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Representation of a complex Green function on a real basis: Integral representation
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We describe a decomposition of the resolv@gE) = 1/(E—H) into two parts G (E) andG,(E), each of
which can be computed, potentially, with moderate cost. Using an integral represer@gtids) is built from
a Hermitian Hamiltonian matrix constructed on a real discrete basis, and it incorporates the interaction in the
interior region where the dynamics take place. The t&g(E) takes into account the flux passing into the
exterior region, and it can be replaced by a Pageroximant by means of a simple connection between
Gin(E) andGg,(E). We illustrate the method by application to the examples of photoionization of a hydrogen
atom and scattering of a particle from a 141)* potential.

PACS numbds): 31.15—p

I. INTRODUCTION irrespective of the particular asymptotic boundary conditions
that pertain to the system. It is our purpose to describe one
The approximation of a system’s Hamiltonieihby a ma-  method for accomplishing this goal.
trix H is a common simplification in theoretical physics. It The work reported on here is an outgrowth of earlier work
leads to the straightforward approximation of the resolvent3] on the development of a series representatioG ()
G(E)=1/(E—H) by G(E)=1/(ES—H), where S is the which permitsH to be approximated by a Hermitian matrix.
overlap matrix of the discrete basis on whiehis con- Our starting point was the observation that all the particles in

i a system evolve according to a common time. The
structed. However, whereaS(E) has polesand branch ooy 1oi0tic behavior of the system's wave function emerges

points, G(E) has only poles, whose positions are the eigenTrom the initial boundary conditions, at the inception of the

ofs ! of . . S
values ofS™"H. Some of the poles dB(E) correspond to  system’s evolution, say time=0. The temporal behavior is
bound states, while the others are spurious and simulate thgyyerned by the time-evolution operater ™ (we set#

branch cuts ofG(E), which extend from the continuum =1 throughouy, in terms of whichG(E) has, for ImE>0,
thresholds to infinity. IfH is Hermitian, the eigenvalues of the well-known representation
S H are real, and the Spurious poles®fE) mock a series
of overlapping cuts along the real energy axis. Unfortu-
nately, any physical valug that lies in the continuum sits
directly on one or more of these makeshift cuts and, conse-
quently, the branch of5(E) is ambiguous. The standard wheret, defines the time scale on which the evolution of the
remedy[1] is to rotate the cuts, which can be accomplishedsystem proceeds and whereis the dimensionless time
by either rotating the particle coordinates through an afigle =t/t,. The unit of timet, is the characteristic time it takes
where 0<0<mw/2 or, equivalently, approximatingl by a  for the wave packet on whicB(E) acts to change apprecia-
non-Hermitian matrix constructed on a complex basis thably when it evolves undee !, Roughly speakingt, de-
has the character of outgoing waves, i.e., a basis whossends on both the duration of the interaction between the
members oscillate with distance as €', where «  fragments of the system, a time characterized B ahd the
=i|xle ' strength of this interaction, characterized by the ground-state
A complex basis that has outgoing-wave character is welbinding energyA of the system. A suitable definition &f is
suited for calculating the inclusive rate at which a half-therefore
collision (e.g., autoionization or photoionizatipproceeds
since the wave function of a localized system undergoing to=1(E+A), 2
decay behaves asymptotically as a superposition of outgoing
waves. However, a complex basis is not well suited for calWhich is roughly the shorter of the “collision” time E/ and
culating the rate at which a full collision proceeds since thethe ground-state orbital periodAl/ The preceding represen-
entrance-channel component of the wave function describintfition of G(E) can be analytically continued to all sectors of
a full collision is areal standingwave, comprised oboth  the E plane, excluding the discrete set of points at which
outgoingand ingoing waves; a complex basis cannot simu-G(E) has poles, by rotating the contour of integration into
late standing-wave behavior over a distance of the order dhe complexr plane. Thus a particular branch Gf(E) on
the effective range of the interaction—unless the effectivdhe positive energy axis can be specified by the integration
range is very short, i.e., it falls off at least exponentiffy. contour. By performing the integration overin such a way
Moreover, since an outgoing or ingoing wave is a linearthat a vestige of this contour—namely, its angle of rotation
combination of standing waves with complex coefficients, it¢—is preserved, we arrived in RdB] at a series represen-
should be possible to calculate either a full- or half-collisiontation of G(E) whose branch is specified by a complex unit
rate by representing the resolvent on a real discrete basief timet¢Et0e'¢:

G(E)=—itofo dre'(toB)rgi(toH) 7 )
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1 1 We show below that it is unnecessary to explicitly perform
£ Hity(2t,H) > ﬁIn(Et¢)L§1”1(2t¢H)), the integration ovey>Y; by means of a simple connection
n=1 3 betweenGe,(E) and Giy(E) we can replace ,pefSexi E)
by a Padeapproximan{5]. Potentially, bothG;,(E) and the
open-channel components Gf,,(E) can be computed with
moderate cost—most of the computation involves matrix-
vector multiplications, which are ideally suited to parallel
processing.
i\n We can estimate a suitable value ¥fas follows: The
) (4)  variable of integratiory is the square root of a dimensionless
time, i.e.,y= \t/to. Let u be the mass of a fragment which is
(r]eleased in the channel whose threshold enerdy, is The
asymptotic momentum of this fragment kswhere E=E,
+k2/(2u). If SE is the spacing of the energy eigenvalues of
o . H in the neighborhood oE [6], we haveSE=kdk/u, and
f dy yKo(ye(?=m2)3, the spatial range of the basis is, effectivelRs=1/5k. The
time that it takes for the fragment to travel a distafités
roughly Ru/k, which is just 16E. Since this time must be
, (5) larger thant,, we require that the parameter

G(E)=e s

whereL{",(2t,H) is an associated Laguerre polynomial of
degreen—1 in the operator g,H, and where the coefficient
7,(Et,) is a number defined by the integral

” ia T+
In(a)Efo dre'?”

T—Ii

We show in the Appendix that this series can be resumme
to yield the integral representation

e'®
G(E)=- (m 0
e'P(H+A)
“IYNE+a)
whered,(z) andK,,(z) are the regular and modified irregular
(cylindrical) Bessel functions. There is no difficulty in deal-
ing with the square root ofl + A, which appears in the ar-
gument of the regular Bessel function, sinde-A is posi-
tive definite.

The integral representation of E() can be used to cal-
culate matrix elements of the form 1<Y<Y, (9)

M(E)= (i)' |PopeS(E)| 1), to be satisfied.

In the next section we describe some of the technical de-
tails of the method. In Sec. Ill we present some test results
based on two application($) photoionization of a hydrogen
atom and(ii) sswave scattering of a particle from a 1/(1
+r)* potential. Section IV contains some final remarks. In
the Appendix we establish the connection between the series
and integral representations 6fE), i.e., Egs.(3) and (5),
which partially justifies the nonrigorous analysis of the next
section.

Yo=\(E+A)/S5E €)

be greater than unity. Furthermore, since a fragment must
reach the exterior region before it travels the full distaRce
we requireY to be somewhat less thary,. Therefore, we
want the inequality

where|) and|4') are normalizable kets and wheRg.,
projects onto open channels. The branchVfE) is speci-
fied by the phasep; the branch cuts lie along the lines arg
(E—E,)=— ¢, whereE, is the position of any continuum
threshold. However, ondd is approximated by a Hermitian
matrix the integral ovey does not formally converge. Con-
sequently, the uppelinfinite) limit of the integral must be
replaced by a finite valu¥, and the limitY —o taken after
the integration ovey has been performed. To this end, and
in the spirit of theR-matrix method 4], we break the resol-

vent into two parts: II. TECHNICAL DETAILS
To formulate Eq.(6) we begin with
G(E) = Gin(E) + Gox(E), ®) a(6) we beg
Y
whereG;(E) is the integral on the right side of E(p) but (a2+,32)f dy yKo(ay)Jo( BY)
0

with the upper limit replaced by a fixed value

v _ =1+ Y[ BKo(aY)J1(BY) — aKi(aY)Io(BY)].
Gin(E) = —t¢f0 dy yKo(y€ ™) 3o[y Vty(H+A)]. (10

