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The Dirac exchange ener@y, has a densitg,(r) in a spherically symmetric ten-electron atomic ion that is
determined by the idempotent first-order density mattiOM). In turn, this 1 DM has as its leading term in
the 1Z expansion, withZ the atomic number, the bare Coulomb result. This latter quantity is known analyti-
cally from the study of March and Santamafi@hys. Rev. A38, 5002 (1988]. Here g,(r) is calculated
analytically, and presented graphically fae=92 in this largeZ limit. The Slater approximation to the ex-
change potentiaV/,(r), namely,Vg(r)=2e,(r)/p(r) with p(r) the ground-state electron density, is also
plotted forZ=92. In the largeZ limit, V,(r) can be obtained by functional differentiation of the resultant
exchange energy, and is expressed in terms of electron and kinetic-energy densities. Numerical calculations,
based orVg(r) plus approximate corrections, are also presented.

PACS numbegps): 31.15.Ew

I. BACKGROUND AND OUTLINE Naturally, however, this idempotency condition precludes in-
clusion of electron correlation, for which the equality.3)
Though density-functional theofDFT) is now a widely  has to be replaced by(amuch weakercondition in the form
used technigue in the many-electron problem encountered iof an inequality.
atoms, molecules, and clusters, important problems remain Even at the idempotent level, however, the Dirac ex-
in constructing the exchange-correlation potentigh(r) change energj3]
(see, for example, Reff1]). Therefore, Holas and Mardi2] o
gave a complete theory &f,(r) based on low-order density E— _(62/4)J’ ya(r,r )drdr’ (1.9
matrices. This has moved attention to the construction of X [r—r’| '
such density matrices, though of course it is recognized that
eventually, to complete the DFT approach, one will requirelS not easy to turn into DFT form for the reason already
these low-order density matrices as functionals of the “diag-Stated above, namely, that one needs the first-order idempo-
onal” ground-state density(r). In the present paper, atten- tent density matrixy(r,r’) as a functional of the diagonal
tion will be focused entirely on the first-order density matrix ground-state density(r). Therefore, in the present paper,
(1 DM) y(r,r'). This is the natural starting point for the We shall combine the Dirac result.4) with the important

calculation of kinetic-energy density(r), for instance, since 1/Z expansion of atomic theory, which was first connected
the total kinetic energyl can be written as fundamentally with DFT in the work of March and White

[4]. These authors were concerned with the nonrelativistic
ground-state energy of a heavy atomic ion having nuclear

.0 , charge Ze and N electrons, which takes the fégming back
T=(% /2m)J Ve Ve (r e dr. (1.9 to Hylleraaq 5] and especially developed later by Layzer and
co-workers[6]):
Thought(r) is not defined uniquely by the resiylt.1), one E(Z,N)=Z%go(N)+(1/Z)1(N)
acceptable definition is plainly
+- 4+ (UZM e (N)+---]. (1.5
t(r)=(k22m)V,-Voy(r,r)], . (1.2 The main result of March and Whifd] was to demonstrate,

by bringing Eg.(1.5) into contact with the original form of
DFT valid for largeZ and N (namely, the Thomas-Fermi
What is important for the present paper is that, in the framestatistical theory7]), that the asymptotic form of the coeffi-
work provided in the early work of Diraf3], the exchange cientse,(N) for largeN was given by
energyE, is also determined by th@ow idempotentfirst-
order density matrixy(r,r’). Thus, in a spin-compensated en(N)~N"+1/3 (1.6
system on which all attention will be focused below, the

idempotency condition readfor the diagonal densitp(r)] @ result subsequently confirmed in a more rigorous study of
Tal and Levy[8].

