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Three qubits can be entangled in two inequivalent ways
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Invertible local transformations of a multipartite system are used to define equivalence classes in the set of
entangled states. This classification concerns the entanglement properties of a single copy of the state. Accord-
ingly, we say that two states have the same kind of entanglement if both of them can be obtained from the other
by means of local operations and classical communicati@CC) with nonzero probability. When applied to
pure states of a three-qubit system, this approach reveals the existence of two inequivalent kinds of genuine
tripartite entanglement, for which the Greenberger-Horne-Zeilinger state ®vidtate appear as remarkable
representatives. In particular, we show that\istate retains maximally bipartite entanglement when any one
of the three qubits is traced out. We generalize our results both to the case of higher-dimensional subsystems
and also to more than three subsystems, for all of which we show that, typically, two randomly chosen pure
states cannot be converted into each other by means of LOCC, not even with a small probability of success.

PACS numbgs): 03.67.Hk, 03.65.Bz, 03.65.Ca

[. INTRODUCTION two pure state$y) and|¢) can be obtained with certainty
from each other by means of LOCC if and only if they are
The understanding of entanglement is at the very heart afelated by local unitaried_U) [5,4]. But even in the simplest
quantum information theor§QIT). In recent years, there has bipartite systems|) and|¢) are typically not related by
been an ongoing effort to characterize qualitatively and_U, and continuous parameters are needed to label all
quantitatively the entanglement properties of multiparticleequivalence classg6—10. That is, one has to deal with
systems. A situation of particular interest in QIT consists Ofinfinitely many kinds of entanglement. In this context, an
several parties that are spatially separated from each othgfternative, simpler classification would be advisable.
and share a composite system in an entangled state. This one such classification is possible if we just demand that
setting requires the parties—which are typically allowed e conversion of the states is through stochastic local opera-

communicaj[e through a classical channel—to only act Io'tions and classical communicatioSLOCQO [4]; that is,
cally on their subsystems. But even restricted to local Operathrough LOCC but without imposing that it has to be

tions assusted_ with plasswal commumcaﬂdrOCC), the achieved with certainty. In that case, we can establish an
parties can still modify the entanglement properties of the” ~ . : .
system and in particular they can try to convert one en_equ!valencg relation _statmg that two Sta}t@ and| ) are
tangled state into another. This possibility leads to natura?qu'valent if the parnes have a nqnvanlshlng probability of
ways of defining equivalence relations in the set of entangleGUCCeSS When trying to conve) into |¢), and also[¢)
states—where equivalent states are then said to contain tHa0 ) [11]. This relation has been termed stochastic
same kind of entanglement—as well as establishing hieraduivalence in Ref[4]. Their equivalence under SLOCC
chies between the resulting classes. indicates that both states are again suited to implement the
For instance, we could agree in identifying any two statesame tasks of QIT, although this time the probability of a
which can be obtained from each other with certainty bysuccessful performance of the task may differ frpgh) to
means of LOCC. Clearly, this criterion is interesting in QIT |#). Notice in addition that since LU are a particular case of
because the parties can use these two states indistinguishal®dyOCC, states equivalent under LU are also equivalent un-
for exactly the same tasks. It is a celebrated resijlthat, der SLOCC, the new classification being a coarse graining of
when applied to many copies of a state, this criterion leads tthe previous one.
identifying all bipartite pure-state entanglement with  The main aim of this work is to identify and characterize
that of the Einstein-Podolsky-Rosen(EPR state  all possible kinds of pure-state entanglement of three qubits
(1\2)(J00)+]11)) [2]. That is, the entanglement of any under SLOCC. Unentangled states, and also those which are
pure state{) g is asymptotically equivalent, under deter- product in one party while entangled with respect to the re-
ministic LOCC, to that of the EPR state, the entropy of en-maining two, appear as expected, to be trivial cases. More
tanglement (y/xg)—the entropy of the reduced density ma- gyrprising is the fact that there are two different kinds of
trix of either systemA or B—quantifying the amount of EPR  genuine tripartite entanglement. Indeed, we will show that
entanglement contained asymptotically i) g - In contrast,  any (montrivial) tripartite entangled state can be converted,

recent contributions have shown that in systems shared by,,” means of SLOCC. into one of two standard forms
three or more parties, there are several inequivalent forms (?'ﬁa/lmely either the GHZ’ stafd 2] '

entanglement under asymptotic LOC&4].
This paper is essentially concerned with the entanglement
properties of a single copy of a state, and thus asymptotic
results do not apply here. For single copies it is known that |GHZ)=(1/1/2)(]000)+|111)) 1)
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or else a second state tively, some needed results related to SLOCC, the monoto-
nicity of the 3-tangle under LOCC, and the fact the¥)
|W)=(1/,/3)(|001) +|010)+|100)), (2)  retains optimally bipartite entanglement when one qubit is
traced out.

and that this splits the set of genuinely trifold entangled
;tates in'Fo two sets yvhich are unrelated uno!er LOCC. That Il. KINDS OF ENTANGLEMENT UNDER
is, we _W|II see that if|¢) can be convertgd into the state STOCHASTIC LOCC
|GHZ) in Eq. (1) and| ¢) can be converted into the stawy)
in Eq. (2), then it is not possible to transform, even with only  In this work we define as equivalent the entanglement of
a very small probability of succes$y) into |¢) nor the two states|¢) and |¢) of a multipartite system iff local
other way round. protocols exist that allow the parties to convert each of the

The previous result is based on the fact that, unlike théwo states into the other one with soragoriori probability
GHZ state, not all entangled states of three qubits can bef success. In this approach, we follow the definition for
expressed as a linear combination of only two product statestochastic equivalence as given[#1.® The underlying mo-
Remarkably enough, the inequivalence under SLOCC of th#vation for this definition is that, if the entanglement |af)
states|GHZ) and|W) can alternatively be shown from the and|¢) is equivalent, then the two states can be used to
fact that the 3-tangléresidual tanglg a measure of tripartite  perform the same tasks, although the probability of a suc-
correlations introduced by Coffmaet al. [14], does not in-  cessful performance of the task may depend on the state that
crease on average under LOCC, as we will prove here. is being used.

