
PHYSICAL REVIEW A, VOLUME 62, 062512
Nonrelativistic exchange-energy density and exchange potential in the lowest order of the 1ÕZ
expansion for ten-electron atomic ions
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The Dirac exchange energyEx has a density«x(r ) in a spherically symmetric ten-electron atomic ion that is
determined by the idempotent first-order density matrix~1 DM!. In turn, this 1 DM has as its leading term in
the 1/Z expansion, withZ the atomic number, the bare Coulomb result. This latter quantity is known analyti-
cally from the study of March and Santamaria@Phys. Rev. A38, 5002 ~1988!#. Here «x(r ) is calculated
analytically, and presented graphically forZ592 in this large-Z limit. The Slater approximation to the ex-
change potentialVx(r ), namely,VSla(r )52«x(r )/r(r ) with r(r ) the ground-state electron density, is also
plotted for Z592. In the large-Z limit, Vx(r ) can be obtained by functional differentiation of the resultant
exchange energy, and is expressed in terms of electron and kinetic-energy densities. Numerical calculations,
based onVSla(r ) plus approximate corrections, are also presented.

PACS number~s!: 31.15.Ew
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I. BACKGROUND AND OUTLINE

Though density-functional theory~DFT! is now a widely
used technique in the many-electron problem encountere
atoms, molecules, and clusters, important problems rem
in constructing the exchange-correlation potentialVxc(r )
~see, for example, Ref.@1#!. Therefore, Holas and March@2#
gave a complete theory ofVxc(r ) based on low-order densit
matrices. This has moved attention to the construction
such density matrices, though of course it is recognized
eventually, to complete the DFT approach, one will requ
these low-order density matrices as functionals of the ‘‘di
onal’’ ground-state densityr(r ). In the present paper, atten
tion will be focused entirely on the first-order density mat
~1 DM! g(r ,r 8). This is the natural starting point for th
calculation of kinetic-energy density,t(r ), for instance, since
the total kinetic energyT can be written as

T5~\2/2m!E “ r•“ r 8g~r ,r 8!ur 85rdr . ~1.1!

Thought(r ) is not defined uniquely by the result~1.1!, one
acceptable definition is plainly

t~r !5~\2/2m!“ r•“ r 8g~r ,r 8!ur 85r . ~1.2!

What is important for the present paper is that, in the fram
work provided in the early work of Dirac@3#, the exchange
energyEx is also determined by the~now idempotent! first-
order density matrixg(r ,r 8). Thus, in a spin-compensate
system on which all attention will be focused below, t
idempotency condition reads@for the diagonal densityr(r )#

r~r !/25E $g~r ,r 8!/2%2dr 8, ~1.3!
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Naturally, however, this idempotency condition precludes
clusion of electron correlation, for which the equality~1.3!
has to be replaced by a~much weaker! condition in the form
of an inequality.

Even at the idempotent level, however, the Dirac e
change energy@3#

Ex52~e2/4!E g2~r ,r 8!

ur2r 8u
drdr 8 ~1.4!

is not easy to turn into DFT form for the reason alrea
stated above, namely, that one needs the first-order idem
tent density matrixg(r ,r 8) as a functional of the diagona
ground-state densityr(r ). Therefore, in the present pape
we shall combine the Dirac result~1.4! with the important
1/Z expansion of atomic theory, which was first connect
fundamentally with DFT in the work of March and Whit
@4#. These authors were concerned with the nonrelativi
ground-state energy of a heavy atomic ion having nucl
charge Ze and N electrons, which takes the form~going back
to Hylleraas@5# and especially developed later by Layzer a
co-workers@6#!:

E~Z,N!5Z2@«0~N!1~1/Z!«1~N!

1¯1~1/Zn!«n~N!1¯#. ~1.5!

The main result of March and White@4# was to demonstrate
by bringing Eq.~1.5! into contact with the original form of
DFT valid for largeZ and N ~namely, the Thomas-Ferm
statistical theory@7#!, that the asymptotic form of the coeffi
cients«n(N) for largeN was given by

«n~N!'Nn11/3 ~1.6!

a result subsequently confirmed in a more rigorous study
Tal and Levy@8#.

