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Three qubits can be entangled in two inequivalent ways
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Institut für Theoretische Physik, Universita¨t Innsbruck, A-6020 Innsbruck, Austria

~Received 26 May 2000; published 14 November 2000!

Invertible local transformations of a multipartite system are used to define equivalence classes in the set of
entangled states. This classification concerns the entanglement properties of a single copy of the state. Accord-
ingly, we say that two states have the same kind of entanglement if both of them can be obtained from the other
by means of local operations and classical communication~LOCC! with nonzero probability. When applied to
pure states of a three-qubit system, this approach reveals the existence of two inequivalent kinds of genuine
tripartite entanglement, for which the Greenberger-Horne-Zeilinger state and aW state appear as remarkable
representatives. In particular, we show that theW state retains maximally bipartite entanglement when any one
of the three qubits is traced out. We generalize our results both to the case of higher-dimensional subsystems
and also to more than three subsystems, for all of which we show that, typically, two randomly chosen pure
states cannot be converted into each other by means of LOCC, not even with a small probability of success.

PACS number~s!: 03.67.Hk, 03.65.Bz, 03.65.Ca
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I. INTRODUCTION

The understanding of entanglement is at the very hear
quantum information theory~QIT!. In recent years, there ha
been an ongoing effort to characterize qualitatively a
quantitatively the entanglement properties of multiparti
systems. A situation of particular interest in QIT consists
several parties that are spatially separated from each o
and share a composite system in an entangled state.
setting requires the parties—which are typically allowed
communicate through a classical channel—to only act
cally on their subsystems. But even restricted to local ope
tions assisted with classical communication~LOCC!, the
parties can still modify the entanglement properties of
system and in particular they can try to convert one
tangled state into another. This possibility leads to natu
ways of defining equivalence relations in the set of entang
states—where equivalent states are then said to contain
same kind of entanglement—as well as establishing hie
chies between the resulting classes.

For instance, we could agree in identifying any two sta
which can be obtained from each other with certainty
means of LOCC. Clearly, this criterion is interesting in Q
because the parties can use these two states indistinguis
for exactly the same tasks. It is a celebrated result@1# that,
when applied to many copies of a state, this criterion lead
identifying all bipartite pure-state entanglement w
that of the Einstein-Podolsky-Rosen~EPR! state
(1/A2)(u00&1u11&) @2#. That is, the entanglement of an
pure stateuc&AB is asymptotically equivalent, under dete
ministic LOCC, to that of the EPR state, the entropy of e
tanglementE(cAB)—the entropy of the reduced density m
trix of either systemA or B—quantifying the amount of EPR
entanglement contained asymptotically inuc&AB . In contrast,
recent contributions have shown that in systems shared
three or more parties, there are several inequivalent form
entanglement under asymptotic LOCC@3,4#.

This paper is essentially concerned with the entanglem
properties of a single copy of a state, and thus asympt
results do not apply here. For single copies it is known t
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two pure statesuc& and uf& can be obtained with certaint
from each other by means of LOCC if and only if they a
related by local unitaries~LU! @5,4#. But even in the simples
bipartite systems,uc& and uf& are typically not related by
LU, and continuous parameters are needed to label
equivalence classes@6–10#. That is, one has to deal with
infinitely many kinds of entanglement. In this context,
alternative, simpler classification would be advisable.

One such classification is possible if we just demand t
the conversion of the states is through stochastic local op
tions and classical communication~SLOCC! @4#; that is,
through LOCC but without imposing that it has to b
achieved with certainty. In that case, we can establish
equivalence relation stating that two statesuc& and uf& are
equivalent if the parties have a nonvanishing probability
success when trying to convertuc& into uf&, and alsouf&
into uc& @11#. This relation has been termed stochas
equivalence in Ref.@4#. Their equivalence under SLOCC
indicates that both states are again suited to implement
same tasks of QIT, although this time the probability of
successful performance of the task may differ fromuf& to
uc&. Notice in addition that since LU are a particular case
SLOCC, states equivalent under LU are also equivalent
der SLOCC, the new classification being a coarse grainin
the previous one.

The main aim of this work is to identify and characteri
all possible kinds of pure-state entanglement of three qu
under SLOCC. Unentangled states, and also those which
product in one party while entangled with respect to the
maining two, appear as expected, to be trivial cases. M
surprising is the fact that there are two different kinds
genuine tripartite entanglement. Indeed, we will show t
any ~nontrivial! tripartite entangled state can be converte
by means of SLOCC, into one of two standard form
namely either the GHZ state@12#

uGHZ&5~1/A2!~ u000&1u111&) ~1!
©2000 The American Physical Society14-1
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or else a second state1

uW&5~1/A3!~ u001&1u010&1u100&), ~2!

and that this splits the set of genuinely trifold entang
states into two sets which are unrelated under LOCC. T
is, we will see that ifuc& can be converted into the sta
uGHZ& in Eq. ~1! anduf& can be converted into the stateuW&
in Eq. ~2!, then it is not possible to transform, even with on
a very small probability of success,uc& into uf& nor the
other way round.

The previous result is based on the fact that, unlike
GHZ state, not all entangled states of three qubits can
expressed as a linear combination of only two product sta
Remarkably enough, the inequivalence under SLOCC of
statesuGHZ& and uW& can alternatively be shown from th
fact that the 3-tangle~residual tangle!, a measure of tripartite
correlations introduced by Coffmanet al. @14#, does not in-
crease on average under LOCC, as we will prove here.

We will then move to the second main goal of this wor
namely the analysis of the stateuW&. It cannot be obtained
from a stateuGHZ& by means of LOCC and thus one cou
expect, in principle, that it has some interesting, characte
tic properties. Recall that in several aspects the GHZ s
can be regarded as the maximally entangled state of t
qubits. However, if one of the three qubits is traced out,
remaining state is completely unentangled. Thus, the
tanglement properties of the stateuGHZ& are very fragile
under particle losses. We will prove that, oppositely, the
tanglement ofuW& is maximally robust under disposal of an
one of the three qubits, in the sense that the remaining
duced density matrices2 rAB , rBC , andrAC retain, accord-
ing to several criteria, the greatest possible amount of
tanglement, compared to any other state of three qu
either pure or mixed.

We will finally analyze entanglement under SLOCC
more general multipartite systems. We will show that,
most of these systems, there is typically no chance at a
transform locally a given state into some other if they a
chosen randomly, because the space of entangled pure s
depends on more parameters than those that can be mo
by acting locally on the subsystems.