However, the point to be exploited in the present paper is
B v 2y that the leading term in the Z/expansion of the total energy
p(ni2= J’ {y(r.r')/2%dr’, (13 E(Z,N) of an atomic ion displayed in E¢l.5) is completely
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determined by the properties of the bare Coulomb potentiadhowed thatE!™ =753 whereas there is agreement that
(_Zezlr). And fOI’ a Closed-she” atom W|th f|"eH andl ECOrrelation depends on a lower power @'; proposa's have
shells, March and Santamari@] have obtained the first- peen made foz" with n=1 or 4/3(March and Wind12],
prder idempotent density matrix in this bare Coulomb limit K ajs Sung, and Herschbagh3)). In Sec. IlI, an exact func-
in closed form as tional differentiation of the exchange energy in the lafge-
limit is reported, the answer fov,(r) involving both elec-
far tron and kinetic-energy densities. Then in Sec. IV, the ap-
+|r—r’|2F(—). (1.7) proximation forV,(r) proposed by Slater is examined ana-
2 lytically and is also displayed numerically fdr=92. It will
be argued that the Slater potential is already a useful ap-
proximation to the full exchange potential, though it is not
quantitative near the atomic nucleus. Corrections are exhib-
ited from the early work of Harbola and Satii]|, modifi-
F = p"/24— mt(r)/4h2. (1.9 cations to which have been treate_d by Holas_ and M§2¢h
(see also Levy and Mardii5]). Section V constitutes a sum-
We record the explicit forms gf(r) andF(r) in Appendix ~ mary with some proposals for future work. Finally, in Ap-
A. Clearly, therefore, for this ten-electron problem, i.e., apendix B, Scott’s calculation of the neutral atom exchange
nonrelativistic Ne-like atomic ion in the limit of largg, one ~ €nergy in the TFD theory is complemented by treating the
can evaluate the Dirac exchange enefgyfrom Eq.(1.4) in  highly ionized limit corresponding in the present study to
this largeZ limit by inserting the Coulomb density matrix N=10 and largeZ.

!

, r+r
y(r,r')=p >

Here the authors show thktis related to the kinetic-energy
densityt(r) by

.7).
The outline of the paper is then as follows. In Sec. Il Il. FORM OF THE EXCHANGE ENERGY DENSITY £,(r)
immediately below, it will be shown that the exchange en- FOR TEN-ELECTRON ATOMIC IONS IN THE
ergy densitye,(r) can be evaluated in closed form using (BARE COULOMB ) LIMIT OF LARGE ATOMIC NUMBER
Egs. (1.4 and (1.7) in this largeZ limit for ten-electron z
atomic ions, the natural definition ef,(r) following from i . .
Eq. (1.4 as (1) g The reduced first-order density matrix of March and San-

tamaria[9] [Eq. (1.7)] can be used directly in Eq1.9) to
evaluate the exchange energy density. Since the functions
YA(r,r') p((r+r")/2) and F((r+r")/2) in Eq. (1.7) are spherically
dr’. (1.9  symmetric, the angular integrations in Ef.9) can easily be
done, taking to lie along thez axis, so that

sx(r)=—(e2/4)f

The resulting(spherically symmetricexchange energy den- . () —(we2/2r)[ f p2(r+1)2[(r+r")—|r=r'[]dr’
sity will also be presented graphically there for the c@se

~92, though, of course, it is recognized that for any subse-

guent contact of all the results with experiment, relativistic +(2/3)f rp((r+r ) 2)F((r+r")2)[(r+r")3
corrections will be required for such a uranium highly

charged positive ion. Section 1l then returns to one focal

point of current DFT, namely, the potentik(r) represent- —|r—r’|3]dr’+(1/5)J r'F2((r+r")2)[(r+r')®
ing exchange. Of course, in our use of Dirac’s resuld),

we are restricted to idempotent 1 DM’s, and therefore corre-
lation is neglected. It is known, however, that exchange en-
ters before correlation, from the work of Scott for exchange
[10] and various later workers for correlation, in the spirit of We shall return to the functional properties of E@.1) in

the 1Z expansion of the total energy in E€L.5), but now  Sec. Ill below. For the present, using the explicit formg-of
with partially summed subseries as in the Thomas-Fermiandp given in Eqs(Al) and(A2), respectively, we note that
Dirac (TFD) statistical theoryMarch and Whitd4]; see also  after radial integration, the resulting total exchange energy
March and Parf11]). For example, for neutral atoms, Scott densitye,(r) is found to be