We will then move to the second main goal of this work,
namely the analysis of the staft&/). It cannot be obtained A. Invertible local operators

from a s_tatd_GHZ} by means of LOCC and t_hus one coulo_l Sensible enough, this classification would remain useless
expect, in principle, that it has some interesting, characteris;

tic properties. Recall that in several aspects the GHZ statg in practice we would not be able to find out which states

can be regarded as the maximally entangled state of thr dre related by SLOCC. Let us recall that, all in all, no prac-

qubits. However, if one of the three qubits is traced out thgt?cal criterion is known so far that determines whether a ge-

remaining state is completely unentangled. Thus, the e neric_transformation can be implemented by means of

tanglement properties of the sta6HZ) are very fragile "OCC. However, we can think of any local protocol as a
9 t prop . Yy Irag series of rounds of operations, where in each round a given
under particle losses. We will prove that, oppositely, the en-

; : . rty manipulates locally it tem an mmunicat
tanglement of W) is maximally robust under disposal of any party manipulates locally its subsystem and communicates

one of the three qubits, in the sense that the remainin rec_lassically the result of its operatidif it included a mea-
. qubtts, . 9 surement to the rest of the parties. Subsequent operations
duced density matricB® g, pgc, andpac retain, accord-

g 1 veral criteria. the areatest ible amount of n(Ean be made dependent on previous results and the protocol
g o several criteria, the greatest possibie amount of € splits into several branches. This picture is useful because for
tanglement, compared to any other state of three qubit

either pure or mixed Bur purposes we need only focus on one of these branches.
We will finally analyze entanglement under SLOCC in Suppose that stafes) can be locally converted into stdig)

more general multivartite svstems. We will show that forWith nonzero probability. This means that at least one branch
g P y ) ', of the protocol does the job. Since we are concerned only
Qith pure states, we can always characterize mathematically

transform locally a given state into some other if they are%—‘his branch as an operator which factors out as the tensor

chosen randomly, because the space of entangled pure St.a.l St8duct of a local operator for each party. For instance, in a
depends on more parameters than those that can be modifi ee-qubit case we would have tha can be locally con-

by acting Ioca]ly on thg subsystems. verted into|¢) with some finite probability iff an operator
The paper is organized as follows. In Sec. Il, we charac- X
. ) . . . A®B®C exists such that

terize mathematically the equivalence relation established by

stochastic conversions under LOCC, and illustrate its perfor- |¢)=A®B®C|y), (3)

mance by applying it to the well-known bipartite case. In

Sec. lll, we move to consider a system of three qubits, foivhere operators contains contributions coming from any

which we prove the existence of six classes of states undebund in which partyA acted on its subsystem, and similarly

SLQCC, including the_two genuinely tripartite ones. Sectionfor operatorsB and C.* Carrying on with the three-qubit

IV is devoted to studying the endurance of the entanglemenéxample, let us now consider for simplicity that both states

of the statdW) against particle losses. In Sec. V, more gen-

eral multipartite systems are considered. Section VI contains————
some conclusions. Finally, Appendices A—-C prove, respec- . . .
Y, ApP P P 3Stochastic transformations under LOCC had been previously
analyzed in15,16.
“4In practice, the constrainta™A, BB, Cc'C=<1 should be ful-
IAn experimental realization using photons of such a state wasilled if the invertible operatorsA,B,C are to come from local

already proposed ifiL3]. POVMs. In this work, we do not normalize them in order to avoid
2The reduced density matrix,g of a pure tripartite statéy) is introducing unimportant constants to the equations. Instead, both
defined apag=trc(|¥){(#]). the initial and final states are normalized.
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|) and |¢) have rank two reduced density matriceg  ability iff n,=ng, orin terms of kinds of entanglement, we
=trgc(|¥)(¥]), pg., andpc. Then clearly the rank of op- Can say that the entanglement of the class characterized by a
eratorsA, B, andC needs to be 2see Appendix A In other ~ 9iven Schmidt number is more powerful than that of a class
words, each of these operators is necessarily invertible, angfith & smaller Schmidt number.

in particular For later reference we also note that in a two-qubit sys-
tem, H=C?®(?, we can write any state, after using a con-
lp)y=A"1®B 1o C 1| ¢). (4)  venient LU, uniquely as
Thus we see that, under the assumption of maximal rank for |p)=c5|0)®|0)+s5[1)®|1), cs=s:=0, (8

the reduced density matrices, two-way convertibility implies , .
the existence of invertible operatoksB, andC as in Eq.(3) wherec;,ss stand for co® and siné. This is either a prod-
[actually, one-way convertibility alone has already impliedUct (unentangleistate|y,_g)=[0)@|0) for c,=1 or else
that an invertible local operatdiLO) A®B® C exists. Ob- an entangled state that can be converted into the EPR state,
viously, the converse also holds, namely that if an ILO 1
A®B®C exists, then for each direction of the conversion a

’ . : —(|0)®|0)+|1)®]|1)), 9
local protocol can be built that succeeds with nonzero prob- \/§(| 20+ H®iL) ®
ability. As explained in Appendix A in detail, we can get rid
of the previous assumption on the ranks and announce witWith probability p=E,(¢), where Ex(¢)=\, is the en-

generality the following. tanglement monotone that provides a quantitative description
Result Stateq ¢) and|¢) are equivalent under SLOCC if of the nonlocal resources contained in a single copy of a
an ILO relating thenjas in, for instance, Eq3)] exists. two-qubit pure statgl8]. Any state|¢) can be obtained from
state(9) with certainty, this contributing to the fact that the
B. Bipartite entanglement under SLOCC EPR state is considered the maximally entangled state of two
qubits.