The paper is organized as follows. In Sec. II, we char
terize mathematically the equivalence relation established
stochastic conversions under LOCC, and illustrate its per
mance by applying it to the well-known bipartite case.
Sec. III, we move to consider a system of three qubits,
which we prove the existence of six classes of states un
SLOCC, including the two genuinely tripartite ones. Sect
IV is devoted to studying the endurance of the entanglem
of the stateuW& against particle losses. In Sec. V, more ge
eral multipartite systems are considered. Section VI conta
some conclusions. Finally, Appendices A–C prove, resp

1An experimental realization using photons of such a state
already proposed in@13#.

2The reduced density matrixrAB of a pure tripartite stateuc& is
defined asrAB[trC(uc&^cu).
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tively, some needed results related to SLOCC, the mon
nicity of the 3-tangle under LOCC, and the fact thatuW&
retains optimally bipartite entanglement when one qubit
traced out.

II. KINDS OF ENTANGLEMENT UNDER
STOCHASTIC LOCC

In this work we define as equivalent the entanglemen
two statesuc& and uf& of a multipartite system iff local
protocols exist that allow the parties to convert each of
two states into the other one with somea priori probability
of success. In this approach, we follow the definition f
stochastic equivalence as given in@4#.3 The underlying mo-
tivation for this definition is that, if the entanglement ofuc&
and uf& is equivalent, then the two states can be used
perform the same tasks, although the probability of a s
cessful performance of the task may depend on the state
is being used.

A. Invertible local operators

Sensible enough, this classification would remain use
if in practice we would not be able to find out which stat
are related by SLOCC. Let us recall that, all in all, no pra
tical criterion is known so far that determines whether a
neric transformation can be implemented by means
LOCC. However, we can think of any local protocol as
series of rounds of operations, where in each round a gi
party manipulates locally its subsystem and communica
classically the result of its operation~if it included a mea-
surement! to the rest of the parties. Subsequent operati
can be made dependent on previous results and the pro
splits into several branches. This picture is useful because
our purposes we need only focus on one of these branc
Suppose that stateuc& can be locally converted into stateuf&
with nonzero probability. This means that at least one bra
of the protocol does the job. Since we are concerned o
with pure states, we can always characterize mathematic
this branch as an operator which factors out as the ten
product of a local operator for each party. For instance, i
three-qubit case we would have thatuc& can be locally con-
verted intouf& with some finite probability iff an operato
A^ B^ C exists such that

uf&5A^ B^ Cuc&, ~3!

where operatorA contains contributions coming from an
round in which partyA acted on its subsystem, and similar
for operatorsB and C.4 Carrying on with the three-qubi
example, let us now consider for simplicity that both sta

s

3Stochastic transformations under LOCC had been previou
analyzed in@15,16#.

4In practice, the constraintsA†A, B†B, C†C<1 should be ful-
filled if the invertible operatorsA,B,C are to come from local
POVMs. In this work, we do not normalize them in order to avo
introducing unimportant constants to the equations. Instead,
the initial and final states are normalized.
4-2
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THREE QUBITS CAN BE ENTANGLED IN TWO . . . PHYSICAL REVIEW A62 062314
uc& and uf& have rank two reduced density matricesrA

[trBC(uc&^cu), rB , andrC . Then clearly the rank of op
eratorsA, B, andC needs to be 2~see Appendix A!. In other
words, each of these operators is necessarily invertible,
in particular

uc&5A21
^ B21

^ C21uf&. ~4!

Thus we see that, under the assumption of maximal rank
the reduced density matrices, two-way convertibility impli
the existence of invertible operatorsA, B, andC as in Eq.~3!
@actually, one-way convertibility alone has already impli
that an invertible local operator~ILO! A^ B^ C exists#. Ob-
viously, the converse also holds, namely that if an IL
A^ B^ C exists, then for each direction of the conversion
local protocol can be built that succeeds with nonzero pr
ability. As explained in Appendix A in detail, we can get r
of the previous assumption on the ranks and announce
generality the following.

Result. Statesuc& anduf& are equivalent under SLOCC
an ILO relating them@as in, for instance, Eq.~3!# exists.

B. Bipartite entanglement under SLOCC

What does this classification imply in the well-know
case@15–17# of bipartite systems? Since LU are included
SLOCC, we can take the Schmidt decomposition of a p
stateuc&PCn

^ Cm, n<m, as the starting point for our analy
sis. Thus,

(
i 51

nc

Al i u i & ^ u i &5UA^ UBuc&, l i.0, nc<n, ~5!

whereUA andUB are some proper local unitaries, the coe
ficientsl i decrease withi, andnc is the number of nonvan
ishing terms in the Schmidt decomposition. Clearly, the IL

1

Anc
S (

i 51

nc 1

Al i

u i &^ i u1 (
i 5nc11

n

u i &^ i u D ^ 1B ~6!

transforms Eq.~5! into a maximally entangled state

1

Anc
(

i

nc

u i & ^ u i &, ~7!

which depends only on the Schmidt numbernc . Since
SLOCC cannot modify the rank of the reduced density m
tricesrA andrB , which is given bync , we conclude that in
Cn

^ Cm, n<m, there aren different kinds of entangled
states, corresponding ton different classes under SLOCC
Each of these classes is characterized by a given Sch
number, and we can choose as their representatives the
~7! with nc51, . . . ,n. Clearly,nc51 corresponds to state
that are less entangled than the rest~they are, after all, unen
tangled!. This hierarchical relation can be extended to t
rest of the classes by noting that noninvertible local opera
can project out some of the Schmidt terms and thus dimin
the Schmidt number of a state. Therefore, the stateuc& can
be locally converted into the stateuf& with some finite prob-
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ability iff nc>nf , or in terms of kinds of entanglement, w
can say that the entanglement of the class characterized
given Schmidt number is more powerful than that of a cla
with a smaller Schmidt number.

For later reference we also note that in a two-qubit s
tem, H5C2

^ C2, we can write any state, after using a co
venient LU, uniquely as

uc&5cd u0& ^ u0&1sd u1& ^ u1&, cd>sd>0, ~8!

wherecd ,sd stand for cosd and sind. This is either a prod-
uct ~unentangled! stateucA2B&5u0& ^ u0& for cd51 or else
an entangled state that can be converted into the EPR s

1

A2
~ u0& ^ u0&1u1& ^ u1&), ~9!

with probability p5E2(c), where E2(c)[l2 is the en-
tanglement monotone that provides a quantitative descrip
of the nonlocal resources contained in a single copy o
two-qubit pure state@18#. Any stateuc& can be obtained from
state~9! with certainty, this contributing to the fact that th
EPR state is considered the maximally entangled state of
qubits.