However, the point to be exploited in the present pape
that the leading term in the 1/Z expansion of the total energ
E(Z,N) of an atomic ion displayed in Eq.~1.5! is completely
©2000 The American Physical Society12-1
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determined by the properties of the bare Coulomb poten
(2Ze2/r ). And for a closed-shell atom with filledk and l
shells, March and Santamaria@9# have obtained the first
order idempotent density matrix in this bare Coulomb lim
in closed form as

g~r ,r 8!5rS r 1r 8

2 D1ur2r 8u2FS r 1r 8

2 D . ~1.7!

Here the authors show thatF is related to the kinetic-energ
densityt(r ) by

F5r9/242mt~r !/4\2. ~1.8!

We record the explicit forms ofr(r ) andF(r ) in Appendix
A. Clearly, therefore, for this ten-electron problem, i.e.,
nonrelativistic Ne-like atomic ion in the limit of largeZ, one
can evaluate the Dirac exchange energyEx from Eq.~1.4! in
this large-Z limit by inserting the Coulomb density matri
~1.7!.

The outline of the paper is then as follows. In Sec.
immediately below, it will be shown that the exchange e
ergy density«x(r ) can be evaluated in closed form usin
Eqs. ~1.4! and ~1.7! in this large-Z limit for ten-electron
atomic ions, the natural definition of«x(r ) following from
Eq. ~1.4! as

«x~r !52~e2/4!E g2~r ,r 8!

ur2r 8u
dr 8. ~1.9!

The resulting~spherically symmetric! exchange energy den
sity will also be presented graphically there for the caseZ
'92, though, of course, it is recognized that for any sub
quent contact of all the results with experiment, relativis
corrections will be required for such a uranium high
charged positive ion. Section III then returns to one fo
point of current DFT, namely, the potentialVx(r ) represent-
ing exchange. Of course, in our use of Dirac’s result~1.4!,
we are restricted to idempotent 1 DM’s, and therefore co
lation is neglected. It is known, however, that exchange
ters before correlation, from the work of Scott for exchan
@10# and various later workers for correlation, in the spirit
the 1/Z expansion of the total energy in Eq.~1.5!, but now
with partially summed subseries as in the Thomas-Fer
Dirac ~TFD! statistical theory~March and White@4#; see also
March and Parr@11#!. For example, for neutral atoms, Sco
06251
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showed thatEx
TFD}Z5/3, whereas there is agreement th

Ecorrelation depends on a lower power ofZ; proposals have
been made forZn with n51 or 4/3 ~March and Wind@12#,
Kais, Sung, and Herschbach@13#!. In Sec. III, an exact func-
tional differentiation of the exchange energy in the largeZ
limit is reported, the answer forVx(r ) involving both elec-
tron and kinetic-energy densities. Then in Sec. IV, the
proximation forVx(r ) proposed by Slater is examined an
lytically and is also displayed numerically forZ592. It will
be argued that the Slater potential is already a useful
proximation to the full exchange potential, though it is n
quantitative near the atomic nucleus. Corrections are ex
ited from the early work of Harbola and Sahni@14#, modifi-
cations to which have been treated by Holas and March@2#
~see also Levy and March@15#!. Section V constitutes a sum
mary with some proposals for future work. Finally, in Ap
pendix B, Scott’s calculation of the neutral atom exchan
energy in the TFD theory is complemented by treating
highly ionized limit corresponding in the present study
N510 and largeZ.

II. FORM OF THE EXCHANGE ENERGY DENSITY «x„r …
FOR TEN-ELECTRON ATOMIC IONS IN THE

„BARE COULOMB … LIMIT OF LARGE ATOMIC NUMBER
Z

The reduced first-order density matrix of March and Sa
tamaria@9# @Eq. ~1.7!# can be used directly in Eq.~1.9! to
evaluate the exchange energy density. Since the funct
r„(r 1r 8)/2… and F„(r 1r 8)/2… in Eq. ~1.7! are spherically
symmetric, the angular integrations in Eq.~1.9! can easily be
done, takingr to lie along thez axis, so that

«x~r !52~pe2/2r !H E r2
„~r 1r 8!/2…@~r 1r 8!2ur 2r 8u#dr8

1~2/3!E r 8r„~r 1r 8!/2…F„~r 1r 8!/2…@~r 1r 8!3

2ur 2r 8u3#dr81~1/5!E r 8F2
„~r 1r 8!/2…@~r 1r 8!5

2ur 2r 8u5#dr8J . ~2.1!