What does this classification imply in the well-known
case[15-17 of bipartite systems? Since LU are included in
SLOCC, we can take the Schmidt decomposition of a pure
state| ) e C"® C™, n<m, as the starting point for our analy-
sis. Thus, In this section, we analyze a system of three qubits. We

n, show that SLOCC split the set of pure states into six in-
. : equivalent classes, which further structure themselves into a
;1 Wili)eli)=UaoUglg),  \>0, ny=n, (5 thqree-grade hierarchy when noninvertible local operations
are used to relate them. At the top of the hierarchy we find
whereU, andUg are some proper local unitaries, the coef-two inequivalent classes of true tripartite entanglement,
ficients\; decrease with, andn,, is the number of nonvan- which we name GHZ class and class after our choice of
ishing terms in the Schmidt decomposition. Clearly, the ILOcorresponding representatives. The three possible classes of
bipartite entanglement are accessiféth some nonvanish-

IIl. ENTANGLEMENT OF PURE STATES
OF THREE QUBITS

1 (1 o ing probability from any state of thew and GHZ classes by

\/T izl \/T|'><'|+i:n2+1 liXil | 1g (6) means of a noninvertible local operator. Finally, at the bot-
v ! v tom of the hierarchy we find nonentangled states.
transforms Eq(5) into a maximally entangled state The ranks (pa), r(pg), andr(pc) of the reduced density
matrices, together with the rang& pgc) of pgc, will be the

1 M main mathematical tools used through the first part of this
— 2 |[y®l]i), (7) section. By analyzing them we will be able to make an ex-
ny | haustive classification of three-qubit entanglement. Later on

we will rephrase some of these results in terms of well-

which depends only on the Schmidt numbey. Since : :
SLOCC cannot modify the rank of the reduced density ma_known measures of entanglement. In particular, we will see

i d hich is ai b lude that i that the existence of two inequivalent kinds of true tripartite
rLCGSﬁA andpg, WhICh IS given byn,,, we conciude that in entanglement under SLOCC is very much related to the fact
C"®C™, n=m, there aren different kinds of entangled

states, corresponding o different classes under SLOCC that the 3-tangle, a measure of tripartite entanglement intro-
’ X : ) ' _duced in[14], is an entanglement monotoligee Appendix
Each of these classes is characterized by a given Schmi [14] 9 ftwee App

number, and we can choose as their representatives the stat)eAt the end of the section also a practical way to identify
(7) with n,=1, ... n. Clearly,n,=1 corresponds to states

the class that an arbitrary state belongs to will be discussed.
that are less entangled than the rglsey are, after all, unen- Y 9

tangled. This hierarchical relation can be extended to the
rest of the classes by noting that noninvertible local operators
can project out some of the Schmidt terms and thus diminish If at least one of the local rankgp,), r (pg), orr(pc) is

the Schmidt number of a state. Therefore, the dtéjecan 1, then the pure state of the three qubits factors out as the
be locally converted into the stajt¢) with some finite prob-  tensor product of two pure states, and this implies that at

A. Nonentangled states and bipartite entanglement
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least one of the qubits is uncorrelated with the other two. 1
SLOCC distinguish states with this feature depending on A® B® C|GHZ)=—(|A0)|B0)|CO)+|A1)|B1)|C1)),
which qubits are uncorrelated from the rest. V2 13

1. Class A~B—C (product states)
where|A0) and|A1l) are linearly independent vectasince
Alis invertible and similarly for the other two qubits. That is,
fhe minimal number of terms in a product decomposition for
the state(13) is also 2. Actually, we observe the following
for a general multipartite system.

This class corresponds to states witlips)=r(pg)
=r(pc)=1. They can be taken, after using some convenien
LU, into the form

|a-&-c)=10)|0)[0), (10 Observation The minimal number of product terms for
any given state remains unchanged under SLOCC.
where we have already relaxed the notation ff@y® |0) This simple observation tells us already that in three
®]0). qubits there are at least two inequivalent kinds of genuine

tripartite entanglement under SLOCC, that |&HZ) and

2. Classes A-BC, AB—C, and C—AB (bipartite entanglement) that of |W). _
However, we still have to prove that the stéfé) cannot

These three classes of states cqntain only bipartite erge expressed as a linear combination of just two product
tanglement between two of the qubits, one of the reducegeciors. In order to complete our classification, we also have

density matrices having ran_k 1 and the other two having rank, show that any pure state of three qubits with maximal
2. For example, the states in class BC possess entangle- o4 ranks can be reversibly converted into either the state
ment between the systerBsandC [1(pg) =r(pc)=2] and |GHz) or the statelW). We start with an obvious lemma
are prodyct w.|th respect to systed{r(p,)=1]. LU allow regarding product decompositions.
us to write uniquely states of the claés-BC as Lemma Let =!_,|e))|f;) be a product decomposition for
the state|7)e He@Hg. Then the set of state§e)}_;
|#a-Bc)=10)(c4|0)[0) +5,51)[1)), cs=55:>0, spans the range @fe=Trg| 7)( 7).
1y Proof. We have thatpe=3];_,(fi|f;)|e;)(e;|. On the
other hand|v) is in the range opy if a state|u) exists such
and similarly for [¢/5_ac) and |¢c_ag). We choose the that|v)=pg|u), that is,|V>=E:,,-=1<fi|fj)<ei|ﬂ>|ej>-

maximally entangled state In particular,r(p,)=2 implies that at least two product
terms are needed to expahgl) e (?®(2® (2. Let us sup-
1 pose that a product decomposition with only two terms is
—[0)(|0)|0)+]1)[1)) (12 possible, namely
V2
|y =lai)|b1)[c1) +]az)|bs)|ca). (14

as representative of the clads-BC. Any other state within
this class can be obtained frofh2) with certainty by means Then, also according to the previous lemmia,)|c,) and
of LOCC. |by)|c,) have to span the range pfc, R(psc)-

The proof that these four marginal classes are inequiva- But R(pgc) is a two-dimensional subspace 6f® (2.
lent under SLOCC is very simple. We only need to recallTherefore, it always contains either only one or only two
that the local ranks are invariant under IL&ee Appendix product state$19] [unlessR(pgc) Was supported i@ 2
A). In what follows we will analyze the more interesting caseor (> C, but we already excluded this possibility because
of r(p,)=2, k=A,B,C. To see that there are two inequiva- we are considering(pg)=r(pc)=2]. Notice that a two-
lent classes fulfilling this condition, we will have to study term decomposition(14) requires thatR(pgc) contain at

possible product decompositions of pure states. least two product vectors. Only one product vector in
R(pgc), and thus the impossibility of decompositi@h), is
B. True three-qubit entanglement going to be precisely the trait of the states in Welass.
There turns out to be a close connection between convert- 1. GHZ class

ibility under SLOCC and the way entangled states can be ) .

