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Nonperturbative and relativistic effects in projectile-electron loss in relativistic collisions
with atomic targets
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We calculate projectile-electron loss cross sections in ultrarelativistic collisions with neutral atomic targets.
To this end we employ the first-order perturbation theory and the eikonal approximation. We show that, in
general, the following main effects should be included for a proper description of the projectile-electron loss in
ultrarelativistic collisions{i) the shielding effects of electrons of the neutral targéx,the relativistic effects
in the motion of the electron in the projectile for heavy projectiles, @img the nonperturbative effects in
collisions with heavy targets, especially for light projectiles.

PACS numbeps): 34.10+x, 34.50-s, 34.50.Fa

[. INTRODUCTION compared to collisions with pointlike charges because in the
former case projectile-electron excitation and loss at any pos-
sible value of the Lorentz factoy are restricted to impact
parameterb=<a,~ag, wherea, is the typical dimension of

We have recently developed the plane-wave Hdjrand
the first-order semiclassicdR] treatments for relativistic
coIIisions_ of two composite atomic systems, which both, o o tral atom ands=1 a.u. is the Bohr radius.
carry active electrons. Our numerical c-alg%lan@m}for to- The paper is organized as follows. In Sec. Il we recall the
tal loss cross sections from ultrarelativisticPbprojectiles  pasjc formulas for cross sections and transition amplitudes
showed a reasonable agreement with available experimentghtained in the first-order perturbation theory. In this section
data [3], [4]. In those calculations we used approximatewe also give nonperturbative transition amplitudes, which
semirelativistic wave functions for describing the electron ingre exact in the limity— . In Sec. Ill we present numerical
P, results of our first-order calculations using semi-relativistic

In the present paper we continue to investigate projectileand exact relativistic wave functions. We also give results of
electron excitation and loss in ultrarelativistic collisions with our nonperturbative calculations and compare calculated re-
neutral atomic targets. The goals of our paper are twofoldsults with the experimental data of Ref8] and[5]. Atomic
First, we want to make first-order perturbative calculationsunits are used throughout except where otherwise stated.
for electron loss from PY* using the exact relativistic Dirac
wave functions to describe the electron motion in such a
heavy ion as PB*. Second, we wish also to make some Il. THEORY
nonperturbative calculations for loss cross sections. In gen-
eral these effects are not expected to be very important in
ultrarelativistic collisions. However, in order to get clearer Using the first-order perturbation theory, it was shown in
ideas about the relative importance of these effects, it is nedRef. [1] that the cross section for a process, where the pro-
essary to perform nonperturbative calculations. One can ejectile electron makes a transition-0n and a final intrinsic
pect that the nonperturbative effects in ultrarelativistic colli-state of the atomic target is not observed, can be approxi-
sions with neutral atoms are relatively more importantmated by

A. Perturbative approach
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~ Here, y5(r) and ¢ (r) are the initial and final f#0)  nucleus. The stateg,(r) and the coordinate are given in
intrinsic states of the electron in the projectile with energieshe rest frame of the projectilaig(7) and u,(7) are the
go and ,, respectively, where is the coordinate of the initial and final intrinsic states of the atom with energigs
electron of the projectile with respect to the projectileande,. The set of coordinates of the atomic electrons with
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respect to the atomic nucleus

={&, ...

is denoted by
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. 4
£} and is given in the rest frame of the atom. USjF—ZJ’ d20, Zp er(QP)
. . . . . 1%
Z, is the atomic number and, is the Dirac matrix. Further,

do=(d; ,Amin)» Qo=(d ,Qmin), Where gnyi,=(en—€0)/v v . 2
+(€m— €0)/vy is the minimum momentum transferred to (n(n)] 1-c exp(igo-r)|¢o(r))

the electron of the projectile in the rest frame of the projec- X— YR RN
tile and Qpin=(em— €0)/v + (£,—&0)/vy is the minimum (97 + (wno+A€)Tvoy +2(y—1)wnoAelvy)

momentum transfer to the electrons of the atom in the rest 7)

frame of the atom. In Eq(l) the summation runs over all

intrinsic atomic states, including the atomic continuum.

