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Effective potential energies and transport cross sections for interactions of hydrogen and nitroge
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The interaction energies for N2-He and N2-H2 are calculated by accurateab initio methods. The virial
coefficient and differential scattering cross section for N2-H2 are calculated; the theoretical results are com-
pared with experimental data. The transport collision integrals for N2-H2 and N2-N2 interactions are calculated
and tabulated; the results yield transport coefficients that compare well with measured data. Transport coeffi-
cients are found to be determined accurately from the interaction energies for a specific configuration of the
molecule formed from the interaction partners. Comparisons with results of measurement and accurate calcu-
lations demonstrate that the transport properties of complex molecular interactions can be determined rapidly
and fairly accurately from the interaction energies of simpler systems using combination rules for the short-
range parameters of effective interaction energies and the coefficients for the long-range forces. The coeffi-
cients for a two-parameter temperature expansion of diffusion and viscosity are tabulated for a realistic
universal potential-energy that is based primarily on the results of very accurate calculations of the He-He
interaction energy.

PACS number~s!: 34.20.Mq
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I. INTRODUCTION

The transport properties of the interaction of hydrog
and nitrogen are required for studies of certain hydrog
burning propulsion systems and the corresponding envi
ment of their space vehicles. The H-N and N-N interact
energies for the states of the molecule that correspon
dissociation into ground-state atoms have been calcul
@1–3# and the results have been applied to determine
transport collision integrals for these systems. Similarly,
potential-energy surfaces for the interactions H2-H,N2-H,
and N2-N2 have been determined@4–7# and used to obtain
@6,8# the transport integrals for the atom-molecule collisio
In addition, we have tabulated@9# the collision integrals for
H-H and H2-H2 interactions that were calculated from acc
rate interaction energies. We have also calculated the in
action energies and transport data for H2-N and N2-N colli-
sions @10#. In the present work, we calculate interactio
energies of the unlike systems N2-He and N2-H2 and tabulate
the collision integrals for N2-H2 and N2-N2. The present
work completes the transport database required for inte
tions between all the neutral atoms and diatomic hom
nuclear molecules of hydrogen and nitrogen.

The calculation of potential energies required for conv
tional determinations of transport properties can be a v
laborious task. Moreover, these calculations become imp
tical for systems involving the interactions of large mo
ecules, such as those required for studying or modeling
deposition and etching processes for the manufacturing@11#
of microelectronic devices. In this study, we apply molecu
symmetry to identify effective potential energies that yie
accurate approximations to those transport properties suc
diffusion and viscosity that are dominated by elastic scat
ing processes. Furthermore, we present a realistic t
parameter universal transport formulation that is based
1050-2947/2000/62~6!/062709~15!/$15.00 62 0627
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the results of accurateab initio calculation of interaction en-
ergies and is compatible with a transport database consis
of potential parameters. Finally, we illustrate that effecti
potential energies for complex systems can be readily p
dicted from the interaction energies for simpler system
such as those involving He, using combination rules for
repulsive energy and the long-range interaction coefficie

The determination of the interaction energies is descri
in Sec. II. The application of the molecular interaction en
gies to the determination of virial coefficients, scatteri
cross sections, and transport data is contained in Sec.
Approximations to reduce the computational effort requir
to determine transport data are examined in Sec. IV. Fina
conclusions can be found in Sec. V

II. MOLECULAR INTERACTION ENERGIES

A. Atom-molecule interactions

The geometry for atom-homonuclear molecule orien
tions is specified@12# in terms of the separation distancer,
from the center of the atom to the center of mass of
homonuclear diatomic molecule, and the angleu between a
line joining the center of the atom with the center of mass
the molecule and the molecular symmetry axis pass
through the nuclear centers.

The potential-energy surface describing ato
homonuclear molecule interactions for a fixed internucl
separation distance can be accurately represented usin
expansion

V~r ,u!5 (
n50

v2n~r !P2n~cosu!, ~1!

whereP2n(cosu) is a Legendre polynomial.
©2000 The American Physical Society09-1
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For small anisotropy, the spherically averaged poten
v0(r ) can be determined from the orientation@6,8# specified
by the angle

u05cos21~1/A3! ' 54.735 610°, ~2!

for which P2(cosu0) vanishes. Similarly, quantities such a
transport cross sections that vary slowly withu can be cal-
culated with reasonable accuracy@6,8,10# from the interac-
tion energies for the orientation specified byu0. Hence,
V(r ,u0) can be considered to be an effective spherical
tential for the determination of transport cross sections.

We calculate the He-N2 rigid-rotor potential-energy for
the u0 orientation accurately using a high-level quantu
chemistry method in order to investigate the validity of t
approximations of Sec. IV. Specifically, a coupled-clus
singles and doubles approach@13# that includes a perturba
tional correction@14# for triples @CCSD~T!# is combined
with large basis sets; the atom-centered wave functions
obtained from the augmented correlation-consist
polarized-valence quadruple zeta~aug-cc-pVQZ! of Dunning
and co-workers@15–17#. Vladimiroff @18# and Burtonet al.
@19# have shown that significantly lower energies can
readily achieved by adding bond functions to the basis
The rate of convergence of calculations that take the ba
set superposition error~BSSE! into account has been exam
ined for both strong@20,21# and weak@22,23# molecular
binding. Reliable values of the potential-energy can be
tained @22,23# by using computational methods that corre
for BSSE. Midpoint-centered bond functions@22# are in-
cluded in the present calculation and the counterpo
method@24# is used to remove BSSE.

Our calculated values forV(r ,u0) are shown in Fig. 1 for
large values ofr. Note that our values lie only slightly lowe
than the corresponding values that are interpolated from
results of the fourth-order Møller-Plesset perturbation~MP4!
calculations of Hu and Thakkar@25# using Eq.~1!. Certain
effective potential energies that are deduced from exp
mental data are also compared with the theoretical resul
Fig. 1. We show that a potential energy that reprodu
@26,27# the measured viscosity data has a potential well t
is considerably deeper than that of theab initio calculations;
this comparison illustrates that viscosity data for a narr
range@26# of high temperaturesT alone is not sufficient to
determine a meaningful effective potential energy at largr.
Contrarily, the effective potential-energy from the corre
tion of Bzowskiet al. @28# that reproduces measured data
both the second virial coefficientB(T) and the transport dat
agrees fairly well with the theoretical results.

