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Electronic-structure kinetic-energy functional based on atomic local-scaling transformations
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Two explicit noninteracting kinetic-energy functionals for electronic-structure calculations of molecules are
presented. These functionals are obtained by combining kinetic-energy functionals for isolated atoms—
generated by means of local-scaling transformations—so as to produce kinetic-energy functionals applicable to
the electronic structure of molecules. The adequacy of these functionals was tested by calculating the kinetic
energy of a few diatomic molecules. In spite of the fact that computationally these functionals are not harder
to apply than the SGA and the generalized-gradient-approximation kinetic-energy functionals, they lead, nev-
ertheless, to a considerably higher accuracy.

PACS numbd(s): 31.15.Ew

I. INTRODUCTION IIl. METHOD

. . A. LST kinetic-energy atomic functional
The search for an adequate representation of the kinetic

energy functionall { p] of noninteracting systems is an im-  Local-scaling transformationéL.ST) permit us to con-

portant, albeit difficult problem in density-functional theory struct an orthonormal orbital s{atf),,,i(r)}iNzl, where the or-

(DFT). The difficulty stems from the fact that the kinetic bitals are constrained to yield a fixed density Moreover,

energy is generally one order of magnitude larger than théhe minimization of the noninteracting kinetic-energy func-

exchange energy and two orders of magnitude larger than tH@®nal constructed from these orbitals under the constraint

correlation energy. This means, accordingly, that the accuthat p is the exact density leads to Kohn-Sham orbitals

racy needed to represent this functional must be one or tW?(ﬁ,'f?(F)}iN:l [2-4].

orders of magnitude larger than that required to represent -

exchange and correlation energy functionals, respectively. bit
Of course, in the Kohn-Sham theory, this problem is cir-

cumvented by writingT ([ p] exactly in terms of the Kohn-

Sham orbitals. The price one must pay, however, is that one ) —

must deal with a system df coupled orbital equations. In 0 (1) =Ry (Y1, m (6,6)- @

this sense, it would be highly desirable to exprégs] as N . L

an explicit(and analyti¢ functional of the density because it For %"“C.h a set, the kinetic-energy functional is giver(se

would allow us to develop a version of DFT where energydetalls in Ref[2])

calculations can be carried out by solving a single equation LN

involving only the density. Moreover, such an orbital- _ - 30T sk (NI -t (5

independent approach would present considerable advan- Tdel= 2 Z’l f drVedsi(Vid,i(n

tages over the usual orbital-based ones for problems such as

molecular-dynamics simulatiord]. But, it must be under- —Tul ]+}f a3 5’3(F)A [ ]'F) @)

stood that for this type of simulation, highly accurate analyti- wLPI™ P NALALAE s

cal approximations to the kinetic-energy functiofglp] are

necessary. where Ty[p] is the Weiszaker kinetic-energy functional
In this paper we advance a method, based on local-scalind|:

transformations, for the purpose of constructing such ap-

Consider the se{t¢p,i(F)}i“‘:1 of locally scaled atomic or-
als which can be written as the product of a radial times a
spherical harmonic function:

proximations toT{ p] for molecules. We present two such 1 3»[VP(F)]2
approximations. In the first one, we replace the total molecu- Twlpl= gJ d°r ———. 3
lar kinetic-energy modulating factor by its simplatomic p(r)

counterpart. In the second, in addition, we introduce a mor(_al_h | kineti dulating f introduced i
elaborate approximation for the molecular local-scaling fac- € total kinetic-energy modulating factéy, introduced in
tor. In both cases we have used factors generated for spheLF—s] 1S

cally symmetric atoms.

In Sec. Il A, we introduce, for completeness, a previously AN([p1in) =2[L¥([ pT;r) n(F(1))
derived expression for the kinetic-energy functional of atoms o - .
[2]. In Sec. II B, we advance two approximations leading to +L A [pLir) rn(f(n)], (4)

the model kinetic-energy functionals employed in this work. .

