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Nonperturbative and relativistic effects in projectile-electron loss in relativistic collisions
with atomic targets

A. B. Voitkiv, C. Müller, and N. Gru¨n
Institut für Theoretische Physik der Universita¨t Giessen, Heinrich-Buff-Ring 16, Giessen, Germany

~Received 20 June 2000; published 27 October 2000!

We calculate projectile-electron loss cross sections in ultrarelativistic collisions with neutral atomic targets.
To this end we employ the first-order perturbation theory and the eikonal approximation. We show that, in
general, the following main effects should be included for a proper description of the projectile-electron loss in
ultrarelativistic collisions:~i! the shielding effects of electrons of the neutral target,~ii ! the relativistic effects
in the motion of the electron in the projectile for heavy projectiles, and~iii ! the nonperturbative effects in
collisions with heavy targets, especially for light projectiles.

PACS number~s!: 34.10.1x, 34.50.2s, 34.50.Fa
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I. INTRODUCTION

We have recently developed the plane-wave Born@1# and
the first-order semiclassical@2# treatments for relativistic
collisions of two composite atomic systems, which bo
carry active electrons. Our numerical calculations@1# for to-
tal loss cross sections from ultrarelativistic Pb811 projectiles
showed a reasonable agreement with available experime
data @3#, @4#. In those calculations we used approxima
semirelativistic wave functions for describing the electron
Pb811.

In the present paper we continue to investigate projec
electron excitation and loss in ultrarelativistic collisions w
neutral atomic targets. The goals of our paper are twof
First, we want to make first-order perturbative calculatio
for electron loss from Pb811 using the exact relativistic Dirac
wave functions to describe the electron motion in such
heavy ion as Pb811. Second, we wish also to make som
nonperturbative calculations for loss cross sections. In g
eral these effects are not expected to be very importan
ultrarelativistic collisions. However, in order to get clear
ideas about the relative importance of these effects, it is n
essary to perform nonperturbative calculations. One can
pect that the nonperturbative effects in ultrarelativistic co
sions with neutral atoms are relatively more importa
ie
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compared to collisions with pointlike charges because in
former case projectile-electron excitation and loss at any p
sible value of the Lorentz factorg are restricted to impac
parametersb&a0;aB , wherea0 is the typical dimension of
the neutral atom andaB51 a.u. is the Bohr radius.

The paper is organized as follows. In Sec. II we recall
basic formulas for cross sections and transition amplitu
obtained in the first-order perturbation theory. In this sect
we also give nonperturbative transition amplitudes, wh
are exact in the limitg→`. In Sec. III we present numerica
results of our first-order calculations using semi-relativis
and exact relativistic wave functions. We also give results
our nonperturbative calculations and compare calculated
sults with the experimental data of Refs.@3# and@5#. Atomic
units are used throughout except where otherwise stated

II. THEORY

A. Perturbative approach

Using the first-order perturbation theory, it was shown
Ref. @1# that the cross section for a process, where the p
jectile electron makes a transition 0→n and a final intrinsic
state of the atomic target is not observed, can be appr
mated by
s0→n5
4

v2 (
m

E d2q'U^um~t!uZA2(
j 51

ZA

exp~2 iQ0•jj !uu0~t!&U2

3

U^cn~r !uS 12
v
c

azD exp~ iq0•r !uc0~r !&U2

~q'
2 1~«n2«01em2e0!2/v2g2 12~g21!~«n2«0!~em2e0!/v2g2!2

. ~1!
ith
Here, c0(r ) and cn(r ) are the initial and final (nÞ0)
intrinsic states of the electron in the projectile with energ
«0 and «n , respectively, wherer is the coordinate of the
electron of the projectile with respect to the project
s
nucleus. The statescn(r ) and the coordinater are given in
the rest frame of the projectile.u0(t) and um(t) are the
initial and final intrinsic states of the atom with energiese0
andem . The set of coordinates of the atomic electrons w
©2000 The American Physical Society01-1
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respect to the atomic nucleus is denoted byt
5$j1 , . . . ,jZA

% and is given in the rest frame of the atom

ZA is the atomic number andaz is the Dirac matrix. Further
q05(q' ,qmin), Q05(q' ,Qmin), where qmin5(«n2«0)/v
1(em2e0)/vg is the minimum momentum transferred
the electron of the projectile in the rest frame of the proj
tile and Qmin5(em2e0)/v1(«n2«0)/vg is the minimum
momentum transfer to the electrons of the atom in the
frame of the atom. In Eq.~1! the summation runs over a
intrinsic atomic states, including the atomic continuum.

