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Comparison of the electric moments obtained from finite basis set and finite-difference
Hartree-Fock calculations for diatomic molecules
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A comparison is made of the accuracy with which the electric momentsm, Q, V, andF can be calculated
by using the finite basis set approach~the algebraic approximation! and finite-difference method in calculations
employing the Hartree-Fock model for the ground states of 16 diatomic molecules at their experimental
equilibrium geometries. Specifically, the 2n-pole momentsn51,2,3,4, for the N2, CO, BF, CN2, NO1, BeF,
BO, CN, N2

1, AlF, GaF, InF, TlF, MgF, CaF, and SrF molecules are determined using basis sets and grids that
have been employed in previous studies of the Hartree-Fock energy.

PACS number~s!: 33.15.2e, 33.90.1h, 31.15.2p
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I. INTRODUCTION

The algebraic approximation or finite basis set expans
approach is ubiquitous in molecular electronic structure c
culations. Although this approximation can often introdu
errors that are orders of magnitude greater than the molec
properties under investigation, such calculations are inv
ably performed under the tacit assumption that the appr
mate expectation values will approach their exact values
the basis set dimension is increased. Klahn and Morgan@1#
demonstrated that this assumption is not always justifi
They showed that expectation values of high powers of
position and momentum operators obtained from variatio
wave functions can diverge or even converge to the wr
limit. In general, ‘‘it is not ... true ... that a sequence
approximate wave functions$cN%N51

` which yield the cor-
rect energy in the limitN→` will also give the correct ex-
pectation value ofA asN→`. ’’ @1# For Gaussian-type basi
functions Klahn and Morgan@1# conclude that ‘‘no problem
should occur when approximating^r k& (k51,2,3, . . . ) with
Ritz expansions for the case of one-electron atoms and i
But not even in this simple case has an analytic proof@of
convergence# yet been obtained.’’

Finite-difference methods provide high-precision so
tions of the Hartree-Fock equations for diatomic molecu
with which the results of matrix Hartree-Fock~MHF! calcu-
lations can be compared. In 1993, it was demonstrated@2,3#
that molecular basis sets can be systematically constructe
as to support total Hartree-Fock energies of an accuracy
proaching that achieved in finite-difference calculations@4#;
namely,;1 mhartree. Over the past six years, improveme
in finite-difference algorithms have supported higher ac
racy and facilitated applications to closed-shell diatomic s
tems containing a heavy atom@5,6#, to open-shell species@7#
and, very recently, to open-shell systems containing a he
atom @8#. During the same period, there have been co
sponding improvements in the effective implementation
the algebraic approximation@5–8#.

The Hartree-Fock model is of particular interest not on
because it represents the first stage in the vast majorit
contemporary theoretical treatments of the molecular e
1050-2947/2000/62~6!/062503~9!/$15.00 62 0625
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tronic structure problem but also because exact expectat
are available from finite-difference techniques within th
model that enable a precise measurement of the accurac
our matrix Hartree-Fock results. It should also be reme
bered that a knowledge of the exact Hartree-Fock expe
tion values is an essential ingredient of any study of
correlation effects.

An important application of finite-difference Hartree
Fock studies for diatomic molecules@9,10# is in providing a
measure of the basis set truncation error in calculations
ried out within the algebraic approximation@5–8,11–14#.
Most frequently, this comparison has involved total energ
and orbital energies, but visualization techniques have a
been used@11# to examine orbital amplitude difference func
tions. A comparison of the multipole moments obtained fro
finite basis set calculations in which the algebraic appro
mation is systematically implemented with the correspo
ing finite-difference Hartree-Fock moments for diatom
molecules can be expected to afford a more detailed mea
of the quality of the finite basis set results than comparis
of total energy value alone. In 1985, Bounds and Wilson@15#
made such a comparison for the HF, CO, and N2 ground
states, however, not only were the basis sets employe
lower quality than those used in the present study, but a
they compared with partial-wave numerical Hartree-Fo
calculations@16,17# that did not match the accuracy achiev
in the finite-difference studies reported here. Very recen
we have reported a comparison of dipole moments for th
neutral, open-shell systems BeF, BO, and CN@7#.