expressed minimally as a linear combination of product Let uUs suppose first the®(pgc) contains two product
states. For instance, as we shall prove later on, the GHZ an¢ectors,[b:)|c1) and |by)|c,). Then decompositioril4) is
W states have a different number of terms in their minimalPossible, and actually unique, witfa;)=(&|y), i=1.2,
product decompositionél) and (2), namely two and three Where|&;) are the two vectors supported R{pgc) that are
product terms, respectively, and this readily implies thafiorthonormal to theb;)[c;). In this case we can use LU in
there is no way to convert one state into the other by mean@rder to take ) into the useful standard product forfsee
of an ILO A®B®C. Indeed, let us consider, e.g., the mostalso[20])

general pure state that can be obtained reversibly from a

|GHZ). It reads | Werz) = VK(C5|0)|0)]0) +5:€'¢| @) 0B)| 0c)), (15)
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where wherea,b,c>0 andd=1—-(a+b+c)=0.
The parties can locally obtain the st&2®) from the state
| @) =C4l0) +5,/1), |W) in Eqg. (2), which we choose as a representative of the
_ class—and whose study we postpone for later on—by appli-
|#8)=C4l0)+ 5l 1), (16) Cation of an ILO of the form

|¢C>:Cy|0>+sy|l>1

and K= (1+2c455C,C4C,C,) 1€ (3,) is a normalization & Ja V3 0
factor. The ranges for the five parameters ate ( >® J3b | @ ) (21)
e (0,7/4],a, B,y (0,7/2] and ¢ €[0,27). 0 o = 0 1

All these states are in the same equivalence class as the a
|GHZ) (1) under SLOCC. Indeed, the ILO

\/R(C§ sécae"P)@(l Cp

0 s55.,% 1|0 s

1 c, Before moving to relate these classes by means of nonin-
0 s, (7 vertible local operators, we note that states within the GHZ
class and th&V class depend, respectively, on five and three
applied to|GHZ ) produces the stat€5). parameters that cannot be changed by means of LU. Previous
The GHZ state is a remarkable representative of this classvorks [6,7,20,9 have shown that a generic state of three
It is maximally entangled in several sensgd]. For in-  qubits depends, up to LU, on five parameters. This means
stance, it maximally violates Bell-type inequalities, the mu-that states typically belong to the GHZ class, or equivalently,
tual information of measurement outcomes is maximal, it isthat agenericpure state of three qubits can be locally trans-
maximally stable againgivhite) noise, and one can locally formed into a GHZ with a finite probability of succegsee
obtain from a GHZ state with unit propability an EPR statealso[23]). The W class is of zero measure compared to the
shared between any two of the three parties. Another releva®Hz class. This does not mean, however, that it is irrelevant.
feature is that when any one of the three qubits is traced outn a similar way as separable mixed states are not of zero
the remaining two are in a separable—and thereforeneasure with respect to entangled states, even though prod-
unentangled—state. uct states are, it is in principle conceivable that mixed states
having onlyW-class entanglement are also not of zero mea-
2. W class sure in the set of mixed states.

Let us move to analyze the case wh&pgc) contains
only one product vector. We already argued that decomposi-

®

tion (14) is now not possible. Instead we camiquely write C. Relating SLOCC classes by means
of noninvertible operators
[¥)=[as)|ba)cr) +az)| dsc). (18) In this subsection, we investigate the hierarchical relation

of the six SLOCC-equivalence classes under noninvertible
operators, i.e., under general LOCC.

A noninvertible local operator transformg) into |¢)
according to Eq(3), but with at least one of the local opera-
tors A, B, and C having rank 1. This means that the local

| )= (Vc|1)+d]|0))[00) +|0)(+/a|01) + Vb|10)). ranks of the pure states can be diminished. For instance, if
(19

where| ¢gc) is the vector ofR(pgc) Which is orthogonal to
|bi)|c,), and|a,) and |a,) are given by(b,|(c,|¢) and
(dgc| ). By means of LU, Eq(18) can always be rewritten
as

the initial state|) belongs either to the GHZ dW class,
then a noninvertible operator will diminish at least one of the
Indeed, we first takéb,)|c;) into |0)|0). Then, sincé¢ppc)  local ranks. That is|¢) belongs necessarily to one of the
has been chosen orthogonal [io;)|c,), it must become bipartite classesk—uv («k#u+#ve{A,B,C}) or else is a
x|01)+y|10)+z|11). By requiring that a linear combination product stateA—B—C.
of these two vectors has no second product vector, we obtain Thus we have that the classes GHZ andare also in-
that z=0 [22]. In addition, the coefficients/a=x, b  equivalent even under most general LOCC, whereas, e.g., a
=y, \c, and \d can be made positive by absorbing the measurement of the projectoP=|+)(+| with [+)
three relative phases into the definition of stte of sub-  =1/y/2(]0)+|1)) in party A maps states within the classes
systemsA, B, andC. Thus casdi) has been taken into the W (20) and GHZ(15) to states within the class—BC. In a
form (19) by just using LU. Before we showed that two similar way, noninvertible local operator$ocal, standard
terms could not suffice in a product decomposition of themeasurementscan convert states within one of the classes
state. Now we see that three product terms always do the jola— wv to states within the clasa—B— C. Note that in all
for instance (/c|1)+d|0))|00), a|0)|01), and cases described above, the inverse transformations, e.g., from
Vb|0)|10) once we took the original state into the standard,the classA—B—C to one of the classes— wv, are impos-
unique form sible as they would imply an increase of the rank of at least
one of the reduced density operaters,pg,pc. These re-
| ) = Va|001) + b|010) + \/c|100) + /d|000), (20)  sults are summarized in Fig. 1.
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TABLE |. Values of the local entropie$,,Sg,Sc and the
3-tangler for the different classes.

