
the target atom as an inert core. We employ the no
conserving pseudopotential as an effective electron-ion in
action. The reason for using the pseudopotential is clos
related to our numerical method to solve the time-depend
Schrödinger equation. To represent the single-electron w
function, we employ a three-dimensional uniform Cartes
mesh. The description of core orbitals in the mesh repres
tation requires an extremely fine mesh, and cannot be
cepted from the computational viewpoint. The use of
norm-conserving pseudopotential is a common techniqu
the electronic structure calculations of molecules and sol

We assume the spin independence of the single-par
dynamics: two electrons occupy one spatial orbital throu
out the collision. We thus treat four spatial orbitals. The tim
evolution is described by the following equation for th
single-electron wave functions:

i\
]

]t
f i~r ,t !5H 2

\2

2m
¹21vP@r2RP~ t !#1vT@r2RT~ t !#

1e2E dr 8
r~r 8,t !

ur2r 8u
1ŴJ f i~r ,t !. ~1!

Here vP and vT represent the pseudopotential of the high
charged projectile ion and that of the core of the target,
spectively. The densityr(r ,t) is evaluated with the time
dependent wave function as

r~r ,t !52(
i

uf i~r ,t !u2. ~2!

Ŵ in Eq. ~1! represents the effects of exchange and corr
tion. Its explicit form will be given in Sec. II B.

The theories we employ respect the Galilean invarian
We solve the equation in the frame where the projectile
target have velocities of the same magnitude and oppo
directions, to save the computational resources—RP(t)
5Vt/21b/2 andRT(t)52Vt/22b/2—whereV is the inci-
dent relative velocity between the projectile ion and tar
atom.b represents the impact parameter vector. A straig
line trajectory is assumed, and is appropriate for the incid
energy region of our present interest.

We employ the norm-conserving pseudopotential p
duced with the procedure of Ref.@13# in a separable form
@14# for vP andvT in Eq. ~1!. The separable potential has th
following form:
06272
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vps~r ,r 8!5v loc~r !d~r2r 8!

1(
lm

Dv l
p~r !f lm

p ~r !f lm
p* ~r 8!Dv l

p~r 8!

E dr uf lm
p ~r !u2Dv l

p~r !

. ~3!

The pseudopotential is constructed for each partial w
specified by the angular momentuml asv l

p(r ). f lm
p (r ) is the

atomic wave function for the partial wavelm calculated with
the pseudopotential. We calculate these up tol 52, and
choose a certain componentv l

p(r ) as a local partv loc(r ).
l 52 will be used later.Dv l

p(r ) is defined by Dv l
p(r )

5v l
p(r )2v loc(r ). Since the ion moves with a constant v

locity, the atomic wave functionf lm
p (r ) needs to be boosted

f lm
p ~r !5expF imV ion•r

\ Gul
p~r !Ylm~ r̂ !, ~4!

whereul
p(r ) is a radial wave function of the atomic orbita

V ion indicates the velocity of the ions, eitherV/2 or 2V/2
for the projectile or target, respectively.

The initial condition is prepared by solving the static s
lution for the target Ar atom, putting projectile and targ
ions at certain initial positions. However, if we naively solv
the static equation including both potentials by the projec
and target ions, the ground-state configuration would be s
that both the projectile and target orbitals would be equa
occupied by four electrons. To prepare the initial conditi
in which the target atom is occupied by eight electrons wh
the projectile has no electron, we solve the initial wave fun
tion within a spatial area excluding the region of the stro
field of the projectile ion. We thus obtain the initial orbita
of target Ar atom which is distorted by the Coulomb field
the projectile ion. At the beginning of the time evolution, th
initial wave functionf i(t5Tinit) is given by the static solu-
tions f i

static boosted with the velocity2V/2:

f i~ t5Tinit !5expF2 imV•r

2\ Gf i
static . ~5!

B. Treatment of exchange and correlation

We will consider three kinds of time-dependent mea
field theories to describe the electronic dynamics of char
transfer processes. The first is the TDHF theory, which
conceptually simple. We assume that the wave function
the system is given by a single Slater determinant through
the collision. The time evolution of the single-electron wa
functions is determined by the variational consideration. T
Hamiltonian, however, includes a nonlocal Fock term who
computation requires much computational time. TheŴ op-
erator in Eq.~1! is given explicitly by

Ŵf i~r ,t !52e2(
j

H E dr 8
f j* ~r 8,t !f i~r 8,t !

ur2r 8u
J f j~r ,t !.