The cross section~1! can be split into the elastic o
screening (m50) contribution and the electron-electron
antiscreening~all mÞ0) contribution. The elastic part read
@1#

s0→n
el 5

4

v2E d2q' ZA,e f f
2 ~Q0

s!

3

U^cn~r !uS 12
v
c

azD exp~ iq0•r !uc0~r !&U2

~q'
2 1~«n2«0!2/v2g2!2

. ~2!

Here q05(q' ,(«n2«0)/v) and Q0
s5(q' ,(«n2«0)/vg).

The effective charge of the atom in the ground state is

ZA,e f f~Q0
s!5ZA2^u0(t)u(

j 51

ZA

exp~2 iQ0
s
•jj !uu0~t!&.

~3!

The effective charge~3! can be rewritten as

ZA,e f f~Q0
s!5ZA2E dj rel~j! exp~2 iQ0

s
•j!, ~4!

where rel(j) is the charge density of the electrons in t
incident atom in the rest frame of the atom. Using the M
liere parametrization of the Thomas-Fermi potential@6# or
the analytical Dirac-Hartree-Fock-Slater screening functio
given by Salvatet al. @7# for all neutral atoms, the densit
rel(j) can be written as

rel~j!5
ZA

4pj (
i 51

3

Aik i
2 exp~2k ij!. ~5!

Here,Ai andk i are constants for a given atom@6#, @7#. Using
Eqs. ~4! and ~5!, the effective chargeZAe f f(Q0

s) is obtained
to be

ZA,e f f~Q0
s!5ZAFq'

2 1S «n2«0

vg D 2G
3(

i 51

3
Ai

k i
21q'

2 1~~«n2«0!/vg!2
. ~6!

It was shown in Ref.@1# that, using the closure approx
mation, the electron-electron contribution to the cross sec
~1! can be approximately written as
06270
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s0→n
e2e 5

4

v2E d2q'ZA,e f f~Q0
a!

3

U^cn~r !uS 12
v
c

azDexp~ iq0•r !uc0~r !&U2

~q'
2 1~vn01De!2/v2g212~g21!vn0De/v2g2!2

.

~7!

In Eq. ~7! vn05«n2«0 , Q0
a5„q' ,De/v1(«n2«0 )/vg…,

where De is the average energy for transitions of atom
electrons, andZA,e f f(Q0

a) is given by Eq.~6! with the re-
placementQ0

s→Q0
a . Slightly more exact results for the

electron-electron contribution can be obtained by using
Eq. ~7! incoherent scattering functions rather th
ZA,e f f(Q0

a). These functions are tabulated in Refs.@8#, @9# for
all atomic elements.

B. Nonperturbative approach

Nonperturbative effects in projectile-electron excitati
and loss in ultrarelativistic collisions should be more pr
nounced for collisions with heavy many-electron targets.
collisions with such targets the elastic mode is known to
dominant if the dimension of the electron orbit in the proje
tile is much less than the dimension of the neutral targ
Therefore in this section, we will neglect the electro
electron contribution and consider only the elastic mode.

In the elastic mode the atomic target is represented by
external potential. Then the many-electron problem of t
colliding atomic particles is reduced to the problem of t
motion of the electron of the projectile in two fields, the fie
of the projectile nucleus, and the field of the target atom.
the rest frame of the projectile ion nucleus the motion of
electron of the projectile obeys the Dirac equation

i
]c~r ,t !

]t
5Fca•S p2

e

c
A~r ,t ! D1bmc22

Zpe2

r

1eF~r ,t !Gc~r ,t !, ~8!

wherea andb are the Dirac matrices,r is the coordinate of
the electron with respect to the nucleus of the ion, andF and
A are the scalar and vector potentials of the incident neu
atom. In accordance with Eq.~5!, we assume that in the res
frame of the atom its scalar potential is well approximated
a short-range interaction of the type

F85
ZAf~r 8!

r 8
~9!

with

f5(
j

Aj exp~2k j r 8! S (
j

Aj51D . ~10!

An interaction of the type~9!–~10! can be regarded as a
interaction produced by the exchange of ‘‘massive photon
1-2
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with massesM j5k j : a photon with massM j is emitted by a
source with a chargeZj5ZAAj (( jZj5ZA).

The scalar and vector potentials of a sourceZj of massive
photons with the massM j , which moves with relativistic
velocity v, are described by the Proca equation@10#

DF j2
1

c2

]2F j

]t2
2M j

2F j524pZjd@r2R~ t !#,

A j5
v

c
F j . ~11!