Theab initio results are extended to largerr using a long-
range expansion of the interaction energy. The orientat
averaged leading dispersion energyC̄6 obtained from mea-
sured photoabsorption cross sections and other data
Meath and Kumar@29# is 10.23ea0

2. The higher-order disper
sion coefficients can be obtained from the results of the p
turbation calculation of Hettemaet al. @30#. The small con-
tribution from the induction terms can be determined fro
the formulation of Ref.@30# using the polarizabilities of the
atom and multipole moments of the molecule. The pola
06270
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abilities of He have been calculated@31# accurately; the mea
sured values of the quadrupole momentQ2 and the hexade-
capole momentQ4 of N2 are 21.04ea0

2 @32# and 28.5ea0
4

@33#, respectively. The results of the present calculat
agree well with the corresponding results of the long-ran
expansion. For example, atr 510, the values ofab initio
energy Vc(r ,u0) and the long-range expansionVLR(r ,u0)
are 212.8mEh and 213.0mEh , respectively. We estimate
that the short-range exchange repulsion@34# contributes
about 0.1mEh ; hence, the actual difference between theab
initio and long-range energies is only about 0.1mEh .

The interaction potential for smallr is required for the
calculation of transport properties at high collision energ
E. Since the N2-He interaction energy has a van der Waa
minimum at larger, the potential-energy function develope
by Tang and Toennies@35# for atom-atom interactions can b
adapted for the analysis@4# of the repulsive energy for inter
actions involving molecules. The general form of the mo
fied Tang-Toennies potential-energy functionVMTT(r ,v) for
collisions involving molecules has been applied successf
in previous work@4,8,7# and is outlined in Appendix A. The
ab initio interaction energiesVc(r ,v) are analyzed using the
short-range repulsive energy

VSR
c ~r ,v!5Vc~r ,v!2VDLR~r ,v!, ~3!

FIG. 1. N2-He potential-energy curves at larger. The solid
circles represent the calculated results atu0 from the present work
and the crosses represent the results of Ref.@25# as described in the
text. The solid curve was obtained from a spline fit to the pres
calculation. The dotted and dashed curves represent the pote
curves of Refs.@27# and @28#, respectively.
9-2
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EFFECTIVE POTENTIAL ENERGIES AND TRANSPORT . . . PHYSICAL REVIEW A 62 062709
where VDLR(r ,v) is obtained from the long-range coeffi
cients described above and the short-range repulsive pa
eter r, as described in Appendix A, using Eqs.~A1c! and
~A1d!. For atom-homonuclear interactions such as those c
sidered here,v is specified simply by the angleu. The quan-
tity r is calculated using the iterative procedure outlined
Appendix A.

The values of lnVSR
c (r ,u) are displayed in Fig. 2. The

linear behavior of the curves shown in Fig. 2 indicates t
VSR

c (r ,v) for fixed u can be described well by an expone
tial function for a broad range ofr and, consequently, tha
the potential-energy data could be represented well byVMTT
as in Refs.@4#, @6#, and @10#. Note that the results of the
present calculation lie slightly lower than the correspond
results of Ref.@30# in Fig. 1. The uniform variation of the
curves for the selected values ofu indicates @6# that
VSR

c (r ,u) primarily exhibits the simple behavior describe
by a polynomial expansion of the form~1! with only two
terms. This observation is confirmed by the small differen
betweenVc(r ,u0) and v0(r ), which indicates that there i
only a small contribution from the higher-orderPn(cosu) for
n.2.

The small differences between the present data and

FIG. 2. N2-He repulsive potential-energy curves at smallr. The
full circles are obtained from the results of the present calculatio
u0. The data points for the angles0°,45°, and 90° were obtaine
from the calculated results of Ref.@25#; the data points for 30°,60°
and the dotted and dashed curves@for v0(r ) and V(r ,u0, respec-
tively# were determined from the fit of Eq.~1! to the calculated
results of Ref.@25#. All curves were obtained from spline fits to th
data.
06270
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corresponding results obtained from Ref.@25# shown in Figs.
1 and 2 indicate that results of the MP4 approximation yi
a global potential-energy that is satisfactory for the comp
sons of Sec. IV.

B. Molecule-molecule interactions

For this work, the potential-energy for the interaction
homonuclear diatomic molecules is specified@7# by the fol-
lowing coordinates. The lengthr is the separation distanc
between the center of mass of the H2 molecule and the cen
ter of mass of the N2 molecule. The anglesua andub specify
the orientation of the symmetry axis of the H2 molecule and
the N2 molecule, respectively, with respect to thez axis pass-
ing through the center of mass of each molecule. The an
f is the difference between the azimuthal angles, i.e.,

f5fa2fb . ~4!

The potential-energy can be expanded in polynomials@7#,

V~r ,ua ,ub ,f!5( cLaLbMdLaLbM~ua ,ub ,f!, ~5!

where only zero or even values ofLa and Lb are allowed
when the functionsdLaLbM are represented@7# by spherical
harmonics, i.e.,

dLaLbM~ua ,ub ,f!5PLaM~cosua!PLbM~cosub!cos~Mf!,
~6!

wherePL,M is an associated Legendre polynomial.
The determination of the complete potential-energy s

face requires a large computational effort. For interactions
like molecules, Koida and Kihara@36# have shown that nine
orientations are sufficient to approximate the spherical av
age of quantities that can be represented by expansion~5!
for L<4 using the relation found on p. 45 of Ref.@36#. In
Appendix B, we show that the extension of their approach
include interactions between unlike molecules requires
additional three orientations. The angles that specify all
the required orientations to determine spherically avera
quantities using the equivalent Koida-Kihara approximat
for unlike molecules~KKU ! expressed by Eq.~B11! are de-
scribed in Table I.

The N2-H2 potential energies are computed for the orie
tations of Table I usingab initio methods, which are de
scribed in Refs.@37# and @7#. These results are extended
large r for the applications described in Sec. III using lon
range expansions of the interaction energy. The major c
tribution to the electrostatic energy can be obtained using
multipole formulation of Ref.@38# and the multipole mo-
ments of the molecules. The moments for H2 have been cal-
culated accurately; the values ofQ2 and Q4 are 0.483ea0

2

@39# and 0.321ea0
4 @40#, respectively.