~6!
1-2
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The second theory is the adiabatic time-dependent lo
density approximation, which we abbreviate as the TDLD
This is the easiest means from a computational point of vi
Ŵ in Eq. ~1! is a simple multiplication of the local potentia

Ŵf i~r ,t !5mxc„r~r ,t !…f i~r ,t !, ~7!

where mxc represents the same function of density as
static exchange-correlation potential. In practical calcu
tions, we use the function proposed in Ref.@15#.

The TDLDA has been applied successfully to excit
states of various systems. However, there are several s
comings in the simple local-density approximation. One
the incomplete cancelation of the self-interaction. This
duces the self-consistent potential which damps expon
tially instead of a proper Coulomb tail. Another difficulty
the electronic excitation around the threshold region. In
LDA, the orbital energy of the highest occupied state
much smaller than the ionization potential. Closely related
this fact, the excited states of molecules around the thres
region appears at too low an excitation energy@16#. Since the
electron-transfer dynamics is sensitive to the orbital ene
and the potential tail, we will examine in detail the influen
of these shortcomings of the TDLDA on the charge-trans
processes.

In the TDHF calculation, the self-interaction is correct
canceled between the Hartree and Fock terms. As an
proximate method to satisfy the self-interaction cancelle
tion in the local form, a prescription of self-interaction co
rection~SIC!, has been widely used. For the time-depend
problem, the combined use of the SIC with the optimiz
effective potential~OPM! was proposed@11,12#. The OPM
is approximately constructed with the procedure proposed
Krieger, Li, and Iafrate~KLI ! @17#. The computational cos
of this KLI-SIC approach is modest, a few times that of t
TDLDA. In the KLI-SIC approach, the operation ofŴ is the
multiplication of a local potential constructed by the proc
dures@11,12#

mxc,s
SIC 5(

i

r is~r ,t !

rs~r ,t !
$v is~r ,t !1@m̄xc,is

SIC ~ t !2 v̄ is#%, ~8!

where r is is the density ofi th orbital and spins. Other
quantities are defined by

v is~r ,t !5
dExc@r↑ ,r↓#

drs
2E dr 8

r is~r 8,t !

ur2r 8u
2

dExc@r is,0#

dr is
,

~9!

m̄xc,is
SIC ~ t !5^f isumxc,s

SIC ~r ,t !uf is&, ~10!

v̄ is~ t !5^f isuv is~r ,t !uf is&. ~11!

Exc@r↑ ,r↓# is the exchange-correlation energy density
spin-polarized electron gas. In the practical calculati

@m̄xc,is
SIC (t)2 v̄ is# of Eq. ~8! is calculated by solving the alge

braic equation
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~d j i ,s2M ji ,s!~m̄xc,is
SIC 2 v̄ is!5V̄j s2 v̄ j s ,

j 51, . . . ,Ns21, ~12!

whereNs is the number of orbitals for spins electrons, and

M ji ,s5E dr
r j s~r !r is~r !

rs~r !
, ~13!

V̄is5K f isU(
j 51

Ns r j s~r !v j s~r !

rs~r ! Uf isL . ~14!

C. Charge-transfer probability and cross sections

The description of the charge-transfer processes in
time-dependent mean-field equation is deterministic;
have one solution for a given impact parameter and incid
energy. When the two ions are well separated after collis
the electron density distribution is usually well localized
the two spatial regions, around the projectile and the tar
ions, as we will see below. However, each single-elect
wave function is not localized in one region but separa
into spatial regions of the projectile and target ions. As
consequence, the Slater determinant wave function is n
product of two Slater determinants, one around the projec
ion and the other around the target ion, but is a superposi
of such products. If one considers the Slater determin
wave function in a restricted spatial area, for example, ins
a sphere of a certain radius around the target ion, it is no
eigenstate of any operators of the target ion, even of
number operator of electrons.

In a correct many-body description, the many-body wa
function after collision should extend to many final chann
specified by the internal states of the projectile and tar
ions. It may be natural to relate the components of the Sl
determinant specified by the internal states of projectile
target ion to the respective channel components. Howe
we should note that there remains a spurious coupling am
channels in the time-dependent mean-field descrip
through the mean-field potential, which mixes electron d
sities of different channels, although there should be no
teraction among different channels in a correct quantu
mechanical description of the asymptotic region. This is
well-known limitation of the one-body theories in describin
the reaction.