In this paper, we compare Hartree-Fock calculations
the electric momentsm, Q, V, andF using finite basis se
expansions and finite-difference techniques for sixteen
atomic species for which total Hartree-Fock energies h
been reported previously@5–8,11–14#. We aim to provide
numerical evidence that, with a suitable choice of Gauss
basis set, it is possible to achieve convergence of molec
multipole moments to their Hartree-Fock values. We co
pare the pattern of convergence of the multipole-mom
expectation values as the size of the basis set is incre
with that of the total energy. We report dipole, quadrupo
octupole, and hexadecapole moments for five closed-s
diatomic molecules containing only first-row atoms; for fo
©2000 The American Physical Society03-1
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open-shell, first-row diatomic species; for five closed-sh
group IIIb fluorides containing increasingly heavy atom
and for four open-shell, group IIa fluorides. Specifically, w
report the multipole moments for the following molecules
their ground electronic states at their respective experime
equilibrium geometries: N2, CO, BF, CN2, NO1, BeF, BO,
CN, N2

1, AlF, GaF, InF, TlF, MgF, CaF, and SrF. The ele
tronic configurations and geometries of the systems stu
have been defined in our previous work@5–8,11–14#.

In Sec. II, the theoretical aspects of the present study
given. This serves to establish notation and the definition
the quantities calculated. The computational methods
ployed are described in Sec. III, while in Sec. IV the resu
are presented and discussed. Section V contains our co
sions.

II. THEORY

Our purpose here is both to establish notation and to g
definitions of the multipole moments in the case of diatom
molecules.

The Hamiltonian operator for a molecule in weak intera
tion with a fixed external field may be written as a Tayl
expansion about some chosen point@18–24#

H5H02(
a

maFa2
1

3 (
a,b

QabFab2
1

15 (
a,b,g

VabgFabg

2
1

105 (
a,b,g,d

FabgdFabgd2¯ ~a,b5x,y,z!, ~1!

whereH0 is the Hamiltonian of the free molecule.Fa is the
field at the origin,Fab is the field gradient at the chose
expansion center, etc.ma is the dipole moment,Qab is the
quadrupole moment,Vabg is the octupole moment, an
Fabgd is the hexadecapole moment. The energy of the m
ecule is

E5^CuHuC&

5E02(
a
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2
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2
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Ag,abFgFab2
1

6 (
a,b,g,d

Bab,gdFaFbFgd2¯

2
1
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Vabg
~0! Fabg2
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Cab,gdFabFgd2¯
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Fabgd
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Ea,bgdFaFbgd

2¯ , ~2!
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wherema
(0) is the permanent dipole moment,Qab

(0) is the per-
manent quadrupole moment,Vabg

(0) is the permanent octupol
moment, andFabgd

(0) is the permanent hexadecapole mome
aab is the dipole polarizability andbabg andgabgd are the
hyperpolarizabilities.Ag,ab is the dipole-quadrupole polariz
ability, Ea,bgd is the dipole-octupole polarizability,Cab,gd is
the quadrupole polarizability andBab,gd is the dipole-dipole-
quadrupole hyperpolarizability.

The dipole moment may be written as the expansion

ma5ma
~0!1(

b
aabFb1

1

2 (
b,g

babgFbFg

1
1

3 (
b,g,d

gabgdFbFgFd1¯1
1

3 (
b,g

Aa,bgFbg

1
1

6 (
b,g,d

Bab,gdFbFgd1¯ , ~3!

the quadrupole moment as the expansion

Qab5Qab
~0!1(

g
Ag,abFg1

1

2 (
g,d

Bgd,abFgFd1¯

1(
g,d

Cab,gdFgd1¯ , ~4!

and the octupole moment may be expressed in the form

Vabg5Vabg
~0! 1(

d
Ed,abgFd1¯ . ~5!

In the matrix Hartree-Fock calculations carried out in t
present study, the total multipole moments for a given m
ecule were determined as tensor quantities, the 2n-pole being
an n-rank tensor that has the following explicit form for th
first five values ofn:

q5(
A

ZA2E rdv, n50, ~6!

ma5(
A

ZARAa2E r ardv, n51, ~7!

Qab5(
A

ZARAaRAb2E r ar brdv, n52, ~8!

Rabg5(
A

ZARAaRAbRAg2E r ar br grdv, n53, ~9!

Sabgd5(
A

ZARAaRAbRAgRAd2E r ar br gr drdv, n54.

~10!

In these expressions,ZA is the charge of nucleusA and
(RAx ,RAy ,RAz) are its Cartesian coordinates.r is the total
electronic charge distribution andr a is the a coordinate of
the electronic charge. The multipole moments are symme
3-2
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COMPARISON OF THE ELECTRIC MOMENTS OBTAINED . . . PHYSICAL REVIEW A 62 062503
in all indices. Only the lowest nonzero moment is indepe
dent of the choice of origin. In the present matrix Hartre
Fock calculations, the moments were calculated with resp
to the center of nuclear charge in cases where only at
centered basis functions were used and with respect to
arbitrarily chosen center when bond-centered functions w
employed. However, for quadrupole moments and hig
moments it is often convenient to use alternative definitio

For a system with an axis of symmetry, it is convenient
define the multipole moments as irreducible tensors@21#. In
such a case, there is only one independent componen
each electric multipole moment and this can be defined
follows:

M ~k!5(
A

ZARAz
k 2E r kPk~z/r !rdv, ~11!

wherePk are Legendre polynomials of degreek. Values of
M (k), k51,2,3,4 were evaluated from the orbitals det
mined by the finite-difference Hartree-Fock program. S
cifically, the first four moments defined in this way are

M ~1![m5mz , ~12!