Class Sa S Sc T
A-B-C 0 0 0 0
A-BC 0 >0 >0 0
. N B—AC >0 0 >0 0
FIG. 1. Different local classes of tripartite pure states. The di-

rection of the arrows indicates which noninvertible transformationsC—AB >0 >0 0 0

between classes are possible.
w >0 >0 >0 0

D. Measures of entanglement and classes under SLOCC
. ) GHz >0 >0 >0 >0
Several measures have been introduced so far in the lit=

erature in order to quantify entanglement. Although this sec-

tion is mainly concerned with qualitative aspects of multipar- —(2K 2

. . . = S,S3S,SsCs) F0 22
tite quantum correlations, we would like to relate some of (o) =( #5,5:C5) 22
these measures, namely some bipartite ones and the tripart

3-tangle[14] (see Appendix B to our classification. Re- . . .

markably, the existence of two kinds of genuine tripartiteIn the W class. In Appendix B we prove that the 3-tangle is

entanalement in a three-qubit svstem. as well as the in&" entanglement monotone, a very desirable property for any
9 q y ' uantity aiming at measuring entanglement. Consequently, a

equivalence between bipartite and tripartite entanglemenf}me in theW class cannot be transformed by means of

can be easily understood from the nonincreasing character(ﬁ . ; .
these measures under LOCC. In addition, the 3-tangle allow OCC (and in particular SLOCLto a state in the GHZ

: T P . glass, which is an independent proof of the fact that the two
for a systematic and practical identification of to which class’. R ) . .
inds of true tripartite entanglement are indeed inequivalent
under SLOCC any pure state belongs.

For eachk=A, B, andC we can regard the three-qubit under SLOCC.
system as a bipartite system, with qukit say A for con- S
creteness, being one part of the system and the remaining E. Practical identification

two qubits, B and C, being the other. Correspondingly, &  Gijyen an arbitrary statpy) of three qubits, expressed in
state| ) of the three qubits can be viewed as a bipartite stal@ny basis, it may be interesting to know, for instance,
lac))- For bipartite states several measures are Knownyhether it can be converted by means of LOCC into a GHZ
which are entanglement monotori&, that is, which cannot o a\ state, if any, or into an EPR state shared between two
be increased, on average, under LOCC. For instance, we &bt the parties. In our original analysis of the classes, we have
ready mentioned the entropy of entangleméi(t) for  already provided a constructive method, based on the analy-
asymptotic conversions—given by the entrdBy of the ei-  sjs ofr(p,) andR(pgc), to determine the class 6f) under
genvalues ofpx—and the monotoné,(y) for the single 5| 0CC. Analyzing theR(pgc) may, however, not be the
copy case, which is given by the smallest eigenvalyef  most practical way to proceed. Here we suggest to proceed
pa- They all vanish for product statésorresponding t®,  instead according to the following two steps.

with rank 1) while having a positive value for any other state (i) Computep,., k=A,B, andC, and check whether they
(corresponding t@, with rank 2. Thus we can interpret the have a vanishing determinarinote that dep,=0=S,
inequivalence under SLOCC of states whose reduced density g1 (p, ) = 1].

matrices differ in rank also in terms of the impossibility of (i) If none of the previous determinants vanighat is,
creating any of the bipartite measures. For instance, a state FQ’) has true tripartite entanglemgntthen compute the
the A—BC class hass,=0, and thus cannot be transformed 3.tangle using the recipe introduced[i].

with any finite probability into a state of theB—C class, Then Table I, which summarizes the relation between

because this would hax&>0. We conclude that the mono- cjasses under SLOCC and measures of entanglement, can be
tonicity of these measures readily split the set of pure stategsed to catalog staie)).

of three qubits into five subsets which are inequivalent under

SLOCC, namely unentangled statés—B_—_C, the three IV. STATE |W) AND RESIDUAL

qlassesA— BC, AB—-C, an_dC—AB containing only bipar- _ BIPARTITE ENTANGLEMENT

tite entanglement, and a fifth subset of entangled states with

SA.Se,Sc#0 [i.e., r(pa)=r(pg)=r(pc)=2]. Bipartite As mentioned in the preceding section, in several aspects

measures cannot, however, determine the inequivalence tie state|GHZ) is the maximally entangled state of three

the GHZ andW classes. qubits. It also has the feature that when one of the qubits is
Is there any known measure of tripartite entanglementraced out, then the remaining two are completely unen-

which can distinguish between these two classes? Th&ngled. This means, in particular, that if one of the three

3-tangle does. Indeed, it can be computed from the produgtarties sharing the system decides not to cooperate with the

decomposition$15) and(20) (see[ 14] for detail9, and reads other two, then they cannot use the entanglement resources

%er any state in the GHZ class, while it vanishes for any state
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of the state at all. The same happens if for some reason tHeor this “worst case scenario” we have been able to prove
information about one of the qubits—namely the identity ofanalytically (see Appendix € that the maximal value of
the corresponding staté8) and|1) in (1)—is lost. Emin(¥) is obtained by the stat&V) for any bipartite measure
Here we would like to investigate the robustness of thef(p) which is monotonic with the concurrena&p), such as
entanglement of a three-qubit stdig) against disposal of the entanglement of formatiok(p) and the monotone
one of the qubit§24]. The residual, two-qubit statgsg, E,(p).® which denotes the minimal amount of bipartite pure-
pac, andpgc are in general mixed states. There are severastate entanglemefguantified by means d, ()] required
measures of entanglement of mixed states and therefore mub prepare locally one single copy of the state
tiple ways of quantifying how muckmixed-stat¢ bipartite We conclude that the staf@/) is the state of three qubits
entanglement the staté) turns into when one of the qubits whose entanglement has the highest degree of endurance
is traced out. Nevertheless, most of the criteria we have exagainst loss of one of the three qubits. We conceive this
amined coincide in pointing out the stai/) as the one that property as important in any situation where one of the three
maximally retains bipartite entanglement. Note that the reparties sharing the system, say Alice, may suddenly decide
duced density matrix ofW) is identical for any two sub- not to cooperate with the other two. Notice that even in the

systems and is, e.g., given by case that Alice would decide to try to destroy the entangle-
ment between Bob and Claire, this would not be possible,
pag=3|¥ " W(¥T|+5|00)(00, (23)  since any local action oA cannot prevent Bob and Claire

from sharing, at least, the entanglement containggsn(for
with |¥*)=(1/y2)(|01)+|10)) being a maximally en- instance, by simply ignoring Alice’s actionsTherefore, al-
tangled state of two qubits. Note that one can obtain from dhough essentially tripartite, the entanglement of the state
single copy of Eq(23) a state which is arbitrarily close to |W) is also readily bipartite, in contrast to that of the state
the statd ¥ *) by means of a filtering measuremé@s]. |GHZ ) , which only after some local manipulation can be
brought into a bipartite form.