Furthermore, since we are solving one-body dynami
equation, there is, in principle, no guarantee that the corr
tions obtained from the calculation beyond the one-body c
relation can be physically reliable. In fact, in a description
the nucleus-nucleus collision in the TDHF theory, it
known that the measured variance of the transferred nucle
cannot be described adequately, though the measured m
value can be@18#. We should also note that, in contrast to t
TDHF method, the Slater determinant wave function is o
introduced as a reference state to represent the density i
density-functional theory, and is not considered as an
proximation to the many-body wave function. Neverthele
1-3
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we consider that procedure proposed in Ref.@19# is the most
natural way to extract various reaction probabilities from
calculation.

We denote the Slater determinant wave function at
final stage of calculation asC(x1 , . . . ,xN ;b) for a specific
incident energyE and impact parameterb. N is the number
of electrons,N58 in our case.xi denotes spatial and spi
coordinates of thei th electron. Let us consider the probab
ity that n electrons out of totalN are removed from the targe
atom. This is given by integrating the square of the Sla
determinant with respect to coordinates ofN2n electrons
over the spatial areaT around the target ion and the coord
nates ofn electrons over the spatial areaT̄ which is outside
the spatial areaT:

Pn~b!5NCnE
T̄
d4x1•••d4xn

3E
T
d4xn11•••d4xNuC~x1 , . . . ,xN ;b!u2.

~15!
e

as

io

o
b
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As discussed in Ref.@19#, the above probability can be ca
culated in terms of the single-electron matrix elements in
following way,

Pn~b!5 (
s(T̄nTN2n)

U ^c1uc1&ts1 ••• ^c1ucN&ts1

A � A

^cNuc1&tsN
••• ^cNucN&tsN

U .

~16!

Heret i represents eitherT or T̄, andt1 , . . . ,tN specifies the
sequence of the spatial area in calculating the matrix
ment. Summation overs(T̄nTN2n) indicates that all the pos
sible sequences oft1 , . . . ,tN should be considered on th
condition thatT̄ appearsn times andT appearsN2n times
in the sequence.c i represents the single-electron wave fun
tion including the spin part. The spatial part of the wa
functionc i is denoted asf i , and is the solution of Eq.~1! at
the final time of calculation. Equation~16! then reduces to
Pn~b!5 (
s(t1•••tN :T̄nTN2n) U ^f1uf1&ts1 0 ••• ^f1ufM&ts1 0

0 ^f1uf1&ts2 ••• 0 ^f1ufM&ts2

A A � A A

^fMuf1&ts(N21) 0 ••• ^fMufM&ts(N21) 0

0 ^fMuf1&tsN
••• 0 ^fMufM&tsN

U , ~17!
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whereM is the number of spatial orbital,M5N/254 in our
case.

The cross section thatn electrons are removed from th
target atom is calculated by integratingPn(b) over the im-
pact parameterb;

sn5E db 2pbPn~b!. ~18!

The total charge-transfer cross section is then obtained

s tot5 (
n51

N

sn . ~19!

The average number of removed electrons for the collis
specified by the impact parameterb may be evaluated as

Nav~b!5 (
n51

N

nPn~b!. ~20!

It is easy to prove that this value coincides with the loss
electrons from the target atom area which is calculated
integrating the electron density inside the spatial areaT:
n

f
y

Nav~b!5N2E
T
drr~r ,Tf inal!. ~21!

D. Numerical detail

We employ a finite-difference scheme both for space a
time variables which was originally developed in nucle
theory more than 20 years ago@20#. For static electronic
problems, the finite-difference method combined with t
pseudopotential has been widely used@21#. One of the au-
thors of the present paper extended the treatment to ti
dependent electronic dynamics, discretizing the time varia
as well @22#. The real space-time method offers an efficie
scheme to calculate linear-response properties of finite@23#
and infinite@24# systems, and to simulate collision dynami
@9#.

For spatial coordinates, we discretize the thre
dimensional Cartesian coordinates into a uniform mesh,
the grid points inside a large rectangular box are used
represent the single-electron wave functions. In this rep
sentation, the single-electron Hamiltonian is sparse. The
cal potential is represented by the diagonal matrix. There
two kinds of off-diagonal elements: the kinetic-energy ope
tor and the nonlocal part of the pseudopotential. We emp
1-4
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the higher-order finite-difference scheme, taking nine po
for one direction to approximate the Laplacian operator. T
treatment of the nonlocal pseudopotential was explaine
detail in Ref.@21#.