M ~2![Q5Qzz, ~13!

M ~3![V5Vzzz, ~14!

M ~4![F5Fzzzz. ~15!

These moments were determined with respect to the g
metrical center, i.e., the bond midpoint, in the finit
difference Hartree-Fock~FD-HF! calculations.

The multipole moments determined from the mat
Hartree-Fock calculations can be related to irreducible ten
form evaluated by the finite-difference Hartree-Fock p
gram as follows:

Qzz5Qzz2
1

2
~Qxx1Qyy!,

Vzzz5Rzzz2
3

2
~Rxxz1Ryyz!, ~16!

Fzzzz5Szzzz23~Sxxzz1Syyzz!1
3

8
~Sxxxx12Sxxyy1Syyyy!,

in which all quantities are transformed so as to refer to
same origin, the bond midpoint.

III. COMPUTATIONAL METHODS

The finite basis sets of even-tempered, spherical harm
Gaussian functions@25# employed in the present study a
those defined in our previous work@5–8,11–14# on the titled
species. Basis subsets were centered on each atomic c
Functions ofs, p, d, and f symmetry were located on th
nuclei of first-row atoms, while on heavier atoms the high
symmetry type included wasl 12, where l is the highest
symmetry type arising in the Hartree-Fock description of
06250
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closed-shell atom. For example, forSr the highest symmetry
type included isl 1254, i.e.,g functions. A basis subset o
functions centered on the bond midpoint, designatedbc, was
also included. The functions in this subset were ofs, p, d,
and f symmetry. The finite basis set calculations were p
formed with the commercially availableGAUSSIAN94 pro-
grams of Frischet al. @26#.

Most of the multipole moments derived from finite
difference Hartree-Fock calculations were determined us
the grids defined in our previous studies of the titled syste
@5–8,11–14#. Improved grids were employed for BF and fo
N2. All finite-difference Hartree-Fock calculations reporte
in this paper were carried out with the program1 of Kobus
et al. @27–29#. The formulation of the restricted open-she
Hartree-Fock problem for diatomic molecules employed
the present study follows the standard treatment given by
example, Hurley@30# ~p. 242 ff!, with the N particle wave
function taken to be a single Slater determinant.

In this work, 2n-pole moments are given in D Ån21. The
relevant conversion factors@31# to SI units are 1D
'3.33 564310230Cm and 1 Å510210m.

IV. RESULTS AND DISCUSSION

A. Convergence ofm, Q, V, and F for BeF in the algebraic
approximation

In 1960, Löwdin @32# presented a simple example of
sequence of approximate wave functions that converged
rectly in the meanbut for which the corresponding dipol
moments do not converge. In 1984, Klahn and Morgan@1#
made the distinction between operatorsA that arerelatively
form-boundedby the kinetic energy operatorT, i.e.,

z^ f uAu f & z<a^ f u f &1b^ f uTu f &, u f &PD~T!, ~17!

wherea andb are positive constants andD(T) is the domain
of T, and those operators that are not. For operators sat
ing Eq. ~17! completeness of the basis set in the Sobo
spaceW2

(1) , which is required for convergence of the e
ergy, also guarantees convergence of the expectation v
of A. For operators that do not satisfy Eq.~17!, Klahn and
Morgan @1# showed thatW2

(1) completeness of the basis s
and thus convergence of the energy is not sufficient to s
port convergence of the expectation value. They showed
convergence of an expectation value ofA is closely related to
the rate of convergence of the energy which, in turn,
known to depend on the ability of the basis functions
describe singularities in the exact solutions@33#.

In this work, we compare

^A&N2^A&5^cNuAucN&2^cuAuc& ~18!

1The finite-difference Hartree-Fock program of Kobu
Laaksonen and Sundholm is available at
http://www.csc.fi/;laaksone/Num2d.html
3-3
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TABLE I. Multipole moments and total Hartree-Fock energies for the BeF ground state for a seque
even-tempered basis sets and for two grids.