We assume that the atom is moving in the projectile fra
along a straight-line trajectoryR5b1vt, where b
5(bx ,by) is the impact parameter andv5(0,0,v) is the ve-
locity of the atom. Using the Fourier transformation in ord
to solve Eq.~11! the solution of Eq.~11! can be written as

F j~r ,t !5
Zj

2p2E d3k
exp~ ik•~r2b!2 ik•vt !

k22
~k•v!2

c2
1M j

22 i0

5
Zj

2p2E d2k' exp@ ik'•~r'2b!#

3E
2`

1`

dkz

exp@ ikz~z2vt !#

k'
2 1kz

2/g21M j
22 i0

. ~12!

The straighforward integration of Eq.~12! results in

F j~r ,t !5
gZj

Ag2~z2vt !21~r'2b!2

3exp~2M jAg2~z2vt !21~r'2b!2!. ~13!

Of course, the potential~13! can be obtained directly from
Eqs.~9! and~10! using the Lorentz transformation. Howeve
the advantage of the Fourier representation~12! is that for
ultrarelativistic velocitiesv it allows to get straightforwardly
the essential simplification for the form of the scalar a
vector potentials, while the limitv→c of Eq. ~13! is very
delicate. For infiniteg one can drop the termkz

2/g2 in the
integrand of Eq.~12! and write

F j~r ,t !5
Zj

2p2E d2k' exp@ ik'•~r'2b!#

3E
2`

1`

dkz

exp@ ikz~z2ct!#

k'
2 1M j

22 i0

5
2Zj

c
dS t2

z

cDK0~M j ur'2bu!, ~14!

whered is the delta function andK0 is a modified Besse
function. Then we obtain for the scalar and vector potent
created by the incident atom in the rest frame of the pro
tile
06270
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F~r ,t !5
2ZA

c
dS t2

z

cD(
j

AjK0~M j ur'2bu!,

Az~r ,t !5F~r ,t !, Ax5Ay50. ~15!

For the potentialsF andAz , given by Eqs.~15!, the Dirac
equation~8! can be solved exactly using a method propos
in Ref. @11# to calculate electron transitions caused by co
sions with a pointlike charge moving with the speed of lig
In our case, where the perturbing atomic field is sh
ranged, the exact probability amplitudea0n for the electron
of the projectile to make a transitionc0→cn between the
electron statesc0 andcn of the projectile is given by

a0n~b!5d0n1^cnu~12az!expS i
vn0z

c D
3FexpS 2iZA

c (
j

AjK0~M j ur'2bu! D 21G uc0&

[^cnu~12az!expS i
vn0z

c D
3expS 2iZA

c (
j

AjK0~M j ur'2bu! D uc0&. ~16!

For obtaining the second line in Eq.~16! the identity
^cnuaz exp(ivn0z/v)uc0&[v/c^cnuexp(i vn0z/v)uc0& ~see Ref.
@12#! was used. The amplitude~16! preserves the unitarity
(allstatesua0n(b)u2[1, as it should be for an exact solutio
@13#. In the limit of vanishing screening (M j→0) one can
use the relationK0(x)'2 ln(x/2)2G for uxu!1 ~see e.g.,
Ref. @14#!, whereG is Euler’s constant. Then, neglecting a
inessential coordinate-independent phase factor, the tra
tion amplitude~16! reduces to

a0n
Coul~b!5^cnu~12az!expS i

vn0z

c D
3expF2 iZA

c
lnS r'2b

b D 2G uc0&. ~17!

The transition amplitude~17! is identical to that derived by
Baltz @11# for the electron transitions in collisions with
pointlike charge.

For finite values ofg, the transition amplitude~16! is
expected to give good results if the effective duration time
the interactionT(b);b/vg is small compared to the charac
teristic transition time in the systemt;1/vn0, i.e., for im-
pact parametersb!b05vg/vn0. This region of impact pa-
rameters, where the components of the four-momen
transferqm5(q0 ,q' ,qz) to the electron are related byq'

2

@(qz
22q0

2), is the region of the applicability of eikonal-typ
approximations. For collisions with neutral atoms, we ha
another characteristic distance, the dimension of the neu
atoma0. If b0@a0, then the amplitude~16! can be used for
any impact parameter because for larger impact parame
1-3
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TABLE I. Experimental and theoretical cross sections~in kb! for ionization of 160 GeV/nucleon Pb811

penetrating different solid and gas targets. The ion is initially in its ground state. The targets marked w
asterisk are atomic targets used in the experiment@5#.