In Sec. IIC, we extend these models to molecules and clugvhereL([p];r) is the local-scaling modulating factor:
ters. Finally, in Sec. Ill, we present calculations based on . R R

these models both for atoms and diatomic molecules. L(plir)=1+r-VinN([p];r) (5)
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and 7y and ky are the radial and the angular kinetic-energy) ([ p,]:r). If the reference density is close to the final

modulating factors, respectively, given by density po, then the transformation functiom ([po];r)

dRy 1 (f) should be close t()\([p];F), namely, to the local-scaling
Ry I

1—N
522

mn(f( F)): Rgn1,(f) —ar transformation function connecting, to the final density:
M[plir)=\ ). 12
AR’ ([Pl =N polin) (12
Rg'njlj( ) df ©) In general, we see that if the densityis nonspherically
symmetric and it deviates considerably from the spherically
and symmetric case, then this approximation would not be ad-

equate at all.
The idea is, hence, to obtain approximate kinetic-energy
functionals by introducing in Eqg2) and (4) the transfor-

mation function)\([po];F), the transformed vectoFO(F),
and the modulating factord ([pol;r), =n(fo(r)), and
KN(fO(F)) calculated for the spherically symmetric density

1 (f)
en(F(F)= 5,3f)22|<| 1)( i ) @

There is the following first-order differential equation in-
volving the one-particle generatin@itial) density pq, the
final densityp, and the local-scaling transformation function

Z - - - > , instead of for the reference one. Thus, in this first ansatz
MLpLir)=f(r)/r (heref=f(r)=|f(r)|=I\([pLr)r]): tphoe approximate functional becomes
p(F) 1 1/3
A )= = | . 8 1 - - -
(Lokn (pg(f) L([p];r)) ® TOlp]=Tulo]+ 5 [ &% o™ PAWpalin), (13

It is clear that in the formulation of the atomic kinetic-
energy functional given by Ed2), because we assume that
the transformed functions are of the form given by EL, = a3 = - -
the local-scaling transformation function is just a function of An([polir)=2[L™([polsr) Tn(fo(r))
the radial coordinate, namely,(r). As a consequence, the _o3 - > =
first-order differential equation becomes in this particular L[ polir) kn(folr))]. (14

where

case The approximate Eqg13) and(14) are based on the close-
p(r) dinx([p],r)| ness of local-scaling transformatiofsg. (12)] for two close
NIplir)= ( (f)) ( tr—y; | (O densites.
Another approximate relation for the unknown transfor-
where the initial density is given by mation function)x([p];F) can be obtained by replacing in the
N right-hand side of Eq.(8) the function N([p];r) by
pg(r):;l [Rg,n 1. (]2 100 Mlpolir):
> 1 1/3
After solving Eq. (9), the transformed radial orbitals M[p];;)%)\(l)([p];f)z< p([) —%> . (15
Rl (r) can be calculated through the expression pg(fo) L([polir)
p(r) Clearly, another approximate kinetic-energy functional can
ey i (N= N - Ran (1) (1D pe obtained by introducing in Eq$2), (4), and (5) the

ABD([p];r) given by Eq.(15) and the transformed vector

wheref(r)=x(r)r. _ _ fo(r) calculated for the density,:
In Egs.(5) and(8), we emphasize the fact that there is a

nonexplicit dependence between the transformation function 1
\ and the final density. It should be noted that the trans- TMp]l=Tulpl+ EJ d® p>3(r)AQP([p.polir). (16)
formed vectorf and hence the modulating factdr§[ p];r),

7N, andky also evince the same nonexplicit dependence on

(1)
the final density. whereAy’ is defined as

B. Approximate functional: Atoms AP, podin) = 2L M [, poli 1)} Prn(Fo(r)

Let us consider two final densities: a reference gife), +H{LD([p,polin)} Poaen(fo(r)]
which could be nonspherically symmetric, and a spherically (17)

symmetric onepo(F). The latter is connected to an initial
density pq through the known LST transformation function and
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TABLE I. Atomic noninteracting kinetic energies for exact den-

LO([p,polir)=1+r-ViAnND([p];r) sity (in harirecs

1r-Vip(r) 1

-3 T_ §F'VFIn[pg(f0(r)) Specie Tre+3Ty  TO* L L TES
p(r
Li 7.47733 7.47891 7.43572 7.43842 7.43613
X{L1+1-VAnN([poliN)}]- (18) Be'  14.32860 14.33159 14.27928 14.28291 14.27999

