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Electronic-structure kinetic-energy functional based on atomic local-scaling transformations

V. V. Karasiev, E. V. Luden˜a, and A. N. Artemyev
Centro de Quı´mica, Instituto Venezolano de Investigaciones Cientı´ficas, IVIC, Apartado 21827, Caracas 1020-A, Venezuela

~Received 6 July 2000; published 13 November 2000!

Two explicit noninteracting kinetic-energy functionals for electronic-structure calculations of molecules are
presented. These functionals are obtained by combining kinetic-energy functionals for isolated atoms—
generated by means of local-scaling transformations—so as to produce kinetic-energy functionals applicable to
the electronic structure of molecules. The adequacy of these functionals was tested by calculating the kinetic
energy of a few diatomic molecules. In spite of the fact that computationally these functionals are not harder
to apply than the SGA and the generalized-gradient-approximation kinetic-energy functionals, they lead, nev-
ertheless, to a considerably higher accuracy.

PACS number~s!: 31.15.Ew
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I. INTRODUCTION

The search for an adequate representation of the kin
energy functionalTs@r# of noninteracting systems is an im
portant, albeit difficult problem in density-functional theo
~DFT!. The difficulty stems from the fact that the kinet
energy is generally one order of magnitude larger than
exchange energy and two orders of magnitude larger than
correlation energy. This means, accordingly, that the ac
racy needed to represent this functional must be one or
orders of magnitude larger than that required to repres
exchange and correlation energy functionals, respectivel

Of course, in the Kohn-Sham theory, this problem is c
cumvented by writingTs@r# exactly in terms of the Kohn-
Sham orbitals. The price one must pay, however, is that
must deal with a system ofN coupled orbital equations. In
this sense, it would be highly desirable to expressTs@r# as
an explicit~and analytic! functional of the density because
would allow us to develop a version of DFT where ener
calculations can be carried out by solving a single equa
involving only the density. Moreover, such an orbita
independent approach would present considerable ad
tages over the usual orbital-based ones for problems suc
molecular-dynamics simulations@1#. But, it must be under-
stood that for this type of simulation, highly accurate analy
cal approximations to the kinetic-energy functionalTs@r# are
necessary.

In this paper we advance a method, based on local-sca
transformations, for the purpose of constructing such
proximations toTs@r# for molecules. We present two suc
approximations. In the first one, we replace the total mole
lar kinetic-energy modulating factor by its simpleratomic
counterpart. In the second, in addition, we introduce a m
elaborate approximation for the molecular local-scaling f
tor. In both cases we have used factors generated for sp
cally symmetric atoms.

In Sec. II A, we introduce, for completeness, a previou
derived expression for the kinetic-energy functional of ato
@2#. In Sec. II B, we advance two approximations leading
the model kinetic-energy functionals employed in this wo
In Sec. II C, we extend these models to molecules and c
ters. Finally, in Sec. III, we present calculations based
these models both for atoms and diatomic molecules.
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II. METHOD

A. LST kinetic-energy atomic functional

Local-scaling transformations~LST! permit us to con-
struct an orthonormal orbital set$fr,i(rW)% i 51

N , where the or-
bitals are constrained to yield a fixed densityr. Moreover,
the minimization of the noninteracting kinetic-energy fun
tional constructed from these orbitals under the constr
that r is the exact density leads to Kohn-Sham orbit

$fr,i
KS(rW)% i 51

N @2–4#.

Consider the set$fr,i(rW)% i 51
N of locally scaled atomic or-

bitals which can be written as the product of a radial time
spherical harmonic function:

fr,i~rW !5Rr,ni l i
~r !Yl i ,mi

~u,f!. ~1!

For such a set, the kinetic-energy functional is given by~see
details in Ref.@2#!

Ts@r#5
1

2 (
i 51

N E d3rW“ rWfr,i* ~rW !“ rWfr,i~rW !

5TW@r#1
1

2E d3rW r5/3~rW !AN~@r#;rW !, ~2!

where TW@r# is the Weisza¨cker kinetic-energy functiona
@5#:

TW@r#5
1

8E d3rW
@“r~rW !#2

r~rW !
. ~3!