From a wave function at timet, f i(t), we construct the
Hamiltonian h(t). The short-time evolution of the wav
functions is approximately achieved by this Hamiltonian. W
further make a Taylor series expansion of the time evolut
operator,

f i~ t1Dt !'expF2
i

\
Dt ĥ~ t !Gf i~ t !

' (
k50

Nmax 1

k! S 2
i

\
Dt ĥ~ t ! D k

f i~ t !, ~22!

where we practically takeNmax54. The Taylor expansion up
to a finite order violates the unitarity of the time evolutio
However, we found that during the period of our calculati
here, the orthonormalization of the single-electron wa
function is kept to high accuracy during the time evoluti
without an explicit orthonormalization procedure. Since t
method of time evolution is a type of explicit method, w
need to use sufficiently small time stepsDt satisfying
emaxDt<1, whereemax is the maximum eigenvalue of th
Hamiltonian. The largest eigenvalue is dominated by
kinetic-energy operator, and is scaled by the inverse sq
of the mesh size. With a mesh size of 0.25 Å, we found t
Dt/\50.002 eV21 gives a stable time evolution. We tak
thexy plane as the reaction plane, and take they direction as
the incident direction. As an initial condition, we usually p
two ions separated by 10 Å in they direction and two sepa
rated by the distance of the impact parameter in thex direc-
tion. The time evolution is calculated until the two ions a
separated again by 10 Å in they direction.

At each time step, we need to construct the Hartree
tential. Instead of integration over grid points, we calcul
this by solving the Poisson equation

¹2VH~r ,t !524pe2r~r ,t !. ~23!

We employ the conjugate gradient method to solve this eq
tion. Since we are working in a finite box area, the iterat
method requires a boundary value of the Hartree poten
constructed by other method. For finite systems, the mu
pole expansion method is useful for this purpose. In the c
lision problem, the electron distribution is located arou
both projectile and target ions. Therefore, at each time s
we divide the whole spatial area into two areas, and m
multipole expansion of the electron density around each

The time evolution of the TDHF equation requires a
other technique. An explicit construction of the nonloc
Fock operator in the coordinate space representation is
appropriate because the number of grid points is very la
In Ref. @2#, the exchange potential is treated by solving t
Poisson equation without an explicit construction of the n
local Fock operator. A similar method was recently d
cussed to solve the static and time-dependent Hartree-F
equations in a coordinate mesh representation@25#. The tech-
06272
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nique was also used to evaluate the exchange matrix
ments@26,27#. The multiplication of the Fock operator to
wave functionc(r ) may be expressed as

E dr 8VF~r ,r 8;t !c~r 8!5(
j

f j~r ,t !x j i ~r ,t !, ~24!

where we define

x j i ~r ,t !5E dr 8
e2

ur2r 8u
f j* ~r 8,t !c~r 8!. ~25!

The functionsx j i (r ,t) satisfy the Poisson equation

¹2x j i ~r ,t !524pe2f j* ~r ,t !c~r !. ~26!

We solve this again by the conjugate gradient method.
can thus avoid an explicit construction of the Fock opera
in calculating the time evolution of the wave function, a
though we need to solve the Poisson equation many tim

III. RESULTS AND DISCUSSIONS

A. TDLDA calculation

Since numerical calculation is the easiest in the TDLD
we made extensive calculations with the TDLDA for vario
physical conditions, and examined the convergence of
calculation with respect to several computational paramet
In the short note of Ref.@3#, we presented TDLDA results
stressing a comparison with measurements.

To illustrate the electronic dynamics intuitively, we fir
show contour plots of the electron-density distribution duri
collision for various incident ion energies and impact para
eters. In Fig. 1 we show the time evolution of the electr
density in the reaction plane, thex-y plane, for three incident
ion energies: 18.4, 400, and 3200 keV. These correspon
incident ion velocities in atomic units, of 0.14, 0.64, and 1.
a.u, respectively. The impact parameter is fixed at 4 Å. T
calculations are achieved by taking grid points inside a re
angular box of 24340312 Å3 for x3y3z, and a mesh
spacing of 0.25 Å. Four plots are shown at distances of
ions in a longitudinal direction specified by 2y. The elec-
tronic dynamics is seen to change considerably across
incident ion velocity of about 1 a.u. In the two cases of low
incident ion energies, 18.4 and 400 keV, almost all the el
trons removed from the target atom transfer to the projec
ion, while very few electrons are emitted to the continuu
The electron density is almost axially symmetric at each ti
step in the 18.4-keV case. These features are consistent
the picture of a classical overbarrier model, in which t
electron-transfer process is considered in a static picture.
axial symmetry is violated at a higher incident energy,
flecting the growing importance of the incident velocity e
fect. In the 3200-keV case, we find a large electron fl
outgoing in the transverse direction. At the right box boun
ary in the bottom panel of the figure, a fictitious reflection
the electron flux is seen. The electron density during
collision also strongly violates the axial symmetry. Since t
velocity of the incident ion is faster than the typical veloci
1-5