III. ENTANGLEMENT OF PURE STATES
OF THREE QUBITS

In this section, we analyze a system of three qubits.
show that SLOCC split the set of pure states into six
equivalent classes, which further structure themselves in
three-grade hierarchy when noninvertible local operatio
are used to relate them. At the top of the hierarchy we fi
two inequivalent classes of true tripartite entangleme
which we name GHZ class andW class after our choice o
corresponding representatives. The three possible class
bipartite entanglement are accessible~with some nonvanish-
ing probability! from anystate of theW and GHZ classes by
means of a noninvertible local operator. Finally, at the b
tom of the hierarchy we find nonentangled states.

The ranksr (rA), r (rB), andr (rC) of the reduced density
matrices, together with the rangeR(rBC) of rBC , will be the
main mathematical tools used through the first part of t
section. By analyzing them we will be able to make an e
haustive classification of three-qubit entanglement. Later
we will rephrase some of these results in terms of we
known measures of entanglement. In particular, we will s
that the existence of two inequivalent kinds of true tripart
entanglement under SLOCC is very much related to the
that the 3-tangle, a measure of tripartite entanglement in
duced in@14#, is an entanglement monotone~see Appendix
B!.

At the end of the section also a practical way to ident
the class that an arbitrary state belongs to will be discus

A. Nonentangled states and bipartite entanglement

If at least one of the local ranksr (rA), r (rB), or r (rC) is
1, then the pure state of the three qubits factors out as
tensor product of two pure states, and this implies tha
4-3
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W. DÜR, G. VIDAL, AND J. I. CIRAC PHYSICAL REVIEW A 62 062314
least one of the qubits is uncorrelated with the other tw
SLOCC distinguish states with this feature depending
which qubits are uncorrelated from the rest.

1. Class AÀBÀC (product states)

This class corresponds to states withr (rA)5r (rB)
5r (rC)51. They can be taken, after using some conven
LU, into the form

ucA2B2C&5u0&u0&u0&, ~10!

where we have already relaxed the notation foru0& ^ u0&
^ u0&.

2. Classes AÀBC, ABÀC, and CÀAB (bipartite entanglement)

These three classes of states contain only bipartite
tanglement between two of the qubits, one of the redu
density matrices having rank 1 and the other two having r
2. For example, the states in classA2BC possess entangle
ment between the systemsB andC @r (rB)5r (rC)52# and
are product with respect to systemA @r (rA)51#. LU allow
us to write uniquely states of the classA2BC as

ucA2BC&5u0&~cdu0&u0&1sdu1&u1&), cd>sd.0,
~11!

and similarly for ucB2AC& and ucC2AB&. We choose the
maximally entangled state

1

A2
u0&~ u0&u0&1u1&u1&) ~12!

as representative of the classA2BC. Any other state within
this class can be obtained from~12! with certainty by means
of LOCC.

The proof that these four marginal classes are inequ
lent under SLOCC is very simple. We only need to rec
that the local ranks are invariant under ILO~see Appendix
A!. In what follows we will analyze the more interesting ca
of r (rk)52, k5A,B,C. To see that there are two inequiv
lent classes fulfilling this condition, we will have to stud
possible product decompositions of pure states.

B. True three-qubit entanglement

There turns out to be a close connection between conv
ibility under SLOCC and the way entangled states can
expressed minimally as a linear combination of prod
states. For instance, as we shall prove later on, the GHZ
W states have a different number of terms in their minim
product decompositions~1! and ~2!, namely two and three
product terms, respectively, and this readily implies t
there is no way to convert one state into the other by me
of an ILO A^ B^ C. Indeed, let us consider, e.g., the mo
general pure state that can be obtained reversibly from
uGHZ&. It reads
06231
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A^ B^ CuGHZ&5
1

A2
~ uA0&uB0&uC0&1uA1&uB1&uC1&),

~13!

whereuA0& anduA1& are linearly independent vectors~since
A is invertible! and similarly for the other two qubits. That is
the minimal number of terms in a product decomposition
the state~13! is also 2. Actually, we observe the followin
for a general multipartite system.

Observation. The minimal number of product terms fo
any given state remains unchanged under SLOCC.

This simple observation tells us already that in thr
qubits there are at least two inequivalent kinds of genu
tripartite entanglement under SLOCC, that ofuGHZ& and
that of uW&.

However, we still have to prove that the stateuW& cannot
be expressed as a linear combination of just two prod
vectors. In order to complete our classification, we also h
to show that any pure state of three qubits with maxim
local ranks can be reversibly converted into either the s
uGHZ& or the stateuW&. We start with an obvious lemma
regarding product decompositions.

Lemma. Let ( i 51
l uei&u f i& be a product decomposition fo

the stateuh&PHE^ HF . Then the set of states$uei&% i 51
l

spans the range ofrE[TrFuh&^hu.
Proof. We have thatrE5( i , j 51

l ^ f i u f j&uej&^ei u. On the
other hand,un& is in the range ofrE if a stateum& exists such
that un&5rEum&, that is,un&5( i , j 51

l ^ f i u f j&^ei um&uej&.
In particular,r (rA)52 implies that at least two produc

terms are needed to expanduc&PC2
^ C2

^ C2. Let us sup-
pose that a product decomposition with only two terms
possible, namely

uc&5ua1&ub1&uc1&1ua2&ub2&uc2&. ~14!

Then, also according to the previous lemma,ub1&uc1& and
ub2&uc2& have to span the range ofrBC , R(rBC).

But R(rBC) is a two-dimensional subspace ofC2
^ C2.

Therefore, it always contains either only one or only tw
product states@19# @unlessR(rBC) was supported inC^ C2

or C2
^ C, but we already excluded this possibility becau

we are consideringr (rB)5r (rC)52#. Notice that a two-
term decomposition~14! requires thatR(rBC) contain at
least two product vectors. Only one product vector
R(rBC), and thus the impossibility of decomposition~14!, is
going to be precisely the trait of the states in theW class.