The total kinetic-energy modulating factorAN introduced in
@6# is

AN~@r#;rW !52@L4/3~@r#;rW !tN„fW~rW !…

1L22/3~@r#;rW !kN„fW~rW !…#, ~4!

whereL(@r#;rW) is the local-scaling modulating factor:

L~@r#;rW !511rW•“ rWln l~@r#;rW ! ~5!
©2000 The American Physical Society10-1
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andtN andkN are the radial and the angular kinetic-ener
modulating factors, respectively, given by

tN„fW~rW !…5
1

rg
8/3~ fW !

1

2 (
i 51

N21

(
j 5 i 11

N FRg,ni l i
~ f !

dRg,nj l j
~ f !

d f

2Rg,nj l j
~ f !

dRg,ni l i
~ f !

d f
G2

~6!

and

kN„fW~rW !…5
1

rg
5/3~ fW !

1

2 (
i 51

N

l i~ l i11!S Rg,ni l i
~ f !

f
D 2

. ~7!

There is the following first-order differential equation in
volving the one-particle generating~initial! densityrg , the
final densityr, and the local-scaling transformation functio
l(@r#;rW)5 f (rW)/r „here f [ f (rW)5u fW(rW)u5ul(@r#;rW)rWu…:

l~@r#;rW !5S r~rW !

rg~ fW !

1

L~@r#;rW !
D 1/3

. ~8!

It is clear that in the formulation of the atomic kinetic
energy functional given by Eq.~2!, because we assume th
the transformed functions are of the form given by Eq.~1!,
the local-scaling transformation function is just a function
the radial coordinate, namely,l(r ). As a consequence, th
first-order differential equation becomes in this particu
case

l~@r#;r !5S r~r !

rg~ f ! D
1/3S 11r

d ln l~@r#,r !

dr D 21/3

, ~9!

where the initial density is given by

rg~r !5(
i 51

N

uRg,ni l i
~r !u2. ~10!

After solving Eq. ~9!, the transformed radial orbital
Rr,ni l i

(r ) can be calculated through the expression

Rr,ni ,l i
~r !5A r~r !

rg~ f !
Rg,ni l i

~ f !, ~11!

where f (r )5l(r )r .
In Eqs.~5! and ~8!, we emphasize the fact that there is

nonexplicit dependence between the transformation func
l and the final densityr. It should be noted that the trans
formed vectorfW and hence the modulating factorsL(@r#;rW),
tN , andkN also evince the same nonexplicit dependence
the final density.

B. Approximate functional: Atoms

Let us consider two final densities: a reference one,r(rW),
which could be nonspherically symmetric, and a spherica
symmetric one,r0(rW). The latter is connected to an initia
densityrg through the known LST transformation functio
06251
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l(@r0#;rW). If the reference densityr is close to the final
density r0, then the transformation functionl(@r0#;rW)
should be close tol(@r#;rW), namely, to the local-scaling
transformation function connectingrg to the final densityr:

l~@r#;rW !'l~@r0#;rW !. ~12!

In general, we see that if the densityr is nonspherically
symmetric and it deviates considerably from the spherica
symmetric case, then this approximation would not be
equate at all.

The idea is, hence, to obtain approximate kinetic-ene
functionals by introducing in Eqs.~2! and ~4! the transfor-
mation functionl(@r0#;rW), the transformed vectorfW0(rW),
and the modulating factorsL(@r0#;rW), tN„fW0(rW)…, and
kN„fW0(rW)… calculated for the spherically symmetric dens
r0, instead of for the reference one. Thus, in this first ans
the approximate functional becomes

Ts
m0@r#5TW@r#1

1

2E d3rW r5/3~rW !AN~@r0#;rW !, ~13!

where

AN~@r0#;rW !52@L4/3~@r0#;rW !tN„fW0~rW !…

1L22/3~@r0#;rW !kN„fW0~rW !…#. ~14!