o
re

n

ll
s
th

ea
g
ha
ve
m

ow
ed
ed
en
is
th

ini-
se

y-

nd
ved
a-
size

ns
e

e
ted

ns.
at

the
5,

Fig.
3 Å

he
a-
pro-
-
cy
gi-
c-

on
ct
ou
n

th
an
nd

of

R. NAGANO, K. YABANA, T. TAZAWA, AND Y. ABE PHYSICAL REVIEW A 62 062721
of valence electrons in the target in this case, the electr
cannot follow the Coulomb field of the projectile ion, and a
emitted to the continuum.

In Fig. 2 we show the time evolution of the electron de
sity for different impact parameter collisions,b52, 4, and 6
Å, for a fixed incident ion energy of 400 keV. At the sma
impact parameterb52 Å, both the target and projectile ion
are seen to be highly excited after collision. We also see
electron distribution extending to the whole spatial ar
Though the time length of our calculation is not long enou
to see the final result of the collision, we may expect t
some part of the electrons is emitted to the continuum e
when the incident energy is rather low. For an impact para
eter of 4 Å and outside, the target ion remains at a l
excitation while the projectile ion has a spatially extend
highly excited structure. The formation of the highly excit
state in the projectile ion after collision is again consist
with the picture in the classical overbarrier picture. That
the electrons in the target atom transfer to the orbitals of

FIG. 1. The time evolution of the electron-density distributi
of an Ar81-Ar collision for three incident energies at an impa
parameter of 4 Å. The reaction proceeds from top to bottom. F
snapshots of the electron density in the reaction plane are show
the distance of two ions in the longitudinal direction specified in
left. The electron contour plots are drawn at 1.0, 0.04, 0.0016,
0.000 064 Å23 by solid curves, and at 0.2, 0.008, 0.00032, a
0.000 012 8 Å23 by dashed curves.
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projectile ion, which are approximately degenerate to the
tial orbital of the target atom. For a highly charged ion, the
orbitals correspond to highly excited ones.

The calculations given in Fig. 2 are achieved by emplo
ing a spatial area of 20320310 Å3 and a mesh size of 0.25
Å. The spatial area is smaller than that in Fig. 1. We fou
physical quantities, such as the number of electrons remo
from the projectile ion, coincide well between two calcul
tions. We thus see that the calculation of the present box
is large enough to obtain convergent results.

We next show, in Fig. 3, the average number of electro
around the projectile and target ions during the collision. W
take a sphere of radiusR around each ion, and integrate th
electron density inside the sphere. We plot the calcula
number of electrons around the projectile ion in Fig. 3~a!,
and that around the target ion in Fig. 3~b!, as functions of the
longitudinal distance between the projectile and target io
The collision energy and impact parameter are fixed
400 keV and 4 Å, respectively. This corresponds to
middle plots of Figs. 1 and 2. Four spheres of radii 3, 4,
and 6 Å are used to calculate the electron number. From
3~b!, we see that all the electrons are inside a sphere of
if the longitudinal distance of two ionsy is greater than 4 Å.
Reflecting the spatially extended density distribution of t
projectile ion after collision, a sphere of more than 4-Å r
dius gives a convergent number of electrons around the
jectile, as seen in Fig. 3~a!. We see that the number of elec
trons transferred to the projectile ion is to a high accura
independent of time after two ions are separated in a lon
tudinal direction greater than 4 Å. This indicates that ele

r
at

e
d

FIG. 2. The time evolution of the electron density of an Ar81-Ar
collision for three impact parameters at an incident ion energy
400 keV. Other features are the same as in Fig. 1.
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trons are not emitted to the continuum after two ions are w
separated, at least within the time period of the present
culation. Therefore, although the calculated projectile
shows a spatially extended, highly excited electronic str
ture, no Auger emission of electrons is described in
present TDLDA calculation. This may be expected, since
TDLDA is a kind of mean-field theory which does not allo
any change of the occupation of the orbitals. To descr
Auger emission processes, a treatment beyond the mean
theory would be necessary, on which introduces an elect
electron collision term, for example.