Target Z2 Experiment @19# @18# Present paper
I II III IV V

Be 4 0.14–0.15 0.24 0.14 0.14 0.17 0.12 0.027
C 6 0.31 0.49 0.28 0.29 0.35 0.25 0.04
Al 13 1.3–1.4 2.0 1.1 1.2 1.42 1.1 0.08
Ar* 18 1.75–2.11 3.7 2.2 2.56 1.86 0.11
Cu 29 6.9–8.0 9.0 5.2 5.4 6.5 4.52 0.17
Kr* 36 6.3–7.9 13.2 7.8 9.0 6.63 0.21
Sn 50 15–21 25 15 15.0 17.6 12.5 0.29 12.3
Xe* 54 14.4–16.8 29.4 16.7 19.3 14.6 0.31 14.0
Au 79 42–53 60 35 35.2 40.1 29.0 0.4 27.4
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b*b0, where collisions are no longer ‘‘sudden’’ for th
electron, the electron-atom interaction is already negligib
Below we will refer to the transition amplitude~16! as to the
eikonal amplitude.

The eikonal transition amplitude~16! is to be compared to
the transition amplitude for the elastic mode that was fou
in Ref. @2# using the first-order perturbation theory

a0n
p ~b!5

2iZA

v (
j

Aj^cnuS 12
v
c

azD
3expS i

vn0z

v DK0~Bj ur'2bu!uc0&, ~18!

whereBj5Avn0
2 /v2g21M j

2.
For collisions with infiniteg, the transition amplitude

given by Eq. ~16!, is valid for any impact parameterb.
For collisions with light atoms, where 2ZA /c!1, or at
large impact parameters, where the condition 2ZA /
c( jAjK0(M j ur'2bu)!1 holds for any atom, the transitio
amplitude~16! reduces to the first-order amplitude~18!. Note
that in the limitg→`, in contrast to collisions with pointlike
charges, the eikonal transition amplitude~16! for a screened
interaction does not result in infinite cross sections for dip
allowed transitions.

For collisions with high but finite values ofg, both tran-
sition amplitudes~16! and~18! are not exact. In such a cas
the expressions~16! and~18!, in general, are better suited t
describe the transition amplitudes at small and large imp
parameters, respectively. In a comparative analysis for th
two amplitudes, we first consider colliding systems whe
b05gv/vn0@a0. In such a case one hasBj.M j . For large
impact parametersb@ZA /Zpc, where the atomic field acting
on the electron of the ion is weak compared to the interac
between the electron and the ion nucleus~see appendix!, the
exponent in Eq.~16! can be expanded in series and one s
that the transition amplitude~16! is approximately equivalen
to the first-order transition amplitude for these impact para
eters ~if one neglects in the latter terms proportional
1/g2). For collisions with smaller impact parameters, whe
the atomic field can reach considerable magnitudes du
06270
.

d

e

ct
se
e

n

s

-

g

the collisions, the first-order transition amplitude~18! is in-
ferior to the amplitude~16!. Therefore for colliding systems
which satisfy the conditionb0@a0;1, the eikonal transition
amplitude~16! should be used for all impact parameters.

Let us now consider colliding systems whereb0&a0. In
ultrarelativistic collisions the latter condition can be fulfille
for very heavy ions. If in additionb0@ap , whereap;1/Zp
is the typical dimension of the ground state of the electron
the ion, then a simple method can be applied to calcu
cross sections~see e.g. Refs.@15#, @16#!. For collisions with
small impact parametersb!b0, where the atom-electron in
teraction can be strong, the transition probability is calc
lated according to the nonperturbative expression~16!. For
collisions with larger impact parametersb@1/Zp*ZA /Zpc,
where the perturbation is already weak~see appendix!, the
first order perturbation theory can be used to calculate
transition probability. This method can be employed if the
exists an overlap between the regionsb!b0 and b@1/Zp ,
i.e., whenZpb0@1. Then, taking into account~16! and~18!,
the elastic contribution to the cross section can be written

s0→n52pE
0

b1
db b ua0n~b!u212pE

b1

`

db b ua0n
p ~b!u2,

~19!

whereb1 should lie in the range of impact parameters whe
transition probabilities, calculated according to Eqs.~16! and
~18!, are approximately equal~see appendix!.

RESULTS AND DISCUSSION

Table I shows a comparison between experimental dat
Refs.@3#, @5# and results of different calculations for the lo
cross sections for Pb811 penetrating various solid and ga
targets at a collision energy of 160 GeV/A.

Results of the present paper for the total loss cross sec
s loss5s loss

el 1s loss
e2e are given in columns I, II, III, and V.