7

@ This formula can be derived from the differential equations
Our intention is to approximatéd, in the integrand of that are satisfied by the Bessel functions, i.e.,
Gin(E), by a Hermitian matrixH constructed on a real dis-

crete basis which is sufficiently large that its characteristic d> 1d B

spatial rangeR extends over the interior region where the (d_szr yd—y+5 Jo(BY) =0, (1D
dynamics take place. The boundary valés related toR

(see beloyw. The remaining integral over the regig>Y is 2 14

Gex(E), and this term accounts for the flux in open channels (_ + aZ) Ko(ay)=0. (12)
which passes from the interior region to the exterior region. dy? ydy
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tially, ase™ Y S"¥?) asY increases. In contrast, sindg(z)

Ko(ay) and Jo(By), respectively, subtracting the resulting pehaves for large as (2/7z)cosg— inm— i), the opera-

equations, and integrating ovefrom 0 to Y gives Eq.(10).
Putting aside any notion of rigor, we now set —ie'? and

B=A\ty(H+A) in Eq. (10). This yields

Y .
—<E—H>t¢f0 dy yKo(y &~ 2 30y T, (AT 2]

=1+X, (13)

whereX is the operator
X=Y[Vtg(H+A)I1[YVt,(H+A)JKo(Y €™
— e mMRK (YR Y Vit (H+A)]] (14
It follows from Egs.(6), (7), and(13) that

tors

I YNt (H+A)]

would be unbounded agincreases iH were approximated
by a Hermitian matrix. However, since the resolvent satisfies
complex outgoing-wave boundary conditions in the exterior
region, it is appropriate to approximatein the integrand of
GexE) by a non-Hermitian matrixH , that is constructed
from complex basis functions that oscillate with distanes
e'“" where k, the basis wave number, j&|e'(™2~17 with
0<6<m/2. Therefore we temporarily repla¢tby H,; ul-
timately we letd vanish, so that in the final step we approxi-
mateH by the Hermitian matrid. As is well known[9], the
bound-state eigenvalues Hff, are, very nearly, real and the
continuum eigenvalues lie, approximately, along the lines
arg H—E,)=—26. Writing to(H+A)=A+B where

Gex(E)=— 1+ X Gin(E). (15 H_E
A= E+AV' (19
It suffices to restrictp to the range & ¢p<27r.
We now discuss the evaluation &f(E). Substituting E +A
the expansion = EV+—A (20)

we have, approximately, thét=|Ale '?? and thatB is real

1 2m
S

JO(Z):mE—:o (—1)™ e (16) and positive. Let us temporarlly pét= /2. It follows that
- (mt) arge 4(A+B)]= o, (21)
into Eq. (7), and introducing the finite integrals where the equality obtains only #=0. Noting thatB< 1 if
v . E>E,, we conclude thaﬂn[Y\/e a(A+ B)] increases less
am(Y)=f dy YY" Ko (ye (e~ m72), (17)  rapidly thane”s"@¥?2) if E>E_, i.e., if channelv is open.
0 ConsequentlyP X is exponentially small for larg¥ and,
. provided that neithel nor ¢ are too small, the series
we obtain
(Y) [ty(H+A) ™ Pr(x) Pi(x)m (22)
ma Y) [ty(H+ opel 7w | Topen -
Gin(E) ——t¢2 (— (:ﬂ)Z( ¢ 1 ) . (19 1+X m=1