In Fig. 4 we show the number of electrons around
projectile and target ions as a function of the impact para
eter for the incident ion energy of a 400-keV collision. W
take spheres of radius 5 Å around two ions, which is larg
enough to obtain convergent results, as we saw in Fig. 3.

FIG. 3. The number of electrons inside a sphere of radiuR
around the projectile ion~a! and around the target ion~b! as a
function of the longitudinal distance between the projectile and
get ions. The incident energy and impact parameter are set to
keV and 4Å, respectively.

FIG. 4. The number of electrons removed from the target a
is shown by boxes, and the number of electrons transferred to
incident ion is shown by asterisks, as a function of the imp
parameter. The incident ion energy is set to 400 keV.
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show the number of electrons gained by the projectile
with asterisks, and the number of electrons lost by the ta
ion with boxes. Inside an impact parameter of 2 Å, both
numbers of electrons around the projectile and the target
are approximately equal to four, half the number of valen
target electrons. This is again consistent with the picture
the classical overbarrier model. In this model, the format
of a moleculelike configuration is assumed during the co
sion. For small impact parameter collisions, all the valen
electrons take part in the formation of a molecularlike sta
and the information about the incident channel is lost at t
stage. The electrons are then separated equally into a pr
tile and a target. We also note that the numbers of remo
electrons and transferred electrons are very close, confirm
that a very small fraction of electrons is emitted to the co
tinuum for all impact parameter regions.

We finally discuss the numerical checks we achieved
some numerical and physical parameters to see the reliab
of our results. As discussed in Figs. 1 and 2, we compa
results between different box sizes to confirm that the ar
cial box boundary does not play a role. We also calcula
with different mesh sizes. Calculations with mesh siz
of h50.3 and 0.25 Å were found to give basically the sam
result for the charge-transfer probabilities and cross secti
though details of the time evolution of the electron dens
may differ slightly, especially around spatial regions close
the ion. We also achieved calculations with different tim
steps. As we noted, the time step should be smaller than
inverse of the maximum eigenvalue of the Hamiltonian fo
stable iteration. As long as we used a time step small eno
for stable iteration, we found that the results depend little
the choice of the time step.

We next discuss the construction of the electron-ion int
action. Although the construction of the norm-conservi
pseudopotential is a well-established issue in conden
matter theory, we employ it in rather different situation. Th
is, two ions move toward each other with velocities
around 1 a.u. Furthermore, two ions may come close to e
other during the collisions, even inside the radius of the c
electrons. How the core electrons affect the electronic
namics in such situations is beyond our present appro
We simply anticipate that, since the radius of the core el
trons is not very large, about 1 Å, only a limited cross se
tion is influenced by the core electron dynamics, at m
p(2Rcore)

2;12 Å2.
We usually employ a psuedopotential constructed wit

radius of connection at 1.05Å. To see the sensitivity of o
results on the choice of this radius, we calculated the cr
section of the charge transfer with a pseudopotential of lar
connection radius, 1.61 Å. A comparison between differ
choices of pseudopotential is summerized in Table I. We
that the difference is very small.

In the construction of a separable pseudopotential in
~3!, we choose one of the partial-wave potentials to be u
as a local part. We usually use the largest angular momen
componentl 52. We made calculations with other angul
momentum components as a local part, and compared re
in Table I. The difference is again very small. Therefore, t
calculation depends little on the construction of the electr
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ion potential, so long as the core electrons do not play
important role.

B. Improved treatments of the exchange potential

In this section, we discuss calculations with improv
treatments of the exchange effect. We will consider, bey
the TDLDA, the self-interaction correction method in th
time-dependent optimized effective potential approach~KLI-
SIC approach!, and a full calculation of the nonlocal ex
change potential in the TDHF approach. Since the TD
calculation requires much more computational time than
TDLDA calculation, the results shown below are calculat
with a smaller box size and coarser mesh spacing. The
area is 14Å314Å37Å, and the mesh spacing is 0.3Å. Eve
at this box size, the charge-transfer probabilities do not di
much from calculations with a larger box size. As we not
the results also do not change much from those found
smaller mesh sizes, though the details of the dynamics, s
as the electron-density distribution around the ion, m
change slightly.

We first show the orbital energies of the isolated atom
Table II. The LDA calculation gives a 3p orbital energy of
10.33 eV, much smaller than the ionization potential of

TABLE I. The dependence of results on the construction of
pseudopotential. The cross sections of total as well as one to e
electron removal from the target atom are compared. Three di
ent angular momentum components ofl 50, 1, and 2 are used a
local potentials in the three left columns with a pseudopoten
constructed with radius 1.05 Å. The last column is with the ps
dopotential of larger radius of 1.61 Å. The incident Ar81 energy is
set to 400 keV, and the impact parameter to 4 Å.

