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Representation of a complex Green function on a real basis: Integral representation

Robin Shakeshaft
Physics Department, University of Southern California, Los Angeles, California 90089-0484

~Received 4 February 2000; revised manuscript received 26 June 2000; published 6 November 2000!

We describe a decomposition of the resolventG(E)51/(E2H) into two parts,Gint(E) andGext(E), each of
which can be computed, potentially, with moderate cost. Using an integral representation,Gint(E) is built from
a Hermitian Hamiltonian matrix constructed on a real discrete basis, and it incorporates the interaction in the
interior region where the dynamics take place. The termGext(E) takes into account the flux passing into the
exterior region, and it can be replaced by a Pade´ approximant by means of a simple connection between
Gint(E) andGext(E). We illustrate the method by application to the examples of photoionization of a hydrogen
atom and scattering of a particle from a 1/(11r )4 potential.

PACS number~s!: 31.15.2p
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I. INTRODUCTION

The approximation of a system’s HamiltonianH by a ma-
trix H is a common simplification in theoretical physics.
leads to the straightforward approximation of the resolv
G(E)[1/(E2H) by G(E)51/(ES2H), where S is the
overlap matrix of the discrete basis on whichH is con-
structed. However, whereasG(E) has polesand branch
points,G(E) has only poles, whose positions are the eig
values ofS21H. Some of the poles ofG(E) correspond to
bound states, while the others are spurious and simulate
branch cuts ofG(E), which extend from the continuum
thresholds to infinity. IfH is Hermitian, the eigenvalues o
S21H are real, and the spurious poles ofG(E) mock a series
of overlapping cuts along the real energy axis. Unfor
nately, any physical valueE that lies in the continuum sits
directly on one or more of these makeshift cuts and, con
quently, the branch ofG(E) is ambiguous. The standar
remedy@1# is to rotate the cuts, which can be accomplish
by either rotating the particle coordinates through an anglu,
where 0,u,p/2 or, equivalently, approximatingH by a
non-Hermitian matrix constructed on a complex basis t
has the character of outgoing waves, i.e., a basis wh
members oscillate with distancer as eikr , where k
5 i ukue2 iu.

A complex basis that has outgoing-wave character is w
suited for calculating the inclusive rate at which a ha
collision ~e.g., autoionization or photoionization! proceeds
since the wave function of a localized system undergo
decay behaves asymptotically as a superposition of outg
waves. However, a complex basis is not well suited for c
culating the rate at which a full collision proceeds since
entrance-channel component of the wave function describ
a full collision is a real standingwave, comprised ofboth
outgoingand ingoing waves; a complex basis cannot sim
late standing-wave behavior over a distance of the orde
the effective range of the interaction—unless the effect
range is very short, i.e., it falls off at least exponentially@2#.
Moreover, since an outgoing or ingoing wave is a line
combination of standing waves with complex coefficients
should be possible to calculate either a full- or half-collisi
rate by representing the resolvent on a real discrete b
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irrespective of the particular asymptotic boundary conditio
that pertain to the system. It is our purpose to describe
method for accomplishing this goal.

The work reported on here is an outgrowth of earlier wo
@3# on the development of a series representation ofG(E)
which permitsH to be approximated by a Hermitian matrix
Our starting point was the observation that all the particles
a system evolve according to a common time. T
asymptotic behavior of the system’s wave function emer
from the initial boundary conditions, at the inception of th
system’s evolution, say timet50. The temporal behavior is
governed by the time-evolution operatore2 iHt ~we set \
51 throughout!, in terms of whichG(E) has, for ImE.0,
the well-known representation

G~E!52 i t 0E
0

`

dt ei (t0E)te2 i (t0H)t, ~1!

wheret0 defines the time scale on which the evolution of t
system proceeds and wheret is the dimensionless timet
[t/t0. The unit of timet0 is the characteristic time it take
for the wave packet on whichG(E) acts to change apprecia
bly when it evolves undere2 iHt . Roughly speaking,t0 de-
pends on both the duration of the interaction between
fragments of the system, a time characterized by 1/E, and the
strength of this interaction, characterized by the ground-s
binding energyD of the system. A suitable definition oft0 is
therefore

t0[1/~E1D!, ~2!