The approximate Eqs.~13! and ~14! are based on the close
ness of local-scaling transformations@Eq. ~12!# for two close
densities.

Another approximate relation for the unknown transfo
mation functionl(@r#;rW) can be obtained by replacing in th
right-hand side of Eq.~8! the function l(@r#;rW) by
l(@r0#;rW):

l~@r#;rW !'l (1)~@r#;rW ![S r~rW !

rg~ fW0!

1

L~@r0#;rW !
D 1/3

. ~15!

Clearly, another approximate kinetic-energy functional c
be obtained by introducing in Eqs.~2!, ~4!, and ~5! the
l (1)(@r#;rW) given by Eq.~15! and the transformed vecto
fW0(rW) calculated for the densityr0:

Ts
m1@r#5TW@r#1

1

2E d3rW r5/3~rW !AN
(1)~@r,r0#;rW !, ~16!

whereAN
(1) is defined as

AN
(1)~@r,r0#;rW !52†$L (1)~@r,r0#;rW !%4/3tN„fW0~rW !…

1$L (1)~@r,r0#;rW !%22/3kN„fW0~rW !…‡

~17!

and
0-2
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L (1)~@r,r0#;rW ![11rW•“ rWln l (1)~@r#;rW !

5
1

3

rW•“ rWr~rW !

r~rW !
2

1

3
rW•“ rWln†rg„f 0~r !…

3$11rW•“ rWln l~@r0#;rW !%‡. ~18!

For atoms, for example, we may assume that the two d
sitiesr andr0 are the exact and the Hartree-Fock~HF! ones.
These densities are used to test the approximate functio
defined by Eqs.~13! and ~16! for atoms.

C. Approximate functional: An extension to molecules
and clusters

Let us consider an electronic system~molecule or cluster!
which consists ofM atoms. For a given atomA, the LST
given by Eq.~8! can be solved exactly for some final dens
r0A and, hence, in this way, the transformed functio
l(@r0A#;rW), A51, . . . ,M can be found. Then the whol
space can be divided intoM subvolumes$VA%A51, . . . ,M ,
each one of them corresponding to a given atom. For,
ample, for the system composed by the same atoms the s
can be divided in the following way:

rWPVA if min
B51, . . . ,M

urW2RW Bu5urW2RW Au, ~19!

where the vectorsRW A denote the nuclear positions. In ea
volumeVA we choose a coordinate system whose origin is
the nucleusA. Within a volume VA we assume thatAN

.AN(@r0A#;rW) and L (1).L (1)(@r,r0A#;rW) calculated for
atom A, i.e., we defineAN and L (1) in Eqs. ~13!, ~16!, and
~17! for the whole system in the following way:

AN~@r0#;rW ![AN~@r0A#;rW ! if rWPVA ,

L (1)~@r,r0#;rW ![L (1)~@r,r0A#;rW ! if rWPVA , ~20!

whereAN(@r0A#;rW) andL (1)(@r,r0A#;rW) are defined by Eqs
~14! and ~18! for the atomic densityr0A . The factors
AN(@r0#;rW) and L (1)(@r,r0#;rW) are functionals of the non
physical densityr0 which is the composition of the initia
atomic densities:

r0~rW !5r0A~rW ! if rWPVA . ~21!

Thus the factorsAN(@r0#;rW) and L (1)(@r,r0#;rW) for the
whole molecular system, defined by Eq.~20! on the basis of
the atomic factors $AN(@r0A#;rW)%A51, . . . ,M and

$L (1)(@r,r0A#;rW)%A51, . . . ,M , may then be used to constru
the approximate kinetic-energy functionalsTs

m0 andTs
m1 de-

scribed by Eqs.~13! and ~16!. The approximation given by
Eqs.~13! and~16! is based on the assumption that the loc
scaling transformations described by Eq.~12! are inter-
changeable provided that the molecular and the isola
atom densities are quite close within a given atomic regi
The plausibility of this assumption is guaranteed by the f
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that in most chemical systems the molecular density can
envisioned as being produced by small perturbations of
isolated-atom densities. Let us note that these approxim
kinetic-energy functionals may also be used for the desc
tion of clusters.