B*? 23.41770 23.42254 23.37713 23.38130 23.37796

For atoms, for example, we may assume that the two den-+3 34 74270 34.74985 34.72671 34.73102 34.72763
sitiesp andp, are the exact and the Hartree-Fdel) ones.  +4 48.30277 48.31267 48.32716 48.33188 48.32813
These densities are used to test the approximate functiongls:s 64.09762 64.11072 64.17811 64.18265 64.17911

defined by Eqs(13) and(16) for atoms. F'6 8212709 82.14384 82.27939 82.28427 82.28040
Ne'7 102.39108 102.41193 102.63081 102.63575 102.63185
C. Approximate functional: An extension to molecules STD?  0.11 0.099 0.0009 0.0034
and clusters
Let us consider an electronic systémolecule or cluster Be 14.64270 14.64571 14.58019 14.60272 14.59312

which consists ofMl atoms. For a given atom, the LST B*! 24.24209 24.24699 24.23846 24.27190 24.26297
given by Eq.(8) can be solved exactly for some final density C*? 36.29770 36.30496 36.40254 36.44807 36.44323
poa and, hence, in this way, the transformed functionsN*2 50.78956 50.79964 51.05537 51.11391 51.11617

)\([pOA];F), A=1,... M can be found. Then the whole STD?® 0.18 0.17 0.039 0.007

space can be divided inthl subvolumes{Qa}a—1 . . M, —
each one of them corresponding to a given atom. For, exalSTD stands for the standard deviation.

ample, for the system composed by the same atoms the space

can be divided in the following way: that in most chemical systems the molecular density can be
envisioned as being produced by small perturbations of the

reQu if  min |[r—Rg|=|r—Ry|, (190  isolated-atom densities. Let us note that these approximate

B=1,... M kinetic-energy functionals may also be used for the descrip-

_ tion of clusters.
where the vectorf®, denote the nuclear positions. In each
volume() 5, we choose a coordinate system whose origin is at
the nucleusA. Within a volume ), we assume thafy
~An([poal;r) and LO=LD([p,poal;r) calculated for A. Atoms
atomA, i.e., we defineAy andL(? in Egs.(13), (16), and
(17) for the whole system in the following way:

IIl. RESULTS

Kinetic-energy functionals Eq913) and (16) were ap-
plied to calculate the kinetic-energy values corresponding to
A = A )i req the “exact” densities of the Liz=3,4,...,10, and Bez

N(LpoliN)=An([poalir) If Tella, =4,5,6,7 isoelectronic series. The dengifyfor which LST
" AW —_ were performed was taken to be the HF one. The “exact”
L ([p.polir) =L ([p.poalir) if reQa, (200 densities for the Li isoelectronic series were those given in

R R Ref. [7] (obtained from Hylleras-type wave function§he
whereAy([poal;r) andLD([p,poal;r) are defined by Eqs. “exact” densities for the Be isoelectronic series employed in
(14) and (18) for the atomic densitypos. The factors  this work corresponded to highly accurate Cl wave functions

AN([pO];F) and L(l)([p,po];F) are functionals of the non- calculated by means of the programmvoL [8,9].
physical densitypg which is the composition of the initial In Table I, we compare the results of the present work for
atomic densities: T andT™ with those obtained using the second-order gra-
R R R dient expansion in the slowly varying limitSGA) [10],

po(r)=poa(r) if reQ,. (21 3
SGA_ 2\2/3 37 537 2

Thus the factorsy([pol;r) and LY([p,pelif) for the =103 fd rpo(r)(1+0.1234%)
whole molecular system, defined by Eg0) on the basis of

. - 1
the atomic factors {An([poaliM)}ta=1. .. m and :TTF+§TW: (22)

.....

scribed by Eqs(13) and (16). The approximation given by and the generalized-gradient approximati@GA) [11],
Egs.(13) and(16) is based on the assumption that the local-
scaling transformations described by E{.2) are inter- 2 4
changeable provided that the molecular and the isolatedTGGA:i(:ng)z/af d3Fp5’3(F)1+88'396& +16.3683
atom densities are quite close within a given atomic region. 10 1+88.2108?