We shall return to the functional properties of Eq.~2.1! in
Sec. III below. For the present, using the explicit forms ofF
andr given in Eqs.~A1! and~A2!, respectively, we note tha
after radial integration, the resulting total exchange ene
density«x(r ) is found to be
«x~r !5~1/15 552!~e2a3/pr !exp~24ar !$15 552~11ar !1exp~ar !@409613840~ar !12304~ar !213456~ar !3#

1exp~2ar !@213 60812430~ar !12916~ar !211944~ar !31486~ar !4 1243~ar !5#24096 exp~5ar /2!

1exp~3ar !@219442972ar 2972~ar !2#%, ~2.2!
2-2
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NONRELATIVISTIC EXCHANGE-ENERGY DENSITY AND . . . PHYSICAL REVIEW A 62 062512
where a5(Z/a0). In spite of thee2/r factor outside the
curly brackets, it is readily verified that«x(0) is finite. This
expression~2.2! is then readily integrated overr to yield the
total exchange energy,

Ex521.747 88Ze2/a0 ~2.3!

~see also Appendix C!.
For our case of theZ592, ten-electron ion, the exchang

energy density«x(r ) is plotted in Fig. 1~a!; for comparison
we show, in Fig. 1~a!, the asymptotic form,«x

AS(r )5
2(1/2)e2r(r )/r , to which «x(r ) tends at larger. It can be
seen from Fig. 1 that the asymptotic form takes over wh
r .0.08 a.u. In Fig. 1b the radial exchange energy den
4pr 2«x(r ) is plotted forZ592 again and compared with th
local-density approximation~LDA !. The point-point agree-
ment between exact and LDA in Fig. 1b is excellent. B
even so, the total exchange energyEx from exact and LDA
calculations is2160.805 and2147.969 a.u., respectively.

FIG. 1. ~a! Exchange energy density«x(r ) defined by Eqs.~1.7!
and ~1.9!, for Z592. For comparison, the asymptotic form«x

AS(r )
52e2r(r )/r of the exchange energy density is also plotted.~b!
Radial exchange energy density 4pr 2«x(r ), compared to that for
the LDA, with «x

LDA(r )52cx $r(r )%4/3, cx5(3/4)(3/p)1/3e2, and
r(r ) given by Eq.~A2!. The total exchange energies in the limit
Z592 areEx52160.805 andEx

LDA52147.969 a.u.
06251
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III. FUNCTIONAL DIFFERENTIATION OF EXCHANGE
ENERGY: THE EXCHANGE POTENTIAL

FOR TEN-ELECTRON ATOMIC IONS
IN THE LARGE- Z LIMIT

The purpose of this section is to show that an exact
pression for the functional derivativedEx /dr(r ), namely,
the exchange potentialVx(r ), can be obtained from the ca
culation of the exact energyEx . To do this it is useful to
divide Ex into the sum of three contributions. Returning
Eq. ~2.1!, we first note that the total exchange energyEx
follows as the sum of three terms:

Ex5Ex
~1!1Ex

~2!1Ex
~3! . ~3.1!

These terms are evaluated in Appendix C.
From the above, it follows that the total exchange ene

Ex takes the form

Ex52e2FA1E
0

`

dsr2~s!s41A2E
0

`

dsr~s!F~s!s6

1A3E
0

`

ds F2~s!s8G ~3.2!

with A1520p2/3, A25224p2/9, andA3532p2. But from
Ref. @9#, F(r ) can be related tor(r ) and the kinetic-energy
densityt(r ) by Eq. ~1.8! already quoted above. Substitutio
of this result forF(s) in Eq. ~3.2! gives the total exchange
energyEx solely in terms ofr(r ) and its second derivative
plus the kinetic-energy densityt(r ) ~for details see Appendix
C!. Naturally, this is a result exact only in the bare Coulom
limit of the 1/Z expansion considered throughout this pap
In another model, of a metal surface, a related finding
recently been reported@16#. It was stressed by March an
Santamaria@17# that it was to be expected that~nonlocal
generalizations of! exchange and kinetic-energy densiti
should be intimately related~see also Lee, Lee, and Pa
@18#, and a very recent study by Chan and Handy@19#!.