In Eq. (7) wno=en—e0, Q5=(q, ,A€e/lv+(en—g0)/v7Y),

The cross sectior{l) can be split into the elastic or where Ae is the average energy for transitions of atomic
screening n=0) contribution and the electron-electron or electrons, andZ, .1(Qf) is given by Eq.(6) with the re-
antiscreenindall m#0) contribution. The elastic part reads placementQ3— Q. Slightly more exact results for the

[1]

O-O—»n__f d?q, ZA eff(Qo)
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Here qo=(q, ,(en—e0)/v) and Qg=(d, ,(en—e0)/v 7).
The effective charge of the atom in the ground state is

Zp
Zneti(Q5)=Za—(Uo(7)] 2, exp(~1Q5-§)luo( 7).
®

The effective charg€3) can be rewritten as

Zne( @) =2a [ dEpu(@exa-iQt o, @)

where pq(§) is the charge density of the electrons in the
incident atom in the rest frame of the atom. Using the Mo-

liere parametrization of the Thomas-Fermi potenfi@] or

the analytical Dirac-Hartree-Fock-Slater screening functions,
given by Salvatet al. [7] for all neutral atoms, the density

pei(€) can be written as

pei( €)= 2 Aik? expl — ki €). (5)

Here,A; andk; are constants for a given atdi@l], [7]. Using
Egs.(4) and (5), the effective charg&ae{(QF) is obtained
to be

Zpeif(Q5) =2 0 +

3
x2 (6

K2+ a2+ ((en—eo)vy)?

It was shown in Ref[1] that, using the closure approxi-

electron-electron contribution can be obtained by using in
Eq. (7) incoherent scattering functions rather than
Zp o11(Q5). These functions are tabulated in R¢8, [9] for

all atomic elements.

B. Nonperturbative approach

Nonperturbative effects in projectile-electron excitation
and loss in ultrarelativistic collisions should be more pro-
nounced for collisions with heavy many-electron targets. In
collisions with such targets the elastic mode is known to be
dominant if the dimension of the electron orbit in the projec-
tile is much less than the dimension of the neutral target.
Therefore in this section, we will neglect the electron-
electron contribution and consider only the elastic mode.

In the elastic mode the atomic target is represented by an
external potential. Then the many-electron problem of two
colliding atomic particles is reduced to the problem of the
motion of the electron of the projectile in two fields, the field
of the projectile nucleus, and the field of the target atom. In
the rest frame of the projectile ion nucleus the motion of the
electron of the projectile obeys the Dirac equation

aury
Tt

e?

+pmc2— = Zp

e
a-(p— EA(r,t)

+ed(r,t) [y(rt), )]

wherea and B are the Dirac matrices, is the coordinate of
the electron with respect to the nucleus of the ion, @nand

A are the scalar and vector potentials of the incident neutral
atom. In accordance with E€b), we assume that in the rest
frame of the atom its scalar potential is well approximated by
a short-range interaction of the type

o= ZA¢’(" ) )
r

with

(10

=2 Ajexp—«ir') (2_ A,—=1).
] ]

mation, the electron-electron contribution to the cross sectiodn interaction of the typg9)—(10) can be regarded as an

(1) can be approximately written as

interaction produced by the exchange of “massive photons”
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with massedl; = «; : a photon with masM; is emitted by a 27 z

source with a chargé;=ZaA; (2,Z;=Z,). ‘D(f-t)=T5(t— E) 2 AKo(Mjr, —b)),
The scalar and vector potentials of a souZ¢®f massive :

photons with the mas#;, which moves with relativistic

velocity v, are described by the Proca equatja0] Ar)=a(rt), A=A,=0. (15
1 52<IJJ- ) For the potential®> andA,, given by Eqs(15), the Dirac
T2 e Mi®j=—4nZ;o[r—R(1)], equation(8) can be solved exactly using a method proposed