III. RESULTS

A. Atoms

Kinetic-energy functionals Eqs.~13! and ~16! were ap-
plied to calculate the kinetic-energy values corresponding
the ‘‘exact’’ densities of the LiZ53,4, . . .,10, and BeZ
54,5,6,7 isoelectronic series. The densityr0 for which LST
were performed was taken to be the HF one. The ‘‘exa
densities for the Li isoelectronic series were those given
Ref. @7# ~obtained from Hylleras-type wave functions!. The
‘‘exact’’ densities for the Be isoelectronic series employed
this work corresponded to highly accurate CI wave functio
calculated by means of the programATMOL @8,9#.

In Table I, we compare the results of the present work
Ts

m0 andTs
m1 with those obtained using the second-order g

dient expansion in the slowly varying limits~SGA! @10#,

TSGA5
3

10
~3p2!2/3E d3rWr5/3~rW !~110.1234s2!

5TTF1
1

9
TW , ~22!

and the generalized-gradient approximation~GGA! @11#,

TGGA5
3

10
~3p2!2/3E d3rW r5/3~rW !

1188.3960s2116.3683s4

1188.2108s2
,

~23!

TABLE I. Atomic noninteracting kinetic energies for exact de
sity ~in hartrees!.

Specie TTF1
1
9 TW TGGA Ts

m0 Ts
m1 Ts

KS

Li 7.47733 7.47891 7.43572 7.43842 7.4361
Be1 14.32860 14.33159 14.27928 14.28291 14.279
B12 23.41770 23.42254 23.37713 23.38130 23.377
C13 34.74270 34.74985 34.72671 34.73102 34.727
N14 48.30277 48.31267 48.32716 48.33188 48.328
O15 64.09762 64.11072 64.17811 64.18265 64.179
F16 82.12709 82.14384 82.27939 82.28427 82.280
Ne17 102.39108 102.41193 102.63081 102.63575 102.63
STD a 0.11 0.099 0.0009 0.0034

Be 14.64270 14.64571 14.58019 14.60272 14.593
B11 24.24209 24.24699 24.23846 24.27190 24.262
C12 36.29770 36.30496 36.40254 36.44807 36.443
N13 50.78956 50.79964 51.05537 51.11391 51.116
STD a 0.18 0.17 0.039 0.007

aSTD stands for the standard deviation.
0-3
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wheres5u“r(rW)u/2(3p2)1/3r4/3(rW) and the ‘‘exact’’ KS val-
ues. KS noninteracting kinetic energies for ‘‘exact’’ dens
were calculated by means of the local-scaling transforma
version of DFT~LS-DFT! @12,13#. The SGA and the GGA
functionals overestimate theTs values for the first three
terms of the Li isoelectronic series and for the first two ter
of the Be series and underestimate theTs values for other
terms of the series. The standard deviations~STD! for the
Ts

m0 andTs
m1 functionals are one or two orders of magnitu

smaller than those for the SGA and the GGA functionals
The modulating factorAN(@rHF#;rW) can be calculated

through Eq.~14!. However, for comparison purposes, it
also convenient to write its exact expression in terms
KS-x-only orbitals:

1

2
AN~@rHF,$c i

KS2x%#;rW !

5

1

2 (
i 51

N

“c i*
KS2x~rW !“c i

KS2x~rW !2
1

8

¹rHF~rW !2

rHF~rW !

rHF~rW !5/3
. ~24!