—|r—r’|5]dr’]. (2.1

e4(r)=(1/15552(e?a® mr)exp(—4ar){15552 1+ ar) + exp ar )[ 4096+ 384Q ar ) + 2304 ar )%+ 3456 ar )]
+exp2ar)[ — 13 608+ 2430 ar) + 2916 ar)?+ 1944 ar )3+ 486 ar )* + 243 ar)®]— 4096 exp5ar/2)

+exp(3ar)[ —1944-972ar — 972 ar)?]}, (2.2
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0.0 IIl. FUNCTIONAL DIFFERENTIATION OF EXCHANGE
ENERGY: THE EXCHANGE POTENTIAL

FOR TEN-ELECTRON ATOMIC IONS
IN THE LARGE- Z LIMIT

-5.0x10°
-1.0x10° |

-1.5x10°

The purpose of this section is to show that an exact ex-
pression for the functional derivativeE, /Sp(r), namely,
exact the exchange potentid,(r), can be obtained from the cal-
asymptotic culation of the exact energl,. To do this it is useful to

divide E, into the sum of three contributions. Returning to

1l Eqg. (2.1), we first note that the total exchange eneigy
45x10°f follows as the sum of three terms:
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Exchange energy density (a.u.)
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)

4000 These terms are evaluated in Appendix C.
From the above, it follows that the total exchange energy

E, takes the form

exact
—— LDA
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E,=—¢? Alf dSpZ(S)S4+A2f dsp(s)F(s)s®
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1000

(3.2

e —

+A3f ds F(s)s®
0

[=]
1

Radial exchange energy density (a.u

000 002 004 006 008 010 o0tz 014 016 with A;=2072/3, A,=2247?/9, and A;=3272. But from
(b) distance (a.u.) Ref.[9], F(r) can be related tp(r) and the kinetic-energy
densityt(r) by Eq.(1.8) already quoted above. Substitution
of this result forF(s) in Eq. (3.2) gives the total exchange
energyE, solely in terms ofp(r) and its second derivative,
plus the kinetic-energy densityr) (for details see Appendix
the LDA, with s-PA(r)= — ¢ V4B — (3/4)(3h) %2, and (;)..Naturally, this is a result exact only in the bare Coulomb
p(r) given by Ea.(A(Z)). The :o{tgl(e)jchan;e (enezéies)in the limit of lIMit of the 1/Z expansion considered throughout thls.paper.
Z=92 areE, = —160.805 ancE- A= — 147.969 a.u. In another model, of a metal surface, a related finding has
recently been reportefll6]. It was stressed by March and

. . Santamarig17] that it was to be expected th&bonlocal
where a=(Z/ao). In spite of thee?/r factor outside the generalizations of exchange and kinetic-energy densities
Curly brackets, it is readily verified than(O) is finite. This should be intimate|y re|ateﬂsee also Lee, Lee, and Parr
expression(2.2) is then readily integrated overto yield the  [18], and a very recent study by Chan and Hahi§)).

FIG. 1. (a) Exchange energy densigy(r) defined by Eqgs(1.7)
and(1.9), for Z=92. For comparison, the asymptotic foeft>(r)
=—e?p(r)/r of the exchange energy density is also plottés.
Radial exchange energy densityrf?e,(r), compared to that for

total exchange energy, To proceed further, let us write in a little more detail the
results obtained for the functional derivativestf’, i=1
—3. Thus,

E,=—1.747 8% €’/ a, (2.3

SEWM8p(r)

(see also Appendix C 2 - ©

For our case of th&@=92, ten-electron ion, the exchange = —(577e2/3)f d¢f désin ef ds aldal p(s)
energy density,(r) is plotted in Fig. 1a); for comparison 0 0 0
we show, in Fig. fa), the asymptotic form,e(r)= +ad(p—¢')d(cosh—cosh’)s(s—r)/s*]?. (3.3