The long-range dispersion coefficients can be expres
in the form

Cn~v!5C000
n F11( gLaLbM

n dLaLbM~v!G , ~7!

at
9-3
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JAMES R. STALLCOP, HARRY PARTRIDGE AND EUGENE LEVIN PHYSICAL REVIEW A62 062709
where the quantitiesC000
n are the long-range coefficients o

the spherically averaged potential-energyV̄(r ). The values
of gLaLbM

n for the body-fixed frame of the present work a

obtained from the calculated results of Refs.@41# and @42#
for a space-fixed frame using the transformation of Ref.@41#.
The value@29# selected for the leading coefficientC000

6 is
29.46a0

6Eh . The values of the higher-orderC000
n are obtained

from Refs.@41# and @42#.
The formulation of Appendix A is applied to determin

VSR
c (r ,v) using Eq.~3! from theab initio data forVc(r ,v)

and the long-range interaction energies as described ab
For the interaction of homonuclear molecules,v is specified
by the anglesua ,ub , andf. The results for lnVSR(r ,v) are
shown in Fig. 3 for the KKU orientations. Again the line
behavior of the curves of Fig. 3 indicates an exponen
behavior forVSR

c (r ,v) for fixed v as found in Ref.@7#. The

result obtained from theV̄(r ) that is calculated from the
Vc(r ,v) using the approximation~B11! and theC000

n de-
scribed above is also shown for comparison. Note that
result obtained fromV̄(r ) lies slightly above the correspond
ing result that is obtained from the potential-energyVdd8(r )
for the dd8 configuration. Analogous to the atom-molecu
comparison discussed above, one concludes from the re
of Appendix B that the contributions from the higher-ord
polynomialsPL,M for L.2 produce a larger repulsion tha
that found for the approximate potential-energy obtain
from Eq. ~B10! for a truncation withL<2.

The potential-energy surface for N2-N2 interactions has
been constructed by adjusting@7# the results ofab initio
calculations to yield agreement with measured values
B(T). The modified energies were obtained from a sm
rotation @7# of VSR

c (r ,v) with the angular variation con
strained by the results of calibration calculations with lar
basis sets. More accurate recentab initio calculations@43#
that use bond functions in a manner similar to that descri
above for the present He-N2 calculations yield interaction
energies that are only slightly lower at smallr, but signifi-
cantly lower in the region of the van der Waals minimum
large r than the corresponding energies of theab initio cal-

TABLE I. KKU orientations for homonuclear molecules.~The
KK orientations required for the interaction of like molecules a
listed above. The angles of the orientationsxz,dz, anddx required
for interactions of unlike molecules are obtained by simply int
changing the values ofua andub for zx,zd, andxd, respectively.!

Notation ua ub f

zz 0 0
zx 0 p/2
xx p/2 p/2 0
xy p/2 p/2 p/2
zd 0 u0

xd p/2 u0 p/4
dd u0 u0 0
dd8 u0 u0 p/2
dd9 u0 u0 p
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culations of Ref.@7#. The energies of the improved calcula
tions @43# agree well with the modified potential energies
Ref. @7#. The agreement is illustrated by Fig. 4, where t
computed values ofV(r ,v) of Ref. @43# are compared with
the corresponding results for the potential-energy surface
tained by the VS method@7# ~where the variation inr is
determined using the results of calculations with larger ba
sets! for the various orientations of Fig. 2 of Ref.@7#. The VS
potential-energy surface is applied in Secs. III and IV belo

The scattering calculations of the present work depe
primarily on the repulsive region of the potential energie
We consider effective spherical potential energies
molecule-molecule interactions that are analogous to th
discussed above for atom-molecule interactions. The va
of V̄(r ), a choice for the calculation of high-T transport data
@28,44#, andVdd8(r ), selected by Eq.~B10! to obtain aver-
ages of quantities with a small anisotropy, that are de
mined from the results ofab initio calculations for the inter-
actions of hydrogen and nitrogen molecules are shown
Fig. 5. We note the the curves forV̄(r ) lie above the corre-
sponding curves forVdd8(r ) for all the interactions. The two
curves are nearly the same for H2-H2, where the interaction
potential energy has a small anisotropy, but are well se
rated for the other two interactions, which have lar
anisotropies.

-

FIG. 3. Repulsive potential-energy curves for N2-H2 interac-
tions for the orientations defined in Table I. The data points
determined from theab initio results; all curves are obtained from
spline fits to the data. Thedd8 orientation is represented by
dashed curve; the results for all other orientations are displaye

solid curves. The dotted curve is determined fromV̄(r ).
9-4
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EFFECTIVE POTENTIAL ENERGIES AND TRANSPORT . . . PHYSICAL REVIEW A 62 062709
The results are also compared in Fig. 5 with interact
energies that were deduced from experimental results.
show the spherical interaction energy curves@45# that repro-
duce the measured values of the N2-H2 differential scattering
cross sections and also the N2-N2 result @28,44# obtained
from the values ofV̄(r ) that were deduced from measure
cross-section data using combination rules. Similarly,
show an effective N2-N2 interaction energy that reproduce
@46# the measured data forB(T), viscosityh(T), and differ-
ential scattering cross sections. Note that the results of
@46# agree fairly well with the corresponding curve fo
Vdd8(r ).

III. APPLICATIONS OF THE MOLECULAR
INTERACTION ENERGIES

A. Second virial coefficient

At low T, the quantityB(T) is sensitive to the anisotrop
of V at large r. We use semiclassical approximations f
B(T) that are obtained from an expansion in\; the KK or
KKU approximations described above may be applied
each of the terms of this expansion. The first-order corr
tions to the classical valueB0(T) are obtained using the
formulation of Pack@47#.

The global potential-energy surface for N2-N2 of Ref. @7#
is applied to investigate the accuracy of the KK approxim

FIG. 4. Comparison of N2-N2 potential energies forr in the
region of the van der Waals minimum atdd9(u) orientations@7# for
the various values of the angleu listed in the figure. The solid
curves are determined from the VS results@7#; the data points are
the results from theab initio calculation of Ref.@43#.
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tion for B(T) when the anisotropy of the molecular intera
tion is large. We find that the errors inB0(T) and B(T)
introduced by the KK approximation are only about 0.04
and 0.14%, respectively, at 75 K~the lowest value ofT of the
measurements applied to construct@7# the potential surface!
and decrease with increasingT. The largest contribution to
the error comes from the first-order correctionB1a(T), which
is determined from the angular derivatives ofV. We con-
clude that the KK approximations would be adequate for
analysis@7# of the measured data forB(T) since the experi-
mental uncertainties are considerably larger than the KK
rors.