Keya mb Uc Vd Fe EMHF
f

A 1.7471 24.7600 5.2936 27.3890 49 797.3
B 1.7338 24.7080 5.0393 26.7973 50 167.8
C 1.3024 24.0364 5.5505 26.2023 71 281.7
D 1.2744 24.1313 5.9385 27.4481 71 508.2
E 1.2889 24.1133 5.7757 27.5722 72 525.5
F 1.2728 24.1623 5.8712 27.5922 72 615.5
G 1.3180 24.2176 5.7366 7.5686 71 274.2
H 1.3180 24.2176 5.7366 27.5686 71 274.2
I 1.3180 24.2176 5.7366 27.5686 71 274.2
J 1.3180 24.2176 5.7366 27.5686 71 274.2
K 1.3180 24.2176 5.7366 27.5686 71 274.2
L 1.3180 24.2176 5.7366 27.5686 71 274.0
M 1.2727 24.1616 5.8769 27.5818 72 667.7
N 1.2726 24.1624 5.8727 27.5843 72 683.8
@1693193;40# 1.2726 24.1622 5.8728 27.5857 72 685.0
@3193415;40# 1.2726 24.1622 5.8728 27.5857 72 685.0

aThe basis sets and grids employed are defined as follows: A,@Be, F: 30s15p#; B, @Be: 32s17p; F: 30s15p#;
C, @Be, F: 30s15p15d#; D, @Be: 32s17p17d; F: 30s15p15d#; E, @Be, F: 30s15p15d15f #; F, @Be:
32s17p17d17f ; F: 30s15p15d15f #; G, @Be: 32s17p; F: 30s15p; bc: 30s15p#; H, @Be: 32s17p; F: 30s15p;
bc:20s15p#; I, @Be: 32s17p; F: 30s15p; bc:18s14p#; J, @Be: 32s17p; F: 30s15p; bc: 16s13p#; K,
@Be: 32s17p; F: 30s15p; bc: 14s12p#; L, @Be: 32s17p; F: 30s15p; bc: 12s11p#; M, @Be: 32s17p17d;
F: 30s15p15d; bc: 9s9p10d#; N, @Be: 32s17p17d17f ; F: 30s15p15d15f ; bc: 9s8p9d8 f #.
bm in D.
cU in D Å.
dV in D Å2.
eF in D A3.
f(EMHF1114.1EH) in 106Eh .
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EN2E5^cNuHucN&2^cuHuc&, ~19!

where we have assumed that both the exact wave functioc,
and the approximationcN , are normalized, within the
Hartree-Fock model.̂A& andE are given by finite-difference
Hartree-Fock calculations using grids capable of suppor
sub-mhartree levels of accuracy and^A&N andEN are given
by finite basis set Hartree-Fock calculations using basis
that have been shown previously to support an accuracy
proaching the sub-mhartree level.

In Table I, the multipole moments and total Hartree-Fo
energies for the ground state of the BeF molecule are
played for a sequence of even-tempered basis sets an
two grids.

The two finite-difference Hartree-Fock calculations e
ployed the grids:@1693193;40#, i.e., 32 617 points, and
@3193415;40#, i.e., 132 385 points. The total Hartree-Fo
energies supported by these grids are2114.172 684 996 har
tree and2114.172 685 040 hartree, respectively; a differen
of 0.044mhartree. There is no difference between the dipo
quadrupole, octupole, and hexadecapole moments supp
by these grids to the accuracy quoted in Table I.

Molecular problems handled by employing finite basis
expansions must explore the convergence with respect t~i!
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the subset of even-tempered functions associated wit
given symmetry on a given expansion center,~ii ! the number
of symmetries included on a given expansion center,~iii ! the
number of expansion centers. In our previously repor
study of the Hartree-Fock ground-state energy of the B
molecule, it was found that the addition of even-tempe
functions centered on the Be nucleus to the 30s15p... sets,
which had been employed in studies of closed-shell syst
containing first-row atoms, led to an improved descriptio
In Table I, the results of calculations for basis sets contain
only atom-centered functions are recorded for both
30s15p... sets and the 32s17p... sets. For basis sets contai
ing both atom-centered and bond-centered functions only
32s17p... sets are considered on the Be nucleus. For
isotropic basis set, set B, the dipole moment is in error
36.2%; an error that is reduced markedly by the introduct
of atom-centered polarization functions, first to 0.1% on
addition ofd functions and still further on addingf functions.
On the other hand, adding functions ofs and p symmetry
centered at the midpoint of the bond to the isotropic basis
reduces the error to;3.6% of the exact value. Supplemen
ing this sp basis set by functions ofd symmetry centered
both on the atomic nuclei and on the bond midpoint yield
dipole moment expectation value that is in error by less th
0.01%.
3-4
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In Table II, d is used to denote the differences betwe
the finite basis set and finite-difference expectation val
^A&N2^A&, and between the corresponding energy val
EN2E. In Table II, the basis sets defined in Table I a
arranged into three sequences: A, C, E, which are at

TABLE II. Differences for multipole moments and tota
Hartree-Fock energies for the BeF ground state for sequence
even-tempered basis sets.