Columns I and II present results of our perturbative calcu
tions where we use the semirelativistic~Darwin! wave func-
tions to describe the motion of the electron in the ground a
continuum states of Pb811. The results of column II@17#
1-4
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were obtained using the nonrelativistic formula for the bin
ing energy of the electron in the ground state,u«bindu
5Zp

2/2. The results of column I were calculated assum
that the binding energy is given by the relativistic formu
u«bindu5c2(12A12Zp

2/c2). The results given in column
are noticeably smaller than those in the column II. The
erage difference between these two sets of results is
20%. Surprisingly, the results of our first column are ve
close to those estimated in Ref.@18# where a physically ap-
pealing but rather approximate procedure was used.

Our third column contains results of the perturbative c
culations where we used the relativistic~Dirac! wave func-
tions for the ground and continuum states of the electron
Pb811. The loss cross sections were obtained by taking i
account the continuum states with angular momentumk up
to 67 and energies up to«k510mc2. The inspection of
cross sections differential in energy and the inclusion
states with higherk showed that these regions of the co
tinuum energies and the angular momenta give practic
the total contribution to the loss cross sections. The result
column III are noticeably lower than those in the first colum
and are considerably lower than the results in our sec
column. This difference shows that a proper description
the relativistic effects in the inner motion of the electron
Pb811 considerably reduces the loss cross section. Our
sults in column III differ roughly by a factor of 2 from th
results of Anholt and Becker@19#.

In all these three columns the electron-electron contri
tion s loss

e2e to the total loss cross section was calculated
using Eq.~7!. The application of more exact incoherent sc
tering functions, tabulated in Refs.@8#, @9#, changes the re
sults for the total loss by no more than 5% for Be, which
the lightest target considered, where the electron-elec
contribution is relatively more important. As the mean ato
excitation energyDe, we have taken the mean energyDeSP,
which is used in calculations of the stopping power and
tabulated for a variety of atoms~see e.g., Ref.@20#!. The
accuracy ofDe is, in fact, not crucial for our calculations@1#.

In column IV we show the electron-electron contributio
to the total loss cross section. This contribution was cal
lated using the Dirac wave functions for the ground and c
tinuum states of the electron in Pb811 and it corresponds to
the total loss cross section given in column III. Analyzing t
results in columns III and IV, one may conclude that t
electron-electron contribution represents a small correc
to the elastic contribution and that this correction is relativ
more important for collisions with few-electron atoms lik
Be and C. For collisions with heavy targets, like Sn, Xe, a
Au, the electron-electron contribution is very sma
(&2%).

Our calculations for the loss cross sections, using the r
tivistic wave functions for the ground and continuum sta
of the electron in Pb811, show that the total loss cross sectio
can be rather accurately generated from the elastic contr
tion using the following relations loss5(111/ZA)s loss

el . The
same relation also holds when we employ the semirelativi
wave functions for the ground and continuum states of
electron in Pb811. We note that this simple scaling is due
06270
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large ~on the atomic scale! momentum transfers needed
ionize the tightly bound electron in Pb811. For the electron
loss from light ions this scaling may not be sufficiently a
curate.

Our fifth column shows results of the nonperturbative c
culations. Since we neglect the electron-electron contribu
in our nonperturbative calculation, in column V we on
present results for the heaviest targets, used in experim
of Refs.@3# and @5#. As it was already mentioned, for thes
targets the electron-electron contribution is very small. T
results in column V were obtained as follows. For 1
GeV/A Pb811 and takingve f f52u«bindu'0.4mc2 as the ef-
fective transition frequency for the loss, one hasb0
5gv/ve f f.3 a.u. This value is not much higher thana0
;1 a.u. Therefore the loss cross section was calculated
cording to Eq.~19!. We setb153.331022 a.u. For impact
parameters in the vicinity ofb5b1, the eikonal and first-
order loss probabilities are equal~see Fig. 1!. In contrast to
the first-order amplitudes~18!, the eikonal transition ampli-
tudes~16! preserve the unitarity,(allstatesua0nu251. In ad-
dition, transitions from the ground state to the negative c
tinuum states are negligible compared to transitions to
positive continuum. Therefore, the nonperturbative lo
probability Ploss

np can be obtained not only~i! by a direct
integration over the positive continuum states like in the p
turbative calculation, but also as ~ii ! Ploss

np 51

FIG. 1. The electron loss probability, as a function of the imp
parameter, for the loss from 160 GeV/A Pb811 in collisions with
Au. Full curve: the result of the nonperturbative calculation; dash
curve: the first-order perturbative results. The impact paramete
given in units of the characteristic dimensionaB /Zp51.2231022