in Ref.[11] to calculate electron transitions caused by colli-

sions with a pointlike charge moving with the speed of light.
(12) In our case, where the perturbing atomic field is short

ranged, the exact probability amplitudg,, for the electron

We assume that the atom is moving in the projectile frameOf the projectile to make a transitiogl— i, between the

along a straightline trajectoryR=b+vt, where b electron stategs, and ¢, of the projectile is given by
=(by,by) is the impact parameter ang-=(0,0p) is the ve- ,
. . . . . X w
locity of the atom. Using Fhe Fourier transformathn in order aon(b) = 50n+<l//n|(l—az)eX£{l no )
to solve Eq.(11) the solution of Eq(11) can be written as c

explik-(r—b)—ik-vt) %

(k-v)?
o 2

_ 2iZ,
cb,-(r,t):%f d3k eXP(?; AjKO(Mj|rL_b|))_1}|¢’O>

k2

+MF-i0
c

=l e “’2"2)

z, .
= | d% kp-(r.—b 2 >,
2774 Lexdik, - (r,—b)] Xexp(% > AjKO(Mjlrl—bl))ltﬁo)- (16)

exdik,(z—vt)]
+K2 Y2+ M?=i0’

(12) For obtaining the second line in Ed16) the identity

“+ 00
X d kzk2
* (| @, explwnz/v)|o)=v/c(y|exp( wnezlv)|¢p) (see Ref.

The straighforward integration of E€L2) results in [12]) was used. The amplitudel6) preserves the unitarity
S anstated@on(b)|?=1, as it should be for an exact solution

74 [13]. In the limit of vanishing screeningM;—0) one can

q’j(f,t)=\/ o’ (D) use the relatiorK(x)~—In(x2)—T for [x<1 (see e.g.,
Y v L Ref.[14]), wherel is Euler's constant. Then, neglecting an

sexn =M V2 (z—oh) 2+ (r. —b)3). (13 inessential coordinate-independent phase factor, the transi-
X '\/7 (z=o)™+(r,=0)%). (13 tion amplitude(16) reduces to
Of course, the potentigll3) can be obtained directly from

Egs.(9) and(10) using the Lorentz transformation. However, coul _wpoZ
the advantage of the Fourier representatid®) is that for agn (D) =(yn|(1—a)exp i p
ultrarelativistic velocitiew it allows to get straightforwardly
the essential simplification for the form of the scalar and —iZp [r,—b 2
vector potentials, while the limib—c of Eq. (13) is very X ex Inl =4 o). (1D
delicate. For infinitey one can drop the terrkﬁ/y2 in the
integrand of Eq(12) and write The transition amplitud¢17) is identical to that derived by
. Baltz [11] for the electron transitions in collisions with a
, T | 42 e o(r — pointlike charge.
®;(r. sz,f dk, exik, - (r. =] For finite values ofy, the transition amplitud€16) is
expected to give good results if the effective duration time of
+= exdik,(z—ct)] the interactionT (b) ~b/v vy is small compared to the charac-
X f_m dkzm teristic transition time in the system~1/w,, i.e., for im-
j

pact parameterb<by=v y/w,o. This region of impact pa-

2Z; z rameters, where the components of the four-momentum
= 0| t= | Ko(Mj|r.—b]), 14 transferqz(uz(qo,qL .q,) to the electron are related by’

>(q§—q0), is the region of the applicability of eikonal-type
where § is the delta function an&, is a modified Bessel approximations. For collisions with neutral atoms, we have
function. Then we obtain for the scalar and vector potentialginother characteristic distance, the dimension of the neutral
created by the incident atom in the rest frame of the projecatomay. If by>a,, then the amplitudél6) can be used for
tile any impact parameter because for larger impact parameters
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TABLE |. Experimental and theoretical cross sectigimskb) for ionization of 160 GeV/nucleon Bb
penetrating different solid and gas targets. The ion is initially in its ground state. The targets marked with an
asterisk are atomic targets used in the experimght