The N2-H2 potential energies calculated without BSS
corrections are applied to determineB(T) using the KKU
orientations of Table I and the approximation~B11!. The
second-order radial contributionB2r(T) is included using the
result obtained by adapting the central-field formulation
Ref. @38#. The results are compared with measured data
Fig. 6. Adding the BSSE correction would raise the curve
the calculated result slightly; on the other hand, the con
bution from the neglected term forB2a(T) would lower the
curve. The additional effort required to obtain higher-ord
terms of the semiclassical expansion would not necessa
yield a more meaningful comparison with the experimen
data, since the measured results most likely

FIG. 5. Effective potential energies for the interactions of t
molecules of hydrogen and nitrogen at smallr. The dashed and

dotted curves representVdd8(r ) and V̄(r ), respectively. The solid,
long- and short-dashed, and the dash-dotted curve were determ
from the interaction energies of Refs.@46#, @44#, and @45#, respec-
tively, which were deduced, primarily, from measured data as
scribed in the text.
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contain contributions from molecular dimers@52#, which are
difficult to determine, but can be significant at the lowerT of
Fig. 6.

B. Scattering calculations

The major contribution to the scattering at small scatt
ing angles comes from collisions with large impact para
eters; since the distance of closest approach is large an
molecular collision partners are rotating during the collisio
V̄(r ) is expected to provide a good approximation to t
small-angle differential scattering cross sections. In App
dix C, we show that the scattering approximation of Par
and Pack@53#, which was derived using both centrifugal an
energy sudden approximations, yields cross sections tha
nearly the same as those determined fromV̄(r ) if the anisot-
ropy of the long-range coefficients for the interaction of t
collision partners is small~e.g., the values ofg are small!. At
smaller impact parameters where a semiclassical approx
tion to the scattering is valid, the major contribution to sc
tering comes from the region of the closest distance of
proach@27#. Hence, the sudden approximation is expected
yield reasonable approximations to differential scatter
cross sections for nearly all scattering angles and, co
quently, to the total scattering cross sections, such as t
required for the determination of transport properties for
interactions considered in this paper. In addition, we po
out that the values ofCn for the dd8 orientation are nearly

FIG. 6. The second virial coefficient for N2-H2 interactions. The
points represent the measurements of Refs.@48–51#. The solid
curve was obtained from the present calculations as described i
text.
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the same as those forV̄(r ) if the g for large L are small;
hence, the small-angle scattering cross sections for thedd8
orientation are expected to provide a reasonable approx
tion to the corresponding observed results.

In this work, scattering cross sections that represent
contribution from all orientations of the collision partners a
determined from the interaction energies of Sec. II that c
tain corrections for BSSE using sudden approximations@53#.
A quantum-mechanical description is used to determine
scattering in the central fieldV(r ,v) for the orientation
specified byv. The scattering phase shifth l(E) for each
angular momentum quantum numberl is calculated at lower
E from a numerical integration of the Schro¨dinger equation,
using the method presented by Levinet al. @54#. A semiclas-
sical method@55# is used to determineh l(E) at E above a
threshold energyEt where the difference in the cross se
tions between the two methods does not exceed 0.
~Hence, there is a small uncertainty in the cross section
the present calculation for a small range ofE aboveEt .)

1. N2-H2 differential scattering cross sections

The N2-H2 differential scattering cross section is calc
lated for each of the KKU orientations of Table I; the a
proximation~B11! is then used to obtain the cross sectio
that would be observed in the laboratory. The computed
sults for the peak velocity of the experiment of Milleret al.
@45# are compared with measured cross sections in Fig
The calculated results represent high-resolution cross
tions in that we have not averaged the results over the sp
@45# of the beam velocities. The measured cross sections@45#
of Fig. 7 are obtained using the transformation from the la
ratory system to the center of mass system described in
@56#. We also show the results calculated fromV̄(r ) and
Vdd8(r ). Note that the cross section forV̄(r ) agrees well
with the corresponding result from sudden approximation
small scattering angles; this agreement is explained by
analysis of Appendix C. The locations of the peaks and v
leys in the theoretical cross section agree well with the m
sured results; an averaged cross section that takes the e
and angular spread of the beams as well as the angular
lution of the measuring device into account would have
appearance similar to the less pronounced structure exhib
by measured results.

2. Transport collision integrals and properties

We have shown that the sudden approximations@53# yield
H-H2 collision integrals that are accurate@8#, i.e., our calcu-
lated values of the diffusion and viscosity coefficients ag
with the corresponding results from close-coupling calcu
tions to within 1%. The theoretical diffusion agrees we
@6,8# with measurements at room temperature. Furtherm
we have shown that our calculated viscosity for H2-H2 col-
lisions agrees well@8,9# with the corresponding measure
results in the low-T region where the uncertainty in the ex
perimental data is relatively small.

The transport cross sectionsQn(E,v) for each orientation
are determined from theh l by the sum

the
9-6



e

re

i-

K
o
x

th

is

re
to

rre-
that

ich
a

he

.

duc-
s-

-

-

e is
.

a

y
e

ns
e

ula

EFFECTIVE POTENTIAL ENERGIES AND TRANSPORT . . . PHYSICAL REVIEW A 62 062709
Qn5
4p

k2 (
l 50

`

(
n.0

n

ann
l sin2~h l 1n2h l !, ~8!

wherek is the wave number, and the allowed values ofn are
even or odd according to the parity ofn. The coefficientsann

l

can be determined from recursion relations@2#.
The cross sectionsQ̄n(E) that would be observed in th

laboratory are obtained from the appropriate integral@53# of
Qn(E,v) over all orientations. The collision integrals a
determined from an average@27# over a Maxwell-Boltzmann
velocity distribution, i.e.,

Vn,s~T!5
F~n,s!

2~kT!s12E
0

`

e2E/kT Es11Q̄n~E!dE, ~9!

where k is the Boltzmann constant andF(n,s) is a hard-
sphere factor@2#.

The values ofQ̄n(E) for N2-H2 are determined from the
Qn for the KKU orientations of Table I using the approx
mation ~B11!. Since we find that the values ofQ̄n(E) for
N2-N2 obtained from the VS potential energies using the K
approximation are essentially the same as the results
tained by numerical integration over all orientations, we e
pect that the KKU orientations are sufficient to determine

FIG. 7. Differential scattering cross section for N2-H2 interac-
tions as a function of the scattering angle in the center of m
system. The points represent the experimental values of Ref.@45#;
the stated uncertainties for the measurements are indicated b
error bars. Only relative values of the cross sections have b
measured; the scale factor for the experimental cross sectio
chosen to allow agreement of the calculated and measured valu
large scattering angles. The dashed and dotted curves are calc

from Vdd8(r ) and V̄(r ), respectively.
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N2-H2 transport cross sections with an accuracy that
smaller than the uncertainty in theab initio energies.