which is roughly the shorter of the ‘‘collision’’ time 1/E and
the ground-state orbital period 1/D. The preceding represen
tation ofG(E) can be analytically continued to all sectors
the E plane, excluding the discrete set of points at whi
G(E) has poles, by rotating the contour of integration in
the complext plane. Thus a particular branch ofG(E) on
the positive energy axis can be specified by the integra
contour. By performing the integration overt in such a way
that a vestige of this contour—namely, its angle of rotati
f—is preserved, we arrived in Ref.@3# at a series represen
tation of G(E) whose branch is specified by a complex u
of time tf[t0eif:
©2000 The American Physical Society05-1
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ROBIN SHAKESHAFT PHYSICAL REVIEW A62 062705
G~E!5e2tfHS 1

E
1 i t f~2tfH ! (

n51

`
1

n
In~Etf!Ln21

(1) ~2tfH !D ,

~3!

whereLn21
(1) (2tfH) is an associated Laguerre polynomial

degreen21 in the operator 2tfH, and where the coefficien
In(Etf) is a number defined by the integral

In~a![E
0

`

dt eiatS t1 i

t2 i D
n

. ~4!

We show in the Appendix that this series can be resumm
to yield the integral representation

G~E!52S eif

E1D D E
0

`

dy yK0~yei (f2p)/2!J0

3S yAeif~H1D!

~E1D!
D , ~5!

whereJn(z) andKn(z) are the regular and modified irregula
~cylindrical! Bessel functions. There is no difficulty in dea
ing with the square root ofH1D, which appears in the ar
gument of the regular Bessel function, sinceH1D is posi-
tive definite.

The integral representation of Eq.~5! can be used to cal
culate matrix elements of the form

M ~E!5^c8uPopenG~E!uc&,

where uc& and uc8& are normalizable kets and wherePopen
projects onto open channels. The branch ofM (E) is speci-
fied by the phasef; the branch cuts lie along the lines a
(E2En)52f, whereEn is the position of any continuum
threshold. However, onceH is approximated by a Hermitian
matrix the integral overy does not formally converge. Con
sequently, the upper~infinite! limit of the integral must be
replaced by a finite valueY, and the limitY→` taken after
the integration overy has been performed. To this end, a
in the spirit of theR-matrix method@4#, we break the resol-
vent into two parts:

G~E!5Gint~E!1Gext~E!, ~6!

whereGint(E) is the integral on the right side of Eq.~5! but
with the upper limit replaced by a fixed value

Gint~E!52tfE
0

Y

dy yK0~yei (f2p)/2!J0@yAtf~H1D!#.

~7!

Our intention is to approximateH, in the integrand of
Gint(E), by a Hermitian matrixH constructed on a real dis
crete basis which is sufficiently large that its characteris
spatial rangeR extends over the interior region where th
dynamics take place. The boundary valueY is related toR
~see below!. The remaining integral over the regiony.Y is
Gext(E), and this term accounts for the flux in open chann
which passes from the interior region to the exterior regi
06270
d
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We show below that it is unnecessary to explicitly perfo
the integration overy.Y; by means of a simple connectio
betweenGext(E) and Gint(E) we can replacePopenGext(E)
by a Pade´ approximant@5#. Potentially, bothGint(E) and the
open-channel components ofGext(E) can be computed with
moderate cost—most of the computation involves matr
vector multiplications, which are ideally suited to parall
processing.

We can estimate a suitable value ofY as follows: The
variable of integrationy is the square root of a dimensionle
time, i.e.,y5At/t0. Let m be the mass of a fragment which
released in the channel whose threshold energy isEn . The
asymptotic momentum of this fragment isk where E5En

1k2/(2m). If dE is the spacing of the energy eigenvalues
H in the neighborhood ofE @6#, we havedE5kdk/m, and
the spatial range of the basis is, effectively,R51/dk. The
time that it takes for the fragment to travel a distanceR is
roughly Rm/k, which is just 1/dE. Since this time must be
larger thant0, we require that the parameter

Y0[A~E1D!/dE ~8!

be greater than unity. Furthermore, since a fragment m
reach the exterior region before it travels the full distanceR
we requireY to be somewhat less thanY0. Therefore, we
want the inequality

1,Y,Y0 ~9!

to be satisfied.
In the next section we describe some of the technical

tails of the method. In Sec. III we present some test res
based on two applications~i! photoionization of a hydrogen
atom and~ii ! s-wave scattering of a particle from a 1/(
1r )4 potential. Section IV contains some final remarks.
the Appendix we establish the connection between the se
and integral representations ofG(E), i.e., Eqs.~3! and ~5!,
which partially justifies the nonrigorous analysis of the ne
section.