—(1/2)e?p(r)/r, to which e.(r) tends at large. It can be

seen from Fig. 1 that the asymptotic form takes over when _ . )
r=0.08a.u. In Fig. 1b the radial exchange energy densityAfter some manipulation, one reaches the desired result
47r2g,(r) is plotted forZ=92 again and compared with the

local-density approximatior(uLDA_). The poir_1t-point agree- 5E<xl)/5p(r)= — (10me3)r2p(r). 3.4
ment between exact and LDA in Fig. 1b is excellent. But

even so, the total exchange eneigyfrom exact and LDA

calculations is—160.805 and-147.969 a.u., respectively.  Proceeding to treeE(XZ) similarly, one finds
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SE?I 8p(r)=(56mwe?/9)r*F(r) 0] JUUUOUSEUIUS S
+(224772e2/9)f dsp(s)sCSF(s)/8p(r). ~
0 3
@
3. g
( 5) 0‘:) Vsla
After further manipulation and introduction of the relation & — Vg
betweenF, p”, and kinetic-energy density(r) in Eq. (1.8), s 1, T Vasyme
one reaches the result £
>
L
SE?/8p(r)=(56me?/9)r*F(r)— (224m*e’mI27h?)
o0 -100 +—— T T T T T T T T T T
XJ dSp(S)SB[ﬁt(S)/ﬁp(r)] 0.00 0.05 0.10 0.15 0.20 0.25 0.30
0 distance (a.u.)
+[(70me?/9)r?p(r) + (28mwe?/9)r3p’ (1) FIG. 2. Slater potentiaV/g,(r)=2&,(r)/p(r) constructed from

ex(r) as in Fig. 1 andp(r) in Eqg. (A2). Vgr) has the exact
asymptotic form—e?/r of the exchange potentiaf,(r) at suffi-
(Siently larger. The LDA potential V' pa(r) = — (3lm)Ye?pY¥(r),
iS also shown for comparison.

+(77e12T)r%p"(r)]. (3.6)

Thus this part of the exchange potential can also be obtain
formally exactly, but now the functional derivative of the

kinetic-energy density appears. To date, we have not suc- , . ical |
ceeded in calculating this term explicitly, singép] is not ~ '€POrting some approximate numerical results o(r),

yet known in this largeZ limit. One part of [ p], that from which We.con\(enient!y build around the Slater potential
thes(l=0) states, has been given earlier by one dfai as Vsii(r) defined immediately below.

_ 2 IV. APPROXIMATE NUMERICAL RESULTS FOR
Ts[p]_(lm)f (p/r)dr (3.7 EXCHANGE POTENTIAL V,(r) AND FORCE
and hence Given Eq. (2.2 above, one can immediately find the
N g2 Slater approximation to the exchange potentislk(r)
S(r) op(r)=4md(r=r')ir*. G e (1) p(r), with p(r)=y(r.1")|.r_, . Figure 2 shows
However, no such closed result has been found forghe Vsidr) for the presentZ=92, ten-electron case as it ap-
term. proaches the asymptotic limi/2>(r)=—e?/r asr—o.
The third contributionsE()/ Sp(r) to the exchange po- In the present case of a noninteracting electronic system,
tential can be written by similar arguments as the Harbola-Sahni exchange potenfitdi] can be expressed

as the sum of the Slater potential plus a “correction” term:

5E§(3)/5p(r)=—647T2e2f:ds§F(s)5F/5p(r). Vo) =V fr [dpelar]
Hsll) = Vsidl) —

n !
) 1"=T]

d3r’dr”, (4.1
(3.9

We are then led to the final form where p,(r',r")=v?(r',r")[2p(r") is the exchange hole
density. The correction term has been evaluated numerically
5E§<3)/5p(r)=(64772e2m/3ﬁ2)Jwds SF(s)[8t(s)/ 8p(1)] for our case, and the resul_ting exchange potentigd(r)
0 plotted in Fig. 3. For comparison, the Slater poteritigl(r)
S D B is also shown. As can be seen, the difference between the
—(112me”/3)rF(r) — (32me 3)r>F'(r) exact and the Slater potentials decreases rapidly withle
— (2we3)r°F"(r). (3.10 mention in this context the ob_servatiop of KIein_n{at_l] that
the Slater potential is a partial functional derivative of the
Thus, the exchange potential for this ten-electron syster@xchange energy with respect to charge density with wave
in the largeZ limit can be obtained analytically by direct function phases held constant. The phases must contribute to
functional differentiation of the exchange enel@)y, the an- the full functional derivative near the nUC|eus; this contribu-
swer being in terms of the ground-state dengify) and its ~ tion being short ranged, since the Slater potential has the
derivatives, plus the functional derivativié(s)/ Sp(r) of the ~ correct asymptotic form. o
kinetic-energy density. This is therefore a formally complete It is instructive to return to the original forii.4] of the
density-functional theory of the exchange potential in thisHarbola-Sahni potential,
closed-k+1) shell atomic ion in the larg&-limit. )
Because of the absence, to date, of a calculable form of (T Yo ) (r"—=r’)
Vhs(r) = — e 2p(r

37 "
ot(s)/ép(r), we follow this exact theoretical analysis by e —r'? dr’dr” (4.2
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and calculate the corresponding forces for our case. In particular, one can cal@ldte’V,g(r)/dr] and verify that the
(negative of theintegral over all space recovers the total exchange enéngyevy-Perdew equality of EGAS5)]. Expressing

y(r,r") in terms ofp andF and performing the angular integrations, one finds that

oo o) [ e

+(27r/3r)JiOp((r+r’)/2)F((r+r’)/2)[—|r—r’|(2r2—r’2

+(7r/15r)fw F2((r+r")/2)[ —|r—r"|¥
r'=0

Volume integration then gives

.
=f 4772I’er p
0 r'=0

[(r—r’)

r=r’|

+[the last two terms from E(4.3)],

2((r+r1"12)

+1|r"2dr’

4.9

where E,= —160.805 a.u. as before. Thug, g(r) satisfies

Ar2—r'2=3rr" )+ (r+r")3(4r2—r'2+3rr")Jr'dr’.

r'2dr’

')+ (r+r')(2r2=r'2+rr’)]r'dr’

4.3

(i) In the spirit of the 1Z expansion written explicitly for
atomic ions in Eq(1.5), the limiting form of the exchange
energy densitg,(r) at largeZ has been obtaing@q. 2.2 in
closed analytic form for nonrelativistic ten-electron ions.

(i) By integration, the total exchange enefgy has been
shown for these ten-electron ions to be proportionat tas
Z—o, with the proportionality coefficient
—1.747 88€%/ a,) [see Eq(2.3) and Appendix G.

(i) The Slater approximation to the exchange potential
V,(r), namely, 2,(r)/p(r), has hence been found analyti-
cally and is plotted foZ=92 in Fig. 2.

(iv) The Harbola-Sahni exchange potential is also plotted
in Fig. 3.

(v) In Sec. lll and Appendix Cg,(r) has been con-

one of the conditions on the exact exchange potential, alstructed in terms ofintegrals on p(r) plus its derivatives

though this is not a proof thats=Veyact

The exchange force resulting fromy,g(r) is purely ra-
dial, Fug(r) =—dVus(r)/ar; using Eqg.(4.3), one can find
analytically the force plotted in Fig. 4, wherEgyr)
=—dVggr)/or is shown for comparison. Note that both
Fgi(r) andFyg(r) go to zero at the nucleus=0.

V. SUMMARY AND PROPOSED FUTURE DIRECTIONS

lows:
O —_
-20
3
©
= 40-
8
€
[J]
o 60
5 . Slater
aé’ ————————— Harbola-Sahni
2 sd
Q
>
w
-100

distance (a.u.)