should converge rapidly. Hend@,,eGex(E) can be com-
Provided thaty is not too large the series on the right side of puted by repeated multiplication &f;,(E) by X followed by
Eq. (18) should converge rapidly. The coefficierds,(Y) multiplication by Py,., We now remove the constrairst
may be readily evaluatgd] and are universal, i.e., they are = ¢/2, and we analytically continuB ,peGex(E) in 6 to 6
independent of botlE andH. The main part of the compu- =0. In order to do this we replace tH&uncated power
tational labor is the evaluation of powers ¢f - A), and this ~ series inX, i.e., the right side of Eq(22), by a Padeapprox-
is also independent dE. Furthermore, since it is the action imant, which yields a convergent expression even when
of G(E) on a ket, rather thaG(E) itself, that is required, =0.
and sinceH is to be replaced by a matrix, most of the labor To evaluate X it is necessary to evaluate
involves matrix-vector multiplications. Those eigenvectorsJ,[Ye'?(A+B)], and to this end the Bessel function ex-
of S lH with the largest few eigenvalues normally play only pansion, Eq.(16), can be used again after eliminating the
a minor role, and their omission leads to a substantial enelosed channels. The operaf®y,is understood to project
hancement in the rapidity of convergence of the sum on thento asymptoticchannels, wherein the different fragments of
right side of Eq.(18). Fortunately, the eigenvectors with the the system are well separated. A one- or two-particle system
largest eigenvalues can be determined easily, using for extas only one channel, and assuming it is ofgpen is the
ample, the “power” method8]. identity operator. We briefly consider the construction of

Turning to the evaluation oPypeGex(E), Note that the P, for a three-particle system in Sec. IV.

operatorX, defined by Eq(14), contains the numerical fac- We conclude this section by considering the analogous
tors K(Yé(®~™/2) n=0,1, and that sinc&,(z) behaves expressions fo6;,(E) andG.,(E) that we would have ob-
for large z as \(m7/2z)e” * these factors decrease exponen-tained were we to have used the integral representation of
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Eq. (1) rather than Eq(5). Let us rotate the contour of inte- Our first example is a hydrogen atom which is initially in the

gration through the angle® on the right side of Eq(1), unperturbed ground state, represented|#y), and which

replace the upper limit of the integral oveby Y2e'¢, addA ionizes after absorbing one photon of frequeicyThe rate

to both E andH in the exponent, expand "otH*2)7 a5 a  for the atom to decay is obtained by puttig =V _ | ) in

power series irr, and integrate term by term. In place of Eq. Eq. (26), whereV, is the one-photon absorption operator in

(18) we obtain the length gauge. Our second example is a particle which is
incident from afar, initially in a plane-wave state represented

- bm(Y) [tg(H+A)|™ by |o), and which scatters from a repulsive potentil
Gin(E)= _t</>m§=:o (=" m! ( 4 (23 =1/(1+r)* a.u. The scattering rate is obtained by putting
|y =W]| o) in Eq. (26). We representefy) and|yq) on a
where real basis composed of the functions
oo [P o _ .
bm(Y):|(4|)mfo dr Tmequ’i’eld)). (24) m(ZiKr)|+lelKan(2iKr)Y|m(X),

If Ysing>1 the expansions of Eq$18) and (23) are the n ) ) )
same sincea,, () =m!b(*). However, if Y sing is less whgreY|m(x) is a spherical harmonlc and \{vhdrg(_x) is an
than, or of the order of, unity the expansion of Hgg)  ordinary Laguerre polynomial of degree with x=i|x|.
converges far more rapidly owing to the additional factor of ~Results are shown in Table | for the cross sectiate per

m! in the denominator of the summand. Using the integralunit intensity of incident fluxfor one-photon ionization of a
representation of Eq(l) we obtain a relation between _hydrogen atom over a range of frequencies extending from
Gi(E) and G, (E) that is similar to Eq(15), but with X~ Just above threshold to 1 a.u. above threshold. We chose

replaced by be 0.5 a.u.—the binding energy of the hydrogen atom. The
' ' calculations were repeated for various values of the pkiase
X=exp(iY?e'®)exd —ito(H+A)Y?%e'?]. (250 and for four or five basis sizes. While we made no attempt to