To proceed further, let us write in a little more detail th
results obtained for the functional derivatives ofEx

( i ) , i 51
23. Thus,

dEx
~1!/dr~r !

52~5pe2/3!E
0

2p

dfE
0

p

du sinuE
0

`

ds s4]/]a@r~s!

1ad~f2f8!d~cosu2cosu8!d~s2r !/s2#2. ~3.3!

After some manipulation, one reaches the desired result

dEx
~1!/dr~r !52~10pe2/3!r 2r~r !. ~3.4!

Proceeding to treatEx
(2) similarly, one finds
2-3
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dEx
~2!/dr~r !5~56pe2/9!r 4F~r !

1~224p2e2/9!E
0

`

dsr~s!s6dF~s!/dr~r !.

~3.5!

After further manipulation and introduction of the relatio
betweenF, r9, and kinetic-energy densityt(r ) in Eq. ~1.8!,
one reaches the result

dEx
~2!/dr~r !5~56pe2/9!r 4F~r !2~224p2e2m/27\2!

3E
0

`

dsr~s!s6@dt~s!/dr~r !#

1@~70pe2/9!r 2r~r !1~28pe2/9!r 3r8~r !

1~7pe2/27!r 4r9~r !#. ~3.6!

Thus this part of the exchange potential can also be obta
formally exactly, but now the functional derivative of th
kinetic-energy density appears. To date, we have not
ceeded in calculating this term explicitly, sinceT@r# is not
yet known in this large-Z limit. One part ofT@r#, that from
thes( l 50) states, has been given earlier by one of us@20# as

Ts@r#5~1/4!E ~r/r 2!dr ~3.7!

and hence

dts~r !/dr~r 8!54pd~r2r 8!/r 2. ~3.8!

However, no such closed result has been found for thp
term.

The third contributiondEx
(3)/dr(r ) to the exchange po

tential can be written by similar arguments as

dEx
~3!/dr~r !5264p2e2E

0

`

ds s8F~s!dF/dr~r !.

~3.9!

We are then led to the final form

dEx
~3!/dr~r !5~64p2e2m/3\2!E

0

`

ds s8F~s!@dt~s!/dr~r !#

2~112pe2/3!r 4F~r !2~32pe2/3!r 5F8~r !

2~2pe2/3!r 6F9~r !. ~3.10!

Thus, the exchange potential for this ten-electron sys
in the large-Z limit can be obtained analytically by direc
functional differentiation of the exchange energyEx , the an-
swer being in terms of the ground-state densityr(r ) and its
derivatives, plus the functional derivativedt(s)/dr(r ) of the
kinetic-energy density. This is therefore a formally comple
density-functional theory of the exchange potential in t
closed-(k1 l ) shell atomic ion in the large-Z limit.

Because of the absence, to date, of a calculable form
dt(s)/dr(r ), we follow this exact theoretical analysis b
06251
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reporting some approximate numerical results forVx(r ),
which we conveniently build around the Slater potent
VSla(r ) defined immediately below.

IV. APPROXIMATE NUMERICAL RESULTS FOR
EXCHANGE POTENTIAL Vx„r … AND FORCE

Given Eq. ~2.2! above, one can immediately find th
Slater approximation to the exchange potential,VSla(r )
52«x(r )/r(r ), with r(r )5g(r ,r 8)ur 85r . Figure 2 shows
VSla(r ) for the presentZ592, ten-electron case as it ap
proaches the asymptotic limit,Vx

AS(r )52e2/r as r→`.
In the present case of a noninteracting electronic syst

the Harbola-Sahni exchange potential@14# can be expressed
as the sum of the Slater potential plus a ‘‘correction’’ term

VHS~r !5VSla~r !2E
r 95`

r E @]rx /]r 9#

ur 92r 8u
d3r 8dr9, ~4.1!

where rx(r 8,r 9)5g2(r 8,r 9)/2r(r 9) is the exchange hole
density. The correction term has been evaluated numeric
for our case, and the resulting exchange potentialVHS(r )
plotted in Fig. 3. For comparison, the Slater potentialVSla(r )
is also shown. As can be seen, the difference between
exact and the Slater potentials decreases rapidly withr. We
mention in this context the observation of Kleinman@21# that
the Slater potential is a partial functional derivative of t
exchange energy with respect to charge density with w
function phases held constant. The phases must contribu
the full functional derivative near the nucleus; this contrib
tion being short ranged, since the Slater potential has
correct asymptotic form.