II. TECHNICAL DETAILS

To formulate Eq.~6! we begin with

~a21b2!E
0

Y

dy yK0~ay!J0~by!

511Y@bK0~aY!J1~bY!2aK1~aY!J0~bY!#.

~10!

This formula can be derived from the differential equatio
that are satisfied by the Bessel functions, i.e.,

S d2

dy2
1

1

y

d

dy
1b2D J0~by!50, ~11!

S d2

dy2
1

1

y

d

dy
2a2D K0~ay!50. ~12!
5-2
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Premultiplying the left sides of Eqs.~11! and ~12! by
K0(ay) and J0(by), respectively, subtracting the resultin
equations, and integrating overy from 0 toY gives Eq.~10!.
Putting aside any notion of rigor, we now seta52 ieif and
b5Atf(H1D) in Eq. ~10!. This yields

2~E2H !tfE
0

Y

dy yK0~yei (f2p)/2!J0@yAtf~H1D!#

511X, ~13!

whereX is the operator

X5Y†Atf~H1D!J1@YAtf~H1D!#K0~Yei (f2p)/2!

2ei (f2p)/2K1~Yei (f2p)/2!J0@YAtf~H1D!#‡. ~14!

It follows from Eqs.~6!, ~7!, and~13! that

Gext~E!52S X

11XDGint~E!. ~15!

It suffices to restrictf to the range 0<f,2p.
We now discuss the evaluation ofGint(E). Substituting

the expansion

J0~z!5 (
m50

`

~21!m
S 1

2
zD 2m

~m! !2
~16!

into Eq. ~7!, and introducing the finite integrals

am~Y!5E
0

Y

dy y2m11K0~yei (f2p)/2!, ~17!

we obtain

Gint~E!52tf (
m50

`

~21!m
am~Y!

~m! !2 S tf~H1D!

4 D m

. ~18!

Provided thatY is not too large the series on the right side
Eq. ~18! should converge rapidly. The coefficientsam(Y)
may be readily evaluated@7# and are universal, i.e., they ar
independent of bothE andH. The main part of the compu
tational labor is the evaluation of powers of (H1D), and this
is also independent ofE. Furthermore, since it is the actio
of G(E) on a ket, rather thanG(E) itself, that is required,
and sinceH is to be replaced by a matrix, most of the lab
involves matrix-vector multiplications. Those eigenvecto
of S21H with the largest few eigenvalues normally play on
a minor role, and their omission leads to a substantial
hancement in the rapidity of convergence of the sum on
right side of Eq.~18!. Fortunately, the eigenvectors with th
largest eigenvalues can be determined easily, using for
ample, the ‘‘power’’ method@8#.

Turning to the evaluation ofPopenGext(E), note that the
operatorX, defined by Eq.~14!, contains the numerical fac
tors Kn(Yei (f2p)/2), n50,1, and that sinceKn(z) behaves
for large z as A(p/2z)e2z these factors decrease expone
06270
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tially, as e2Y sin(f/2) as Y increases. In contrast, sinceJn(z)
behaves for largez asA(2/pz)cos(z21

2np21
4p), the opera-

tors

Jn@YAtf~H1D!#

would be unbounded asY increases ifH were approximated
by a Hermitian matrix. However, since the resolvent satis
complex outgoing-wave boundary conditions in the exter
region, it is appropriate to approximateH in the integrand of
Gext(E) by a non-Hermitian matrixHu that is constructed
from complex basis functions that oscillate with distancer as
eikr wherek, the basis wave number, isukuei (p/2)2 iu with
0,u,p/2. Therefore we temporarily replaceH by Hu ; ul-
timately we letu vanish, so that in the final step we approx
mateH by the Hermitian matrixH. As is well known@9#, the
bound-state eigenvalues ofHu are, very nearly, real and th
continuum eigenvalues lie, approximately, along the lin
arg (H2En)522u. Writing t0(H1D)5A1B where

A5
H2En

E1D
, ~19!