The values ofV(T) for H2-N2, and N2-N2 are listed in
Tables II and III, respectively; the tabulated quantities a
required to determine transport properties for a mixture
second order@27#. The values ofV(T) in Table III at lowT
have been obtained from a small adjustment of the co
sponding calculated values to yield transport properties
agree with accurate measurements@57–59# of diffusion and
viscosity. The values of the diffusion coefficient for N2-H2
that are calculated@38# from the V listed in Table II are
shown in Fig. 8 and compared with the measured data, wh
are available at lowerT. The calculated diffusion includes
small second-order mixture contribution@27# for the compo-
sition @60# selected for correlation of measured data. T
calculated viscosity coefficient for N2-N2 is compared with
the results of simple approaches in the following section

IV. TRANSPORT APPROXIMATIONS

A. Effective potential energies

The identification of the effective potential-energyVe(r )
that yields transport cross sections leads to substantial re
tion in the computational effort required to determine tran
port data. For He-N2 interactions, we find thatV(r ,u0) pro-
vides values ofVe(r ) that yield fairly accurate atom

FIG. 8. The diffusion in units of cm2/s as a function of tempera
ture in K at a pressure of 1 atm for N2-H2 interactions. The solid
line is determined from the second-order correlation of Ref.@60# for
a 50/50 concentration of hydrogen and nitrogen. The dashed lin
obtained from the present calculations as described in the text
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TABLE II. N 2-H2 collision integrals (Å2).

T ~K! V1,1 V1,2 V1,3 V1,4 V1,5 V2,2 V2,3 V2,4 V3,3

100 12.13 10.78 10.09 9.64 9.31 13.35 12.29 11.66 11
150 10.74 9.79 9.25 8.86 8.56 11.92 11.17 10.69 10
200 10.00 9.20 8.72 8.37 8.11 11.14 10.54 10.13 9.
300 9.12 8.48 8.06 7.72 7.47 10.28 9.79 9.42 9.
400 8.59 7.99 7.60 7.32 7.09 9.73 9.29 9.00 8.6
600 7.91 7.38 7.02 6.70 6.43 9.07 8.67 8.34 8.1
800 7.47 6.94 6.51 6.29 6.08 8.60 8.13 7.91 7.5
1000 7.12 6.62 6.26 5.98 5.74 8.26 7.88 7.58 7.
1200 6.84 6.36 6.00 5.72 5.48 7.98 7.61 7.30 6.
1500 6.51 6.04 5.68 5.40 5.16 7.64 7.26 6.96 6.
2000 6.11 5.63 5.28 5.00 4.78 7.21 6.83 6.52 6.
3000 5.53 5.07 4.73 4.46 4.23 6.60 6.23 5.92 5.
4000 5.13 4.67 4.34 4.09 3.89 6.16 5.80 5.53 5.
6000 4.59 4.15 3.85 3.57 3.34 5.59 5.25 4.93 4.
8000 4.21 3.78 3.45 3.20 3.01 5.16 4.80 4.51 4.
10000 3.92 3.49 3.18 2.93 2.71 4.84 4.48 4.19 4.
,
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homonuclear diatomic molecule transport cross sections
in other work @6,8,10#. This is illustrated using the N2-He
diffusion cross section that is calculated in the sudden
proximation; the results for the diffusion coefficient are co
pared with the measured data in Fig. 9.

The molecular viscosity collision integrals that are calc
lated as described in Sec. III are shown in Fig. 10; the c
responding results that are obtained using the results@9# for
H2-H2 are included for comparison. When the anisotropy
small, such as for H2-H2 interactions, bothV̄(r ) andVdd8(r )
yield accurate values for the viscosity; note, however, t
the values calculated fromVdd8(r ) provide a good approxi-
mation even for the cases with large anisotropy. Since
value of Qn varies slowly with angular variation, this goo
06270
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agreement is expected from the approximation~B10! as

mentioned above. In contrast, the values obtained fromV̄(r )
for large anisotropy are too large at highT.

From a consideration of the results of Appendix B and
comparisons of Fig. 10, one concludes thatVdd8(r ) provides
values forVe(r ) that yield transport properties for interactio
of homonuclear molecules with a relatively small compu
tional effort. Furthermore, one concludes that the additio

work required to determineV̄(r ) can be counterproductive
if one’s goal is to determine transport properties.

In the remainder of this section, we investigate additio
approximations that further reduce the computational ef
to obtain transport data fromVe(r ).
.60

.03

.87
.77
.15
.50
98
84
54
18
71
07
64
04
69
46
TABLE III. N 2-N2 collision integrals (Å2).

T ~K! V1,1 V1,2 V1,3 V1,4 V1,5 V2,2 V2,3 V2,4 V3,3

100 17.95 15.30 13.67 12.62 11.89 20.71 18.42 16.75 16
150 15.04 13.01 11.86 11.14 10.65 17.31 15.46 14.26 14
200 13.66 12.01 11.11 10.55 10.16 15.54 14.07 13.16 12
300 12.23 11.05 10.39 9.94 9.63 13.72 12.72 12.08 11
400 11.45 10.47 9.94 9.60 9.33 12.78 12.02 11.58 11
600 10.60 9.85 9.40 9.04 8.74 11.80 11.24 10.84 10
800 10.07 9.39 8.87 8.65 8.42 11.25 10.70 10.43 9.
1000 9.79 9.17 8.76 8.45 8.18 10.94 10.54 10.22 9.
1200 9.46 8.88 8.47 8.15 7.88 10.67 10.25 9.92 9.
1500 9.07 8.52 8.11 7.79 7.52 10.30 9.88 9.54 9.
2000 8.60 8.05 7.65 7.34 7.08 9.82 9.40 9.08 8.
3000 7.94 7.42 7.03 6.72 6.46 9.16 8.76 8.45 8.
4000 7.49 6.97 6.59 6.31 6.11 8.70 8.31 8.03 7.
6000 6.87 6.36 6.01 5.69 5.69 8.08 7.68 7.36 7.
8000 6.43 5.90 5.63 5.54 5.32 7.58 7.34 7.28 6.
10000 6.06 5.64 5.40 5.13 4.81 7.32 7.10 6.81 6.
9-8



an
p
fu

ne
-
o

ha

y,
iri

io
h

ce
al

for

e
on

a
pa-
f

l

r
u-

-

Re
ion

n the

id

EFFECTIVE POTENTIAL ENERGIES AND TRANSPORT . . . PHYSICAL REVIEW A 62 062709
B. Universal collision integrals

Two-parameter formulations have been devised@27,28#
for transport coefficients that reproduce the measured tr
port data; however, we have shown in Sec. II that these
rameters may not be related to a physically meaning
potential-energy curve. In the following work, we exami
relationships among theVe(r ) calculated for various interac
tions and establish a theoretical formulation of the transp
coefficients that is based on realistic potential energies.