It is instructive to return to the original form@14# of the
Harbola-Sahni potential,

VHS~r !52E
r 95`

r E g2~r 9,r 8!~r 92r 8!

2r~r 9!ur 92r 8u3
d3r 8 dr 9 ~4.2!

FIG. 2. Slater potentialVSla(r )52«x(r )/r(r ) constructed from
«x(r ) as in Fig. 1 andr(r ) in Eq. ~A2!. VSla(r ) has the exact
asymptotic form2e2/r of the exchange potentialVx(r ) at suffi-
ciently larger. The LDA potential,VLDA(r )52(3/p)1/3e2r1/3(r ),
is also shown for comparison.
2-4
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and calculate the corresponding forces for our case. In particular, one can calculate@r(r )r ]VHS(r )/]r # and verify that the
~negative of the! integral over all space recovers the total exchange energy@the Levy-Perdew equality of Eq.~A5!#. Expressing
g(r ,r 8) in terms ofr andF and performing the angular integrations, one finds that

r~r !r
]VHS

]r
5~p/r !E

r 850

`

r2
„~r 1r 8!/2…F ~r 2r 8!

ur 2r 8u
11G r 82dr8

1~2p/3r !E
r 850

`

r„~r 1r 8!/2…F„~r 1r 8!/2…[ 2ur 2r 8u~2r 22r 822rr 8!1~r 1r 8!~2r 22r 821rr 8!] r 8dr8

1~p/15r !E
r 850

`

F2
„~r 1r 8!/2…@2ur 2r 8u3~4r 22r 8223rr 8!1~r 1r 8!3~4r 22r 8213rr 8!#r 8dr8. ~4.3!
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Volume integration then gives

2Ex5E r~r !r
]VHS

]r
d3r

5E
0

`

4p2rdr E
r 850

`

r2
„~r 1r 8!/2…

3F ~r 2r 8!

ur 2r 8u
11G r 82dr8

1@ the last two terms from Eq.~4.3!#, ~4.4!

whereEx52160.805 a.u. as before. Thus,VHS(r ) satisfies
one of the conditions on the exact exchange potential,
though this is not a proof thatVHS5Vexact.

The exchange force resulting fromVHS(r ) is purely ra-
dial, FHS(r )52]VHS(r )/]r ; using Eq.~4.3!, one can find
analytically the force plotted in Fig. 4, whereFSla(r )
52]VSla(r )/]r is shown for comparison. Note that bo
FSla(r ) andFHS(r ) go to zero at the nucleusr 50.

V. SUMMARY AND PROPOSED FUTURE DIRECTIONS

The main achievements of the present paper are as
lows:

FIG. 3. The Harbola-Sahni exchange potentialVHS(r ) compared
with VSla(r ).
06251
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~i! In the spirit of the 1/Z expansion written explicitly for
atomic ions in Eq.~1.5!, the limiting form of the exchange
energy density«x(r ) at largeZ has been obtained~Eq. 2.2! in
closed analytic form for nonrelativistic ten-electron ions.

~ii ! By integration, the total exchange energyEx has been
shown for these ten-electron ions to be proportional toZ as
Z→`, with the proportionality coefficient
21.747 88(e2/a0) @see Eq.~2.3! and Appendix C#.

~iii ! The Slater approximation to the exchange poten
Vx(r ), namely, 2«x(r )/r(r ), has hence been found analyt
cally and is plotted forZ592 in Fig. 2.

~iv! The Harbola-Sahni exchange potential is also plot
in Fig. 3.

~v! In Sec. III and Appendix C,«x(r ) has been con-
structed in terms of~integrals on! r(r ) plus its derivatives
and the kinetic-energy densityt(r ). Reference may be mad
here to a recent condensed matter analogue, namely, th
finite barrier model of a metal surface~March @16#!, where
again«x(r ) is related tot(r ).