The last equation is evident from Eqs.~2!, ~3!, ~13!, and~14!
with r5r05rHF and fr,i5c i

KS2x . Equation~24! with HF
orbitals instead of KS-x-only ones can be applied to calcu
late approximations toAN . The behavior of the total modu
lating factorAN calculated through the KS-x-only and the
HF orbitals as a function ofr are presented in Figs. 1 and
respectively, for the ground states of the Na and Al atoms
is evident from these curves that the error arising from
use of HF orbitals instead of KS-x-only ones in the total
modulating factor calculation appears near the second m
mum of AN at r'2.022.7 bohr for the Na atom and atr
'1.321.7 bohr for the Al atom. The error in kinetic-energ

FIG. 1. Comparison of modulating factors calculated throu
KS-x-only orbitals ~dashed line! and HF orbitals~dotted line! for
Na atom. The solid line is the corresponding HF density.
06251
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KS2x stemming from the use ofAN(@rHF,$c i

HF%#;rW)

instead ofAN(@rHF,$c i
KS2x%#;rW) is exactly equivalent to the

difference between HF and KS-x-only kinetic-energy val-
ues. This amounts to 0.0024 hartree for the Na atom an
0.0031 hartree for Al.

The behavior ofAN in the region of large-r values is very
different for the Na and Al atoms.AN for the Na atom decays
rapidly whereas it grows exponentially for Al. The reason
that the Na atom has only one valence electron and thus
Weiszäker term reproduces exactly the kinetic-energy de
sity in this region, i.e., the numerator in Eq.~24! tends to
zero for large-r values. For the Al atom the situation is di
ferent as there are two valence electrons, 3s and 3p. The
cancellation in the numerator of Eq.~24! no longer occurs
and in this caseAN grows exponentially due to the presen
of the termr5/3 in the denominator.

B. Diatomic molecules

Numerical calculations of the kinetic energy, employin
the approximate functionals described by Eqs.~13! and~16!
at the HF density, were performed for the diatomic m
ecules Na2(1Sg

1) and Al2(3Sg
2) at different internuclear

separations. The full numerical program developed by La
sonen and co-workers@14,15# was used to calculated HF
densities. The kinetic-energy functionals given by Eqs.~13!
and ~16!, where ther0A densities appearing in Eq.~20! for
the definition ofAN andL (1) are theatomicHF densities for
the Ne and Al atoms, were incorporated into this program

Results for the Na2(1Sg
1) molecule at different internu-

clear distances are presented in Table II and are comp
with the values obtained using the SGA and the GGA fu
tionals and with the KS-x-only values for atoms. The differ-
ence between KS-x-only and HF kinetic-energy values fo
atoms is quite small~for example, for the F atom,Ts

HF

h FIG. 2. Comparison of modulating factors calculated throu
KS-x-only orbitals~dashed line! and HF orbitals~dotted line! for Al
atom. The solid line is the corresponding HF density.
0-4
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2Ts
KS2x50.0015 hartree!. Moreover, the atomic modulatin

factorsAN calculated by Eq.~24! using KS-x-only turn out
to be very close to those obtained using HF orbitals.

The same result, namely that the HF and the KS-x-only
kinetic energies lie close together, also holds for molecu
For example, for F2(R52.0668 bohr! Ts

HF2Ts
KS2x50.0068

hartree@2#.
It is seen from Table II that the approximate kineti

energy functionals employed in the present work reprod
the HF kinetic energy much better than the SGA and
GGA functionals for all internuclear distances. For examp
for the Ts

m0 functional, the standard deviation is of 0.18 ha
tree. The corresponding deviations for the SGA and G
functionals are 1.58 and 1.53 hartree, respectively.

We observe that the error in our model functionals gro
as the internuclear distance decreases. This could be
plained by the fact that the model functionals when appl
to separated atoms reproduce exactly the KS-x-only kinetic
energy of the system, which in this case is the sum
KS-x-only kinetic energies of the individual atoms. Clearl
when the atoms are brought together, the deviation of
real density of the system from that arising from the sup
position of separated atoms becomes larger.

In Table III, the results for the Al2(3Sg
2) molecule are

presented. We see here that the same trend is observed
case of the Na2 molecule when we compare the results o
tained from the SGA, GGA, and present work model fun
tionals. The standard deviations for the gradient expans
functional are approximately one order of magnitude lar
than those for the model functionals.