A simple universal potential-energy function, such as t
shown in Fig. 2 of Ref.@1#, is constructed from two scaling
parameters. Following correlation studies@28#, we choose
the Lennard-Jones parameterss @for which V(s)50# and
the potential well depthe to scale the length and energ
respectively. The accuracy of transport properties and v
coefficients calculated from accurateab initio He-He poten-
tial energies exceeds that of the best measurements@61#. We
select the He-He potential function of Janzen and Aziz@62#,
which is based on the results of calculations@63# with
symmetry-adapted perturbation theory~SAPT! and agrees
well with the results of a recent supermolecule calculat
@64#, to represent a universal potential-energy function. T
reduced potential-energy curveV(r )/e for He-He is shown
in Figs. 11 and 12 for large and small values of the redu
separation distancer /s, respectively. The reduced potenti

FIG. 9. The diffusion in units of cm2/s as a function of tempera
ture in K at a pressure of 1 atm for N2-He interactions. The solid
line represents the measured values from the correlation of
@28#. The dashed and dotted lines are obtained from calculat
using the potential-energy surface of Ref.@25# and V(r ,u0) from
the present calculations, respectively.
06270
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energies that are based on the results of accurateab initio
calculations are also shown for comparison. The results
He-N2 and N2-N2 are obtained from theVe(r ) described
above, i.e., theV(r ,u0) of Sec. II andVdd8(r ) from the VS
method@7#, respectively. The fairly good agreement of th
ab initio and He-He results indicates that universal collisi
integrals derived from the He-He interaction would provide
reasonable estimate of transport properties from the two
rameterss ande obtained from the potential-energy wells o
Ve(r ).

The expansion coefficientsan for the reduced universa
collision integralV! expressed in the form

ln~V!!5 (
n50

an@ ln~T!!#n, ~10a!

where the reduced temperature is

T!5T/e, ~10b!

are calculated to second order@27# from the He-He potential-
energy of Ref.@62#; the values are listed in Table IV fo
diffusion and viscosity. The collision integrals for a partic
lar interaction with parameterss and e are obtained from
Eq. ~10! and Table IV using

V~T!5s2V!~T/e! ~11!

f.
s

FIG. 10. The values ofV2,2(T) in units of Å2 as a function of
temperature in K for the collisions of H2 and N2. The solid lines
were calculated using the sudden approximation as described i
text. The dashed and dotted curves were obtained fromVdd8(r ) and

V̄(r ), respectively; for H2-H2, these curves are hidden by the sol
curve.
9-9



m
-
-
rs
I
e

ul
d

m

ow

that
s

-

u-
ibed

f.

th

-

g. 11.

JAMES R. STALLCOP, HARRY PARTRIDGE AND EUGENE LEVIN PHYSICAL REVIEW A62 062709
and are expressed in units of Å2 whens ande/k are in units
of Å and K, respectively.

C. Aufbau relations

Combining relations have been devised@65–67# for the
parameters of certain potential-energy functions. The co
bining relations@65# and measuredB(T) data have been ap
plied to determine parameters@28# that reproduce the mea
sured data for transport properties using a unive
formulation. The linear behavior of lnVSR

c discussed in Sec. I
and a consideration of the semiempirical approach of R
@28# leads one to construct a generalization that is based
the actualVe(r ) that are determined fromab initio energies.

Accurate H-N potential energies that are primarily rep
sive can be constructed@1#, using long-range coefficients an
the combining relations of Smith@66# derived for a repulsive
interaction, from accurateab initio H-H and N-N potential
energies. In the following work, we adapt the atom-ato
procedure@1# to includeVe(r ) for molecular interactions.

In general, we propose that the potential energyVe
b-b(r )

for determining transport data forb-b interactions can be
readily constructed~built up! using the following Aufbau
procedure. First, two pairs of repulsive parametersA and r
are determined@1# using the form~A1! from the known
quantitiesVa-a(r ) andVb-a(r ), where the superscripta rep-
resents a relatively simple system such as He, and kn

FIG. 11. Reduced potential-energy curves as a function of
reduced separation distance at larger. The solid curve is obtained
from the He-He interaction energy of Ref.@62#. The data points are
obtained from accurate calculations@3# of the atom-atom potential
energy and theVe(r ) described in the text.
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long-range coefficients. Then, the repulsive parameters
describeVSR

b-b(r ) are calculated from the combining relation

rb-b52rb-a2ra-a ~12a!

and

rb-blnS Ab-b

rb-b D52rb-alnS Ab-a

rb-a D2ra-alnS Aa-a

ra-a D . ~12b!

Finally, Ve
b-b(r ) is obtained using Eq.~A1! to combine

VSR
b-b(r ) and theVDLR

b-b (r ) that is obtained from known coef
ficients for the long-range forces.

The Aufbau procedure and the universal transport form
lation are tested using the interaction energies descr
above and the N2-N2 long-range coefficients of Ref.@7#. In
the molecule-molecule method, the systema represents H2;
the input quantitiesVH2-H2(r ) andVN2-H2(r ) are represented
by theVdd8(r ) obtained from the interaction energy of Re

e
FIG. 12. Reduced potential-energy curves at smallr. The solid

curve and the data points are the same as those described in Fi

TABLE IV. Coefficientsan for universal collision integrals.

n ln V1,1
! ln V2,2

!

0 0.3314843 0.4376297
1 20.5014776 20.5310961
2 0.1443690 0.1748287
3 20.0286224 20.0359928
4 0.0019269 0.0025472
9-10
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@9# and the calculated results described above, respectiv
The transport data are then calculated directly from the A
bau result forVe

N2-N2(r ) using the scattering methods d
scribed above. In the atom-molecule method, the systea
represents He; the input quantitiesVHe-He(r ) and VN2-He(r )
are obtained from Ref.@62# and are represented by the resu
for V(r ,u0) described above for N2-He interactions, respec
tively. In this case, the two parameterss and e are deter-
mined fromVe

N2-N2(r ) and then used to readily calculate th
N2-N2 transport data using the expansion for theV! of Eq.
~10! and the values ofan listed in Table IV.