choose the optimal value of the basis wave numbere did
The second exponential factor on the right side of @5  increase|«| with increasing frequency of the light; the
oscillates rapidly a& varies; the shortest period of oscilla- positive energy eigenvalues 6f 'H extend to a character-
tion is roughly istic value of|«|%/2, and so|«| should be increased as the
hotoelectron energf increases. Unfortunately, no advan-
/[ to(Emact A)Y COSP], 'E)age is accrued fror?ﬁhe explicEEindependenceyof the most
demanding part of the calculation &;,;(E)—the computa-
tion of powers H-+A)—once the basis, and hende,
changes witle. We deleted either one or two eigenvectors of
- \/ SE E+A H, those with the largest eigenvalues—which, as noted
. above, improves the convergence of the expansion of
C0S$ ¥ Emaxt A V Emact A Gin(E); the typical number of powers oH+A) that must

In contrast, the regular Bessel functions on the right side oP€ included in this expansion is about 30. The ‘Papierox-

Eq. (14) oscillates with a shortest period that is roughly ~ imant for Ge,(E) was constructed from the first 50 terms
(typically) in the expansion ofX/(1+X) in powers of X

. E+A using the epsilon algorithifl0]. We increased from 1.0 in
m E_ A steps of 0.5, ang from 0° in steps of 5°, and selected those
max

values ofY (always less thaiY,) and ¢ for which the Pade
Since 6E/(Enaxt A)<<1 the oscillation ofX as'Y varies is

approximant was best converged.
) . . In the seventh column of Table | we show the contribu-
more rapid, and therefore potentially more troublesome, i
Eq. (25) compared to Eq(14).

whereE, . s the largest eigenvalue bf. PuttingY~Y, and
using Eqs(2) and(8) we can rewrite this period as, roughly,

ion oine to the cross section from juss;«(E), ignhoring
Gex(E). Our estimates of the full cross sectian with
Gex(E) included, are shown in the eighth column, and the
lll. APPLICATION AND RESULTS exact results are shown in the last colupht]. Evidently the

The inclusive rate at which a continuous stationary orcorrection due t@e,(E) is significant, particularly at higher
quasistationary process occursifs the real positive energy frequencies; yet the estimatesabbtained using the largest
of the system, is-2 IMR(E,.) where&. =E+iy, wherey basis have converged to at least five places of accuracy, or
is positive but infinitesimal, and wherB(E) is a Green almost five wheno=0.51 a.u. Note tha¥,>1 for all basis

function matrix element of the form sets, as desired, and although the inequality of (Bjwas
intended only as a guide it is in fact always satisfiéd].
R(E)=(y|G(E)|¥). (26)  Note too that, in general, the best valueYolecreases more

often than not as the basis size increases, and the best value
To illustrate the effectiveness of the method described abovef ¢ tends to be quite large for,,= 20, but decreases rap-
we have performed calculations B{E, ) for two examples. idly as the basis size increases.
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TABLE I. Cross sectiorr for ionization of a hydrogen atom by a photon of frequencyA real basis of
sizeny,s, and with wave numbeil | was used. The energy shift was fixed to be 0.5 a.u., while the phase
¢ was varied. The temporal region was divided into two péste text 0O<y<Y andy>Y, and a Pade
approximant was used fgr>Y. The contribution to the cross section from the regjeny is oy,., whereas
o also includes the contribution from the regipr Y. The exact cross sections are shown in the last column.

o (a.u) Npas |K| (a.u) Yo Y ¢ (deg Tint (Mb) o (Mb) O exact (MD)