In Figs. 3 and 4, theAN@r0# modulating factors Eq.~20!
and the modulating factors calculated by Eq.~24! for the HF

TABLE II. Noninteracting kinetic energies for different internu
clear distances of the Na2(1Sg

1) molecule for Hartree-Fock densit
~in hartrees!.

R ~bohr! TTF1
1
9 TW TGGA Ts

m0 Ts
m1 THF

3.0 322.5924 322.6407 323.7984 324.0635 324.18
4.0 322.2906 322.3390 323.7972 324.0295 323.87
5.82 322.1656 322.2140 323.7562 323.8798 323.73
15.0 322.0315 322.0799 323.6486 323.6021 323.59
30.0 322.0460 322.0944 323.6576 323.6158 323.62
STD 1.58 1.53 0.18 0.11

TABLE III. Noninteracting kinetic energies for different inter
nuclear distances of the Al2(3Sg

2) molecule for Hartree-Fock den
sity ~in hartrees!.

R ~bohr! TTF1
1
9 TW TGGA Ts

m0 Ts
m1 THF

3.0 482.7933 482.8617 484.7545 485.8669 485.07
4.66 481.6946 481.7631 483.6755 483.7596 483.81
10.0 481.4979 481.5665 483.6514 483.5958 483.61
15.0 481.5098 481.5784 483.6752 483.6246 483.63
30.0 481.5113 481.5799 483.6796 483.6304 483.64
STD 2.16 2.09 0.16 0.36
06251
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density and for the HF molecular orbitals are presented
the Na2 and Al2 molecules. The HF molecular density an
the difference of this density with the densityr0 calculated
according to Eq.~21! are also graphed. From these figur
we can see that the difference between the molecular
density andr0 is noticeable in the bond region between t
atoms. Their asymptotic behavior is, however, alike. T
modulating factorAN calculated from the superposition o
atomic modulating factors Eq.~20! reproduces well the
structure of the modulating factor calculated via Eq.~24!
employing HF molecular orbitals. There is a small shift
about 0.5 bohr in the positions of the maxima inAN for the
Na2 molecule. This shift is negligible for Al2. From Fig. 3
we may conclude that there is a compensation of errors in
calculation of the last integral of Eq.~13!. This compensation

6
9
1
6
4

5
3
9
3
8

FIG. 3. Comparison of densitiesrHF and r0 and modulating
factors AN@rHF# and AN@r0# for Na2(1Sg

1) molecule, R55.82
bohr.

FIG. 4. Comparison of densitiesrHF and r0 and modulating
factorsAN@rHF# andAN@r0# for Al2(3Sg

2) molecule,R54.66 bohr.
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comes about from the fact thatAN@r0# overestimates
AN@rHF# in the internuclear region and underestimates it
the tail region. A similar error compensation also takes pl
for the Al2 molecule.

C. Analytical representation of the AN modulating factor for
the Na and Al atoms

The total modulating factorAN can be calculated by th
prescription given by Eq.~14! involving the determination of
the LST functionl and the radial and angular kinetic-ener
modulating factors. However, a more direct way to calcul
AN is provided by Eq.~24!. In this case, the KS orbitals ar
needed either in numerical or analytical form. In the pres
work, AN was calculated numerically by means of Eq.~14!,
where the LST functionl(@rHF#;r ) and the angular and th
radial modulating factors corresponding to KS-x-only orbit-
als were used. Of course, Eq.~24! with KS-x-only orbitals
yields exactly the same result.

Numerical values ofAN(@rHF#;r ) as a function ofr for
Na and Al atoms were fitted to the analytical form given
Eq. ~24!, where the atomic orbitalsc i were assumed to hav
the following three-term STO expansion:

cnl~rW !5 (
k51

3

Ck
nlS ~2z l !

2n11

~2n!! D 1/2

r n21exp~2z l r !Ylmk
~u,f!

~25!

and where the density appearing in Eq.~24! was assumed to
have the formr5( i 51

N uc i u2.
Subsequently, all orbital coefficients and exponents w

optimized in order to minimize the integral

1

2E d3rWrHF
5/3~rW !AN~@rHF#;rW !, ~26!

which is the second contribution to the kinetic energy in E
~13!. The orthonormalization of three-term STO atomic o
bitals was not conserved during this minimization.