The plausibility of this assumption is guaranteed by the fact (23
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FIG. 1. Comparison of modulating factors calculated through  FIG. 2. Comparison of modulating factors calculated through
KS-x-only orbitals (dashed ling and HF orbitals(dotted ling for  KS-x-only orbitals(dashed linpand HF orbitalgdotted ling for Al
Na atom. The solid line is the corresponding HF density. atom. The solid line is the corresponding HF density.

wheres=|Vp.(r»)|/2(3_772)1.’3p4’.3(r») and the “exact” KSval-  ya1ue TS stemming from the use k([ pye, ¢} 1:1)
ues. KS noninteracting kinetic energies for “exact” densny.nstead ofAn([ { KS‘X}]'F) i exactly equivalent to the
were calculated by means of the local-scaling transformatiof N(LPHr Y ’ yeq

: difference between HF and K&only kinetic-energy val-
version of DFT(LS-DFT) [12,13. The SGA and the GGA )
functionals overestimate th&, values for the first three ues. This amounts to 0.0024 hartree for the Na atom and to

terms of the Li isoelectronic series and for the first two termso‘o_lt_)r:]3 1 kr)]arr]tre_e forﬁAI.. th . £l | .
of the Be series and underestimate thevalues for other diff e t? at\:]lorNo N 'g Aletreggn? ?r:ga&va Lt’es '3 very
terms of the series. The standard deviati¢83D) for the ral1 r_edrlen r?ére:s 'ta arg S ea Ogr‘]er']“t_;)lz fgr :IaT?]Z] reea(;%f's
T and TM functionals are one or two orders of magnitude pidly w It grows exp 1atly i :
) that the Na atom has only one valence electron and thus the
smaller than those for the SGA and the GGA functionals. e o
. - Weisz&er term reproduces exactly the kinetic-energy den-
The modulating factorAn([pwel;r) can be calculated gy in this region, i.e., the numerator in E@4) tends to
through Eq.(14). However, for comparison purposes, it is ;arq for larger values. For the Al atom the situation is dif-
also convenient to write its exact expression in terms Okgrent as there are two valence electrons.add . The
KS-x-only orbitals: cancellation in the numerator of E24) no longer occurs
and in this casé\ grows exponentially due to the presence

of the termp®® in the denominator.

1 N
EAN([PHF1{¢r57X}];r)

1 N 1V (F)Z B. Diatomic molecules
5 2 VYRS OVYSH ) - - - et -
24 i [ 8 pue(n) Numerical calculations of the kinetic energy, employing
= - . (24) the approximate functionals described by Ed) and(16)
prr(r)>? at the HF density, were performed for the diatomic mol-

ecules Na(*2;) and AL(°Y;) at different internuclear
The last equation is evident from Ed8), (3), (13), and(14) separations. The full numerical program developed by Laak-
with p=po=pue and ¢, ;= ¥ *. Equation(24) with HF ~ sonen and co-workerfl4,15 was used to calculated HF
orbitals instead of KS«only ones can be applied to calcu- densities. The kinetic-energy functionals given by H4S)
late approximations té. The behavior of the total modu- and(16), where thep,, densities appearing in EG0) for
lating factor Ay calculated through the KS$-only and the the definition ofAy andL® are theatomicHF densities for
HF orbitals as a function af are presented in Figs. 1 and 2, the Ne and Al atoms, were incorporated into this program.
respectively, for the ground states of the Na and Al atoms. It Results for the N@(12g) molecule at different internu-
is evident from these curves that the error arising from theclear distances are presented in Table 1l and are compared
use of HF orbitals instead of K&only ones in the total with the values obtained using the SGA and the GGA func-
modulating factor calculation appears near the second maxiionals and with the KS~only values for atoms. The differ-
mum of Ay at r~2.0—2.7 bohr for the Na atom and at ence between K&-only and HF kinetic-energy values for
~1.3— 1.7 bohr for the Al atom. The error in kinetic-energy atoms is quite smallfor example, for the F atomTSHF
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TABLE Il. Noninteracting kinetic energies for different internu- ' '
clear distances of the I}léEg*) molecule for Hartree-Fock density

(in hartrees

PHYSICAL REVIEW &2 062510

— Pw
70 [ (PHF—PO)X1 00
——- AJpyl

R(bohn Tre+gTw

TGGA

m0
Ts

ml
TS

The

- Ao

3.0
4.0
5.82
15.0
30.0
STD

322.5924
322.2906
322.1656
322.0315
322.0460
1.58

322.6407
322.3390
322.2140
322.0799
322.0944
1.53

323.7984
323.7972
323.7562
323.6486
323.6576
0.18

324.0635
324.0295
323.8798
323.6021
323.6158
0.11

50 A
324.1806 /

323.8779 |
323.7321 !
323.5986 30 |
323.6204

—T¥57%=0.0015 hartrele Moreover, the atomic modulating
factorsAy calculated by Eq(24) using KSx-only turn out
to be very close to those obtained using HF orbitals.