Keya dmb dUc dVd dFe dEMHF
f

A 0.4744 0.5978 0.5792 20.1967 22 887.7
C 0.0297 20.1259 0.3222 21.3834 1 403.3
E 0.0162 20.0489 0.0971 20.0136 159.5
B 0.4611 0.5458 0.8334 20.7884 22 517.2
D 0.0017 20.0309 20.0658 20.1376 1 176.8
F 0.0001 0.0000 0.0016 0.0065 69.
L 0.0453 0.0554 0.1362 20.0171 1 411.0
M 0.0000 20.0007 20.0041 20.0039 17.3
N 20.0001 0.0002 0.0001 0.0015 1.2

aSee footnote a in Table I.
bSee footnote b in Table I.
cSee footnote c in Table I.
dSee footnote d in Table I.
eSee footnote e in Table I.
fdEMHF5EMHF2EFD-HF .
06250
n
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centered sets containing a 30s15p... subset on the Be atom
B, D, F, which are atom-centered sets containing a 32s17p
set on the Be atom, and L, M, N, which are sets contain
both atom-centered and bond-centered subsets with a 32s17p
subset centered on the Be atom and 30s15p subsets centered
on the F atom and the bond midpoint. The convergence
the expectation values of the dipole moment, quadrupole
ment, octupole moment, and hexadecapole moment is m
edly improved for the sequence of basis sets~L, M, N! that
include both atom-centered and bond-centered basis sub
This improved convergence reflects that observed for the
tal matrix Hartree-Fock energies.

B. Comparison of finite-difference and finite basis set
moments for diatomic molecules in the Hartree-Fock

approximation

A comparison of finite-difference and finite basis set m
ments in the Hartree-Fock approximation was made for f
groups of diatomic molecules that have been the subjec
previously reported studies@5–14# of the total energy and
orbital energies. We consider each group in turn.

The calculated dipole, quadrupole, octupole, and hexa
capole moments for the five closed-shell diatomic molecu
containing only first-row atoms are collected in Table III. A
moments are given relative to the geometrical center of
molecule. For the anion CN2, results corresponding to two
different basis sets are presented. The first set is simila

of
oms

9

2

TABLE III. Multipole moments for some closed-shell diatomic molecules containing first-row at
calculated relative to the geometrical center. See Table I for definitions of symbols and units.

Molecule Method m U V F EHF

BF FD-HFa 0.8713 23.9523 4.5293 23.6677 2124.1687800
MHFb 0.8713 23.9522 4.5290 23.6732 2124.1687770

d 0.0000 20.0001 0.0003 0.0055 3.0
N2 FD-HFc 0.0000 21.2642 0.0000 22.7838 2108.9938256

MHFd 0.0000 21.2642 0.0000 22.7849 2108.9938247
d 0.0000 0.0000 0.0000 0.0011 0.

NO1 FD-HFc 20.4753 0.6587 0.8938 21.3233 2128.9777407
MHFe 20.4754 0.6587 0.8938 21.3234 2128.9777375

d 0.0001 0.0000 0.0000 0.0001 3.
CO FD-HFc 20.2650 22.1006 2.6456 23.0928 2112.7909072

MHFf 20.2650 22.1003 2.6455 23.0957 2112.7909046
d 0.0000 20.0003 0.0001 0.0029 2.6

CN2 FD-HFc 0.1904 24.4464 2.4804 25.8944 292.3489505
MHFg 0.1627 24.3862 2.3679 25.7704 292.348837

d 0.0277 20.0602 0.1125 20.1240 114
MHFh 0.1903 24.4461 2.4790 25.8983 292.348928

d 0.0001 20.0003 0.0014 0.0039 22.5

a@1693193;40# ~present work!.
b@B: 26s18p18d18f ; F: 26s18p18d18f ; bc: 23s13p13d14f #.
c@1693193;40# ~present work!.
d@N: 30s15p15d15f ; bc: 27s12p10d10f # @14#.
e@N, O: 30s15p15d15f ; bc: 27s12p10d# @14#.
f@C, O: 30s15p15d15f ; bc: 27s12p10d# @14#.
g@C, N: 20s10p10d10f 10g9h; bc: 17s7p8d7 f 8g7h# @17#.
h@C, N: 20s10p10d10f 10g1(spd f di f f use); bc: 17s7p8d8 f 9g# @33#.
3-5
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TABLE IV. Multipole moments for some open-shell diatomic molecules containing first-row at
calculated relative to the geometrical center. See Table I for definitions of symbols and units.