Target % Experiment [19] [18] Present paper
| Il 1] \Y \
Be 4 0.14-0.15 0.24 0.14 0.14 0.17 0.12 0.027
C 6 0.31 0.49 0.28 0.29 0.35 0.25 0.04
Al 13 1.3-14 2.0 1.1 1.2 1.42 1.1 0.08
Ar* 18 1.75-2.11 3.7 2.2 2.56 1.86 0.11
Cu 29 6.9-8.0 9.0 5.2 5.4 6.5 4.52 0.17
Kr* 36 6.3-7.9 13.2 7.8 9.0 6.63 0.21
Sn 50 15-21 25 15 15.0 17.6 12.5 0.29 12.3
Xe* 54 14.4-16.8 29.4 16.7 19.3 14.6 0.31 14.0
Au 79 42-53 60 35 35.2 40.1 29.0 0.4 27.4

b=b,, where collisions are no longer “sudden” for the the collisions, the first-order transition amplitu@es) is in-
electron, the electron-atom interaction is already negligibleferior to the amplitudé€16). Therefore for colliding systems,
Below we will refer to the transition amplitudéd6) as to the  which satisfy the conditiob,>ay~ 1, the eikonal transition
eikonal amplitude. amplitude(16) should be used for all impact parameters.
The eikonal transition amplitudéd 6) is to be compared to Let us now consider colliding systems whdxg<ag. In
the transition amplitude for the elastic mode that was foundiltrarelativistic collisions the latter condition can be fulfilled

in Ref.[2] using the first-order perturbation theory for very heavy ions. If in additiomy>a,, wherea,~1/Z,
is the typical dimension of the ground state of the electron in
o 2i1Zp v the ion, then a simple method can be applied to calculate
agn(b)= v 2 Aiihnl| 1- c Yz cross sectiongsee e.g. Refqd.15], [16]). For collisions with

small impact parametets<b,, where the atom-electron in-
_wpoZ teraction can be strong, the transition probability is calcu-
><exp<|T) Ko(Bjlri =bDl#o),  (18)  Jated according to the nonperturbative expressith). For
collisions with larger impact parametes>1/Z,=7,/Zc,
whereB, = \/;%M—ZJFMJ;_ ¥yhere the perturbayon is already weeee appendix the
D o) . . irst order perturbation theory can be used to calculate the
For collisions with infinite y, the transition amplitude, transition probability. This method can be employed if there
given by Eq.(16), is valid for any impact paramete. exists an Fc))verla gétween the regidmsb angbillz
For collisions with light atoms, whereZ/c<1, or at P 9 0 R’

arge. impact parameters, where the conditoiz,2 i - L LR 0 e riten as
c2;AjKo(Mj|r, —b[)<1 holds for any atom, the transition

amplitude(16) reduces to the first-order amplitudss). Note b .

that in the limity— o, in contrast to collisions with pointlike UO—»HZZWI db blag,(b)|?+ 2wf db blaf,(b)|?,
charges, the eikonal transition amplitude) for a screened 0 by

interaction does not result in infinite cross sections for dipole (19
allowed transitions.

For collisions with high but finite values of, both tran-  whereb, should lie in the range of impact parameters where
sition amplitudeg16) and(18) are not exact. In such a case, transition probabilities, calculated according to Ed€) and
the expression&l6) and(18), in general, are better suited to (18), are approximately equasee appendjx
describe the transition amplitudes at small and large impact

parameters, respectively. In a comparative analysis for these RESULTS AND DISCUSSION
two amplitudes, we first consider colliding systems where
bo=yv/wne>a,. In such a case one h@s=M; . For large Table | shows a comparison between experimental data of

impact parameters>Z, /Z,c, where the atomic field acting Refs.[3], [5] and results of different calculations for the loss
on the electron of the ion is weak compared to the interactioigross sections for Bb" penetrating various solid and gas
between the electron and the ion nuclésse appendixthe  targets at a collision energy of 160 GeV/A.