a.u. of the electron orbit in the ground state of Pb811.
1-5
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2(bounduan0u2, where the summation runs over all boun
states. In our calculations we used the latter way. For st
with the principal quantum numbern<4 the transition prob-
abilities were calculated directly with Eq.~16!. In order to
estimate the contribution from bound states withn.4 we
used the approximate relation(uan0u2;n23, where the sum
runs over all substates with the same principal quantum n
ber n. For b.b1, the loss probability was calculated in th
first-order of perturbation theory. In these calculations
took into account the continuum states with angular mom
tum k up to 67 and energies up to«k510mc2.

It follows from the table that the difference between t
results of our nonperturbative and perturbative calculation
very small, even for collisions with Au. Only for very sma
impact parameters, which do not contribute appreciably
the total loss, there is a considerable difference between
first-order and the eikonal calculations~see Fig. 1!. That
small difference between the ‘‘exact’’ and first-order lo
cross sections can be attributed to the very high collis
energy and the very tight binding of the electron in Pb811. It
is known that in collisions with heavy atoms at relatively lo
relativistic energy, the difference between the experime
data and the first-order calculation results for the elect
loss cross sections reaches 50–100 %@21#. In order to ex-
plore the influence of the binding energy on the nonper
bative effects we calculated the electron loss from a ligh
projectile S151, in collisions with Au at the same collision
energy per nucleon. We founds loss

pert5525 kb ands loss

5450 kb using the first-order and ‘‘exact’’@22# approaches,
respectively. Thus, even at very high collision energies
nonperturbative effects can be rather important for the los
collisions of light projectiles with heavy neutral targets. Th
is in contrast to the loss~ionization! in ultrarelativistic colli-
sions with charged particles where there is a very small
ference between the perturbative and nonperturbative re
even for ionization of hydrogen and helium in collisions wi
U921 @15#.

Concerning the comparison of our results with the exp
mental data from Refs.@3# and@5#, it is difficult to say which
of the set of our results is, on average, in a better agreem
with the data. In the more recent experiment@5# the
projectile-electron loss cross sections were measured in
lisions with atomic gas targets. These cross sections w
found to be substantially lower than those which one co
obtain by interpolating the loss cross sections measured
viously in solids @3#. If we restrict the comparison of th
calculated cross sections to those measured in the new
periment, then the results of the first-order calculation us
the relativistic wave functions for the electron in Pb811 seem
to provide a better fit to the experimental data.

We have also performed first-order perturbative calcu
tions for projectile-electron loss from 160 GeV/A Pb811 in
collisions with a pointlike chargeZA . Using the Dirac wave
functions for the electron in Pb811 we found thats loss

58.7310233ZA
2 kb at this collision energy@23#. Neglecting

the shielding effects, one would obtain for the loss cro
section in collisions with neutral atomss loss58.731023

3(ZA
21ZA) kb, where the term proportional toZA includes
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the contribution to the loss from the incoherent interaction
the projectile electron withZA atomic electrons. Comparing
the results calculated using the above formula with the c
responding results for the neutral targets in Table I one
find that, depending on the target atom, the shielding effe
reduce the unshielded loss cross section by a factor ran
from 1.4 ~for Be and C! up to 1.9~for Au!.

Some additional information of interest on the process
projectile-electron excitation and loss in collisions with ne
tral atoms can be obtained by calculating separately the
called longitudinal and transverse contributions@24# to cross
sections. For the loss from 160 GeV/A Pb811 the transverse
part gives the main contribution to the total loss cross sec
accounting for*60% of the loss. Similar calculations for th
loss from 160 GeV/A S151 show that the transverse pa
contributes only 4% to the total loss. For the loss from 1
GeV/A O71 we found that this part accounts for just 1%
the total loss cross section. It means that, in order to desc
the electron excitation and loss from light projectiles in c
lisions with neutral targets at any collision velocity, one c
take the interaction with the instantaneous~unretarded! sca-
lar potential, which is relatively easy to handle, as a f
interaction acting on the projectile electron. This is in sha
contrast to the loss~ionization! in relativistic collisions with
charged particles where the transverse part is known to
the important contribution, which is asymptotically domina
at g@1 for the loss from both heavy and light ions.