~vi! Scott’s semiclassical calculation of the total exchan
energy }Z5/3 for heavy nonrelativistic neutral atoms
complemented by a study of the strong ionization lim
(N/Z)!1 in Appendix B. The result has the form
Ex

semiclassical}Z5/3(N/Z)2/3, which becomes proportional toZ
for fixed ~and still large! N. This then makes contact with

FIG. 4. ~Radial! exchange forcesEHS(r )52]VHS(r )/]r and
ESla(r )52]VSla(r )/]r corresponding to the Harbola-Sahni an
Slater exchange potentials, respectively.
2-5
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item ~ii ! above in the present section.
As to future directions, it would be of interest to exten

the above to homonuclear diatomic molecules with a fix
number of electrons. However, unlike the bare Coulo
one-center problem treated here, the idempotent bare C
lomb density matrix for the two-center problem can
longer be obtained in closed analytic form~except near the
united-atom limit for the present ten-electron one-cen
problem!. Nevertheless, a study of the exchange ene
Ex(Z, N, R) for fixed ~and small! N is called for, at a numbe
of values of the internuclear distanceR.
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APPENDIX A: ANALYTIC FORMS OF ELECTRONIC,
KINETIC-ENERGY AND EXCHANGE ENERGY

DENSITIES FOR TEN-ELECTRON NONRELATIVISTIC
ATOMIC IONS IN THE LIMIT OF LARGE Z

From the study of March and Santamaria@9#, who worked
however with singly occupied states throughout, we find
electron density for the ten-electron atomic ions in t
large-Z limit as the diagonal element of the 1 DMg(r ,r 8)
given by Eq.~1.7! with

F~r !52~1/32p!~Z/a0!5 exp~2Zr/a0! ~A1!

and

r~r !5~2/p!~Z/a0!3 exp~22Zr/a0!

1~1/4p!~Z/a0!3 exp~2Zr/a0!@12Zr/a0

11/2~Zr/a0!2#. ~A2!

The corresponding kinetic-energy densityt(r ) is then readily
obtained from Eq.~1.2! as

t~r !5~\2/2pm!~Z/a0!5$2 exp~22Zr/a0!

1~1/16!exp~2Zr/a0!@723Zr/a01~1/2!~Zr/a0!2#%.

~A3!

It is of interest to note that differentiating~A3!, one can
verify the equivalence with the result of Amovilli and Marc
@22# that

t8~r !5~1/8!r-2~3/4r 2!r82~3Z/2r 2!r. ~A4!

The basically new result of the present investigation is
exchange energy density«x(r ) calculated from Eq.~1.9! us-
ing the bare Coulomb density matrix~1.7!, with the result in
Eq. ~2.2!.
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To conclude this appendix, we note that the total e
change energyEx and the force2“Vx(r ) associated with
the exchange potentialVx(r ) are connected by

Ex52E r~r !r•“Vx~r ! d3r ~A5!

a result that goes back to Levy and Perdew@23#. Equation
~A5! is to be contrasted with the result for the exactEx in
terms of the Slater potential, namely,

Ex5E «x~r !d3r 5~1/2!E r~r !VSla~r !d3r . ~A6!

We note also that there is ambiguity in defining an e
change energy density. We have taken the definition in
~1.9!, which leads to«x(r ) in Eqs. ~2.1! and ~2.2!. But one
could adopt the~negative of! the integrand in Eq.~A5!,

4pr 2«x
virial~r !52r~r !r

]Vx

]r
4pr 2. ~A7!

The area under this curve, namely, the total exchange en
Ex , is, of course, the same as that for (4pr 2)«x(r ), with
«x(r ) defined directly from the Dirac expression forEx @3#.

APPENDIX B: SEMICLASSICAL EVALUATION OF
EXCHANGE ENERGY Ex FOR HIGHLY CHARGED

POSITIVE ATOMIC IONS IN THE LIMIT WHEN THE
NUMBER OF ELECTRONS N AND THE NUCLEAR

CHARGE Z ARE BOTH LARGE, BUT NÕZ™1

The objective of this appendix is to evaluate the semicl
sical approximationEx

semiclassical[Ex
scl to the Dirac exchange

energy@3#. This will be written explicitly as

Ex
scl52cxE $rTF~r !%4/3d3r , cx5~3/4!~3/p!1/3e2.