B5
En1D

E1D
, ~20!

we have, approximately, thatA5uAue2 i2u and thatB is real
and positive. Let us temporarily putu5f/2. It follows that

arg@eif~A1B!#<f, ~21!

where the equality obtains only ifA50. Noting thatB,1 if
E.En , we conclude thatJn@YAeif(A1B)# increases less
rapidly thaneY sin(f/2) if E.En , i.e., if channeln is open.
Consequently,PopenX is exponentially small for largeY and,
provided that neitherY nor f are too small, the series

PopenS X

11XD52Popen(
m51

`

~2X!m ~22!

should converge rapidly. HencePopenGext(E) can be com-
puted by repeated multiplication ofGint(E) by X followed by
multiplication by Popen. We now remove the constraintu
5f/2, and we analytically continuePopenGext(E) in u to u
50. In order to do this we replace the~truncated! power
series inX, i.e., the right side of Eq.~22!, by a Pade´ approx-
imant, which yields a convergent expression even wheu
50.

To evaluate X it is necessary to evaluat
Jn@YAeif(A1B)#, and to this end the Bessel function e
pansion, Eq.~16!, can be used again after eliminating th
closed channels. The operatorPopen is understood to projec
ontoasymptoticchannels, wherein the different fragments
the system are well separated. A one- or two-particle sys
has only one channel, and assuming it is openPopen is the
identity operator. We briefly consider the construction
Popen for a three-particle system in Sec. IV.

We conclude this section by considering the analog
expressions forGint(E) andGext(E) that we would have ob-
tained were we to have used the integral representatio
5-3
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ROBIN SHAKESHAFT PHYSICAL REVIEW A62 062705
Eq. ~1! rather than Eq.~5!. Let us rotate the contour of inte
gration through the anglef on the right side of Eq.~1!,
replace the upper limit of the integral overt by Y2eif, addD
to both E and H in the exponent, expande2 i t 0(H1D)t as a
power series int, and integrate term by term. In place of E
~18! we obtain

Gint~E!52tf (
m50

`

~21!m
bm~Y!

m! S tf~H1D!

4 D m

, ~23!

where

bm~Y!5 i ~4i !mE
0

Y2

dt tm exp~ i teif!. ~24!

If Y sinf@1 the expansions of Eqs.~18! and ~23! are the
same sinceam(`)5m!bm(`). However, if Y sinf is less
than, or of the order of, unity the expansion of Eq.~18!
converges far more rapidly owing to the additional factor
m! in the denominator of the summand. Using the integ
representation of Eq.~1! we obtain a relation betwee
Gint(E) and Gext(E) that is similar to Eq.~15!, but with X
replaced by

X5exp~ iY2eif!exp@2 i t 0~H1D!Y2eif#. ~25!

The second exponential factor on the right side of Eq.~25!
oscillates rapidly asY varies; the shortest period of oscilla
tion is roughly

p/@ t0~Emax1D!Y cosf#,

whereEmax is the largest eigenvalue ofH. PuttingY'Y0 and
using Eqs.~2! and~8! we can rewrite this period as, roughl

p

cosf
A dE

Emax1D
A E1D

Emax1D
.

In contrast, the regular Bessel functions on the right side
Eq. ~14! oscillates with a shortest period that is roughly

2p

Acosf
A E1D

Emax1D
.

SincedE/(Emax1D)!1 the oscillation ofX as Y varies is
more rapid, and therefore potentially more troublesome
Eq. ~25! compared to Eq.~14!.

III. APPLICATION AND RESULTS

The inclusive rate at which a continuous stationary
quasistationary process occurs, ifE is the real positive energy
of the system, is22 ImR(E1) whereE65E6 ih, whereh
is positive but infinitesimal, and whereR(E) is a Green
function matrix element of the form

R~E![^cuG~E!uc&. ~26!