Molecule Method m U V F EHF

BO FD-HFa 23.0130 20.7307 1.9407 23.8796 299.562 712 5
MHFb 23.0130 20.7306 1.9408 23.8802 299.562 711 6

d 0.0000 20.0001 20.0001 0.0006 0.9
N2

1 FD-HFa 0.0000 2.6035 0.0000 0.0628 2108.405 142 5
MHFc 0.0000 2.6035 0.0001 0.0608 2108.405 141 0

d 0.0000 0.0000 20.0001 0.0020 1.5
CN FD-HFa 22.3031 0.8489 21.4991 21.8980 292.225 134 1

MHFd 22.3032 0.8486 21.4989 21.8938 292.225 132 7
d 0.0001 0.0003 20.0002 20.0042 1.4

BeF FD-HFa 21.2727 24.1622 5.8728 27.5857 2114.172 685 0
MHFe 21.2726 24.1624 5.8727 27.5843 2114.172 683 8

d 20.0001 0.0002 0.0001 20.0014 1.2

a@3193415;40# @7#.
b@B: 31s16p16d16f ; O: 30s15p15d15f ; bc: 9s8p9d8 f # @7#.
c@N: 30s15p15d15f ; bc: 8s7p9d8 f # @7#.
d@C, N: 30s15p15d15f ; bc: 8s8p9d8 f # @7#.
e@Be: 32s17p17d17f ; F: 30s15p15d15f ; bc: 9s8p9d8 f # @7#.
po
se

g

ase
w-
the basis sets employed to describe neutral species and
tive ions@14# while the second set includes additional diffu
functions which, it has been shown previously@33#, are re-
quired to describe the extended charge distribution of ne
tively charged species.
06250
si-

a-

The absolute difference between the 2n-pole moments ob-
tained from the finite-difference and finite basis set incre
with n for each of the systems considered in Table III. Ho
ever, the size of the 2n-pole moments increases withn. It is
useful to define the average absolute difference
eavy
TABLE V. Multipole moments for some closed-shell diatomic fluorides containing an increasingly h
atom calculated relative to the geometrical center. See Table I for definitions of symbols and units.

Molecule Method m U V F EHF

BF FD-HFa 0.8713 23.9523 4.5293 23.6677 2124.168 779 2
MHFb 0.8713 23.9522 4.5290 23.6732 2124.168 777 0

d 0.0000 20.0001 0.0003 0.0055 2.2
AlF FD-HFc 21.3227 25.8863 5.9769 27.2501 2341.488 382 8

MHFd 21.3228 25.8859 5.9754 27.2482 2341.488 369 5
d 0.0001 20.0004 0.0015 20.0019 13.3

GaF FD-HFe 22.2235 25.9097 6.1715 29.7471 22022.836 882 2
MHFf 22.2255 25.9048 6.1630 29.7719 22022.836 862 3

d 0.0020 20.0049 0.0085 0.0248 19.9
InF FD-HFe 22.8551 27.8301 8.2079 216.3040 25839.729 193 5

MHFg 22.8574 27.8218 8.1887 216.2744 25839.729 178 0
d 0.0023 20.0083 0.0192 20.0296 15.5

TlF FD-HFh 23.2138 28.6314 9.0890 220.3563 219061.376 349
MHFi 23.2168 28.6202 9.0615 220.3067 219061.376 288

d 0.0030 20.0112 0.0275 20.0496 61

a@1693193;40#.
b@B: 26s18p18d18f F: 26s18p18d48f ; bc: 23s13p13d14f #.
c@1693193;40# @5#.
d@Al: 28s20p20d20f ; F: 26s18p18d18f ; bc: 22s15p17d17f # @5#.
e@2953295;40# @5,6#.
f@Ga: 48s24p24d24f ; F: 30s15p15d15f ; bc: 27s12p14d15f # @5,6#.
g@In: 56s28p28d28f 28g; F: 30s15p15d15f ; bc: 51s23p24d25f 25g# @6#.
h@5953595;45# @6#.
i@Tl: 58s29p29d29f 29g; F: 30s15p15d15f ; bc: 53s24p26d25f 25g# @6#.
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TABLE VI. Multipole moments for some open-shell diatomic fluorides containing an increasingly h
atom calculated relative to the geometrical center. See Table I for definitions of symbols and units.