Rps 1.05 Å Rps 1.05 Å Rps 1.05 Å Rps 1.61
( l 50) (l 51) (l 52) (l 52)

1 34.30 33.84 34.18 33.69
2 16.13 16.18 16.18 15.69
3 8.94 9.33 9.00 9.27
4 5.28 5.60 5.43 6.30
5 3.00 3.15 3.18 3.70
6 1.38 1.40 1.44 1.54
7 0.40 0.39 0.39 0.39
8 0.05 0.05 0.05 0.04

Total 69.48 69.94 69.84 70.76

TABLE II. Orbital energies of static calculations by the Hartre
Fock ~HF! method, the self-interaction correction method w
exchange-only~KLI-SIC, X!, and exchange and correlation~KLI-
SIC, XC!, and the local-density approximation~LDA ! are com-
pared.

KLI-SIC KLI-SIC
HF ~X! ~XC! LDA

3s 34.93 28.61 29.41 24.18
3p 16.10 14.70 15.49 10.33
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Ar atom: 15.76 eV. In the Hartree-Fock calculation, the 3p
orbital energy is 16.10 eV, close to the experimental ioni
tion potential. We made calculations of the optimized effe
tive potential in the KLI procedure with the self-interactio
correction Hamiltonian. We achieved two calculations, w
and without the correlation effect as a local potential, a
show these in the table. The KLI-SIC calculation gives ap
orbital energy close to the ionization potential, and is
garded as a good approximation of the Hartree-Fock ca
lation.

In Fig. 5 we show the time evolution of the electro
density distribution calculated with the three methods. T
incident ion energy is set at 400 keV, and the impact para
eter is 6Å. The three calculations used the TDHF, and K
SIC methods, in which the correlation effect is included a
local potential, and the TDLDA. Basically they give ver
similar results to each other. Looking into details, the spa
extension of the electron distribution around the projec
ion is more extended in the TDLDA calculation than th
others. This may be understood as originating from
smaller orbital energy in the static LDA calculation. In th
classical overbarrier picture, the electrons are expecte
transfer to the orbitals of projectile ion, which are appro
mately degenerate to the initial target orbital. Therefore,
smaller binding in the LDA calculation gives a transfer to t
orbitals of smaller binding in the projectile ion, which in tur
gives a spatially extended density distribution.

e
ht
r-

l
-

FIG. 5. The time evolution of the electron density of an Ar81-Ar
collision by three different treatments of exchange. The incident
energy is set to 400 keV, and the impact parameter is 6 Å. O
features are the same as those in Fig. 1 except that the lo
contour line is not drawn.
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We next show, in Fig. 6, the probability of one-electro
removal from the target atom as a function of the imp
parameter for a fixed energy collision at 400 keV. The la
difference is seen in collision at a large impact parame
The TDLDA calculation gives the largest probability, an
the TDHF calculation gives the smallest. The KLI-SIC ca
culation with and without local correlation potential lies b
tween the two. The accurate treatment of the nonlocal
change potential thus has a large effect on the one-elec
transfer probability at a large impact parameter. In contr
the correlation effect treated as a local potential plays a
nor role for this quantity, as we learn from the small diffe
ences between the KLI-SIC calculations with and witho
the correlation effect. For electron-transfer probabilities
two and more electrons, the difference is found to be m
smaller among the different treatments of exchange.

We see the order of the electron-transfer probability,
largest TDLDA and the smallest TDHF, is the same as t
of the static orbital energies shown in Table II. There are t
aspects of the treatment of the exchange that may be
pected to affect the charge-transfer probability. One is
change of the orbital energy. Since the orbital energy
comes lower in the correct treatment of the exchange,
reduction of the charge-transfer probability is expected. T
other aspect is the correct behavior of the potential tail. T
correct treatment of the exchange gives a potential with
correct 1/r behavior. The increase of the attractive poten
is expected to reduce the potential barrier and to increase
charge-transfer probability. Our numerical results indic
that the former effect, the reduction of the charge-trans
probability due to the increase of the orbital binding ener
is more crucial for the charge-transfer probability.