To illustrate the effectiveness of the method described ab
we have performed calculations ofR(E1) for two examples.
06270
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Our first example is a hydrogen atom which is initially in th
unperturbed ground state, represented byuc0&, and which
ionizes after absorbing one photon of frequencyv. The rate
for the atom to decay is obtained by puttinguc&5V1uc0& in
Eq. ~26!, whereV1 is the one-photon absorption operator
the length gauge. Our second example is a particle whic
incident from afar, initially in a plane-wave state represen
by uc0&, and which scatters from a repulsive potentialW
51/(11r )4 a.u. The scattering rate is obtained by putti
uc&5Wuc0& in Eq. ~26!. We representeduc& and uc0& on a
real basis composed of the functions

A22ik~2ikr ! l 11eikrLn~2ikr !Ylm~ x̂!,

whereYlm( x̂) is a spherical harmonic and whereLn(x) is an
ordinary Laguerre polynomial of degreen, with k5 i uku.

Results are shown in Table I for the cross section~rate per
unit intensity of incident flux! for one-photon ionization of a
hydrogen atom over a range of frequencies extending fr
just above threshold to 1 a.u. above threshold. We choseD to
be 0.5 a.u.—the binding energy of the hydrogen atom. T
calculations were repeated for various values of the phasf
and for four or five basis sizes. While we made no attemp
choose the optimal value of the basis wave numberk we did
increaseuku with increasing frequencyv of the light; the
positive energy eigenvalues ofS21H extend to a character
istic value of uku2/2, and souku should be increased as th
photoelectron energyE increases. Unfortunately, no adva
tage is accrued from the explicitE independence of the mos
demanding part of the calculation ofGint(E)—the computa-
tion of powers (H1D)—once the basis, and henceH,
changes withE. We deleted either one or two eigenvectors
H, those with the largest eigenvalues—which, as no
above, improves the convergence of the expansion
Gint(E); the typical number of powers of (H1D) that must
be included in this expansion is about 30. The Pade´ approx-
imant for Gext(E) was constructed from the first 50 term
~typically! in the expansion ofX/(11X) in powers of X
using the epsilon algorithm@10#. We increasedY from 1.0 in
steps of 0.5, andf from 0° in steps of 5°, and selected tho
values ofY ~always less thanY0) andf for which the Pade´
approximant was best converged.

In the seventh column of Table I we show the contrib
tion s int to the cross section from justGint(E), ignoring
Gext(E). Our estimates of the full cross sections with
Gext(E) included, are shown in the eighth column, and t
exact results are shown in the last column@11#. Evidently the
correction due toGext(E) is significant, particularly at highe
frequencies; yet the estimates ofs obtained using the larges
basis have converged to at least five places of accuracy
almost five whenv50.51 a.u. Note thatY0.1 for all basis
sets, as desired, and although the inequality of Eq.~9! was
intended only as a guide it is in fact always satisfied@12#.
Note too that, in general, the best value ofY decreases more
often than not as the basis size increases, and the best
of f tends to be quite large fornbas520, but decreases rap
idly as the basis size increases.
5-4
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TABLE I. Cross sections for ionization of a hydrogen atom by a photon of frequencyv. A real basis of
sizenbas, and with wave numberi uku was used. The energy shiftD was fixed to be 0.5 a.u., while the phas
f was varied. The temporal region was divided into two parts~see text! 0<y,Y and y.Y, and a Pade´
approximant was used fory.Y. The contribution to the cross section from the regiony,Y is s int , whereas
s also includes the contribution from the regiony.Y. The exact cross sections are shown in the last colu

v ~a.u.! nbas uku ~a.u.! Y0 Y f ~deg! s int ~Mb! s ~Mb! sexact ~Mb!