1. GHZ class

Let us suppose first thatR(rBC) contains two product
vectors,ub1&uc1& and ub2&uc2&. Then decomposition~14! is
possible, and actually unique, withuai&5^j i uc&, i 51,2,
whereuj i& are the two vectors supported inR(rBC) that are
biorthonormal to theubi&uci&. In this case we can use LU in
order to takeuc& into the useful standard product form~see
also @20#!

ucGHZ&5AK~cdu0&u0&u0&1sdeiwuwA&uwB&uwC&), ~15!
4-4
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THREE QUBITS CAN BE ENTANGLED IN TWO . . . PHYSICAL REVIEW A62 062314
where

uwA&5cau0&1sau1&,

uwB&5cbu0&1sbu1&, ~16!

uwC&5cgu0&1sgu1&,

and K5(112cdsdcacbcgcw)21P( 1
2 ,`) is a normalization

factor. The ranges for the five parameters ared
P(0,p/4#,a,b,gP(0,p/2# andwP@0,2p).

All these states are in the same equivalence class as
uGHZ & ~1! under SLOCC. Indeed, the ILO

A2KS cd sdcaeiw

0 sdsaeiw D ^ S 1 cb

0 sb
D ^ S 1 cg

0 sg
D ~17!

applied touGHZ & produces the state~15!.
The GHZ state is a remarkable representative of this cl

It is maximally entangled in several senses@21#. For in-
stance, it maximally violates Bell-type inequalities, the m
tual information of measurement outcomes is maximal, i
maximally stable against~white! noise, and one can locall
obtain from a GHZ state with unit propability an EPR sta
shared between any two of the three parties. Another rele
feature is that when any one of the three qubits is traced
the remaining two are in a separable—and theref
unentangled—state.

2. W class

Let us move to analyze the case whereR(rBC) contains
only one product vector. We already argued that decomp
tion ~14! is now not possible. Instead we can~uniquely! write

uc&5ua1&ub1&uc1&1ua2&ufBC&, ~18!

whereufBC& is the vector ofR(rBC) which is orthogonal to
ub1&uc1&, and ua1& and ua2& are given by^b1u^c1uc& and
^fBCuc&. By means of LU, Eq.~18! can always be rewritten
as

uc&5~Acu1&1Adu0&)u00&1u0&~Aau01&1Abu10&).
~19!

Indeed, we first takeub1&uc1& into u0&u0&. Then, sinceufBC&
has been chosen orthogonal toub1&uc1&, it must become
xu01&1yu10&1zu11&. By requiring that a linear combinatio
of these two vectors has no second product vector, we ob
that z50 @22#. In addition, the coefficientsAa[x, Ab
[y, Ac, and Ad can be made positive by absorbing t
three relative phases into the definition of stateu1& of sub-
systemsA, B, andC. Thus case~i! has been taken into th
form ~19! by just using LU. Before we showed that tw
terms could not suffice in a product decomposition of
state. Now we see that three product terms always do the
for instance (Acu1&1Adu0&)u00&, Aau0&u01&, and
Abu0&u10& once we took the original state into the standa
unique form

ucW&5Aau001&1Abu010&1Acu100&1Adu000&, ~20!
06231
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wherea,b,c.0 andd[12(a1b1c)>0.
The parties can locally obtain the state~20! from the state

uW& in Eq. ~2!, which we choose as a representative of t
class—and whose study we postpone for later on—by ap
cation of an ILO of the form

S Aa Ad

0 Ac
D ^S A3 0

0
A3b

Aa
D ^ S 1 0

0 1D . ~21!

Before moving to relate these classes by means of no
vertible local operators, we note that states within the G
class and theW class depend, respectively, on five and thr
parameters that cannot be changed by means of LU. Prev
works @6,7,20,9# have shown that a generic state of thr
qubits depends, up to LU, on five parameters. This me
that states typically belong to the GHZ class, or equivalen
that agenericpure state of three qubits can be locally tran
formed into a GHZ with a finite probability of success~see
also @23#!. The W class is of zero measure compared to t
GHZ class. This does not mean, however, that it is irreleva
In a similar way as separable mixed states are not of z
measure with respect to entangled states, even though p
uct states are, it is in principle conceivable that mixed sta
having onlyW-class entanglement are also not of zero m
sure in the set of mixed states.

C. Relating SLOCC classes by means
of noninvertible operators

In this subsection, we investigate the hierarchical relat
of the six SLOCC-equivalence classes under noninvert
operators, i.e., under general LOCC.

A noninvertible local operator transformsuc& into uf&
according to Eq.~3!, but with at least one of the local opera
tors A, B, and C having rank 1. This means that the loc
ranks of the pure states can be diminished. For instanc
the initial stateuc& belongs either to the GHZ orW class,
then a noninvertible operator will diminish at least one of t
local ranks. That is,uf& belongs necessarily to one of th
bipartite classesk2mn (kÞmÞnP$A,B,C%) or else is a
product stateA2B2C.

Thus we have that the classes GHZ andW are also in-
equivalent even under most general LOCC, whereas, e.
measurement of the projectorP5u1&^1u with u1&
51/A2(u0&1u1&) in party A maps states within the classe
W ~20! and GHZ~15! to states within the classA2BC. In a
similar way, noninvertible local operators~local, standard
measurements! can convert states within one of the class
k2mn to states within the classA2B2C. Note that in all
cases described above, the inverse transformations, e.g.,
the classA2B2C to one of the classesk2mn, are impos-
sible as they would imply an increase of the rank of at le
one of the reduced density operatorsrA ,rB ,rC . These re-
sults are summarized in Fig. 1.
4-5
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W. DÜR, G. VIDAL, AND J. I. CIRAC PHYSICAL REVIEW A 62 062314
D. Measures of entanglement and classes under SLOCC

Several measures have been introduced so far in the
erature in order to quantify entanglement. Although this s
tion is mainly concerned with qualitative aspects of multip
tite quantum correlations, we would like to relate some
these measures, namely some bipartite ones and the trip
3-tangle @14# ~see Appendix B!, to our classification. Re
markably, the existence of two kinds of genuine tripart
entanglement in a three-qubit system, as well as the
equivalence between bipartite and tripartite entanglem
can be easily understood from the nonincreasing charact
these measures under LOCC. In addition, the 3-tangle all
for a systematic and practical identification of to which cla
under SLOCC any pure state belongs.