exponent in Eq(16) can be expanded in series and one sees Results of the present paper for the total loss cross section
that the transition amplitudeL6) is approximately equivalent ooss= ot o5es are given in columns |1, I, 1ll, and V.

to the first-order transition amplitude for these impact paramColumns | and Il present results of our perturbative calcula-
eters (if one neglects in the latter terms proportional totions where we use the semirelativis(@arwin) wave func-
1/y?). For collisions with smaller impact parameters, wheretions to describe the motion of the electron in the ground and
the atomic field can reach considerable magnitudes duringontinuum states of Bb". The results of column 1{17]
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were obtained using the nonrelativistic formula for the bind- 0.7 pr——— T
ing energy of the electron in the ground stateg,|
=Z§/2. The results of column | were calculated assuming

that the binding energy is given by the relativistic formula 0.6 e 7
|sbmd|=cz(l—\/l—Zzp/CZ). The results given in column | I 1

are noticeably smaller than those in the column Il. The av-
erage difference between these two sets of results is 15- .
20%. Surprisingly, the results of our first column are very i i
close to those estimated in REL8] where a physically ap- \
pealing but rather approximate procedure was used.

Our third column contains results of the perturbative cal-
culations where we used the relativistidirac) wave func-
tions for the ground and continuum states of the electron in
PB. The loss cross sections were obtained by taking into
account the continuum states with angular momeniuop
to =7 and energies up te,=10mc. The inspection of
cross sections differential in energy and the inclusion of
states with highew showed that these regions of the con-
tinuum energies and the angular momenta give practically
the total contribution to the loss cross sections. The results of
column Il are noticeably lower than those in the first column

loss probability

aul 1ol a1 el L1l
and are considerably lower than the results in our second 0.0 0.01 0.1 1 T
column. This difference shows that a proper description of _ !
the relativistic effects in the inner motion of the electron in impact parameter (in a,/Z )

P considerably reduces the loss cross section. Our re-

sults in column Il differ roughly by a factor of 2 from the FIG. 1. The electron loss probability, as a function of the impact
results of Anholt and Beckdn9]. parameter, for the loss from 160 GeV/A®b in collisions with

In all these three columns the electron-electron contribuAu. Full curve: the result of the nonperturbative calculation; dashed
tion o£..¢ to the total loss cross section was calculated bycurve: the first-order perturbative results. The impact parameter is
oSS o : iven in units of the characteristic dimensiag/Z,=1.22x 102
using Eq.(7). The application of more exact incoherent scat-9 & Bfﬂp‘? '
tering functions, tabulated in Reff8], [9], changes the re- Y- Of the electron orbit in the ground state of'Pb
sults for the total loss by no more than 5% for Be, which is _
the lightest target considered, where the electron-electrolarge (on the atomic scajemomentum transfers needed to
contribution is relatively more important. As the mean atomionize the tightly bound electron in P3. For the electron

excitation energyA €, we have taken the mean eneyysp,  l0ss from light ions this scaling may not be sufficiently ac-
which is used in calculations of the stopping power and iscurate.
tabulated for a variety of atomsee e.g., Ref[20]). The Our fifth column shows results of the nonperturbative cal-