0.51 20 0.4 8.9 5.0 30 5.43 5.83 5.97972805
0.51 30 0.4 12.1 3.0 10 3.47 6.034 5.9797280
0.51 40 0.4 16.4 6.0 0 6.68 5.9759 5.9797280
0.51 50 0.4 13.6 5.5 0 6.72 5.97943 5.9797280
0.70 20 0.5 4.4 3.5 40 3.41 2.5394 2.5312355
0.70 30 0.5 5.4 4.5 5 5.21 2.5275 2.5312355
0.70 40 0.5 6.2 4.0 5 4.44 2.53146 2.5312355
0.70 50 0.5 5.5 2.5 5 3.55 2.531203 2.5312355
1.10 20 1.7 2.5 2.0 20 3.15 0.7124 0.7093289
1.10 30 1.7 3.4 2.0 5 3.69 0.70953 0.7093289
1.10 40 1.7 4.7 1.5 0 3.01 0.7093233 0.7093289
1.50 20 2.0 3.1 2.5 10 3.78 0.2876 0.2883943
1.50 30 2.0 3.8 2.0 0 4.09 0.28852 0.2883943
1.50 40 2.0 4.3 1.5 0 3.10 0.2883953 0.2883943
rt
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We now considers-wave scattering from a 1/(11r )4 po-
tential@13#. This potential is repulsive and therefore suppo
no bound states. In fact, even the attractive potential21/(1
1r )4 does not support bound states. Hence we setD, which
is one measure of the strength of the potential, to zero. S
tering from a 1/(11r )4 potential was studied earlier b
Rescignoet al. @14# using a generalization of the exterio
complex scaling procedure@15#. They also used a real basi
similar to the one we used here but with the ordinary L
guerre polynomialLn(x) replaced by the associated Lague
polynomial Ln

(2)(x). However, in their study the potentia
was truncated at a finite distance. Some of their results@16#,
obtained using 10, 20, and 30 basis functions, with the
tential truncated atr 535 a.u., are shown in the eighth co
umn of Table II, labeled RBBM; their results obtained usi
100 basis functions are shown in the last column, labe
06270
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RBBM/100. Our results are shown in the sixth and seve
columns, and were obtained in a similar fashion to tho
shown in Table I except that the Pade´ approximant for
Gext(E) was constructed from the first 30 terms~typically! in
the power series inX andf was increased from 0° in step
of 10°. Our estimates ofs obtained with a basis size of 3
have converged to four places at the two highest value
the momentum, i.e.,p50.35 andp50.55 a.u., but have con
verged perhaps to only three places atp50.15 a.u. Atp
50.15 roundoff error became uncontrollable when we
creased the basis size beyond 30. Nevertheless, the dis
ancy in the fourth figure between our results obtained wit
basis size of 30 and the RBBM/100 results atp50.15 a.u.
might be due to the truncation of the potential in the RBB
method; the error in truncation is likely to be more serious
smaller p, and indeed the discrepancy atp50.15 a.u. be-
g
tential
e

TABLE II. Cross section in a.u. fors-wave scattering from the potential 1/(11r )4 a.u. by a particle of
mass 1 a.u. incident with momentump. The notation is the same as in Table I. The energy shiftD was set to
zero. In the ninth column we show results~RBBM! taken from Ref.@14#; these results were obtained usin
10, 20, or 30 basis functions in conjunction with an exterior complex scaling technique, and with the po
truncated atr 535 a.u. In the last column we show results~RBBM/100! obtained using the same techniqu
but with 100 basis functions.

p ~a.u.! nbas uku ~a.u.! Y0 Y f ~deg! s int s RBBM RBBM/100

0.15 10 0.2 1.5 1.00 70 6.19 1.76 0.07 2.0777
0.15 20 0.3 2.1 1.00 0 3.09 2.109 2.70 2.0777
0.15 30 0.3 2.6 1.00 0 2.76 2.0814 2.104 2.0777
0.35 10 0.6 1.8 1.50 40 2.07 1.098 231025 1.0308
0.35 20 0.7 2.1 1.00 0 1.12 1.006 1.02 1.0308
0.35 30 0.7 2.6 1.00 0 1.11 1.0315 1.026 1.0308
0.55 10 1.1 1.6 1.50 50 1.01 0.621 531026 0.58248
0.55 20 0.8 2.6 1.00 50 0.522 0.575 0.726 0.58248
0.55 30 0.8 3.1 1.50 0 0.546 0.58253 0.5445 0.58248
5-5



po

nd
e
a
s
ee
ys
a

in

le
th
u
o
n

W

ic
re

le

th
e
e

h

s

c

-

e

his

ins

nd
or
q.

ast

o.

of
ies

ROBIN SHAKESHAFT PHYSICAL REVIEW A62 062705
tween the RBBM/100 results obtained by truncating the
tential at 25 and 35 a.u appears in the third figure.