For eachk5A, B, andC we can regard the three-qub
system as a bipartite system, with qubitk, say A for con-
creteness, being one part of the system and the remai
two qubits, B and C, being the other. Correspondingly,
stateuc& of the three qubits can be viewed as a bipartite s
ucA(BC)&. For bipartite states several measures are kno
which are entanglement monotones@5#, that is, which cannot
be increased, on average, under LOCC. For instance, w
ready mentioned the entropy of entanglementE(c) for
asymptotic conversions—given by the entropySA of the ei-
genvalues ofrA—and the monotoneE2(c) for the single
copy case, which is given by the smallest eigenvaluel2 of
rA . They all vanish for product states~corresponding torA
with rank 1! while having a positive value for any other sta
~corresponding torA with rank 2!. Thus we can interpret the
inequivalence under SLOCC of states whose reduced de
matrices differ in rank also in terms of the impossibility
creating any of the bipartite measures. For instance, a sta
theA2BC class hasSA50, and thus cannot be transforme
with any finite probability into a state of theAB2C class,
because this would haveSA.0. We conclude that the mono
tonicity of these measures readily split the set of pure st
of three qubits into five subsets which are inequivalent un
SLOCC, namely unentangled statesA2B2C, the three
classesA2BC, AB2C, andC2AB containing only bipar-
tite entanglement, and a fifth subset of entangled states
SA ,SB ,SCÞ0 @i.e., r (rA)5r (rB)5r (rC)52#. Bipartite
measures cannot, however, determine the inequivalenc
the GHZ andW classes.

Is there any known measure of tripartite entanglem
which can distinguish between these two classes?
3-tangle does. Indeed, it can be computed from the prod
decompositions~15! and~20! ~see@14# for details!, and reads

FIG. 1. Different local classes of tripartite pure states. The
rection of the arrows indicates which noninvertible transformatio
between classes are possible.
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t~cGHZ!5~2Ksasbsgsdcd!2Þ0 ~22!

for any state in the GHZ class, while it vanishes for any st
in the W class. In Appendix B we prove that the 3-tangle
an entanglement monotone, a very desirable property for
quantity aiming at measuring entanglement. Consequent
state in theW class cannot be transformed by means
LOCC ~and in particular SLOCC! to a state in the GHZ
class, which is an independent proof of the fact that the t
kinds of true tripartite entanglement are indeed inequival
under SLOCC.

E. Practical identification

Given an arbitrary stateuc& of three qubits, expressed i
any basis, it may be interesting to know, for instanc
whether it can be converted by means of LOCC into a G
or aW state, if any, or into an EPR state shared between
of the parties. In our original analysis of the classes, we h
already provided a constructive method, based on the an
sis of r (rk) andR(rBC), to determine the class ofuc& under
SLOCC. Analyzing theR(rBC) may, however, not be the
most practical way to proceed. Here we suggest to proc
instead according to the following two steps.

~i! Computerk , k5A,B, andC, and check whether they
have a vanishing determinant@note that detrk50⇔Sk
50⇔r (rk)51].

~ii ! If none of the previous determinants vanish~that is,
uc& has true tripartite entanglement!, then compute the
3-tangle using the recipe introduced in@14#.

Then Table I, which summarizes the relation betwe
classes under SLOCC and measures of entanglement, ca
used to catalog stateuc&.

IV. STATE zW‹ AND RESIDUAL
BIPARTITE ENTANGLEMENT

As mentioned in the preceding section, in several asp
the stateuGHZ& is the maximally entangled state of thre
qubits. It also has the feature that when one of the qubit
traced out, then the remaining two are completely un
tangled. This means, in particular, that if one of the thr
parties sharing the system decides not to cooperate with
other two, then they cannot use the entanglement resou

-
s

TABLE I. Values of the local entropiesSA ,SB ,SC and the
3-tanglet for the different classes.

Class SA SB SC t

A2B2C 0 0 0 0

A2BC 0 .0 .0 0

B2AC .0 0 .0 0

C2AB .0 .0 0 0

W .0 .0 .0 0

GHZ .0 .0 .0 .0
4-6
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THREE QUBITS CAN BE ENTANGLED IN TWO . . . PHYSICAL REVIEW A62 062314
of the state at all. The same happens if for some reason
information about one of the qubits—namely the identity
the corresponding statesu0 & and u1& in ~1!—is lost.

Here we would like to investigate the robustness of
entanglement of a three-qubit stateuc& against disposal o
one of the qubits@24#. The residual, two-qubit statesrAB ,
rAC , andrBC are in general mixed states. There are seve
measures of entanglement of mixed states and therefore
tiple ways of quantifying how much~mixed-state! bipartite
entanglement the stateuc& turns into when one of the qubit
is traced out. Nevertheless, most of the criteria we have
amined coincide in pointing out the stateuW& as the one tha
maximally retains bipartite entanglement. Note that the
duced density matrix ofuW& is identical for any two sub-
systems and is, e.g., given by

rAB5 2
3 uC1&^C1u1 1

3 u00&^00u, ~23!

with uC1&5(1/A2)(u01&1u10&) being a maximally en-
tangled state of two qubits. Note that one can obtain from
single copy of Eq.~23! a state which is arbitrarily close t
the stateuC1& by means of a filtering measurement@25#.

A. Average residual entanglement

Let us consider first which is the amount of bipartite e
tanglement, according to some measureE(r), that the two
remaining qubits retains on average when a third one
traced out, that is,

Ē~c![ 1
3 @E~rAB!1E~rAC!1E~rBC!#. ~24!

In general, computing the amount of entanglementE(r) for
bipartite mixed states is a difficult problem. However, n
merical results have shown thatuW& maximizes the averag
entanglement of formation, that is the choiceE(r)5Ef(r),
whereEf(r)5 is the minimal amount of bipartite pure-sta
entanglement@as quantified by means of the entropy of e
tanglement# required to prepare locally one single copy
the stater @26#.

In addition, we have managed to show analytically~see
Appendix C! for the particular choiceE(r)5C(r)2, where
C(r) is the concurrence~for a definition of the concurrence
see, e.g.,@14#!, that the stateuW& reaches the maximal ave
age valueC̄2(W)5 4

9 , which no other state can match.

B. Least entangled pair

Another way of quantifying how resistent the entang
ment of a tripartite stateuc& is to the dismissal of one part o
the system consists in looking at the least entangled of
three possible remaining parts, namely at the function

Emin~c![min„E~rAB!,E~rAC!,E~rBC!…. ~25!