SUMMARY

We have calculated projectile-electron loss cross sect
in ultrarelativistic collisions with neutral atomic targets usin
the first-order perturbation theory and the ‘‘exact’’ approac
We have shown that, in general, the following main effe
should be included for a proper description of the project
electron excitation and loss in ultrarelativistic collisions:~i!
the shielding effects of electrons of a neutral target,~ii ! the
relativistic effects in the motion of the electron in the proje
tile for heavy projectiles, and~iii ! the nonperturbative effect
in collisions with heavy targets especially for light proje
tiles. We have also found that the transverse part of the n
tral atom perturbation acting on the projectile electron is
minor importance for light projectiles at any collision e
ergy. The latter point and the point~iii ! are in sharp contras
to ionization in ultrarelativistic collisions with charged pa
ticles, where the nonperturbative effects are negligible
any possible pair of colliding partners and where the tra
verse term is asymptotically dominant. That contrast refle
the essential difference in electron transitions caused
long-range and short-range interactions.
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APPENDIX

Below we show that for electron loss in ultrarelativist
collisions with a pointlike charged particle one can alwa
find a range of impact parameters where the eikonal
first-order transition amplitudes are approximately equal.
also show that a similar range of impact parameters can
found for the loss from very heavy ions in collisions wi
neutral atoms.

Let us first consider collisions with a pointlike chargeZA .
In this case the eikonal transition amplitude is given by E
~17!, the first-order amplitude is given by Eq.~18!, where
one should setM j50. For collisions with impact parameter
b@1/Zp, one can approximately write

K0~B0ur'2bu!'K0~B0b!1
B0K1~B0b!

b
b•r' , ~A1!

where B05vn0 /gv and K1 is a modified Bessel function
Further, we have also

ln
ub2r'u

b
'2

b•r'

b2
. ~A2!

Using Eq. ~A1! and keeping in mind the condition( jAj
51, one obtains for the first-order transition amplitude~18!

a0n
p ~b!'

2iZA

v
K0~B0b!^cnuS 12

v
c

azDexpS i
vn0z

v D uc0&

1
2iZA

vb
B0K1~B0b!^cnuS 12

v
c

azDexpS i
vn0z

v D
3~r'•b!uc0&. ~A3!

Using the identity

^cnuazexp~ ivn0z/v !uc0&[v/c^cnuexp~ ivn0z/v !uc0&

one sees that the first term in Eq.~A3! is proportional to
1/g2. We will neglect this term and chooseb to satisfy not
only the relationb@1/Zp but alsob!gv/vn0. Estimating
vn0;Zp

2 one can see that it is always possible to find
range 1/Zp!b!gv/vn0 for ultrarelativistic collisions when
gc@Zp for any Zp . In this range of impact parameter
B0b!1 and, correspondingly,K1(B0b)'1/B0b @14# and the
first-order transition amplitude reads

a0n
p ~b!'

2iZA

cb2
^cnu~12az!expS i

vn0z

c D ~r'•b!uc0&,

~A4!

where we setv'c.
On the other hand, taking into account Eq.~A2!, the ei-

konal transition amplitude~17! becomes

a0n
Coul~b!'^cnu~12az!expS i

vn0z

c DexpS i2ZA

c

b•r'

b2 D uc0&.

~A5!
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Since r';1/Zp , then, forb@ZA /Zpc, one can expand the
exponential function in Eq.~A5! and the eikonal transition
amplitude~A5! recovers the first-order transition amplitud
~A4!. Thus, one can conclude that for collisions with a poi
like charge~i! the first-order perturbation theory can be us
for b@ZA /Zpc and ~ii ! the eikonal and first-order transitio
amplitudes are approximately equal at 1/Zp!b!gv/vn0.

Let us now discuss briefly ultrarelativistic collisions wit
neutral atoms. Since for collisions with a neutral atom ha
ing atomic numberZA , the screened atomic field for an
impact parameter is not stronger than the field of a pointl
chargeZA then the conclusion~i! is applicable for collisions
with neutral atoms as well. In the eikonal amplitude

a0n~b!5^cnu~12az!expS i
vn0z

c D
3expS 2iZA

c (
j

AjK0~M j ur'2bu! D uc0&,

~A6!

we expand the functionsK0(M j ur'2bu) for b@1/Zp simi-

larly to Eq.~A1!. Sinceb@
1
Zp

.
ZA

Zpc
one can further expand

the exponential function in Eq.~A6! and obtain

a0n~b!'
2iZA

cb (
j

AjM jK1~M jb!^cnu~12az!

3expS i
vn0z

c Db•r'uc0&. ~A7!

For the same region of impact parametersb@1/Zp the
first-order transition amplitude is approximately given by

a0n
p ~b!'