0.51 20 0.4 8.9 5.0 30 5.43 5.83 5.97972805
0.51 30 0.4 121 3.0 10 3.47 6.034 5.97972805
0.51 40 0.4 16.4 6.0 0 6.68 5.9759 5.97972805
0.51 50 0.4 13.6 5.5 0 6.72 5.97943 5.97972805
0.70 20 0.5 4.4 3.5 40 3.41 2.5394 2.53123550
0.70 30 0.5 5.4 4.5 5 5.21 2.5275 2.53123550
0.70 40 0.5 6.2 4.0 5 4.44 2.53146 2.53123550
0.70 50 0.5 5.5 2.5 5 3.55 2.531203 2.53123550
1.10 20 1.7 2.5 2.0 20 3.15 0.7124 0.70932895
1.10 30 17 3.4 2.0 5 3.69 0.70953 0.70932895
1.10 40 1.7 4.7 15 0 3.01 0.7093233 0.70932895
1.50 20 2.0 3.1 2.5 10 3.78 0.2876 0.28839435
1.50 30 2.0 3.8 2.0 0 4.09 0.28852 0.28839435
1.50 40 2.0 4.3 15 0 3.10 0.2883953 0.28839435

We now consides-wave scattering from a 1/(#r)* po-  RBBM/100. Our results are shown in the sixth and seventh
tential[13]. This potential is repulsive and therefore supportscolumns, and were obtained in a similar fashion to those
no bound states. In fact, even the attractive potential(1 ~ shown in Table | except that the Padg@proximant for
+r)* does not support bound states. Hence weAsathich  G.(E) was constructed from the first 30 terittgpically) in
is one measure of the strength of the potential, to zero. Scathe power series iiX and ¢ was increased from 0° in steps
tering from a 1/(kr)* potential was studied earlier by of 10°. Our estimates of obtained with a basis size of 30
Rescignoet al. [14] using a generalization of the exterior have converged to four places at the two highest values of
complex scaling procedufd5]. They also used a real basis, the momentum, i.ep=0.35 andp=0.55 a.u., but have con-
similar to the one we used here but with the ordinary La-verged perhaps to only three placespat0.15 a.u. Atp
guerre polynomial ,(x) replaced by the associated Laguerre=0.15 roundoff error became uncontrollable when we in-
polynomial Lff)(x). However, in their study the potential creased the basis size beyond 30. Nevertheless, the discrep-
was truncated at a finite distance. Some of their re¢lill§  ancy in the fourth figure between our results obtained with a
obtained using 10, 20, and 30 basis functions, with the pobasis size of 30 and the RBBM/100 resultspat 0.15 a.u.
tential truncated at=35 a.u., are shown in the eighth col- might be due to the truncation of the potential in the RBBM
umn of Table Il, labeled RBBM; their results obtained usingmethod; the error in truncation is likely to be more serious at
100 basis functions are shown in the last column, labeledmallerp, and indeed the discrepancy pt0.15 a.u. be-

TABLE II. Cross section in a.u. foswave scattering from the potential 14¥)* a.u. by a particle of
mass 1 a.u. incident with momentymThe notation is the same as in Table I. The energy ahiftas set to
zero. In the ninth column we show resu(®BBM) taken from Ref[14]; these results were obtained using
10, 20, or 30 basis functions in conjunction with an exterior complex scaling technique, and with the potential
truncated at =35 a.u. In the last column we show resulRBBM/100) obtained using the same technique
but with 100 basis functions.

p@u) nps |k (@U) Yo Y ¢ (deg o o RBBM RBBM/100
0.15 10 0.2 15 1.00 70 6.19 1.76 0.07 2.0777
0.15 20 0.3 2.1 1.00 0 3.09 2.109 2.70 2.0777
0.15 30 0.3 2.6 1.00 0 2.76 2.0814 2.104 2.0777
0.35 10 0.6 1.8 1.50 40 2.07 1.098 X405 1.0308
0.35 20 0.7 2.1 1.00 0 1.12 1.006 1.02 1.0308
0.35 30 0.7 2.6 1.00 0 1.11 1.0315 1.026 1.0308
0.55 10 1.1 1.6 1.50 50 1.01 0.621 X306 0.58248
0.55 20 0.8 2.6 1.00 50 0.522 0.575 0.726 0.58248
0.55 30 0.8 3.1 1.50 0 0.546 0.58253 0.5445 0.58248
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tween the RBBM/100 results obtained by truncating the po<s<w, joined at infinity by an arc. The integration over the

tential at 25 and 35 a.u appears in the third figure. infinite arc can be performed immediately to give
IV. FINAL REMARKS B 1 [ —-ip —-ip
: Pi(Eg)=——5—| d9e '’Gi(E.—e 'Ps)
T 2 )o