In Fig. 13, the results for the viscosity that is obtained
both Aufbau methods are compared with the measured
available at lowT and the results from the present calcu
tion.

V. CONCLUSIONS

N2-He and N2-H2 interaction energies are computed
ab initio methods in Sec. II. Our results show that the n
linear behavior of lnVSR obtained from the general formula
tion of Appendix A allows an efficient determination of th
interaction energy with small computational effort when t
long-range forces are known.

FIG. 13. The viscosity in units of gm/~cm s! as a function of
temperature in K for N2-N2 interactions. The solid curve is obtaine
from measurements@59#. The dashed curve was calculated from t
V of Table III and includes a second-order correction@27# for a
pure nitrogen gas. The dash-dotted curve and the dotted curv
results of the Aufbau approximations for molecule-molecule a
atom-molecule methods, respectively, that are described in the
06270
ly.
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In Sec. III, we find that values ofB(T), scattering cross
sections, and diffusion coefficients calculated from the int
action energies for the KKU orientations of N2-H2 compare
well with the corresponding measured data. Collision in
grals for N2-H2 and N2-N2 that allow a determination o
transport properties to second order are tabulated.

In Sec. IV, we demonstrate that the interaction energ
for the u0 and thedd8 orientations are effective potentia
energies that yield accurate approximations to the trans
properties of atom-molecule and molecule-molecule inter
tions, respectively. Furthermore, we present a tabulation
coefficients that readily allows the transport properties to
determined from the Lennard-Jones parameters that des
the well of these effective potential energies. Moreover,
develop an Aufbau method that allows the determination
the effective potential energies for molecular interactio
from the interaction energies of simpler systems.

The identification and construction of effective potent
energies presented here allows a large reduction in the c
putational effort required to determine transport properti
In addition, the results of the present study should provid
useful guide for the determination of the effective potent
energies required for the interactions of larger molecu
with more complex symmetry, where calculations by co
ventional methods are not feasible.
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APPENDIX A: GENERALIZED POTENTIAL-ENERGY
FUNCTION

Our calculated potential energies that are primarily rep
sive can be conveniently analyzed or fitted well by a fun
tional form that has been adapted@7,8# from the result devel-
oped by Tang and Toennies@35# for an atom-atom van de
Waals interaction. The modified potential-energy is e
pressed by the sum

VMTT~r ,v!5VSR~r ,v! 1 VDLR~r ,v! ~A1a!

for each orientation specified by the anglesv. The short-
range repulsive energyVSR and the damped long-range a
tractive energyVDLR have the forms

lnVSR~r ,v!5 ln@A~v!#2r /r~v!, ~A1b!

VDLR~r ,v!52( f n@r /r~v!#
Cn~v!

r n . ~A1c!

The quantitiesA and r characterize the strength and rang
respectively, of the repulsive energy. The quantitiesCn(v)
are the coefficients of the long-range forces and the damp
function f n is obtained from an incomplete gamma functio
@68# of ordern11, i.e.,

f n~x!512exp~2x!(
k50

n
xk

k!
. ~A1d!

are
d
xt.
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The short-range constants required forVMTT can be cal-
culated@35,67# from the parameters that locate the minimu
of the potential-energy. We find, however, that an iterat
procedure which does not require prior knowledge of
well parameters, but only a few values ofV(r ,v), converges
rapidly. An initial value 0.5a0 for r allows satisfactory con-
vergence for all interactions that we have studied.

APPENDIX B: KOIDA-KIHARA ORIENTATIONS FOR
INTERACTION OF UNLIKE MOLECULES

We consider a functionF(ua ,ub ,f) that has the same
symmetry properties as the molecule formed from the in
acting homonuclear diatomic moleculesa and b; hence, it
can be expanded in polynomials in the form

F~ua ,ub ,f!5( cLaLbMdLaLbM~ua ,ub ,f!, ~B1!

where only zero or even values ofLa andLb are allowed. For
example, the coefficientscLaLbM are the same as those co

tained in Eq.~5! if F is the potential-energy. The anglesu
and f are defined in Sec. II and thedLaLbM are related to
spherical harmonics by Eq.~6!.

For terms withLaÞLb , it is convenient to write the sum
of the pairs from Eq.~B1! with the same value ofM as

cLaLbMdLaLbM1cLbLaMdLbLaM5cLaLbM
1 dLaLbM

1

1cLaLbM
2 dLaLbM

2 ,

~B2!

where we define

cLaLbM
6 5@cLaLbM 6cLbLaM#/2, ~B3!

and noting from the relation~5! that

dLbLaM~ua ,ub ,f!5dLaLbM~ub ,ua ,f!, ~B4!

we obtain

dLaLbM
6 ~ua ,ub ,f!5dLaLbM~ua ,ub ,f!6dLaLbM~ub ,ua ,f!.

~B5!

Hence, we have separated the expansion~B1! into pairs that
are symmetric or antisymmetric with respect to interchan
of the moleculesa andb, e.g., from Eq.~B5! one finds

dLaLbM
6 ~ua ,ub ,f!56dLaLbM

6 ~ub ,ua ,f!. ~B6!

To calculate the coefficients of the expansion~B1!, we
define the sum and difference

F6~ua ,ub ,f!5@F~ua ,ub ,f! 6 F~ub ,ua ,f!#/2.
~B7!

Combining Eqs.~B1!, ~B2!, and~B7!,
06270
e
e
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e

F6~ua ,ub ,f!5( cLaLbM
6 DLaLbM

6 ~ua ,ub ,f!, ~B8!

where the terms of Eq.~B1! for La 5 Lb are contained in the
sum forF1. Using Eqs.~B5!, we can write

DLaLbM
6 ~ua ,ub ,f!5S 2 2dLaLb

2
D dLaLbM

6 ~ua ,ub ,f!.

~B9!

The coefficientscLaLbM
2 vanish for like moleculesa andb.