The same result, namely that the HF and thexXX&nly
kinetic energies lie close together, also holds for molecules.
For example, for f{R=2.0668 bohr T-F—TXS"*=0.0068

hartree[2].

It is seen from Table Il that the approximate kinetic-

10 - I

"0 5 0 5 10
Z (bohr)

FIG. 3. Comparison of densitiesyr and p, and modulating
factors Ay[pre] and Ay[po] for Na(*Xy) molecule, R="5.82
bohr.

energy functionals employed in the present work reproduce | )

the HF kinetic energy much better than the SGA and thglensity and for the HF molecular orbitals are prese_nted for
GGA functionals for all internuclear distances. For examplehe N& and Ab molecules. The HF molecular density and
for the T™ functional, the standard deviation is of 0.18 har-the difference of this density with the densijty calculated

tree. The corresponding deviations for the SGA and GGadccording to Eq(21) are also graphed. From these figures
functionals are 1.58 and 1.53 hartree, respectively. we can see that the difference between the molecular HF
We observe that the error in our model functionals growsdensity andpg is noticeable in the bond region between the
as the internuclear distance decreases. This could be e¥loms. Their asymptotic behavior is, however, alike. The
plained by the fact that the model functionals when appliedhodulating factorAy calculated from the superposition of
to separated atoms reproduce exactly thex<@nly kinetic ~ atomic modulating factors Eq(20) reproduces well the
energy of the system, which in this case is the sum 0fstructur'e of the modulating factor calcul'ated via Ea4)
KS-x-only kinetic energies of the individual atoms. Clearly, €MPloying HF molecular orbitals. There is a small shift of
when the atoms are brought together, the deviation of th&P0ut 0.5 bohr in the positions of the maximaAy for the

real density of the system from that arising from the super]N& molecule. This shift is negligible for Al From Fig. 3
position of separated atoms becomes larger. we may conclude that there is a compensation of errors in the

In Table IIl, the results for the A(33.) molecule are calculation of the last integral of E(L3). This compensation
! ¢]

presented. We see here that the same trend is observed in the
case of the Namolecule when we compare the results ob- 40 71— L | ' -
tained from the SGA, GGA, and present work model func- \ % Phr
tionals. The standard deviations for the gradient expansion . g)HF—Po)X100
functional are approximately one order of magnitude larger 30 \::: ANEE:]F]
than those for the model functionals. ' "

In Figs. 3 and 4, thé\\[ pg] modulating factors Eq20)

and the modulating factors calculated by E2g) for the HF

20

TABLE Ill. Noninteracting kinetic energies for different inter- %
nuclear distances of the APE;) molecule for Hartree-Fock den- 10 ) /
sity (in hartreegs N

R(boh) Tret+5Ty  TA L L The ~

3.0

4.66
10.0
15.0
30.0
STD

482.7933
481.6946
481.4979
481.5098
481.5113
2.16

482.8617
481.7631
481.5665
481.5784
481.5799
2.09

484.7545
483.6755
483.6514
483.6752
483.6796
0.16

485.8669
483.7596
483.5958
483.6246
483.6304
0.36

485.0745
483.8103
483.6169 ~10 = ' : : ? :
483.6363 Z (boh)

483.6428

FIG. 4. Comparison of densities,z and py and modulating

factorsAy[ pue] andAy[ po] for AI2(3Eg’) molecule,R=4.66 bohr.
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TABLE V. Optimized exponents and coefficients for the ana- TABLE V. Optimized exponents and coefficients for the ana-

lytical form of Ay factor for the Na atom. lytical form of Ay factor for the Al atom.

Coefficient k=1 k=2 k=3 Coefficient k=1 k=2 k=3

Ls 11.054028 5.321785 2.275963 (s 13.120602 6.267531 4.761970

{p 5.497534 4.599246 4.886950 ¢, 6.513458 5.441190 1.814707

(oh 0.943237 —0.004627 0.002578 ce 0.967128 0.004739  —0.001795

ca 0.015037 0.801684 0.362281  CZ —0.013206 0.761518 0.078400

c -0.003422 —0.020584 0.007383 c 0.096673 —0.339863 —0.064508

czp 0.447312 0.278228 0.237544  CZP 0.529595 0.677989 0.002495
car 0.021212 0.065571 2.266528

comes about from the fact thaf\[py] overestimates
Anl pue] in the internuclear region and underestimates it in  Let us notice that in order to calculate the modulating
the tail region. A similar error compensation also takes placéactor A of Eq. (16) coming from the approximate treat-

for the Al, molecule. ment of Eq.(15), the transformation function for atomic den-
sitiesA([pOA];F) and the density of the whole systesmare
C. Analytical representation of the Ay modulating factor for needed.