We have described a method for calculating full- and
half-collision rates by representing the resolvent on a real —e'fG,(E.—€'Ps)]. (29
discrete basis without concern for the asymptotic boundary
conditions. While we have demonstrated the effectiveness aVe will not pursue the evaluation of this integral here as this
this method for one-particle systems, it remains to be seewill be taken up elsewheld 7]; suffice it to say that we have
whether it can be usefully applied to more complicated sysfound the most suitable value @f to be 7/2.
tems. When the system contains three or more particles, and To calculate the rat€ (E,E.) for a continuous stationary
one or more channels is closed, the projection opeltgy,  or quasistationary process in which one electron remains
must be invoked. We conclude this paper with a brief outlinebound with an energy less th&f, while the other electron
of a technique for constructing and employiRg,e, in the s liberated, we cannot simply inse(E.) into the matrix
case where the system contains two electrons and a nucleusement forR(E) on the right side of Eq(26) sinceP,(E,)
e.g., a helium atom. This technique is independent of therojects onto a subspace spanned by eigenvectdts afiot
coordinate system; independent-particle coordinates woulg|. Rather, we can use the different expresgibs]
allow a much simpler construction of the projection operator,

but are unsuitable for accurately accounting for correlation. I'(E,Eq)=—4Im(4|P1(E.)G(E)|¢)
Let us label the electrons by the numbers 1 and 2. We . )
regard the nucleus, whose atomic numbeZ,iss infinitely —2(|G(E)[P1(E),iIW1]G(E)|4), (30)

heavy and at rest. Consider the group of channels in which, i ) )
asymptotically, one of the electrons, say electron 2, is fredvhere Wi, is the interaction between electrons and
while the other electron, i.e., electron 1, remaimaindin a  [P1(Ec),Wi2] is the commutator of the projection operator
state of the residual one-electron system whose energy is le¥4th this interaction. The second term on the right side of Eq.
than some real negative cutoff val@&. Let P,(E,) be the (30) accounts for flnal-statg qorrelathme inclusion ofi in
operator which projects onto this subspace. Introducing thé'€ commutator ensures it is HermitjaiThe commutator
null operator Q for electron 2, the two electrons inhabit the falls off with increasing d|stan_ce of the free electron at least
subspace spanned by those eigenvectors of the nonsymmetfie fast as an inverse square in open channels.
Hamiltonian
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that have eigenvalues less th&R. The exact eigenvalue
spectrum ofH; is the spectrum of a hydrogenlike ion with
atomic numbe#, with one difference: the spectrum Hf; is
infinitely degenerate owing to the inclusion of,0whose The series representation of the resolvent, Bj.can be
eigenvalues are all zero. The opera(E.) projects onto  written compactly as

the subspace spanned by those eigenvectots$,ofvith ei-

APPENDIX: CONNECTION OF SERIES AND INTEGRAL
REPRESENTATIONS

genvalues less thdf;, and can be expressed as N
G(E)=tue a+2|b8(a,b) , (A1)
1
PuBd =5 ﬁdE Gi(B), (28 whereb=t,H, a=t,E, and
_ . * (1)
whereG, (E)=(E—H;) ! and where is any counterclock- _ Ly1(2b)
wise contour which encloses those pole<=a{E) that cor- S(a'b)—n; In(a) n ' (A2)

respond to the bound states of the residual one-electron sys-

tem with energy eigenvalues less thBp. (The contourC | this appendix we show that the integral representation of
must exclude the other bound-state poles as well as the cgf(E), j.e., Eq.(5), can be obtained by resumming the series
along the positive real energy aji€quation(28) can be  ygpresentation.