5The entanglement of formation is given byEf(r)5h( 1
2

1
1
2A12C 2), whereC is the concurrence andh is the binary en-

tropy functionh(x)52x log2 x2(12x)log2(12x).
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For this ‘‘worst case scenario’’ we have been able to pro
analytically ~see Appendix C! that the maximal value of
Emin(c) is obtained by the stateuW& for any bipartite measure
E(r) which is monotonic with the concurrence,C(r), such as
the entanglement of formationEf(r) and the monotone
E2(r),6 which denotes the minimal amount of bipartite pur
state entanglement@quantified by means ofE2(c)# required
to prepare locally one single copy of the stater.

We conclude that the stateuW& is the state of three qubit
whose entanglement has the highest degree of endur
against loss of one of the three qubits. We conceive
property as important in any situation where one of the th
parties sharing the system, say Alice, may suddenly de
not to cooperate with the other two. Notice that even in
case that Alice would decide to try to destroy the entang
ment between Bob and Claire, this would not be possib
since any local action onA cannot prevent Bob and Clair
from sharing, at least, the entanglement contained inrBC ~for
instance, by simply ignoring Alice’s actions!. Therefore, al-
though essentially tripartite, the entanglement of the s
uW& is also readily bipartite, in contrast to that of the sta
uGHZ & , which only after some local manipulation can b
brought into a bipartite form.

V. GENERALIZATION TO N PARTIES

In this final section, we would like to apply the sam
techniques to analyze the entanglement of more general
tipartite systems. We will learn that the set of entang
states is a rather inaccessible jungle for the local explorer
two pure statesuc& and uf& are typically not connected by
means of LOCC, so that the parties are usually unable
convert states locally. We will also study generalizations
N qubits of the stateuW & .

A. Local inaccessibility of states in general
multipartite systems

Let us consider firstN parties each possessing a qub
The Hilbert space of the system is

~26!

and therefore up to a global, physically irrelevant comp
constant, a generic vector depends on 2(2N21) real param-
eters. On the other hand, we want to identify vectors wh
are related by means of an ILO. A general one-party, inv
ible operatorA must have a nonvanishing determinant, whi
we can fix to one, detA51, because the operatorkA only
differs in that it introduces in the transformed states an ex
constant factorkPC, which we have already addressed. Th
is, APSL2(C), and it depends on six real parameters. The

6The entanglement monotoneE2, expressed in terms of the con
currenceC, is given byE2(r)5

1
2 2

1
2A12C 2.
4-7
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fore, the set of equivalence classes under SLOCC,

~27!

dependsat leaston 2(2N21)26N parameters. This lowe
bound allows for a finite number of classes forN53, but
shows that for any larger numberN of qubits there are infi-
nitely many classes, labeled by at least one continuous
rameter. The reason is that the number of parameters fro
stateuc& which the parties can modify by means of a gene
ILO A^ B^ •••^ N grows linearly with N (6N for the
multi-qubit case!, whereas the number of parameters
quired to specifyuc& grows exponentially withN.

More generally, if the Hilbert space is given byH
5Cn1^ •••^ CnN, then the set of equivalence classes un
SLOCC,

Cn1^ •••^ CnN

SLn1
~C!3•••3SLnN

~C!
, ~28!

depends at least on 2(n1n2•••nN21)22( i 51
N (ni

221). This
shows that only forN53 there are still some systems wi
~potentially! only a finite number of classes under SLOC
namely those with Hilbert spaceC2

^ Cn2^ Cn3, that is, hav-
ing a qubit as at least one of the subsystems. In all o
cases, one finds an infinite number of classes.

We notice that even allowing for noninvertible local o
erations, the amount of parameters that can be change
local manipulations is typically smaller than what the st
depends on. That is, the subset of states that can be rea
locally from a given stateuc& is of zero measure in the set o
states of the multipartite system. Recall that in the bipar
scenario,H5Cn

^ Cm, there is always a maximally entangle
state from which all the other states can be locally prepa
with certainty of success. We see now that, in constrast, th
is typically in a multipartite system no state from which a
the others can be prepared, not even with some probabilit
success. Of course, the parties can always resort to, say
ing a sufficient amount of EPR states distributed among th
to prepare any multipartite state by standard teleportat
This implies, however, using an initial state~that of many
EPR states! which belongs to a Hilbert space much larg
than the Hilbert space of the state the parties are trying
create, and thus does not change the previous conclusio

B. State zW‹ in multiqubit systems

Let us have a look at the generalized formuWN& of the
stateuW& ~2!. We define the state

uWN&[~1/AN!uN21,1&, ~29!

whereuN21,1& denotes the totally symmetric state includin
N21 zeros and 1 ones. For example, we obtain forN54
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uW4&5~1/A4!~ u0001&1u0010&1u0100&1u1000&).
~30!

One immediately observes that the entanglement of this s
is again very robust against particle losses, i.e., the s
uWN& remains entangled even if anyN22 parties lose the
information about their particle. This means that any two o
of N parties possess an entangled state, independentl
whether the remaining (N22) parties decide to cooperat
with them or not. This can be seen by computing the redu
density operatorrAB of uWN&, i.e., by tracing out all but the
first and the second systems. By symmetry of the stateuWN&,
we have that all reduced density operatorsrkm are identical
and we obtain

rkm5
1

N
~2uC1&^C1u1~N22!u00&^00u!. ~31!

The concurrence can easily be determined to be

Ckm~WN!5
2

N
, ~32!

which shows thatrkm is entangled, even distillable. We con
jecture that the average value of the square of the con
rence foruWN&,

2

N~N21! (
k

(
mÞk

C km
2 ~WN!5

4

N2
, ~33!

is again the maximal value achievable for any state ofN
qubits.

VI. SUMMARY AND CONCLUSIONS

In this work, we investigated equivalence classes of m
tipartite states specified by stochastic local operations
classical communication. We showed that for pure state
three qubits there are six different classes of this kind.
particular, we found that there are two inequivalent types
genuine tripartite entanglement, represented by the G
state and the stateW. We showed that the stateW is the state
of three qubits that retains a maximal amount of bipar
entanglement when any one of the three qubits is traced
For multipartite (N>4) and multilevel systems, we showe
that there exist infinitely many inequivalent kinds of e
tanglement~i.e., classes under SLOCC!.
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APPENDIX A: SLOCC AND LOCAL RANKS

In this appendix we show that statesuc& and uf& belong
to the same class under SLOCC iff they are related by me
of an invertible local operator~ILO!. From this connection it
follows easily that the local ranks of a pure state,r (rk), k
5A,B, . . . , are invariant under SLOCC, whereas und
LOCC they can only decrease.