The quantityc000 is the spherical averageF̄ and is con-
tained in the set of coefficientsc1; hence, only the set o
equations forF1 obtained from Eq.~B8! for the various
orientations require a simultaneous solution to determinF̄
for either like or unlike molecules. According to Eqs.~B8!
and ~B9!, we can adapt the relation on p. 45 of Ref.@36#
derived for the interaction of like molecules to approxima
F̄ for the interactions of unlike molecules simply by repla
ing F(ua ,ub ,f) in terms foruaÞub by F1(ua ,ub ,f). For
an expansion in spherical harmonics withL<2,

F̄'Fdd8 , ~B10!

and forL<4, the result of Ref.@36# becomes

F̄'
4

25
S11

6

25
S21

9

25
S3 , ~B11a!

S15
1

9
Fzz1

2

9
~Fzx1Fxz!1

2

9
Fxx1

1

9
~Fxy1Fyx!,

~B11b!

S25
1

3
~Fzd1Fdz!1

2

3
~Fxd1Fdx!, ~B11c!

S35
1

4
Fdd1

1

2
Fdd81

1

4
Fdd9 . ~B11d!

One can show that small@69# contributions from the terms
for d222 andd444 have been neglected on the right-hand-s
of relations~B10! and ~B11a!, respectively.

Furthermore, the selection@36# of orientations to approxi-
mate F̄ is based on the symmetry properties ofF; thus, it
follows that Eqs.~B11! should yield accuracy ofF̄ for unlike
molecules that is comparable to that obtained for like m
ecules.

According to Eqs.~B7!–~B9!, the potential-energy sur
face can be expressed

V~r ,ua ,ub ,f!5( @vLaLbM
1 ~r !DLaLbM

1 ~ua ,ub ,f!

1vLaLbM
2 ~r !dLaLbM

2 ~ua ,ub ,f!#,

~B12!
9-12
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wherev6(r ) specifies the variation with separation distan
For like molecules, thec2 vanish, as mentioned above, an
the expansion~B12! reduces to the result applied in Ref.@7#.
Lastly, we point out that the determination of the coefficie
from the values forV for selected orientations then reduc
to solving the two sets of simultaneous equations obtai
for each symmetry, e.g., Eqs.~B8! can be applied to obtain
one set of equations for thev1 and another for thev2.

APPENDIX C: SCATTERING FOR LARGE l

The small-angle sudden scattering cross sections for
V(r ,v) of Sec. II with small values ofg are compared be
low with the corresponding results obtained fromV̄(r ) using
approximations developed for scattering in a central-field
tential.

For large values ofl such thatV/E is small compared to 1
over the range of integration, the series expansion of Sm
et al. @70# provides a useful approximation to evaluate t
scattering produced by long-range forces. From their res
the JWKB phase shift can be expressed in the form@71#

h5
k

2Eb2

`

F~z!~z2b2!1/2dz, ~C1!

where

F~z!5 (
n50

`
1

G~n12!

dn11

dzn11 FznS V~z1/2!

E D n11G ~C2!

and the impact parameterb satisfies the semiclassical relatio

b5~ l 11/2!/k. ~C3!

When the potential falls off as an inverse power ofr for large
r, i.e.,

V~r ,v!→Cn~v!/r n, ~C4!

the integration of Eq.~C2! can be carried out analytically an
the phase shift becomes

h5
l

k (
n50

` GS n12

2
n2

1

2DGS 1

2D
G~n12!GS n11

2
n2nD F2

Cn

E S k

l D G
n11

.

~C5!

This series converges absolutely when

~n/2!n/2

~n/221!n/2 S k

l D
n uCnu

E
,1. ~C6!

For small scattering anglesu, the scattering amplitude ca
be approximated by a power series inu2. Taking the first
term of Eq.~C5!, the scattering amplitude can be integrat
analytically @72# to obtain
06270
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s

d

he

-

th

s,

f ~E,u,v!52
p

2~n21!k (
n50

~21!n

@G~n11!#2

~Gn!2[(n11)/(n21)]

GS 2
n11

n21
11D

3 HnnS u

2D 2n

, ~C7!

where

Gn~E,v!5

G~1/2!GS n21

2 D
2G~n/2!

uCn~v!u
E

kn, ~C8!

Hnn~v!5
Cn~v!/uCn~v!u

cosS n11

n21
p D 2

i

sinS n11

n21
p D . ~C9!

The indexn is restricted to positive integers less thann
23)/2 and n22 in the real and imaginary parts, respe
tively, of Eq. ~C7!.

For larger values ofu, we consider the results from th
semiclassical analysis of Ford and Wheeler@73#. The nth
partial scattering amplitude is

f n~E,u,v!5sn
1/2exp~ ibn!, ~C10!

where partial cross sectionssn and the phasesbn are deter-
mined from thenth point of the stationary phase of the sca
tering amplitude~where the sum is replaced by an integra!.
The analog to the classical scattering cross section is

s5
1

2ksinu

l 11/2

uh9u
, ~C11a!

b52h22~ l 11/2!h81~ uh9u/h61!p/41~161!p/22mp,
~C11b!

where the stationary phase valuel n is obtained from

2h812mp6u50, ~C12!

and m is an integer. The primes indicate derivatives w
respect tol, andm is zero or a positive/negative integer.

The cross section for the orientation specified byv is
obtained from

s~E,u,v!5u f ~E,u,v!u2. ~C13!

The value of the observed cross section ofs̄(E,u) is ob-
tained by the appropriate integral@53# of s(E,u,v) over all
orientationsv.

We next consider applications to molecular collisio
such as the N2-H2 scattering described in Sec. II. For suffi
9-13
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ciently largeE, the contribution tof (E,u,v) from the r 25

potential-energy terms is not appreciable, i.e., theh for the
large l, where the quadrupole-quadrupole force provides
dominant interaction, are too small. The largest contribut
to h at smallerl comes from the dispersion forces in th
region of r near the value ofb obtained from Eq.~C3!. The
values ofg that describe the anisotropy of the dispersi
coefficients for N2-H2 interactions in Eq.~7! are found to be
small. Hence, the scattering amplitude of Eq.~C7! can be
expanded in powers ofg; one can note from Eqs.~C7! and
~C13! that the contribution from the first-order terms of th
of

ea

e

, J

em

et

ea

d

m

ys

ys

,

06270
e
n

expansion tos̄ vanishes due to the orthogonality of the a
sociated Legendre functions. Hence, a first-order approxi
tion to s̄ depends only on theC000

n , which ~as pointed out in

Sec. II! are also the dispersion coefficients forV̄. A similar
conclusion can be obtained by expanding the ratiol
11/2)/uh9u of Eq. ~C11! in g and combining the result to
obtain s̄ in a similar manner. Hence, one concludes that
cross section obtained using the sudden approximation
nearly the same as that obtained fromV̄(r ) at smallu, if the
values ofg are small.
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