accuracy ofA € is, in fact, not crucial for our calculatiofg]. culations. Since we neglect the electron-electron contribution
In column IV we show the electron-electron contribution in our nonperturbative calculation, in column V we only
to the total loss cross section. This contribution was calcupresent results for the heaviest targets, used in experiments
lated using the Dirac wave functions for the ground and conof Refs.[3] and[5]. As it was already mentioned, for these
tinuum states of the electron in b and it corresponds to targets the electron-electron contribution is very small. The
the total loss cross section given in column Ill. Analyzing theresults in column V were obtained as follows. For 160
results in columns 1ll and 1V, one may conclude that theGeV/A PB* and takingwe ;= 2|eping ~0.4mc* as the ef-
electron-electron contribution represents a small correctiofiective transition frequency for the loss, one hhag
to the elastic contribution and that this correction is relatively= yv/wes=3 a.u. This value is not much higher thag
more important for collisions with few-electron atoms like ~1 a.u. Therefore the loss cross section was calculated ac-
Be and C. For collisions with heavy targets, like Sn, Xe, andcording to Eq.(19). We setb,;=3.3x10 2 a.u. For impact
Au, the electron-electron contribution is very small parameters in the vicinity ob=b,, the eikonal and first-
(=2%). order loss probabilities are equ@aee Fig. 1 In contrast to
Our calculations for the loss cross sections, using the relahe first-order amplitude&l8), the eikonal transition ampli-
tivistic wave functions for the ground and continuum statesudes(16) preserve the unitarity? yisiated@on/>=1. In ad-
of the electron in PH™, show that the total loss cross section dition, transitions from the ground state to the negative con-
can be rather accurately generated from the elastic contribdinuum states are negligible compared to transitions to the
tion using the following relatiomr|,s= (1+ 1/Z,) gfo'ss, The  positive continuum. Therefore, the nonperturbative loss
same relation also holds when we employ the semirelativistiprobability Pjj;s can be obtained not onl{i) by a direct
wave functions for the ground and continuum states of théntegration over the positive continuum states like in the per-
electron in PB**. We note that this simple scaling is due to turbative calculation, but also as(i) Phe=
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—Spoundanol®> Where the summation runs over all bound the contribution to the loss from the incoherent interaction of
states. In our calculations we used the latter way. For statebe projectile electron witlz, atomic electrons. Comparing
with the principal quantum number<4 the transition prob- the results calculated using the above formula with the cor-
abilities were calculated directly with E@16). In order to  responding results for the neutral targets in Table | one can
estimate the contribution from bound states with4 we  find that, depending on the target atom, the shielding effects
used the approximate relatidtja,o|2~n"~2, where the sum reduce the unshielded loss cross section by a factor ranging
runs over all substates with the same principal quantum nunffom 1.4 (for Be and @ up to 1.9(for Au).

bern. Forb>b,, the loss probability was calculated in the ~S°Me additional information of interest on the process of

first-order of perturbation theory. In these calculations weProjectile-electron excitation and loss in collisions with neu-

took into account the continuum states with angular momen'Eral atoms can he abtained by calculatlng ;earately the so-
. - called longitudinal and transverse contributi¢@d] to cross

tum « up to =7 and energies up te,=10mc>.

. sections. For the loss from 160 GeV/A®D the transverse
Itllzollcicws from thet tabblf. that :jhe d;ffet:e?ce belt\Ntlaet_n the.gart gives the main contribution to the total loss cross section
results of our nonperturbalive and perturbative caicuations | ccounting for=60% of the loss. Similar calculations for the
very small, even for collisions with Au. Only for very small |

oss from 160 GeV/A & show that the transverse part

impact parameters, which do not contribute appreciably tQqnuiptes only 4% to the total loss. For the loss from 160
the total loss, there is a considerable difference between thga\//a 07+ we found that this part accounts for just 1% of
first-order and the eikonal calculatiorisee Fig. 1 That  he total loss cross section. It means that, in order to describe
small difference between the “exact” and first-order 10Ssthe glectron excitation and loss from light projectiles in col-
cross sections can be attributed to the very high collisionisions with neutral targets at any collision velocity, one can
energy and the very tight binding of the electron ifPb It take the interaction with the instantanedusretarded sca-

is known that in collisions with heavy atoms at relatively low lar potential, which is relatively easy to handle, as a full
relativistic energy, the difference between the experimentateraction acting on the projectile electron. This is in sharp
data and the first-order calculation results for the electrozontrast to the los§onization in relativistic collisions with
loss cross sections reaches 50—10024]. In order to ex- charged particles where the transverse part is known to give
plore the influence of the binding energy on the nonperturthe important contribution, which is asymptotically dominant
bative effects we calculated the electron loss from a lighteit 4> 1 for the loss from both heavy and light ions.
projectile $°*, in collisions with Au at the same collision

energy per nucleon. We foundf2i=525 kb andojyss

=450 kb using the first-order and “exacf22] approaches, SUMMARY

respectively. Thus, even at very high collision energies the L )
nonperturbative effects can be rather important for the loss in We have calculated projectile-electron loss cross sections

collisions of light projectiles with heavy neutral targets. ThisN uIt_rareIativistic coIIisic_)ns with neutral atomic targets using
is in contrast to the los§onization in ultrarelativistic colli- (€ first-order perturbation theory and the “exact” approach.