~B1!

The Thomas-Fermi semiclassical densityrTF(r ) for a bare
Coulomb potential is immediately written down from phas
space considerations as

rTF~r !5~8p/3h3!~2m!3/2~m1Ze2/r !3/2, ~B2!

where the chemical potentialm is found from

E rTF~r !d3r 5N ~B3!

to be

m521821/3~Z2/N2/3!~e2/a0! ~B4!

with a05\2/me2. Evidently Eq.~B2! is to be used fromr
50 out to the semiclassical radiusr 0 given by

m52Ze2/r 0 ~B5!

and then one finds from Eqs.~B1!, ~B2!, and~B5! the result
2-6
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Ex
scl52cx~8p/3h3!~2m!2E

0

r 0
~Ze2!2@1/r 21/r 0#24pr 2dr

52cx~8p/3h3!~2m!2~Ze2!2~4pr 0/3!. ~B6!

Substitution forcx from Eq. ~B1! and forr 0 from Eqs.~B4!
and ~B5! then yields the desired result

Ex
scl52~4/3p2!~18N2!1/3Ze2/a0 . ~B7!

As evidenced in the title of this appendix, Eq.~B7! is physi-
cally valid when bothZ andN are large, butN/Z!1.

In the text, we have noted the ‘‘exact’’ evaluation of th
LDA exchange in Eq.~B1! with the correct electron densit
for ten electrons in a bare Coulomb field. As in Eq.~B7!,
Ex

LDA}Z, but, of course,N510. Then Eq.~B7! is being used
outside its proper range of validity. Thus, substitutingN
510 in Eq. ~B7! gives 21.6433Z(e2/a0), to be compared
with Ex

LDA521.6084Z(e2/a0).
It is worth noting also that Eq.~B7! complements the

exchange energy calculated by Scott@10# for neutral atoms;
he found 20.221Z5/3(e2/a0) with the self-consisten
Thomas-Fermi neutral atom density; Eq.~B7! would give
'20.354Z5/3(e2/a0) due to neglect of screening, which
permissible only for (N/Z)!1, with N andZ large.

APPENDIX C: EXCHANGE ENERGY IN TERMS OF
ELECTRON AND KINETIC-ENERGY DENSITIES

The total exchange energyEx5Ex
(1)1Ex

(2)1Ex
(3) , where

the simplest termEx
(1) is given explicitly by

Ex
~1!52~2p2e2!E

0

`

dr r E
0

`

dr8 r 8

3@~r 1r 8!2ur 2r 8u#r2~~r 1r 8!/2!. ~C1!

The change of variable defined by

s5~r 1r 8!/2 ~C2!

then allowsEx
(1) to be rewritten as

Ex
~1!524p2e2E

0

`

dr r F E
r /2

r

2ds~2s2r !2r2~s!

1E
r

`

2dsr~2s2r !r2~s!G . ~C3!
s

06251
Introducing the Heaviside functionH(a,b) defined by

H~a,b!51, b.a

50, 0,b,a ~C4!

one can interchange the order of integration in Eq.~C3! to
obtain

Ex
~1!528p2e2H E

0

`

dsr2~s!E
0

`

dr r ~2s2r !2H~r /2,s!

3@12H~r ,s!#1E
s50

`

dsr2~s!E
r 50

`

dr r 2

3~2s2r !H~r ,s!J . ~C5!

The r integration is readily performed to find

Ex
~1!52~20p2e2/3!E

0

`

ds s4r2~s!. ~C6!

By an analogous procedure,Ex
(2) andEx

(3) may be calculated,
with the results

Ex
~2!52~224p2e2/9!E

0

`

dsr~s!F~s!s6 ~C7!

and

Ex
~3!52~32p2e2!E

0

`

dsF2~s!s8. ~C8!

Inserting the forms~A2! and~A1! for r andF, respectively,
into the definite integrals in Eqs.~C6!–~C8! yields the results

Ex
~1!52~18 355/3888!Ze2/a0 , ~C9!

Ex
~2!5~760 585/139 968!Ze2/a0 , ~C10!

and

Ex
~3!52~315/128!Ze2/a0 , ~C11!

with the final result for the total exchange energyEx given in
Eq. ~2.3!.
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