verified by eXpreSSin@l(E) in terms of its SpeCtI’al decom- We make use of the fo”owing integra| representaﬁmg]
position and performing the integration ove using f Lgl)(Zb):
Cauchy’s residue theorem. It is convenient to chabse be

the boundary of the closed secter- B<|arg(E—E.)| <,

. . . ZeZb o
whereg is a fixed angle in the range<Q8< ; thusC con- LM(2p) = J' dy e—y2y2n+2J (y\/%). (A3)
sists of the two straight lineE=E_+se" ("~#), where 0 " n'\2bJo !
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Writing é=(7+1i)/(7—1), we first reexpress the series form e2b o
of S(a,b) as S(a,b :2—f dyJ 8b
= 2 LW (2p) i, o,
S(a,b)=f dre'aTZ Qo— (A4) X| ——e7Vy _|_e—aj dreiarg2iys
0 n=1 n a —i
e2b o ) % ) * y2n i \/g —ayK W) (A13)
=2 [“are [ “ay eV a,\BD) S, e 28 YKily Ve 8a)|.
\/% 0 0 n=1 n!
(A5) We now use
e2b o _ o , 5
:2—J dre"'”f dy e ¥ J,(y8b)(e?¥ —1). d
V2bJo 0 — Ko(X)=—K4(x), (A14)
(A6) dx

Incidentally, this last equation can be used to quickly verifyand
Eqg. (Al); using[19]

d
ax X1 ]=xJo(x), (A15)

o 1
J dy e 9°3y(y\Bb)= ——(1—e /%), (A7)
0 242b and we integrate by parts as follows:

Eqg. (A6) becomes o 1 (o d
fo dy yKi(ay)Jdi(By)=— ;fo dy y(—Ko(ay))Jl(ﬁy)

dy
1 (= . .
S(ab)= - f dre’(1—el~17b) (A8) (A16)
2bJo
ﬁ 0
el 1 e® =a ), Ay YKo(ay)Jo(BY).
~'2bla-b a (A9) (A7)
and substituting this last expression f§{a,b) into the right  Thereby we obtain
side of Eq.(A1) we confirm Eq.(Al).
To proceed with the derivation of the integral representa- e re —
tion we return to Eq(A6). We puté=1+2i/(7—i), write S(a,b)=4i a fo dy yKo(y Ve~ "8a)Jo(y\/8b)
j Cdreaneto1)=— L 4o f “drelare?yie 22 f "dy 3,(y8b)
0 a 0 ’ J2bJo

(A10)

transform fromr to 7+, divide the integral on the right side X

of Eg. (A10) into two integrals, one over the interval
[—i,0], the other ove{0=], and use, for Rep>0 and  ysing Eq.(A7) to perform the integration overin the sec-

i —y2 -a 0 iar 2iy2/7
- ae +e dree . (A18
—1

Re =0, ond term on the right side of EGA18) (after interchanging
the order of the integrals over and 7), we obtain(after
% q performing the integration over)
[Carerer—\Pipa, @ .
e’ a =
_ S(a,b)=4i f dy yKo(y Ve "8a)Jo(y\/8b)
to give a Jo
e2b e—a_e—Zb e—b_e—a
- _ i 3 + — + . (A19)
J dred (e?’—1)=— 5+ey2*a y\/;Kl(y\/W) 2ib a a-b
0

Substituting the right side of EqA19) for S(a,b) into Eq.

N JO 47 elara2iyis (A12) (A1) we arrive at Eq(5) provided thatA =0 to incorporate
i ' a nonvanishing value oA we simply perform the simulta-
neous transformation€E—E+A and H—H+A, which
Hence, from Eqs(A6) and (A12) we have leaveG(E) unchanged.
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