sions with charged particles where there is a very small difve r:;\vbe tholwg tgfflt' in generalé the .folllowir}g hmain gﬁeflzts
ference between the perturbative and nonperturbative resuff&'ould be included for a proper description of the projectile-

even for ionization of hydrogen and helium in collisions with electron excitation and loss in ultrarelativistic collisiori:
U9+ [15] the shielding effects of electrons of a neutral targe},the

relativistic effects in the motion of the electron in the projec-

tile for heavy projectiles, andii ) the nonperturbative effects

of the set of our results is, on average, in a better agreeme collisions with heavy targets especially for light projec-
tiles. We have also found that the transverse part of the neu-

with the data. In the more recent experimegr] the g . e i
projectile-electron loss cross sections were measured in colll 8lom perturbation acting on the projectile electron is of

lisions with atomic gas targets. These cross sections Wer'é1inor importance _for light projgc_tiles at any collision en-
found to be substantially lower than those which one coulcf"9Y- The latter point and the poiiti) are in sharp contrast

obtain by interpolating the loss cross sections measured préQ ionization in ultrarelativistic pollisions with charg_eq par-
viously in solids[3]. If we restrict the comparison of the ticles, where the nonperturbative effects are negligible for

calculated cross sections to those measured in the new e&"Y possibl_e pair of cqlliding par_tners and where the trans-
periment, then the results of the first-order calculation usin erse term Is as_ymptohca!ly dominant. Thaf[ contrast reflects
the relativistic wave functions for the electron in®®bseem he essential difference in .electron transitions caused by
to provide a better fit to the experimental data. long-range and short-range interactions.

We have also performed first-order perturbative calcula-
tions for projectile-electron loss from 160 GeV/A ®b in
collisions with a pointlike charg&, . Using the Dirac wave
functions for the electron in Bb" we found thatooss The authors are grateful to Professor R. Schuch and Dr. S.
=8.7x 10 3x Z4 kb at this collision energf23]. Neglecting  Scheidenberger for informing about the experimental results
the shielding effects, one would obtain for the loss crossf Ref. [5] before publication. A.B.V. acknowledges with
section in collisions with neutral atoms;,q=8.7x10 3 thanks the support from the Alexander von Humboldt Stif-
X(Zf\+ Z,) kb, where the term proportional @, includes tung.

Concerning the comparison of our results with the experi
mental data from Ref$3] and[5], it is difficult to say which
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APPENDIX Sincer, ~1/Z,, then, forb>Z,/Z,c, one can expand the

Bel how that for electron | in ultrarelativisti exponential function in Eq(A5) and the eikonal transition
>elow we show that for €lectron 10Ss In ultrareiativistic amplitude (A5) recovers the first-order transition amplitude

collisions with a pointlike charged particle one can always( 4). Thus, one can conclude that for collisions with a point-

find a range of impact parameters where the eikonal anfie chargel(i) the first-order perturbation theory can be used
first-order transition amplitudes are approximately equal. We, b>2Z,/Z,c and (i) the eikonal and first-order transition

also show that a similar range of impact parameters can b&mplitudes are approximately equal aZ J&b< yv/wp.
found for the loss from very heavy ions in collisions with | ot s now discuss briefly ultrarelativistic collisions with

neutral atoms. _ . i . neutral atoms. Since for collisions with a neutral atom hav-
Let us first consider collisions with a pointlike charig. ing atomic numberZ,, the screened atomic field for any