Molecule Method m U V F EHF

BeF FD-HFa 21.2727 24.1622 5.8728 27.5857 2114.172 685 0
MHFb 21.2726 24.1624 5.8727 27.5843 2114.172 683 8

d 20.0001 0.0002 0.0001 20.0014 1.2
MgF FD-HFa 23.1005 26.7716 9.3090 217.1685 2299.159 119 3

MHFc 23.1005 26.7715 9.3074 217.1509 2299.159 112 9
d 0.0000 20.0001 0.0016 20.0176 6.4

CaF FD-HFd 22.6450 210.6872 14.2460 226.7662 2776.329 958 3
MHFe 22.6451 210.6871 14.2432 226.7324 2776.329 956 0

d 0.0001 20.0001 0.0028 20.0338 2.3
SrF FD-HF f 22.5759 211.8026 14.1228 226.1455 23231.119 630 2

MHFg 22.5760 21.8024 14.1225 226.1506 23231.119 629 2
d 0.0001 20.0002 0.0003 0.0051 1.0

a@3193415;40# @8#.
b@Be: 32s17p17d17f ; F: 30s15p15d15f ; bc: 9s8p9d8 f # @8#.
c@Mg: 32s17p17d17f ; F: 30s15p15d15f ; bc: 9s9p10d8 f # @8#.
d@3493499;80# @8#.
e@Ca: 48s27p27d27f ; F: 30s15p15d15f ; bc: 10s9p9d11f # @8#.
f@3913547;80# @8#.
g@Sr: 56s31p31d31f 31g; F: 30s15p15d15f ; bc: 9s9p9d9g# @8#.
ha

e
ze
c
ol
on
e
al
if

-
s

m
se
-
cu

le
o
o
o

po
it

m
oc

m

set

ole

o-
ted
V.

ents
set
of
the
The
for
nts
the
est
me
the

eca-
sis

e
gly
The
val-
set
if-
DA5S21(
S

u^A&N2^A&u, ~20!

whereS is the number of diatomic systems in a given set t
have a nonzero expectation value^A&. Neglecting the results
obtained for the CN2 anion without supplementary diffus
basis functions, the average difference between the non
dipole moments values obtained from the finite-differen
and finite basis set calculations is only 0.0001 D. The dip
moments obtained from the matrix Hartree-Fock calculati
are in excellent agreement with the finite-difference valu
For the quadrupole moments this average difference is
0.0001 D Å while for the octupole moments the average d
ference increases to 0.0005 D Å2. The largest absolute differ
ence in the expectation values of the octupole moment
0.0014 D Å2 recorded for the negative ion CN2, which rep-
resents an error of;0.06% of the exact~finite-difference!
value. The average difference between the hexadecapole
ments obtained from finite-difference and finite basis
Hartree-Fock calculations is 0.0027 D Å3. The largest abso
lute difference in the hexadecapole expectation values oc
for BF for which an error of 0.0055 D Å3 amounts to some
;0.15% of the exact value.

In Table IV, the calculated dipole, quadrupole, octupo
and hexadecapole moments for open-shell diatomic m
ecules containing first-row atoms are given. Again, all m
ments are given relative to the geometrical center of the m
ecule. The average difference between the nonzero di
moments values obtained from the finite-difference and fin
basis set calculations is 0.0001 D. For the quadrupole
ments this average difference is 0.0002 D Å and for the
tupole moments the average difference is 0.0001 D Å2. The
average absolute difference between the hexadecapole
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ments obtained from finite-difference and finite basis
Hartree-Fock calculations is 0.0021 D Å3. The largest abso-
lute difference in the expectation values of the hexadecap
moments displayed in Table IV is 0.0042 D Å3 for the CN
molecule; a difference representing;0.2% of the finite-
difference value.

Multipole moments for some closed-shell diatomic flu
rides containing an increasingly heavy atom and calcula
relative to the geometrical center are displayed in Table
The average absolute difference between the dipole mom
values obtained from the finite-difference and finite basis
calculations is 0.0015 D, which is more than an order
magnitude greater then the corresponding difference for
lighter systems described in the preceding two sections.
largest difference in the dipole moment values is for TlF
which a difference of 0.0030 D was observed that represe
;0.1% of the exact value. For the quadrupole moments
average absolute difference is 0.0050 D Å with the larg
difference being the 0.0112 D Å measured for TlF, so
;0.13% of the exact value. For the octupole moments
average difference is 0.0114 D Å2, the largest difference is
0.0275 D Å2, again for TlF and amounting to;0.3% of the
exact value. The average difference between the hexad
pole moments obtained from finite-difference and finite ba
set Hartree-Fock calculations is 0.0223 D Å3 with the largest
being 0.0490 D Å3, some 0.24% of the exact~finite-
difference! value.