IV. FINAL REMARKS

We have described a method for calculating full- a
half-collision rates by representing the resolvent on a r
discrete basis without concern for the asymptotic bound
conditions. While we have demonstrated the effectivenes
this method for one-particle systems, it remains to be s
whether it can be usefully applied to more complicated s
tems. When the system contains three or more particles,
one or more channels is closed, the projection operatorPopen
must be invoked. We conclude this paper with a brief outl
of a technique for constructing and employingPopen in the
case where the system contains two electrons and a nuc
e.g., a helium atom. This technique is independent of
coordinate system; independent-particle coordinates wo
allow a much simpler construction of the projection operat
but are unsuitable for accurately accounting for correlatio

Let us label the electrons by the numbers 1 and 2.
regard the nucleus, whose atomic number isZ, as infinitely
heavy and at rest. Consider the group of channels in wh
asymptotically, one of the electrons, say electron 2, is f
while the other electron, i.e., electron 1, remainsboundin a
state of the residual one-electron system whose energy is
than some real negative cutoff valueEc . Let P1(Ec) be the
operator which projects onto this subspace. Introducing
null operator 02 for electron 2, the two electrons inhabit th
subspace spanned by those eigenvectors of the nonsymm
Hamiltonian

H1[2
1

2
¹1

22
Z

r 1
102 ~27!

that have eigenvalues less thanEc . The exact eigenvalue
spectrum ofH1 is the spectrum of a hydrogenlike ion wit
atomic numberZ, with one difference: the spectrum ofH1 is
infinitely degenerate owing to the inclusion of 02, whose
eigenvalues are all zero. The operatorP1(Ec) projects onto
the subspace spanned by those eigenvectors ofH1 with ei-
genvalues less thanEc , and can be expressed as

P1~Ec!5
1

2p i RC
dE G1~E!, ~28!

whereG1(E)5(E2H1)21 and whereC is any counterclock-
wise contour which encloses those poles ofG1(E) that cor-
respond to the bound states of the residual one-electron
tem with energy eigenvalues less thanEc . ~The contourC
must exclude the other bound-state poles as well as the
along the positive real energy axis.! Equation ~28! can be
verified by expressingG1(E) in terms of its spectral decom
position and performing the integration overE using
Cauchy’s residue theorem. It is convenient to chooseC to be
the boundary of the closed sectorp2b<uarg(E2Ec)u<p,
whereb is a fixed angle in the range 0,b,p; thusC con-
sists of the two straight linesE5Ec1se6 i (p2b), where 0
06270
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<s,`, joined at infinity by an arc. The integration over th
infinite arc can be performed immediately to give

P1~Ec!5
b

p
2

1

2p i E0

`

ds@e2 ibG1~Ec2e2 ibs!

2eibG1~Ec2eibs!#. ~29!

We will not pursue the evaluation of this integral here as t
will be taken up elsewhere@17#; suffice it to say that we have
found the most suitable value ofb to bep/2.

To calculate the rateG(E,Ec) for a continuous stationary
or quasistationary process in which one electron rema
bound with an energy less thanEc , while the other electron
is liberated, we cannot simply insertP1(Ec) into the matrix
element forR(E) on the right side of Eq.~26! sinceP1(Ec)
projects onto a subspace spanned by eigenvectors ofH1, not
H. Rather, we can use the different expression@18#

G~E,Ec!524 Im ^cuP1~Ec!G~E!uc&

22^cuG†~E!@P1~Ec!,iW12#G~E!uc&, ~30!

where W12 is the interaction between electrons a
@P1(Ec),W12# is the commutator of the projection operat
with this interaction. The second term on the right side of E
~30! accounts for final-state correlation~the inclusion ofi in
the commutator ensures it is Hermitian!. The commutator
falls off with increasing distance of the free electron at le
as fast as an inverse square in open channels.
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APPENDIX: CONNECTION OF SERIES AND INTEGRAL
REPRESENTATIONS

The series representation of the resolvent, Eq.~3!, can be
written compactly as

G~E!5tfe2bS 1

a
12ibS~a,b! D , ~A1!

whereb5tfH, a5tfE, and

S~a,b![ (
n51

`

In~a!
Ln21

(1) ~2b!

n
. ~A2!