In this case the eikonal transition amplitude is given by EQjmpact parameter is not stronger than the field of a pointlike
(17), the first-order amplitude is given by EGL8), where o007 then the conclusioi) is applicable for collisions

one should seM; =0. For collisions with impact parameters yith neutral atoms as well. In the eikonal amplitude
b>1/Z,, one can approximately write

. WpoZ
BoK1(Bgb) aOn(b)=<<!nt(1—az)exp(l 2 )
Ko(Bo|rL_b|)~Ko(Bob)+ Tb'“_, (Al)
2iZ,
whereBy=w,/yv andK; is a modified Bessel function. Xexp —¢ 2 AiKo(M;r = bl) |[#o),
Further, we have also
(AB)
In|b_rL| o b-r, (A2) e expand the function&q(M;|r, —b|) for b>1/Z,, simi-

b b2

1
larly to Eq.(Al). Sinceb> Z—>Z—/z one can further expand

Using Eq.(Al) and keeping in mind the conditioR;A;  the exponential function in E4A6) and obtain
=1, one obtains for the first-order transition amplityde)

2iZ
. aon(D)~ 22 S AM;K (M b) (| (1- )
n J
eXP(I >|¢o>

v

ZIZA v
agn(b)~ TKO(BOb)<¢n|( 1- Eaz

. WnoZ
2iZa v @noZ xexp i — b-r,|¢o). (A7)
+v_bBOK1(BOb)<¢n| 1—Eaz exp i
For the same region of impact parametées 1/Z, the
X(r, -b)| o). (A3) first-order transition amplitude is approximately given by

; ; i 2iZ
Using the identity al (b)~ CbA 2 AijKl(ij)(wnKl—az)
J

<l/fn| aexpi wnOZ/v)| lr/f0>Ev/C< ‘r/fnlexqi wnOZ/U)| l/’0>

. WpoZ
one sees that the first term in EGA3) is proportional to ><exp(|—c )b'UWo)- (A8)
1/y?. We will neglect this term and choogeto satisfy not _ _
only the relationb>1/Z, but alsob<yv/wn,. Estimating As it follows from Egs.(A7) and (A8) the eikonal and

wno~Z5 one can see that it is always possible to find thefirst-order amplitudes are approximately equaller 1/Z,, if
range 1Z,<b< yv/wy for ultrarelativistic collisions when Bj=Mj. If the latter condition is not fulfilled, the amplitudes
yc>Z, for any Z,. In this range of impact parameters, (A7) and(A8) can still be approximately equal if there exists
Bob<1 and, correspondingly;(Byb)~1/Byb [14] and the ~ @n overlap betweeb>1/Z, andb<1/M;, andb>1/Z, and
first-order transition amplitude reads b<1/B;. In the ranged<1/M; andb<1/B; the amplitudes
(A7) and (A8) can be further simplified using for small ar-
gumentsK 1(x) ~1/x. This yields

p ~
aon(b) agn(b)~af,(b)

2|ZA ) wnOZ
b (¢l (1—ay)ex IT)(ub)ldfo%
(A4)

2|ZA ) (l)noz
where we sev~c. b (thnl (1= az)exp i—=|b-r.[¢o).
On the other hand, taking into account E42), the ei-

konal transition amplitud€17) becomes (A9)

@no? shows that the strict conditions Zy<b<1/M; and 1Z,

<b<1/B; are in general not fulfilled. However, the less re-
(A5) strictive conditions for the overlap Zj<b<1/M; and

: The inspection of the screening constants given in R&f.
p(|ZZA b-ri)w >
O .

a8ﬁ“'<b>~<wn|<1—az>exp(i o
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1/Z,<b<1/B; are fulfilled for very heavy projectile-ions transition amplitude should be represented by the value ob-
whereZ,, is considerably larger thamax M}. tained either from the eikonal or the first-order transition

In general the cross secti¢h9) can be calculated accord- amplitudes, whichever gives the smallest transition probabil-
ing to the following simple rule. At any impact parameter theity.
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