A. Average residual entanglement
Let us consider first which is the amount of bipartite en- V. GENERALIZATION TO N PARTIES

tanglement, according to some measé(p), that the two
remaining qubits retains on average when a third one is In this final section, we would like to apply the same

traced out, that is, techniques to analyze the entanglement of more general mul-
. tipartite systems. We will learn that the set of entangled
E()=3[Epap)+E(pac)+Epeo)]. (24 states is a rather inaccessible jungle for the local explorer, for

two pure state$ys) and|¢) are typically not connected by
In general, computing the amount of entanglem&(t) for  means of LOCC, so that the parties are usually unable to
bipartite mixed states is a difficult problem. However, nu-convert states locally. We will also study generalizations to
merical results have shown thiaé/) maximizes the average N qubits of the stat¢w ) .
entanglement of formation, that is the choigg)=E:(p),
whereE¢(p)°® is the minimal amount of bipartite pure-state

entanglemenfas quantified by means of the entropy of en- A. Local inaccessibility of states in general
tanglementt required to prepare locally one single copy of multipartite systems
the statep [26]. Let us consider firsN parties each possessing a qubit.

In addition, we have managed to show analyticaige  The Hilbert space of the system is
Appendix Q for the particular choice&(p)=C(p)?, where

C(p) is the concurrencéor a definition of the concurrence, HWN =g 2 2

. =CoC®. . -0C, 2
see, e.g.[14]), that the stat¢W) reaches the maximal aver- —_— (26)
age valueC?(W) =3, which no other state can match. N

) and therefore up to a global, physically irrelevant complex

B. Least entangled pair constant, a generic vector depends on"2¢4) real param-
Another way of quantifying how resistent the entangle-eters. On the other hand, we want to identify vectors which
ment of a tripartite stathy) is to the dismissal of one part of are related by means of an ILO. A general one-party, invert-
the system consists in looking at the least entangled of thible operatorA must have a nonvanishing determinant, which

three possible remaining parts, namely at the function we can fix to one, dék=1, because the operatkA only
_ differs in that it introduces in the transformed states an extra
Emin(P)=min(E(pag),&(pac).E(pac))- (25  constant factok e C, which we have already addressed. That

is, Ae SL,(C), and it depends on six real parameters. There-

SThe entanglement of formation is given bEf(p):h(%

+3\J1—C?), whereC is the concurrence ank is the binary en- ®The entanglement monotori®, expressed in terms of the con-
tropy functionh(x) = —x log, X— (1 —x)log,(1—X). currenceC, is given byE,(p)=3—3\1-CZ2
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fore, the set of equivalence classes under SLOCC, |W,)=(1/y/4)(]0002) +|0010 +|0100 +|1000).
H(N)
SL,(C)XSLL(C)X - -- XSL,(C)’ 27 One immediately observes that the entanglement of this state

is again very robust against particle losses, i.e., the state
|Wy) remains entangled even if aly—2 parties lose the
information about their particle. This means that any two out
of N parties possess an entangled state, independently of
N whether the remainingN—2) parties decide to cooperate
gﬁg\?vds fﬂgotvﬁrfg; a|2:m:r gﬂmgg (ﬁf i?)istzeti;?::rle k?rl:; with them or not. This can be seen by computing the reduced
ylarg q density operatopg of |[Wy), i.e., by tracing out all but the

nitely many classes, labeled by at least one continuous pa-

rameter. The reason is that the number of parameters fromi?la{St and the second systems. B.y symmetry of th? $WF.@'
) . : we have that all reduced density operatpyg are identical

state| ) which the parties can modify by means of a generaland we obtain

ILO A®B®---®N grows linearly withN (6N for the

multi-qubit cas¢ whereas the number of parameters re-

quired to specify| ) grows exponentially with\.

More generally, if the Hilbert space is given b

=(C"@-.-®C™, then the set of equivalence classes under

. vl
v~

N

dependsat leaston 2(2N—1)—6N parameters. This lower

1
Peu=rg (R} (¥ |+(N=2)[00)00). (31

SLOCC The concurrence can easily be determined to be
M@ ... ®C™ Con(Wy) = E (32
(28) s N

SLy, (€)X -+ XSL, (€)’
which shows thap,,, is entangled, even distillable. We con-

depends at least on &{n,- - -nN—l)—ZE-N 1(n-2—1) This Jecture that the average value of the square of the concur-
1= I :

shows that only foN=3 there are still some systems with rence for|Wy),

(potentially only a finite number of classes under SLOCC,
namely those with Hilbert spadé?® ("2 (s, that is, hav- 2 S S ez wy= 4
ing a qubit as at least one of the subsystems. In all other N(N—1) el Wh) =55
cases, one finds an infinite number of classes.

We notice that even allowing for noninvertible local op- g again the maximal value achievable for any stateNof
erations, the amount of parameters that can be changed @(Jbits.
local manipulations is typically smaller than what the state
depends on. That is, the subset of states that can be reached
locally from a given statgy) is of zero measure in the set of VI. SUMMARY AND CONCLUSIONS
states of the multipartite system. Recall that in the bipartite | this work, we investigated equivalence classes of mul-
scenario{=C"®C", there is always a maximally entangled jpartite states specified by stochastic local operations and
state from which all the other states can be locally prepareg|assical communication. We showed that for pure states of
with certainty of success. We see now that, in constrast, thergee qubits there are six different classes of this kind. In
is typically in a multipartite system no state from which all paticular, we found that there are two inequivalent types of
the others can be prepared, not even with some probability Qfenuine tripartite entanglement, represented by the GHZ
success. Of course, the parties can always resort to, say, Usiate and the stat. We showed that the staw is the state
ing a sufficient amount of EPR states distributed among thengf three qubits that retains a maximal amount of bipartite
to prepare any multipartite state by standard teleportationentanglement when any one of the three qubits is traced out.
This implies, however, using an initial stafthat of many  por multipartite (\=4) and multilevel systems, we showed
EPR stateswhich belongs to a Hilbert space much larger ihat there exist infinitely many inequivalent kinds of en-

than the Hilbert space of the state the parties are trying tganglementi.e., classes under SLOGC
create, and thus does not change the previous conclusion.