FIG. 3. The Harbola-Sahni exchange poteritigl(r) compared
with Vg {r).

and the kinetic-energy densitfr). Reference may be made
here to a recent condensed matter analogue, namely, the in-
finite barrier model of a metal surfa¢®arch[16]), where
againg,(r) is related tot(r).

(vi) Scott’s semiclassical calculation of the total exchange
energy «Z%% for heavy nonrelativistic neutral atoms is
complemented by a study of the strong ionization limit
(N/Z)<1 in Appendix B. The result has the form
Esemiclassica), 75/3(N/z) 23, which becomes proportional @

The main achievements of the present paper are as fofoy fixed (and still largeé N. This then makes contact with

-1000

-1500

-2000 4

Exchange force (a.u.)

-2500

-3000+

300

distance (a.u.)

FIG. 4. (Radia) exchange force€,g(r)=—dVug(r)/dor and
Egr)=—dVg4r)/dor corresponding to the Harbola-Sahni and
Slater exchange potentials, respectively.
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item (ii) above in the present section. To conclude this appendix, we note that the total ex-
As to future directions, it would be of interest to extend change energ¥, and the force—VV,(r) associated with
the above to homonuclear diatomic molecules with a fixedhe exchange potentidd,(r) are connected by
number of electrons. However, unlike the bare Coulomb
one-center problem treated here, the idempotent bare Cou-
lomb density matrix for the two-center problem can no
longer be obtained in closed analytic foif@xcept near the
united-atom limit for the present ten-electron one-cente® result that goes back to Levy and Perd@8]. Equation
problem). Nevertheless, a study of the exchange energyA5) is to be contrasted with the result for the ex&gtin
E,(Z, N, R) for fixed (and small N is called for, at a number terms of the Slater potential, namely,
of values of the internuclear distanBe

EX=—J p(N)r-VV,(r)d3 (A5)

Ex=f sx(r)d3r=(1/2)fp(r)VS|a(r)d3r. (AB)
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APPENDIX A: ANALYTIC FORMS OF ELECTRONIC,
KINETIC-ENERGY AND EXCHANGE ENERGY
DENSITIES FOR TEN-ELECTRON NONRELATIVISTIC

ATOMIC IONS IN THE LIMIT OF LARGE Z

The area under this curve, namely, the total exchange energy
E,, is, of course, the same as that form#)e,(r), with
e,(r) defined directly from the Dirac expression figg [3].

From the study of March and Santamdi®a, who worked APPENDIX B: SEMICLASSICAL EVALUATION OF
however with singly occupied states throughout, we find the EXCHANGE ENERGY E, FOR HIGHLY CHARGED
electron density for the ten-electron atomic ions in thePOSITIVE ATOMIC IONS IN THE LIMIT WHEN THE

largeZ limit as the diagonal element of the 1 DMW(r,r’) NUMBER OF ELECTRONS N AND THE NUCLEAR
given by Eq.(1.7) with CHARGE Z ARE BOTH LARGE, BUT N/zZ<1
F(r)=—(1/32m)(Z/a)® exp — Zt/ap) (A1) _ The objec_nve _of thsfmigspsgflxsf to evalugte the semiclas-
sical approximatiorkE; =E;" to the Dirac exchange
and energy[3]. This will be written explicitly as
— 3
p(r)=(2/m)(Zla)® exp( — 2Zr/ap) ES- g, f [pre(r V3G o, = (3/4)(3/m) Y2,
+(1/4m)(Zlag)® exp(— Zrlag)[1— Zr/a, (B1)
+1/2(Zrlag)?]. (A2)  The Thomas-Fermi semiclassical density(r) for a bare

Coulomb potential is immediately written down from phase-
The corresponding kinetic-energy dendify) is then readily  space considerations as

obtained from Eq(1.2) as
pre(r)=(87/3h%)(2m)%¥2(w+2€?/r)3? (B2)
t(r)=(A2%/2mm)(Z/ay)®{2 exq — 2Zr/ay)