the Na and Al atoms

The total modulating factoAy can be calculated by the IV. CONCLUSIONS
prescription given by Eq14) involving the determination of .
the LST function\ and the radial and angular kinetic-energy N the present work we advance two approximate molecu-
modulating factors. However, a more direct way to calculatd@’ Kinetic-energy functionals developed in the context of
Ay is provided by Eq(24). In this case, the KS orbitals are local-scaling transformations. For the construction of these
needed either in numerical or analytical form. In the presen@PProximate functionals we make use of the fact that a true
work, Ay was calculated numerically by means of E), molecular density differs only slightly from the model mo-

where the LST function([ pue];r) and the angular and the lecular density arising from the superposition of isolated
radial modulating factors corresponding to KSnly orbit- atom densities. This fact reflects itself in the constancy of the

als were used. Of course, E@4) with KS-x-only orbitals inner shell structure of the interacting atoms, which in turn is
yields exactly the same result. closely connectgd with the struchre of thg total kinetic-
Numerical values of\y([pyel;r) as a function ofr for ~ energy modulating factoré\([p]:r). Thus, in these ap-
Na and Al atoms were fitted to the analytical form given by Proximations, we construct the molecular modulating factors
Eq. (24), where the atomic orbitals; were assumed to have using densities, local-scaling transformations functions, etc.

the following three-term STO expansion: for isolated atoms. _ S
Applications of these functionals to the diatomic mol-

2 [P hye ecules Naand K, (at the HF density levglead to values of
lﬂnl(r):kZl Cy (W) rexp = 4ir) Yim, (6, ¢) the kinetic energy which are in excellent agreement with the
- ' (25) HF kinetic-energy values. In fact, the accuracy obtained with
the present functionals is about one order of magnitude better

and where the density appearing in E24) was assumed to than that obtained from SGA and GGA kinetic-energy func-

have the formp=3[, || tionals.

Subseauently. all orbital coefficients and exponents wer This preliminary test clearly indicates that the construc-
>ubseqL Y, D ; P Give approach to the generation of a molecular kinetic-energy
optimized in order to minimize the integral

functional in the context of local-scaling transformations
1 leads to reasonable results even when we use isolated-atom
| 437,53 e parameters in order to represent the molecular functional.
2[ dTPHE T AN pwelif), (29 But more important, the present method provides the possi-
bility for introducing systematic improvements in the con-
which is the second contribution to the kinetic energy in Eg.struction of increasingly accurate functionals. Moreover,
(13). The orthonormalization of three-term STO atomic or-through the analytic representation of atomic modulating fac-
bitals was not conserved during this minimization. tors, we can obtain fully analytic approximate functionals for
In Tables IV and V the optimized coefficients and expo-molecules and clusters.
nents for Na and Al atoms are presented. The numerical As a final word, we would like to stress that the present
value of the integral in Eq(26) is 51.3480 hartree and the approach is orbital-free, as neither for isolated atoms nor for
fitted value is 51.3688 hartree for the Na atom. The corremolecules do we ever have to solve orbital equations in order
sponding values for the Al atom are 85.1140 and 85.148%0 obtain an orbital set. In fact, we can select any set of
hartree, respectively. orthogonal orbitals for the initial atomic orbital spp; - ;
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from which we obtain the atomic locally scaled orbitals from the Hartree-Fock onefl6]. Clearly, therefore, the
{¢p,i}iN=1- For atoms, our most convenient choice has turnegresent extension to molecules, being based on our previous
out to be that of generalized Slater-type orbitfl$§], be-  work on atoms, is also orbital-free.

cause they retain the simplicity of single-orbitals and,

moreover, each atomic orbital is described by a single func-

tion so that we never have a linear combination of atomic ACKNOWLEDGMENT

orbitals whose coefficients must be calculated. Using these

very simple functions in the context of the local-scaling The authors would like to gratefully acknowledge support
transformation version of DFT, we have been able to obtainpf this work by CONICIT of Venezuela through Group
nevertheless, atomic energies that differ in the millihartree®roject No. G-97000741.
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