Lemma. If the bipartite vectorsuc& anduf&PCn
^ Cm ful-

fill

uf&5A^ 1Buc&, ~A1!

then the ranks of the corresponding reduced density matr
satisfy r (rA

c)>r (rA
f) and r (rB

c)>r (rB
f).

Proof. We consider the Schmidt decomposition ofuc&,

uc&5(
i 51

nc

Al i
cu i &u i &, l i

c.0, nc<min~n,m!, ~A2!

and write the operatorA as

A5(
i 51

n

um i&^ i u, ~A3!

where um i&PCn do not need to be normalized nor linear
independent. Then we have thatrA

c5( i 51
nc u i &^ i u and rA

f

5ArA
cA†5( i 51

nc um i&^m i u, so thatr (rA
f)<nc . The second in-

equality of the lemma follows from the fact that for an
bipartite vectorr (rA)5r (rB).

Corollary. If the vectors uc&,uf&PHA^ HB^ •••^ HN
are connected by a local operator asuf&5A^ B^ •••

^ Nuc&, then the local ranks satisfyr (rk
c)>r (rk

f), k
5A,B, . . . ,N.

Proof. Indeed, for each of the parties, say Alice for co
creteness, we can view the operatorA^ B^ •••^ N as the
composition of two local operators,A^ 1B•••N and 1A^ (B
^ •••^ N), and the Hilbert space asHA^ HB•••N . Then, be-
cause of the previous lemma, application of the first opera
cannot increaser (rA), and the same happens with the se
ond operator, which cannot increaser (rB•••N) @recall that for
any pure stater (rA)5r (rB•••N)#.

Theorem. Two pure states of a multipartite system a
equivalent under SLOCC if they are related by a local inve
ible operator.

Proof. If

uf&5A^ B^ •••^ Nuc&, ~A4!

then a local protocol exists for the parties to transformuc&
into uf& with a finite probability of success. Indeed, ea
party needs simply to perform a local POVM including
normalized version of the corresponding local operator
Eq. ~A4!. For instance, Alice has to apply a POVM defin
by operatorsApAA and A1A2pAA†A, where pA<1 is a
positive weight such thatpAA†A<1A , and similarly for the
rest of the parties. Then such a local protocol convertsuc&
successfully intouf& with probability pApB•••pN . If, in ad-
dition, A,B, . . . ,N are invertible operators, then obviously
06231
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uc&5A21
^ B21

^ •••^ N21uf& ~A5!

and the conversion can be reversed locally. Let us then m
to prove the converse. We already argued~Sec. II A! that if
uc& can be converted intouf& by LOCC, then a local opera
tor relates them. We want to prove now that the equivale
of uc& and uf& under SLOCC implies that this operator ca
always be chosen to be invertible. For simplicity, we w
assume thatuc& and uf& are related by a local operator ac
ing nontrivially only in Alice’s part,

uf&5A^ 1B•••Nuc&. ~A6!

@The general case would correspond to composing oper
A^ 1B•••N with operator 1A^ B^ 1C•••N , and similarly for
the rest of the parties. The following argumentation sho
then be applied sequentially to each party individually.# We
can then consider the Schmidt decomposition of the st
with respect to partA and partB•••N,

uc&5(
i 51

nc

Al i
cu i &ut i&, l i

c.0, ~A7!

uf&5(
i 51

nf

Al i
f~UAu i &)ut i&, l i

f.0, ~A8!

where the local unitaryUA relates the two local Schmid
bases in Alice’s part,$u i &% i 51

n PHA5Cn, ut i&PHB^ •••

^ HN , andnc5nf because of the previous corollary. Now
operatorA in Eq. ~A6! must be of the form~up to some
irrelevant permutations in the Schmidt basis!

A5UA~A11A2!,

A1[(
i 51

nc Al i
f

l i
c
u i &^ i u, ~A9!

A2[ (
i 5nc11

n

um i&^ i u, ~A10!

where um i& are arbitrary unnormalized vectors. Notice th
vectorsum i& play no role in Eq.~A6! sinceA2^ 1B•••Nuc&
50. Therefore, we can redefine

A2[ (
i 5nc11

n

u i &^ i u, ~A11!

which implies thatA is an invertible operator.

APPENDIX B: t IS AN ENTANGLEMENT MONOTONE

In this appendix, we show that the 3-tanglet is an en-
tanglement monotone, i.e., decreasing on average u
LOCC in all the three parties. We first note that any loc
protocol can be decomposed into POVM’s such that o
one party performs operations on the system. This, toge
with the invariance of the 3-tanglet under permutations o
the parties, ensures that it is sufficient to consider a lo
4-9
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POVM in A only. Furthermore, we can restrict ourselves
two-outcome POVM’s due to the fact that a genarlized~lo-
cal! POVM can be implemented by a sequence of two o
come POVM’s. LetA1 ,A2 be the two POVM elements suc
thatA1

†A11A2
†A25l. We can writeAi5UiDiV, whereUi , V

are unitary matrices andDi are diagonal matrices with en
tries (a,b) @„(12a2)1/2,(12b2)1/2

…#, respectively. Note tha
we used the singular value decomposition forAi , and we
have that the restriction thatA1 ,A2 constitute a POVM im-
mediately implies that the unitary operationV can be chosen
to be the same in both cases. We consider an initial stateuc&
with 3-tanglet(c). Let uf̃ i&5Ai uc& be the~unnormalized!
states after the application of the POVM. Normalizing the
we obtainuf i&5uf̃ i&/Api with pi5^f̃ i uf̃ i& andp11p251.
We want to show thatth, 0,h<1 is, on average, alway
decreasing and thus an entanglement monotone, i.e., fo

^th&5p1th~f1!1p2th~f2! ~B1!

we have that

^th&<th~c! ~B2!

is fulfilled for all possible choices of the POVM$A1 ,A2%.
Using thatt is invariant under local unitaries, we do n
have to consider the unitary operationsUi in our calcula-
tions, i.e.,t(UiDiVc)5t(DiVc). Taking this simplification
into account, a straightforward calculation shows that

t~f1!5
a2b2

p1
2

t~c!, t~f2!5
~12a2!~12b2!

p2
2

t~c!,

~B3!

where we used thatt(ef̃ i)5e4t(f̃ i), which can be checked
by noting thatt is a quartic function with respect to it
coefficients in the standard basis@14#. Note that the depen
dence oft(f i) on the unitary operationV is hidden inpi .
For h5 1

2 , one obtains for examplet1/2(f1)5ab/p1t1/2(c).
Substituting in Eq.~B1!, we find

^t1/2&5@ab1A~12a2!~12b2!#t1/2~c!. ~B4!