(33

K MFK
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APPENDIX A: SLOCC AND LOCAL RANKS lW=A"10B 1o .- oN"1¢) (A5)

N tlrrlletrs]i: rﬁgﬁ;g‘iiﬁmeefgi%g‘gti f?ﬁfﬁ)ﬁ:%giezeg?/nr%eaq%nd the conversion can be reversed locally. Let us then move
of an invertible local operatdiiLO). From this connection it prove the converse. We already argydc. Il A) that if

, |) can be converted inthp) by LOCC, then a local opera-
follows easily th"?‘t the_ local ranks of a pure statép,), « tor relates them. We want to prove now that the equivalence
=A,B, ..., areinvariant under SLOCC, whereas under

LOCGC they can only decrease. of |¢) and|¢) under SLOCC implies that this operator can

S (N (M always be chosen to be invertible. For simplicity, we will
Lemma If the bipartite vectorsy) and|¢) e C"@ C™ ful- [ o oo thayy) and|¢) are related by a local operator act-

ing nontrivially only in Alice’s part,
[#)=AeLsl), (A1) |)=Ae1s._.nl). (A6)

then the ranks of the corresponding reduced density matric

satisfyr (pR)=r(pg) andr(pg)=r(pg).
Proof. We consider the Schmidt decomposition| ¢f,

fill

€ﬁhe general case would correspond to composing operator
A®1g...y With operator A®B®1c..., and similarly for
the rest of the parties. The following argumentation should
n, then Ee appliequeqﬁentialrlly tg e;ch party jndividfu@kzw.e
_ MYi),  AP>0, n,<min(n,m), (A2 can then consider the Schmidt decomposition of the states
) 21 \/—'l iy ' / (n.m), (A2) with respect to parf and partB- - - N,

and write the operatoA as

ny
. [)=2 Wblm), />0, (A7)
A= | mi)il, (A3) )
i=1 ¢
[6)=2 W(UAIDI7), A>0,  (A8)

where |u;) e C" do not need to be normalized nor linearly
i — n‘/’ iV ¢ . .
mdepweanentr; Then we have thé} %4 )il and p/_* where the local unitaryJ, relates the two local Schmidt
=Apah =37 [mi)(wil, so that (pg)<n,,. The second in-  pases in Alice’s partf{|i)}i_ e HAo=C", |7)e Hg® - -
equal!ty of the lemma follows from the fact that for any ®Hy, andn,=n, because of the previous corollary. Now,
bipartite vectom (ps) =r(pg)- operatorA in Eg. (A6) must be of the formup to some

Corollary. If the vectors|y),|¢) e HA® Hg®---®Hy irrelevant permutations in the Schmidt basis
are connected by a local operator f$)=A®B®---

®N|y), then the local ranks satisfy(p)=r(p?), « A=U(A1+A7),
=A,B, ... N.

Proof. Indeed, for each of the parties, say Alice for con- 2 A
creteness, we can view the operafopB® - --®N as the AlEZl ﬁ|'><'|, (A9)
composition of two local operator&y® 1g...y and 1,® (B |
®---®N), and the Hilbert space 8$,® Hg...n- Then, be- n
cause of the previous lemma, application of the first operator A= i A10
cannot increase(p,), and the same happens with the sec- 2 i:nzdﬁl )il (A10)
ond operator, which cannot increaggg...\) [recall that for
any pure state(pa) =r(pg...n) - where |u;) are arbitrary unnormalized vectors. Notice that

Theorem Two pure states of a multipartite system areVectors|u;) play no role in Eq.(A6) since A,®1g...y[#)
equivalent under SLOCC if they are related by a local invert-=0. Therefore, we can redefine
ible operator. N

Proot I ! (A11)

|py=A®B®---&N|y), (A4) o
] . which implies thatA is an invertible operator.

then a local protocol exists for the parties to transfdim
into |¢) with a finite probability of success. Indeed, each
party needs simply to perform a local POVM including a
normalized version of the corresponding local operator in In this appendix, we show that the 3-tangldés an en-
Eqg. (A4). For instance, Alice has to apply a POVM defined tanglement monotone, i.e., decreasing on average under
by operatorsypaA and V1,—psATA, wherepa<1 is a LOCC in all the three parties. We first note that any local
positive weight such thginATA<1,, and similarly for the protocol can be decomposed into POVM's such that only
rest of the parties. Then such a local protocol conveffs  one party performs operations on the system. This, together
successfully intd¢) with probability papg- - - py - If, in ad-  with the invariance of the 3-tangle under permutations of
dition, A,B, ... N are invertible operators, then obviously the parties, ensures that it is sufficient to consider a local

APPENDIX B: 7 1S AN ENTANGLEMENT MONOTONE
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POVM in A only. Furthermore, we can restrict ourselves towhile the statdW) reaches the valug,=3. Note that we

two-outcome POVM'’s due to the fact that a genarlizkd

used the short-hand notatidg for the concurrence of the

cal) POVM can be implemented by a sequence of two outteduced density operatphg,C(pag), and similarly forCac,

come POVM's. LetA,,A, be the two POVM elements such
thatAIA; +AJA,=1. We can writeA;=U;D;V, whereU; , V
are unitary matrices anbd; are diagonal matrices with en-
tries (a,b) [((1—a?)Y? (1—b?)?)], respectively. Note that
we used the singular value decomposition fr, and we
have that the restriction that, ,A, constitute a POVM im-
mediately implies that the unitary operativican be chosen
to be the same in both cases. We consider an initial iate

with 3-tangler(¢). Let|$;)=A;|¢) be the(unnormalized

Inequality (C1) already im_pIies that the stat@/) reaches
the maximum average iahﬂl,b) of Eq. (24) for the choice
of &(p)=C(p)?, namely&(W)=3.