The KLI-SIC approach is known as a good approximat
of the static orbital calculation@17#, and indeed reproduce
rather well the orbital energy by the Hartree-Fock calcu
tion, as shown in Table II. However, we find that the charg

FIG. 6. One-electron removal probability from the target ato
as a function of the impact parameter. Calculations with differ
treatments of exchange are compared. The incident ion energy
to 400 keV.
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transfer probability from the KLI-SIC calculation is not ver
close to the TDHF calculation, but lies around the midd
between the TDHF and TDLDA calculations. Therefore, w
conclude that the KLI-SIC method is not a very good a
proximation to the TDHF for the charge-transfer probabili
though it works to improve the TDLDA result to some e
tent.

In Table III we show the cross sections of electron
moval from the target atom calculated by different theori
The incident energy is fixed at 400 keV. As noted above,
difference is the largest for the one-electron removal, an
amounts to about 20% between the cross sections of TD
and TDLDA methods. The difference is much smaller for t
multiple charge removal. The difference of the total char
transfer thus reflects mainly that of the one-electron remo
and is about 10–15 %.

For the multiple electron-transfer process, the second
higher ionization potentials are relevant in the classical ov
barrier model. In the static calculations, the difference of
first and second ionization potentials reflects mainly the H
tree potential of the highest occupied orbital. Therefore,
difference between the orbital energy and the ionization
tential in the LDA calculation becomes less significant f
the second ionization potential and higher. This fact is c
sidered to explain the small difference of the electron
moval cross sections of two and more electrons.

For singly and doubly charged ions, a much larger diff
ence in the cross sections was reported depending on
treatment of exchange effect@10#. We expect that this large
difference originates from the discrete nature of the orbit
of singly and doubly charged projectile ions. That is, f
singly and doubly charged ions, the density of levels in
projectile ion is not high; the final states to be occupied
the transferred electrons are rather limited. In this case,
charge-transfer probability is considered to depend cruci
on the difference of the orbital energies in the projectile a
target. Since the different treatment of exchange causes l
changes of the orbital energies, it may have a large effec
the charge-transfer probability depending on whether or
there are orbitals of the projectile ion which are appro
mately degenerate to the orbitals of the target atom. C

t
set

TABLE III. The cross sections of electron removal from th
target atom are calculated with different treatments of the excha

No. of KLI-SIC KLI-SIC
electrons TDHF ~X only! ~XC! TDLDA

1 28.09 31.42 30.24 34.36
2 14.78 14.80 14.43 15.83
3 7.88 8.07 7.95 8.53
4 4.67 4.85 4.80 4.98
5 2.78 2.95 2.93 2.96
6 1.34 1.49 1.48 1.47
7 0.41 0.48 0.48 0.47
8 0.06 0.07 0.07 0.07

Total 60.00 64.13 62.39 68.68
1-9
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versely, in our present study of the electron transfer t
highly charged ion, the density of states in the high
charged projectile ion is very high and the effects related
the discrete nature of the projectile ion orbitals are expec
to be small. We thus consider that our conclusion, that
ferent treatments of the exchange effect produce the dif
ences in the one-electron removal cross section by 20%
not contradict Ref.@10#, which reported a much larger effec
for singly and doubly ionized projectiles.

IV. SUMMARY

We have presented time-dependent mean-field calc
tions of charge-transfer reactions between a highly char
ion and atom, taking Ar81 and Ar as examples. A direc
method is employed to solve the time-dependent mean-
equation in real-space and real-time. We employ the sa
Hamiltonian as that in first-principles calculations of t
electronic ground states of condensed-matter systems.
calculation includes no empirical parameter, and we can
croscopically describe the electronic dynamics of the m
tiple electron-transfer processes. The time evolution of
electron-density distribution also provides us with an int
tive picture of the dynamics.

We have elucidated basic dynamics of the charge-tran
processes by showing results for various incident ion en
. A

.

ev
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gies and various impact parameters in the adiabatic ti
dependent local-density approximation. For reactions of
cident ion velocities below 1 a.u. and not very small impa
parameters, the reaction dynamics is consistent with the
ture of classical overbarrier model. At higher incident en
gies, the change of the dynamics is observed from the tra
fer to the continuum emission. To see the significance of
correct treatment of the exchange effect, two methods w
improved treatments of the exchange effect have been
sidered beyond the simple adiabatic local-density appro
mation: a self-interaction correction approach and a full n
local treatment of exchange in the time-dependent Hart
Fock theory. The correct nonlocal treatment of exchange
the largest effect on the one-electron transfer probability
is found to reduce the one-electron removal cross section
about 20% compared to the calculation by the adiabatic tim
dependent local-density approximation.
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