In Table VI, multipole moments are presented for som
open-shell diatomic fluorides containing an increasin
heavy atom calculated relative to the geometrical center.
average difference between the nonzero dipole moments
ues obtained from the finite-difference and finite basis
calculations is 0.0001 D, which is comparable with the d
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TABLE VII. Summary of the comparison of finite difference and finite basis set multipole moment
the four groups of diatomic species studied in this work. See Table I for definitions of symbols and u

Species m U V F E

first-row, DA 0.0001 0.0001 0.0018 0.0027
closed-shell XY @NO1, CN2# @CO, CN2# CN2 BF CN2

max $udAu% 0.0001 0.0003 0.0014 0.0055 22.
first-row, DA 0.0001 0.0002 0.0001 0.0021
open-shell XY @CN, BeF# CN CN CN N2

1

max $udAu% 0.0001 0.0003 0.0002 0.0042 1.
IIIb fluorides, DA 0.0015 0.0050 0.0114 0.0223
closed-shell XY TlF TlF TlF TlF TlF

max $udAu% 0.0030 0.0112 0.0275 0.0496 6
IIa fluorides, DA 0.0001 0.0002 0.0012 0.0145
open-shell XY @BeF, CaF, SrF# @BeF, SrF# CaF CaF MgF

max $udAu% 0.0001 0.0002 0.0028 0.0338 6.
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ferences recorded for the molecules containing first-row
oms. For the quadrupole moments this average differenc
0.0002 D Å, again comparable with the differences recor
for the diatomic species containing only first-row atoms, a
for the octupole moments the average difference is 0.0
D Å2 with the largest being 0.0028 D Å2, some;0.02% of
the exact value, in the case of the CaF ground state.
average difference between the hexadecapole moments
tained from finite-difference and finite basis set Hartree-F
calculations is 0.0145 D Å3. The largest difference is for th
CaF molecules but at 0.0338 D Å3 this corresponds to
;0.13% of the exact, finite-difference value.

A summary of our comparison of finite-difference an
finite basis set multipole moments in the Hartree-Fock
proximation for the four groups of diatomic molecules stu
ied in this paper is given in Table VII. In this table,DA is the
average absolute difference of the calculated expectation
ues defined in Eq.~20!. XY denotes the diatomic system fo
which the measured error in the finite basis set result
largest for a given group and max$udAu% is the corresponding
error.

The error for the IIIb fluorides is at least an order
magnitude larger than that for the other systems. This co
lates with the accuracy of the corresponding energies
reflects our improved expertise in the construction of ba
sets capable of supporting high accuracy.

V. CONCLUSIONS

Dipole, quadrupole, octupole, and hexadecapole mom
have been determined for the ground states of sixteen
atomic species within the Hartree-Fock approximation us
both finite basis set expansions and the finite-difference te
nique. For an appropriately chosen grid, the finite-differen
method provides exact expectation values of the 2n-pole mo-
ments,n51,2,3,4. The comparison of finite-difference a
finite basis set multipole moments has provided a more
tailed measure of the quality of the finite basis set appro
mation than our previously reported comparison of total
ergy values and orbital energies for these syste
06250
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@5–8,11–14#, and also supplements our study of orbital a
plitude difference functions@11#. The basis sets employed i
this paper are of the universal even-tempered type@25#. They
are not tailored to one particular property or indeed one p
ticular molecular species or environment. They provide
systematic procedure for approaching the complete basis
limit for the chosen theoretical model. We note that the
finite basis set limit is not synonymous with the comple
basis set limit. One can trivially generate a sequence of b
set of even-tempered functions of increasing size,N, which
is demonstrably incomplete in the limitN→` merely by
fixing the parametersa andb defining the exponents. Energ
values determined from such sequences can be easily sh
to converge to an incorrect limit. For expectation values su
as multipole moments, Klahn and Morgan@1# have shown
that the situation is more complicated in that a sequence
basis sets that support convergence of the energy may
support convergence of other expectation values. In this
per, we have provided numerical evidence that the 2n-pole
moments n51,2,3,4, for diatomic molecules within th
Hartree-Fock approximation can be obtained by system
implementation of the algebraic approximation. Within t
Hartree-Fock approximation, basis subsets located at
bond midpoint have been shown to be particularly effect
in calculations of multipole moments. However, the absol
accuracy of the expectation values is seen to degrade so
what asn increases. The pattern of convergence of the m
tipole moment expectation values with increasing size of
sis set has been shown to be very similar to that observed
the total Hartree-Fock energy.
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