+ (/16 exp(—Zrlag)[7—3Zrlag+ (1/2)(Zr/a0)2]}.
(A3) f pre(r)d3r=N (B3)

where the chemical potentia is found from

It is of interest to note that differentiatingA3), one can
verify the equivalence with the result of Amovilli and Marc
[22] that

h to be
w=— 18 1/3(22/N2/3)(e2/a0) (B4)
t'(r)=(1/8)p" — (3/4?)p' = (3ZI2r%)p. (A4  \ith ag=#%/mé. Evidently Eq.(B2) is to be used front

) ) S =0 out to the semiclassical radiug given by
The basically new result of the present investigation is the

exchange energy density(r) calculated from Eq(1.9) us- w=—2¢€r, (B5)
ing the bare Coulomb density matrik.7), with the result in
Eq. (2.2. and then one finds from Eg&1), (B2), and(B5) the result
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r
ESC= — ¢, (8/3h%)(2m)2 f ()Y L — LI g]?4mr 2dr
0

= —c(8m/3h%)(2m)2(Z€?)2(4mro/3). (B6)

Substitution forc, from Eq.(B1) and forr, from Eqgs.(B4)
and (B5) then yields the desired result
ESC= — (4/37%)(18N?) Y3z e?/ay. (B7)

As evidenced in the title of this appendix, H&7) is physi-
cally valid when bothZ andN are large, bulN/Z<1.

In the text, we have noted the “exact” evaluation of the
LDA exchange in Eq(B1) with the correct electron density

for ten electrons in a bare Coulomb field. As in E&7),
ELPA=Z, but, of courseN=10. Then Eq(B7) is being used
outside its proper range of validity. Thus, substitutiNg
=10 in Eq.(B7) gives —1.6433Z(e*/a,), to be compared
with ELPA=—1.6084Z(e% ay).

It is worth noting also that Eq(B7) complements the
exchange energy calculated by Sddff] for neutral atoms;
he found —0.2212%3%(e?/a,) with the self-consistent
Thomas-Fermi neutral atom density; E@®7) would give
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Introducing the Heaviside functiod(a,b) defined by
H(a,b)=1, b>a
=0, 0O<b<a (Co
one can interchange the order of integration in EZP) to
obtain

E§1)=—8w2e2[f dSpZ(s)f drr(2s—r)2H(r/2;s)
0 0

><[1—H<r,s>]+f;dsz(s)J;drrz

S

x(Zs—r)H(r,s)]. (CH
Ther integration is readily performed to find
E\Y=—(207%e%3) j ds £p(s). (C6)
0

~—0.3547%%(e?/a,) due to neglect of screening, which is By an analogous procedurg{?) andE{*) may be calculated,

permissible only for N/Z)<1, with N andZ large.

APPENDIX C: EXCHANGE ENERGY IN TERMS OF
ELECTRON AND KINETIC-ENERGY DENSITIES

The total exchange enerds,=E"+E®+E® | where
the simplest ternEil) is given explicitly by

Eil):—(szez)f drrf dr’r’
0 0

X[(r+r")=|r=r'[1p?((r+r")/2).  (CI)
The change of variable defined by
s=(r+r")/2 (C2
then allowse{" to be rewritten as
0 r
EY= —4w2e2f drr f 2ds(2s—r)%p?(s)
0 r2
+J 2dsr(2s—r)p?(s)|. (C3
r

with the results
E\? = —(2247%€?/9) J:ds,)(s)F(s)sﬁ (C7)
and
E®) = — (32262 J :ds F(s)s%. (8

Inserting the formgA2) and (A1) for p andF, respectively,
into the definite integrals in EqEC6)—(C8) yields the results

E\Y=—(18355/38882¢€% a,, (C9
E!?'=(760585/139 96 €?/a,, (C10

and
E\¥=—(315/128Z¢ a,, (C11)

with the final result for the total exchange enekgygiven in
Eq. (2.3.
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