In Tables IV and V the optimized coefficients and exp
nents for Na and Al atoms are presented. The numer
value of the integral in Eq.~26! is 51.3480 hartree and th
fitted value is 51.3688 hartree for the Na atom. The co
sponding values for the Al atom are 85.1140 and 85.1
hartree, respectively.

TABLE IV. Optimized exponents and coefficients for the an
lytical form of 1

2 AN factor for the Na atom.

Coefficient k51 k52 k53

zs 11.054028 5.321785 2.275963
zp 5.497534 4.599246 4.886950

Ck
1s 0.943237 20.004627 0.002578

Ck
2s 0.015037 0.801684 0.362281

Ck
3s -0.003422 20.020584 0.007383

Ck
2p 0.447312 0.278228 0.237544
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Let us notice that in order to calculate the modulati
factor AN

(1) of Eq. ~16! coming from the approximate trea
ment of Eq.~15!, the transformation function for atomic den
sitiesl(@r0A#;rW) and the density of the whole systemr are
needed.

IV. CONCLUSIONS

In the present work we advance two approximate mole
lar kinetic-energy functionals developed in the context
local-scaling transformations. For the construction of the
approximate functionals we make use of the fact that a t
molecular density differs only slightly from the model mo
lecular density arising from the superposition of isolat
atom densities. This fact reflects itself in the constancy of
inner shell structure of the interacting atoms, which in turn
closely connected with the structure of the total kinet
energy modulating factorsAN(@r#;rW). Thus, in these ap-
proximations, we construct the molecular modulating fact
using densities, local-scaling transformations functions,
for isolated atoms.

Applications of these functionals to the diatomic mo
ecules Na2 and F2 ~at the HF density level! lead to values of
the kinetic energy which are in excellent agreement with
HF kinetic-energy values. In fact, the accuracy obtained w
the present functionals is about one order of magnitude be
than that obtained from SGA and GGA kinetic-energy fun
tionals.

This preliminary test clearly indicates that the constru
tive approach to the generation of a molecular kinetic-ene
functional in the context of local-scaling transformatio
leads to reasonable results even when we use isolated-
parameters in order to represent the molecular functio
But more important, the present method provides the po
bility for introducing systematic improvements in the co
struction of increasingly accurate functionals. Moreov
through the analytic representation of atomic modulating f
tors, we can obtain fully analytic approximate functionals f
molecules and clusters.

As a final word, we would like to stress that the prese
approach is orbital-free, as neither for isolated atoms nor
molecules do we ever have to solve orbital equations in or
to obtain an orbital set. In fact, we can select any set
orthogonal orbitals for the initial atomic orbital set$f i% i 51

N

TABLE V. Optimized exponents and coefficients for the an
lytical form of 1

2 AN factor for the Al atom.

Coefficient k51 k52 k53

zs 13.120602 6.267531 4.761970
zp 6.513458 5.441190 1.814707

Ck
1s 0.967128 0.004739 20.001795

Ck
2s 20.013206 0.761518 0.078400

Ck
3s 0.096673 20.339863 20.064508

Ck
2p 0.529595 0.677989 0.002495

Ck
3p 0.021212 0.065571 2.266528
0-6
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from which we obtain the atomic locally scaled orbita
$fr,i% i 51

N . For atoms, our most convenient choice has turn
out to be that of generalized Slater-type orbitals@16#, be-
cause they retain the simplicity of single-z orbitals and,
moreover, each atomic orbital is described by a single fu
tion so that we never have a linear combination of atom
orbitals whose coefficients must be calculated. Using th
very simple functions in the context of the local-scali
transformation version of DFT, we have been able to obt
nevertheless, atomic energies that differ in the millihartr
,

06251
d

c-
c
se

,
s

from the Hartree-Fock ones@16#. Clearly, therefore, the
present extension to molecules, being based on our prev
work on atoms, is also orbital-free.
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