In this case, one can easily check that Eq.~B4! <t1/2 by
noting that Eq.~B4! is maximized fora5b. We thus have
that t1/2 is, on average, always decreasing and thus an
tanglement monotone. In a similar way, one can check
0,h<1 thatth is an entanglement monotone. However,
hÞ 1

2 , the derivation is a bit more involved due to the fa
that in this case the probabilitiespi in the expression for̂th&
no longer cancel and have to be calculated explicitly.

APPENDIX C: zW‹ MAXIMIZES RESIDUAL
BIPARTITE ENTANGLEMENT

Here we show that for all tripartite pure states, except
stateuW&, the following inequality holds:

Et[C AB
2 1C AC

2 1C BC
2 , 4

3 , ~C1!
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while the stateuW& reaches the valueEt5 4
3 . Note that we

used the short-hand notationCAB for the concurrence of the
reduced density operatorrAB ,C(rAB), and similarly forCAC ,
CBC .

Inequality~C1! already implies that the stateuW& reaches
the maximum average valueĒ(c) of Eq. ~24! for the choice
of E(r)5C(r)2, namelyĒ(W)5 4

9 .
At the same time, inequality~C1! also shows that the stat

uW& maximizes the functionEmin(c) ~25! for the choice of
E(r)5C(r)2, since~C1! implies that

C min
2 ~c![min~C AB

2 ,C AC
2 ,C BC

2 !, 4
9 ~C2!

for all states except the stateuW&, for which the value4
9 is

reached. From Eq.~C2! it follows that for any bipartite mea-
sure of entanglementE(r) which is monotonically increasing
with the square of the concurrence~and hence with the con
currence itself!, the stateuW& maximizes the functionEmin(c)
~25!, i.e.,

Emin~c!,Emin~W!5E~C 25 4
9 !. ~C3!

Assume that this is not the case, i.e., there exists a statec for
which Emin(c).Emin(W). Since by assumptionE is monotoni-
cally increasing with the concurrence, this would imply th
C min

2 (c).4
9, which contradicts Eq.~C2! and is hence impos

sible.
Note in addition that any good measure of entanglem

should be a convex function@5#, asC(r), Ef(r), andE2(r)
are. This implies, when applied to Eqs.~24! and~25!, that the
optimal values forĒ andEmin are achieved for pure states.

The remainder of this appendix is devoted to prove
equality ~C1!. Using the definition of the 3-tangle,t[tABC

5C A(BC)
2 2C AB

2 2C AC
2 @14# and the invariance of the 3-tangl

under permutations of the parties, we can rewriteEt as
1
2 (C A(BC)

2 1C B(AC)
2 1C C(AB)

2 23t). Using that C k(mn)
2

54 detrk , we can evaluateEt for the different classes.
Starting with the classA2B2C, we immediately obtain

that Et(CA2B2C)50. For the classA2BC, we have that
t50 andC A(BC)

2 50. SinceC B(AC)
2 ,C C(AB)

2 <1, we have that
Et(CA2BC)<1 in this case~and similarly for the classesB
2AC,C2AB).

Now we consider the classW, specified by Eq.~20!.
Again, we have thatt50. We find thatEt(CW)54(ab
1ac1bc) ~which does not depend ond). Notice thatEt is
maximized fora5b5c5 1

3 —which corresponds to the stat
uW&—and leads toEt5 4

3 . For all other values ofa,b,c,d,
we have thatEt, 4

3 .
Let us now turn to the class GHZ, specified in Eq.~15!.

Using that t(CGHZ) is given in Eq. ~22! and detrA

5K2cd
2sd

2sa
2(12cb

2cg
2) ~and similarly for detrB,C), we ob-

tain

Et5
4cd

2 sd
2@~sa

2sb
21sa

2sg
21sb

2sg
2!23sa

2sb
2sg

2#

~112cdsdcacbcgcw!2
. ~C4!

One readily checks that Eq.~C4! is maximized ford5p/4
and w5p ~which corresponds tocd5sd51/A2 and cw5
4-10
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21), independent of the values ofa,b,gP(0,p/2#. Thus we
have thatEt<Et(d5p/4,w5p) and after some algebra we
obtain

Et<
~ca

21cb
21cg

2!22~ca
2cb

21ca
2cg

21cb
2cg

2!13ca
2cb

2cg
2

~11cacbcg!2
.

~C5!

We want to show that the right-hand side of Eq.~C5! , 4
3 .

Let us callx[ca ,y[cb ,z[cg with 0<x,y,z,1. We thus
have to show that

f ~x,y,z![3~x21y21z2!26~x2y21x2z21y2z2!

15~x2y2z2!2418xyz

,0. ~C6!

Let us calculate the maximum off (x,y,z). We therefore take
the derivatives off (x,y,z) with respect tox,y,z, respec-
tively ~which we denote byf x , f y , f z) and set them to zero.
One immediately observes@by considering the linear combi-
nation of the resulting equations, e.g.,x fx2y fy , where one,
e.g., obtains (x22y2)(122z2)50# that for a maximum we
06231
must havex5y5z. The possible solutions of the resultin
polynomial of degree 5 can be checked to lie outside
interval @0,1), i.e., outside the range ofx,y,z except forx
5y5z50. It can, however, be easily verified that this so
tion gives rise to a minimum off (x,y,z), namely f (0,0,0)
524. Thus the maximum off (x,y,z) is obtained at the
border of the range forx,y,z, which corresponds to the su
faces of a cube. Due to the fact thatf (x,y,z) is invariant
under permutations of the variables, we only have to ch
two of the surfaces, e.g., the surfaces specified byx50 and
x51 ~actuallyx512e, wheree is an infinitesimally small
positive number! and we find ~i! f (0,x,y)53(y21z2)
26y2z224<21 ~the maximum in this case is, e.g., o
tained for y50,z512e) and ~ii ! f (1,y,z)58yz23(y2

1z2)2y2z221,0. In ~ii !, it can be checked that a nece
sary condition for a maximum isy5z and thatf (1,y,y) is
monotonically increasing in@0,1) and is thus maximized fo
y5z5(12e). One obtainsf (x,y,z)< f (1,12e,12e),0 as
desired.

So we managed to show that the stateuW& is the only state
which fulfills Et5 4

3 , and for all other tripartite pure state
we have thatEt, 4

3 .
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