At the same time, inequalit§C1) also shows that the state
|W) maximizes the functior€,,,,() (25) for the choice of
E(p)=C(p)?, since(C1) implies that

Cain(¥)=min(C3g.Cac.Coc) <% (C2)

states after the application of the POVM. Normalizing them,

we obtain|¢;)=|d;)/\p; with p;=(¢;|¢;) andp;+p,=1.
We want to show that”7, 0<x=<1 is, on average, always
decreasing and thus an entanglement monotone, i.e., for

(7" =p17"(h1) + P27"(P) (B1)

we have that
(T<T"()

is fulfilled for all possible choices of the POVNIA,,A,}.
Using that 7 is invariant under local unitaries, we do not
have to consider the unitary operatiods in our calcula-
tions, i.e.,7(U;D;V¢) = 7(D;V). Taking this simplification
into account, a straightforward calculation shows that

(B2)

2p? (1-a%)(1-b?
(p1)=— 1), T(¢a)=——7F—1(¢¥),
p1 P>
(B3)

where we used that(e;) = €*7(;), which can be checked
by noting thatr is a quartic function with respect to its
coefficients in the standard bagis4]. Note that the depen-
dence of7(¢;) on the unitary operatiol¥ is hidden inp; .
For »=13, one obtains for example'%(¢,)=ab/p, 7().
Substituting in Eq(B1), we find

(T2)=[ab+(1—a%)(1—-b?)]2(y).

In this case, one can easily check that E84) <72 by
noting that Eq.(B4) is maximized fora=b. We thus have

(B4)

that 72 is, on average, always decreasing and thus an en:
tanglement monotone. In a similar way, one can check fo
0<#n=1 thatr” is an entanglement monotone. However, for
n+# 3, the derivation is a bit more involved due to the fact

that in this case the probabilitigs in the expression fof77)
no longer cancel and have to be calculated explicitly.

APPENDIX C: |W) MAXIMIZES RESIDUAL
BIPARTITE ENTANGLEMENT

Here we show that for all tripartite pure states, except the T

state|W), the following inequality holds:

E,=Cag+CactC3c<%, (C1)

for all states except the staf@/), for which the valuej is
reached. From EqC?2) it follows that for any bipartite mea-
sure of entanglemewd¥ p) which is monotonically increasing
with the square of the concurren@nd hence with the con-
currence itself the statgW) maximizes the functiod ()
(25), i.e.,
Emin( ‘//)<5min(W):g(62: g)- (C3

Assume that this is not the case, i.e., there exists a gtéde
which &in()>Eqmin(W). Since by assumptiofi is monotoni-
cally increasing with the concurrence, this would imply that
CZ..(¥)>%, which contradicts Eq(C2) and is hence impos-
sible.

Note in addition that any good measure of entanglement
should be a convex functid®], asC(p), E:(p), andE,(p)
are. This implies, when applied to Eq24) and(25), that the

optimal values fol€ and &, are achieved for pure states.

The remainder of this appendix is devoted to prove in-
equality (C1). Using the definition of the 3-tangle=7ag¢
=Chmo)—Cas—Cac [14] and the invariance of the 3-tangle
under permutations of the parties, we can rewfige as
3(Caeo)TChac)+Coam—37). Using that C%,,
=4 detp,, we can evaluat&, for the different classes.

Starting with the clas®\—B—C, we immediately obtain
that E (V5 g_c)=0. For the clasA—BC, we have that
7=0 andCjpc)=0. SinceCac) .Coap =1, we have that
E(Va_gc)=<1 in this casgand similarly for the classeB
—AC,C—-AB).

Now we consider the clas®V, specified by Eq.(20).
Again, we have thatr=0. We find thatE (V) =4(ab
+ac+bc) (which does not depend af). Notice thatE, is
aximized fora=b=c=$—which corresponds to the state
W)—and leads td=,=3. For all other values o#,b,c,d,
we have thaE,<3.

Let us now turn to the class GHZ, specified in Ef5).
Using that 7(W¢ghz) is given in Eqg. (22) and depa
=K2c3s3s5(1—-c5c?) (and similarly for depgc), we ob-
tain

22 2.2 2.2 22 2.22
Acs Sy (8,81 8,8, 1 S5S,) — 35,558, ]

(C4
(1+2C555C,C4C,C,)°

One readily checks that E4C4) is maximized foré= w/4
and o= (which corresponds t@s;=s;=1/\2 and C,=
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—1), independent of the values af 3,y € (0,7/2]. Thus we
have thatt ,.<E (6= w/4,o= ) and after some algebra we
obtain

c - (ci+ch+ch)—2(cich+cics+ches) +3cicsc

T

(1+c,cphe,)?
(CH

We want to show that the right-hand side of EG5) <3.
Let us callx=c,,y=cgz,z=c, with 0<x,y,z<1. We thus
have to show that

f(X,y,2)=3(x?+y?+22) — 6(x2y2+ x2z2+y?7?)
+5(x%y?z%)— 4+ 8xyz

<0. (Co)

Let us calculate the maximum 6€x,y,z). We therefore take
the derivatives off(x,y,z) with respect tox,y,z, respec-
tively (which we denote by,,f,,f,) and set them to zero.
One immediately observéby considering the linear combi-
nation of the resulting equations, e.gf,—yf,, where one,
e.g., obtains X*—y?)(1—2z%)=0] that for a maximum we

PHYSICAL REVIEW A62 062314

must havex=y=z. The possible solutions of the resulting
polynomial of degree 5 can be checked to lie outside the
interval [0,1), i.e., outside the range afy,z except forx
=y=2z=0. It can, however, be easily verified that this solu-
tion gives rise to a minimum of(x,y,z), namelyf(0,0,0)
=—4. Thus the maximum of(x,y,z) is obtained at the
border of the range fox,y,z, which corresponds to the sur-
faces of a cube. Due to the fact thigix,y,z) is invariant
under permutations of the variables, we only have to check
two of the surfaces, e.g., the surfaces specifiecby) and
x=1 (actuallyx=1—¢€, wheree is an infinitesimally small
positive number and we find (i) f(0x,y)=3(y?>+7?)
—6y?z?—4<-—1 (the maximum in this case is, e.g., ob-
tained for y=0z=1—¢) and (ii) f(1y,z)=8yz—3(y?
+2%)—y?22—1<0. In (ii), it can be checked that a neces-
sary condition for a maximum ig=z and thatf(1y,y) is
monotonically increasing if0,1) and is thus maximized for
y=z=(1-¢€). One obtaind(x,y,z)<f(1,1-€,1—€)<0 as
desired.

So we managed to show that the s{at8 is the only state
which fulfills E.=3, and for all other tripartite pure states
we have thaE,<3.
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