In this appendix we show that the integral representation
G(E), i.e., Eq.~5!, can be obtained by resumming the ser
representation.

We make use of the following integral representation@19#
of Ln

(1)(2b):

Ln
(1)~2b!5

2e2b

n!A2b
E

0

`

dy e2y2
y2n12J1~yA8b!. ~A3!
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Writing j5(t1 i )/(t2 i ), we first reexpress the series for
of S(a,b) as

S~a,b!5E
0

`

dt eiat (
n51

`

jn
Ln21

(1) ~2b!

n
~A4!

52
e2b

A2b
E

0

`

dt eiatE
0

`

dy e2y2
J1~yA8b! (

n51

`

jn
y2n

n!
~A5!

52
e2b

A2b
E

0

`

dt eiatE
0

`

dy e2y2
J1~yA8b!~ejy2

21!.

~A6!

Incidentally, this last equation can be used to quickly ver
Eq. ~A1!; using @19#

E
0

`

dy e2qy2
J1~yA8b!5

1

2A2b
~12e22b/q!, ~A7!

Eq. ~A6! becomes

S~a,b!5
1

2bE0

`

dt eiat~12e(12 i t)b! ~A8!

52 i
eb

2b F 1

a2b
2

e2b

a G , ~A9!

and substituting this last expression forS(a,b) into the right
side of Eq.~A1! we confirm Eq.~A1!.

To proceed with the derivation of the integral represen
tion we return to Eq.~A6!. We putj5112i /(t2 i ), write

E
0

`

dt eiat~ejy2
21!52

i

a
1ey2E

0

`

dt eiate2iy2/(t2 i ),

~A10!

transform fromt to t1 i , divide the integral on the right sid
of Eq. ~A10! into two integrals, one over the interva
@2 i ,0#, the other over@0,̀ #, and use, for Rep.0 and
Re q>0,

E
0

`

dt e2pt2q/(4t)5Aq

p
K1~Apq!, ~A11!

to give

E
0

`

dt eiat~ejy2
21!52

i

a
1ey22aFyA8

a
K1~yAe2 ip8a!

1E
2 i

0

dt eiate2iy2/tG . ~A12!

Hence, from Eqs.~A6! and ~A12! we have
06270
-

S~a,b!52
e2b

A2b
E

0

`

dy J1~yA8b!

3S 2
i

a
e2y2

1e2aE
2 i

0

dt eiate2iy2/t

1A8

a
e2ayK1~yAe2 ip8a! D . ~A13!

We now use

d

dx
K0~x!52K1~x!, ~A14!

and

d

dx
@xJ1~x!#5xJ0~x!, ~A15!

and we integrate by parts as follows:

E
0

`

dy yK1~ay!J1~by!52
1

aE0

`

dy yS d

dy
K0~ay! D J1~by!

~A16!

5
b

aE0

`

dy yK0~ay!J0~by!.

~A17!

Thereby we obtain

S~a,b!54i
e2b2a

a E
0

`

dy yK0~yAe2 ip8a!J0~yA8b!

12
e2b

A2b
E

0

`

dy J1~yA8b!

3S 2
i

a
e2y2

1e2aE
2 i

0

dt eiate2iy2/tD . ~A18!

Using Eq.~A7! to perform the integration overy in the sec-
ond term on the right side of Eq.~A18! ~after interchanging
the order of the integrals overy and t), we obtain~after
performing the integration overt)

S~a,b!54i
e2b2a

a E
0

`

dy yK0~yAe2 ip8a!J0~yA8b!

1
e2b

2ib S e2a2e22b

a
1

e2b2e2a

a2b D . ~A19!

Substituting the right side of Eq.~A19! for S(a,b) into Eq.
~A1! we arrive at Eq.~5! provided thatD50; to incorporate
a nonvanishing value ofD we simply perform the simulta-
neous transformationsE→E1D and H→H1D, which
leaveG(E) unchanged.
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