2iZA

cb (
j

AjBjK1~Bjb!^cnu~12az!

3expS i
vn0z

c Db•r'uc0&. ~A8!

As it follows from Eqs.~A7! and ~A8! the eikonal and
first-order amplitudes are approximately equal forb@1/Zp if
Bj.M j . If the latter condition is not fulfilled, the amplitude
~A7! and~A8! can still be approximately equal if there exis
an overlap betweenb@1/Zp andb!1/M j , andb@1/Zp and
b!1/Bj . In the rangesb!1/M j andb!1/Bj the amplitudes
~A7! and ~A8! can be further simplified using for small a
gumentsK1(x)'1/x. This yields

a0n~b!'a0n
p ~b!

'
2iZA

cb2
^cnu~12az!expS i

vn0z

c Db•r'uc0&.

~A9!

The inspection of the screening constants given in Ref.@7#
shows that the strict conditions 1/Zp!b!1/M j and 1/Zp
!b!1/Bj are in general not fulfilled. However, the less r
strictive conditions for the overlap 1/Zp,b,1/M j and
1-7
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1/Zp,b,1/Bj are fulfilled for very heavy projectile-ions
whereZp is considerably larger thanmax$M j%.

In general the cross section~19! can be calculated accord
ing to the following simple rule. At any impact parameter t
H.

Z

ys

.

06270
transition amplitude should be represented by the value
tained either from the eikonal or the first-order transiti
amplitudes, whichever gives the smallest transition proba
ity.
li-

.

n

@1# A.B. Voitkiv, N. Grün, and W. Scheid, Phys. Rev. A61,
052704~2000!.

@2# A.B. Voitkiv, M. Gail, and N. Grün, J. Phys. B33, 1299
~2000!.

@3# H.F. Krause, C.R. Vane, S. Datz, P. Grafstro¨m, H. Knudsen, S.
Scheidenberger, and R.H. Schuch, Phys. Rev. Lett.80, 1190
~1998!.

@4# N. Claytor, A. Belkacem, T. Dinneen, B. Feinberg, and
Gould, Phys. Rev. A55, R842~1997!.

@5# H.F. Krause, C.R. Vane, S. Datz, P. Grafstro¨m, H. Knudsen,
U. Mikkelsen, S. Scheidenberger, R.H. Schuch, and
Vilakazi, Phys. Rev. A~to be published!.

@6# G. Moliere, Naturforsch.2A, 133 ~1947!.
@7# F. Salvat, J.D. Martinez, R. Mayol, and J. Parellada, Ph

Rev. A 36, 467 ~1987!.
@8# J.H. Hubbell, Wm.J. Veigele, E.A. Briggs, R.T. Brown, D.T

Cromer, and R.J. Howerton, J. Phys. Chem. Ref. Data4, 471
~1975!.

@9# J.H. Hubbell and I. O” verbo”, J. Phys. Chem. Ref. Data8, 69
~1979!.

@10# J.D. Jackson,Classical Electrodynamics~Wiley, New York,
1975!.

@11# A.J. Baltz, Phys. Rev. Lett.78, 1231~1997!.
.

.

@12# R. Anholt, Phys. Rev. A19, 1004~1979!.
@13# In fact it can be analytically proven that any transition amp

tudes of the form an05^cnu(12az)exp(ivn0z/c)exp@iF(r'

2b)#uc0&, whereF is a real function, preserve the unitarity
@14# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. Stegun~Dover, New York, 1965!.
@15# A.B. Voitkiv and A.V. Koval, Tech. Phys.39, 335 ~1994!; J.

Phys. B31, 499 ~1998!.
@16# A.J. Baltz, Phys. Rev. A61, 042701~2000!.
@17# This set of results was given also in Ref.@1#.
@18# A.H. So”rensen, Phys. Rev. A58, 2895~1998!.
@19# R. Anholt and U. Becker, Phys. Rev. A36, 4628~1987!.
@20# U. Fano, Ann. Nucl. Sci. Eng.13, 1 ~1963!.
@21# Weick et al., GSI Report No. 2000-01, 2000.
@22# For 160 GeV/A S151 projectiles b05gv/ve f f'90 a.u., b0

@a0 and the eikonal transition amplitudes~16! can be used for
any impact parameter.

@23# According to this formula one obtainss loss
p 558.4 kb for

Pb8111Pb821 collisions. This perturbative cross section ca
be compared to the results loss555.8258.2 kb, which was
calculated nonperturbatively in Ref.@16#.

@24# U. Fano, Phys. Rev.102, 385 ~1956!.
1-8


